
Journal of Computer Virology and Hacking Techniques (2019) 15:307–323
https://doi.org/10.1007/s11416-019-00339-6

ORIG INAL PAPER

Function matching between binary executables: efficient algorithms
and features

Chariton Karamitas1,2 · Athanasios Kehagias2

Received: 23 April 2019 / Accepted: 5 September 2019 / Published online: 19 September 2019
© Springer-Verlag France SAS, part of Springer Nature 2019

Abstract
Binary diffing consists in comparing syntactic and semantic differences of two programs in binary form, when source code
is unavailable. It can be reduced to a graph isomorphism problem between the Control Flow Graphs, Call Graphs or other
forms of graphs of the compared programs. Here we present REveal, a prototype tool which implements a binary diffing
algorithm and an associated set of features, extracted from a binary’s CG and CFGs. Additionally, we explore the potential
of applying Markov lumping techniques on function CFGs. The proposed algorithm and features are evaluated in a series of
experiments on executables compiled for i386, amd64, arm and aarch64. Furthermore, the effectiveness of our prototype tool,
code-named REveal, is assessed in a second series of experiments involving clustering of a corpus of 18 malware samples into
5 malware families. REveal’s results are compared against those produced by Diaphora, the most widely used binary diffing
software of the public domain. We conclude that REveal improves the state-of-the-art in binary diffing by achieving higher
matching scores, obtained at the cost of a slight running time increase, in most of the experiments conducted. Furthermore,
REveal successfully partitions the malware corpus into clusters consisting of samples of the same malware family.

1 Introduction

In the current paper we present REveal, a prototype tool
which implements a binary diffing algorithm and an asso-
ciated set of function features extracted from the CFGs

This paper is a significantly expanded version of [22] which was
presented at 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). Since our last
publication, we have received useful and constructive feedback from
various individuals we would like to thank; Joxean “matalaz” Koret
for developing and open-sourcing Diaphora. Balint “buherator”
Varga-Perke for the feedback and discussions on binary diffing.
J-Michael Roberts for running VirusShare, a priceless resource for
malware related research, and for giving us access to his incredible
malware database. Last but not least, we would like to thank Shaul
Holtzman and Intezer for giving us access to their platform,
code-named Analyze, and for providing us with unpacked executables
of the malware samples analyzed in Sect. 6.

B Chariton Karamitas
huku@census-labs.com

Athanasios Kehagias
kehagiat@auth.gr

1 CENSUS S.A., Thessalonıki, Greece

2 Department of Electrical and Computer Engineering,
Aristotle University of Thessaloniki, Thessalonıki, Greece

(Control Flow Graphs) and CG (Call Graph) of a binary
program.

Binary diffing is the process of reverse engineering two
programs (when source code is not available) in order to study
their syntactic and semantic differences [12,25,26]. It can be
performed by function matching, which assists in spotting
differences between the two programs and minimizes the
manual labor required to understand and process code and
data modifications. Function matching can be reduced to the
graph isomorphism problem [8] between the compared sub-
jects’ CFGs, CGs or other graphsmodeling the subjects’ flow
of information. Since graph isomorphism belongs to the NP
class, in the current paper we present computationally prac-
tical methods to obtain an approximate solution.

REveal is introduced to attain these goals; it is evaluated
in a series of experiments involving open-source software,
as well as unpacked versions of malware samples found in
the wild; in both cases it achieves excellent results, as will
be seen in the sequel. REveal is currently a work-in-progress
prototype tool which is being actively developed. The project
will be open-sourced in the near future, once a production
milestone has been reached.

We propose a set of function features extracted from a
binary’s CG and CFGs; these can be used by variants of the
BinDiff algorithm [8,9,11] to (i) build a set of initial exact

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-019-00339-6&domain=pdf

308 C. Karamitas, A. Kehagias

matches withminimal false positives, by scanning for unique
perfect matches, and (ii) to propagate approximate match-
ing information, for example, by using a nearest-neighbor
scheme. One of the proposed features is obtained by apply-
ing Markov lumping to function CFGs (to our knowledge,
this technique has not been previously studied). The fea-
ture extraction process is repeated for each program under
comparison and the resulting information is utilized by a
number of algorithms implementing graph matching strate-
gies. The aforementioned algorithms produce a mapping
between functions of the compared subjects, where each
element in the map associates a function from the primary
program to a similar function in the secondary program.

We evaluate our approach by a series of experiments
on binary executables compiled for the four, most widely
used, computer architectures: i386, amd64, arm and aarch64.
Additionally, REveal is assessed in a second series of experi-
ments involving clustering of a corpus of 18malware samples
into 5 malware families. Malware classification has always
been an actively researched field with many applications in
the computer industry and this latter set of experiments high-
lights our tool’s ability to solve real life problems. Our results
are compared to those obtained byDiaphora [7].We conclude
that REveal improves the state-of-the-art in binary diffing by
achieving higher matching scores, at the cost of higher run-
ning times. Furthermore, REveal successfully partitions the
malware corpus into clusters consisting of samples of the
same malware family.

The remaining of this paper is organized as follows.
In Sect. 2 we review previous work on binary diffing. In
Sect. 3 we present mathematical notation, definitions and
assumptions on which our prototype system is based. In
Sect. 4 we propose the set of function features, utilized
by the binary diffing algorithms of Sect. 5. In Sect. 6 we
evaluateREveal in the two aforementioned batches of experi-
ments. Furthermore,we compare our results to those obtained
by Diaphora [7]. As already mentioned, we conclude that
REveal improves the binary diffing state-of-the-art. Finally,
in Sect. 7 we summarize and propose several future research
directions.

2 Previous work

Binary diffing has been used in the software engineering
industry in several application domains.

1. Malware classification [3,4,17]: Given a binary exe-
cutable, classify the subject as either innocent or sus-
picious. Malware classification works by extracting fea-
tures from the binary executable and locating matching
candidates within a database of known, pre-analyzed
malware samples. Since the database size may be hun-

dreds of terabytes, both performance and effectiveness
are very important. With the number of sophisticated
cyber-attacks, ransomware, malware and other forms of
malicious software constantly increasing [27,28], both
antivirus companies and independent researchers have
entered this research field.

2. Patch analysis [20]: Quickly study, analyze and evaluate
product updates for the presence of software vulnerabil-
ities. By diffing shared libraries and binary executables
of the investigated system, pre- and post-update, a secu-
rity researcher reduces the set of changes that need to be
studied.

3. Plagiarism detection [30]: In an online course manage-
ment system, for example, diffing can be used to assign
similarity scores to solutions submitted by students and
detect cheating. In the software industry, diffing can be
employed to detect copyright infringement and other
forms of intellectual property theft.

4. Propagation of profiling information [33,34]: Binary
diffing techniques may be used to port existing profile
information, which was initially assembled from a pre-
vious version of the same program, to a newer one, thus
allowing the software testing team to only focus on eval-
uating new features of a software suite.

As already mentioned, many binary diffing algorithms
reduce binary diffing to the study of graph isomorphism of
CFGs and/or CGs and separating the diffing process in two
phases.

1. During pre-filtering, two binary executables, the match-
ing candidates, are disassembled and their CGs are
recovered through a combination of standard disassem-
bly techniques. For eachvertex in the twoaforementioned
CGs (that is, for each function in each executable) the
corresponding CFG is formed and a feature vector is
extracted. Then an initial 1–1mapping between theCFGs
of the two matching candidates is formed by looking
for unique entries in the aforementioned feature vector
sets. This initial mapping constitutes a set of fixed points
and effectively reduces the problem space by decreasing
the number of possible vertex permutations theoretically
required to find the isomorphism between the two CGs.

2. In the propagation phase, the initial 1–1 mapping is
expanded. This is usually done by examining neighbors
of alreadymatched vertices in the compared CGs. Neigh-
bors which, according to their features, match exactly
or differ only slightly, are added in the mapping thus
expanding the isomorphism. Other forms of propagation
may also be used, as discussed in Sect. 5.

The two-phase process described above can be repeatedly
executed until the mapping cannot be expanded any more.

123

Function matching between binary executables: efficient algorithms and features 309

Exact differences between the compared executables can be
spotted by examining each basic block of eachmatchedCFG.

For example, Dullien et al. [8,9,11] form feature vectors
(composed of the number of vertices and edges as well as
the out-degree of each CFG) which they use to locate per-
fect matches in the compared executables. Later publications
[2,10] extendDullien’swork by adding ormodifying features
in the aforementioned feature vector. Variants of these algo-
rithms have been extensively used in commercial tools like
Zynamics BinDiff [35]. Also, Diaphora [7] (an open source
application and nowadays the industry standard in binary
diffing) uses a set of several graph metrics, computed over
function CFGs, to match unique functions in two executa-
bles.1

Other binary diffing algorithms are based on dynamic
analysis techniques [25,26], back-tracking [33,34], MCS
[10] or simulated annealing [23]. Even though our work is
mostly applicable to BinDiff algorithm variants, it may be
possible to apply it to the abovementioned algorithms.

3 Preliminaries

We define a program p to be a set of N functions; p = { fi |
i = 0, 1, . . . , N − 1}. Binary diffing involves comparing
two programs, namely p1, the primary subject, and p2, the
secondary subject, and forming a 1–1 mapping M , that cor-
responds functions of p1 to functions of p2, M = { f p1i →
f p2j | i < |p1|, j < |p2|}.
We representdigraphs (i.e., directed graphs)with the nota-

tion G = 〈
V , E

〉
, where V is the digraph’s vertex set and

E ⊆ V × V is the digraph’s edge set (or arch set). Given
a vertex v ∈ V , we define the set of successors of v as
succ(v) = {s | (v, s) ∈ E} and the set of predecessors of v
as pred(v) = {p | (p, v) ∈ E}.

For each function f , in a program p, we define a digraph
CFG f = 〈

VCFG f , ECFG f

〉
, where VCFG f is the set of f ’s

basic blocks (straight-line machine code sequences with no
branches in, except to the entry, and no branches out, except
at the exit). The set of edges ECFG f denotes the possible
execution flow paths between the function’s basic blocks. If
e = (bsrc, bdst) ∈ ECFG f , then control flow can reach basic
block bdst immediately after bsrc (i.e., bdst ∈ succ(bsrc)).
Digraph CFG f is usually referred to as f ’s Control Flow
Graph.2

A program p can also be treated as a digraph of digraphs,
referred to as the program’s Call Graph (CG). CGp of pro-
gram p is a digraph whose vertices correspond to individual

1 It should also be mentioned that Diaphora does not implement any
kind of propagation phase.
2 Even though the CFG (and the CG mentioned in the sequel) are
digraphs we will follow standard usage and call them graphs.

function CFGs, that is VCG = {CFG f | f ∈ p}. For each
control transfer instruction in basic block bsrc ∈ VCFG fsrc

that transfers execution to basic block bdst ∈ VCFG fdst
, where

fsrc �= fdst , an edge (CFG fsrc , CFG fdst) exists in ECG .
We assume that, succ(v) and pred(v) return the cor-

responding vertex sets ordered by their addresses. I.e., if
succ(v) = {s0, s1, . . . , sn−1} for some v ∈ V , then
address(s0) < address(s1) < · · · < address(sn−1), where
address : V → N returns the address of a vertex in program
memory.

A Markov chain [15,16] is a discrete time, discrete state
space stochastic process which satisfies the Markov prop-
erty: the probability of the process entering the next state,
depends only on the present state. The transition matrix p
has elements (transition probabilities) pi j such that:

∀i, j : pi j = Pr(Process at time

t + 1 is in state j | Process at time t is in state i)

Markov chain lumping [6,32] is a process introduced to
reduce computations on Markov chains. It merges equiva-
lent states from the original Markov chain into super-states,
called components, of a new system, also obeying theMarkov
property. For any two components Pi and Pj the following
property holds true:

∀n1, n2 ∈ Pi :
∑

s∈Pj

pn1s =
∑

s∈Pj

pn2s

Standard Markov analysis algorithms are then applied to the
new, reduced system.

To evaluate our algorithm and test the effectiveness of the
proposed features, we need the ground truth on the func-
tion matching results. To this end we use an oracle function
oracle : p1 × p2 → {True, False}. Given two compared
subjects, p1 and p2 and corresponding functions f p1 and
f p2 :

oracle(f p1 , f p2) =
{
True if f p1 = f p2
False otherwise

Implementing such an oracle is critical for experimental
evaluation. The simplest approach makes use of debug
information embedded in the binary executables. For each
reported match, the two function names are extracted from
each executable’s debug section, demangled and checked for
equality. If the two names are identical, or if they are suffi-
ciently similar (e.g. their Levenshtein distance [24] is small),
the match is considered successful.

In the rest of the paper, we make the following assump-
tions.

123

310 C. Karamitas, A. Kehagias

1. Symbol names and debugging information of compared
binaries is not taken into account during binary diffing,
except for ground truth computations.

2. Source code of compared subjects is not available.
3. We only consider exact, perfect matches.
4. Speed is not our primary interest. Even if binary diffing

takes several hours to complete, it still saves hundreds of
hours of manual processing.

5. Compared binaries are neither obfuscated nor packed.3

4 Features

For each function, we extract a feature vector composed of 10
features. These describe the CFG’s (i) structural character-
istics (vertex and edge classification, graph signatures), (ii)
spatial characteristics (inlinks, outlinks, lumped transition
matrix) and (iii) semantic content (function type, instruction
and data histogram).

4.1 Function type

To make use of advanced runtime facilities, offered by mod-
ern operating systems, executable code usually depends on
the presence of standard or third-party libraries, from which
it references code and data symbols (e.g. use of printf() resid-
ing in libc.so). This dependencymanifests itself either during
link or run time. When a dynamically-linked executable is
loaded, for example, the dynamic loader is responsible for
resolving these external symbols at run time. On the other
hand, when a program is statically linked against a library,
the linker is responsible for performing the same task at link
time. Such external symbols are referred to as imported sym-
bols or just imports. In contrast, executable code can expose
certain functionality to the operating system, so that other
programs can freely make use of, via a series of exported
symbols or just exports. Last but not least, executable code
usually consists of code and data not belonging to any of
the aforementioned categories. This is usually code, which
performs the actual computations of the program, and data it
acts on. We refer to these as hidden symbols.

Naturally, with only a few exceptions not discussed here,
when matching functions of an executable against functions
of another, imports from the first should be matched against
imports from the second. The same principle should be fol-
lowed for exports and hidden symbols. Towards this, our very
first feature is a simple integer signifying the category each
function belongs to. During the matching process, functions
in the same group are matched with each other.

3 Initial pre-processing steps of de-obfuscating and unpacking the the
executables may be necessary. In fact, such preparatory steps have been
used in the past by various authors (e.g. [3,4,17]).

4.2 Vertex and edge taxonomy

In previous publications [2,8–11] feature vectors extracted
from function CFGs include two features which reflect a
digraph’s overall structure; the number of vertices (basic
blocks) and the number of edges in the corresponding
function. These two important structural characteristics can
significantly speed up the pre-filtering phase, by discarding
candidates with incompatible vertex and edge counts. But
their pruning power is limited and they can easily introduce
non-negligible inaccuracies and/or latencies in the overall
process.
For example, take the digraphs depicted in Fig. 1a and b.
These might be the CFGs of two functions under compari-
son. They are both composed of 6 basic blocks and 7 edges.
Consequently, a traditional BinDiff algorithm variant would
pick those two as potential matching candidates. However
they have obvious differences. Figure 1a represents a func-
tion that executes linearly, while Fig. 1b represents a function
whose basic block F traps the execution flow; it might be a
dispatch loop (e.g. malware virtualization obfuscation dis-
patch loop as described in [26]), or a no-return vertex (as
recognized by IDA Pro [13]).

We propose the following vertex taxonomy (in which a
basic block may belong to more than one category) as a
better way to distinguish CFGs by their topological vertex
characteristics.

1. Normal. All vertices, including those that do not belong
to any of the remaining categories.

2. Entry points. Program execution enters the function in
question via one of these vertices. A single function may
have more than one entry points.

3. Exit points. Control flow leaves the function via one
of these basic blocks (e.g. basic blocks ending with a
RET instruction, or a CALL instruction when tail-call
optimization is used). Each function may have several
exit points.

4. Traps. Every vertexwith a single edge looping into itself.
5. Self-loops. A vertex with an edge to itself and, possibly,

edges to other vertices. Traps are also self-loops.
6. Loop heads. Loops’ header [29] vertices.
7. Loop tails. Vertices within a loop’s body [29] with edges

to the loop’s header.

So we propose a feature sub-vector with 7 elements; the
i-th element holds the number of vertices of category i
defined above. E.g., the feature vector extracted from the
digraph at Fig. 1a is

[
6 1 1 0 0 0 0

]
and that from Fig. 1b is[

6 1 1 1 0 0 0
]
. These clearly expose the dissimilarity of the

two CFGs.
Compare Fig. 1a and c. Both digraphs have the same num-

ber of vertices and edges and are only composed of normal

123

Function matching between binary executables: efficient algorithms and features 311

Fig. 1 Several example CFGs.
They all share the same number
of vertices and edges, yet, we
need to come up with ways of
distinguishing one from another

vertices, a single entry point and a single exit point (accord-
ing to the previously defined taxonomy). Yet they are very
different; 1c, unlike 1a, appears to perform a sanity checking
on its input arguments and, if checks are not passed, execu-
tion flows directly to basic block F, the function’s exit point.
The number of edges alone, is not enough to distinguish 1a
and c; we need more robust features.

Hence we introduce a taxonomy of edges, similar to the
one described by Tarjan [31]. Using DFS traversal, we clas-
sify edges into the following categories.

1. Basis edges. Given a topological sort of the vertices of
graph G = 〈

V , E
〉
and a DFS which respects this topo-

logical sort such that: if (u, v) ∈ E then depth(u) <

depth(v) unless v is an ancestor of u4 (this is satisfied by
the graphs of Fig. 1a, d), then (u, v) is a basis edge if
depth(v) = depth(u) + 1.

2. Forward edges. Like basis edges above but depth(v) >
depth(u)+1. Forward edges connect ancestors with non-
direct descendants.

3. Back edges. Back edges connect descendants with their
ancestors (i.e. depth(v) < depth(u)). Self-loops are also,
sometimes, considered back edges as well.

4. Cross-links. Edges between vertices belonging to differ-
ent DFS sub-trees.

Hence we propose a second feature sub-vector of 4 ele-
ments. The i-th element holds the number of edges falling in
category i . Accordingly 1a is described by

[
7 0 0 0

]
and 1c

by
[
6 1 0 0

]
. The two CFGs can now be separated.

4 Where the depth() function is the one resulting from the aforemen-
tioned DFS.

Fig. 2 Immediate dominator trees for 1c and d

4.3 Digraph signatures

The exact vertex and edge classification features of two
digraphs do not give any insight on how the latter are actually
laid out. Consider Fig. 1c and d. Both digraphs have a vertex
feature vector of

[
6 1 1 0 0 0 0

]
and an edge feature vector

of
[
6 1 0 0

]
and hence cannot be distinguished based solely

on these two feature vectors (i.e., there exist many different
digraphs with 6 vertices and 7 edges).

Note that the above digraphs have different dominance
relations. E.g., in Fig. 1c the immediate dominator of vertex
F is A, while in Fig. 1d is E. The dominator trees of Fig. 1c
and d can be seen in Figs. 2a and b respectively.

To encode this information in a feature vector we first
build the immediate dominator tree of the subject digraph
and then visit its vertices in a depth-first fashion. During the
DFS traversal, we incrementally construct a bit-vector that
reflects the digraph’s layout in the following way; whenever
a vertex is first visited, we append a 1 to the bit-vector. When
DFS leaves the vertex in question, a 0 is appended. For exam-
ple, given 2a, a DFS traversal of A B C D E F, produces the
bit signature 110101100100, or D64 in hexadecimal. Simi-

123

312 C. Karamitas, A. Kehagias

Fig. 3 Example of a assembly instructions and b their instruction forms

larly, in 2b, traversing the vertices in the order A B C D E F
produces the bit signature 110101110000, or D70.

Hence our next two features are the bit signatures of both
the original function CFG and its immediate dominator tree.
The corresponding features extracted from 1c and d are the
hexadecimal numbers F84, D64 and F84, D70 accordingly.
Notice how, in this specific example, the CFG signatures
happen to be the same and the two functions only differ in
their dominator trees.More elaborate signature schemes have
been used for indexing graph structures [4]; such schemes are
also applicable in our case.

4.4 Inlinks and outlinks

For each vertex we add as features the number of inlinks
(number of CALL sites of this function) and the number
of outlinks (number of CALL instructions in the function
body); most previous work uses only the latter. Following
[4,10] we include the former in our feature vector as an extra
step towards a more complete solution.

4.5 Instruction histogram

The features discussed so far encode structural characteris-
tics.We alsowant features that encode an approximation over
the semantics of a function. For instance, in [10] the authors
present the discovRE system, which classifies instructions in
4 categories based on their functionality (arithmetic, logic,
data transfer, redirection). This classification is then used
in a 4-element feature vector identifying each function in
the program’s CFG. Even though we believe this to be the
right choice, separating instructions in a so abstract taxon-
omy results in extended information loss and consequently
in reduced unique matches.

Based on this idea, we make use of Intel’s XED library
[18] and pyxed [21], for i386 and amd64, and IDAPro’s built-
in disassembler, for arm and aarch64, to classify instructions
based on their instruction form. As opposed to the classifica-
tion used in [10], the instruction form also gives an overview
of the type of operands used in each instruction, effectively

abstracting away constant values and register names. Last
but not least, the histogram of the distribution of instruction
forms is computed and appended in each function’s feature
vector.

Figure 3a shows a random function, consisting of a single
basic block, taken from a compiled Linux kernel binary. Fig-
ure 3b shows the same function, however, instructions have
now been replaced with their instruction forms.5

Clearly, different compilers and optimization levels can
have a significant impact on the instruction and operand
types used in the program. This, in turn, affects the binary
diffing process, as these variations can produce dissimi-
lar machine code for the exact same source, resulting in
reduced exact matches. A similar problem arises when
trying to compare two variants of the same program com-
piled for different computer architectures. Indeed, assembly
code produced for arm64 cannot be directly compared
to this produced for amd64. A widely accepted solution
for cross-architecture operations on machine code is lifting
instructions to an architecture-independent intermediate rep-
resentation and comparing the result. Future research towards
this direction is discussed in the Conclusion.

4.6 String histogram

Functions usually perform simple operations with ASCII
strings. For example, when a function calls printf(), the first
argument passed to printf() (the format string) is usually a
constant. Such distinctive constants are extremely useful for
reverse engineers as they can disclose a wealth of informa-
tion for the inner workings of a function. In binary diffing,
examining the string constants referenced from a CFG can
reveal potential matching candidates; thus, we would like to
encode this information in our feature vector.

An obvious, yet naive, choice is to extend each feature
vector with all strings accessed by the corresponding func-
tion. However this has two drawbacks: (i) the overall size
of the feature vector is increased linearly with respect to the

5 For the exact meaning of the instruction form constants see [19].

123

Function matching between binary executables: efficient algorithms and features 313

number of strings accessed by a function and (ii) comput-
ing a similarity metric between the feature vectors of two
functions becomes more complicated, as one has to resort
to computing a similarity score between individual strings.
Instead, we compute the histogram of all characters in all
strings accessed by the examined function and use the result
as a feature. This allows for detecting exact matches more
efficiently, by just comparing two histograms for equality,
and partial matches more naturally, by, for example, using a
cross-entropy metric to compute a similarity score between
two seemingly unrelated histograms.

This feature can be thought of as the program’s data ele-
ments manipulated by the function in question. It can also be
extended to account not only for strings, but for any type of
constant data accessed by a function. However this approach
introduces complications which are outside of the scope of
this paper.

4.7 Markov lumping of CFGs

Treating a CFG as aMarkov chain is not a new idea [5]. Each
basic block, in a function CFG, is assumed to be a separate
state and each edge a transitionwith a certain assigned proba-
bility.What ismost important in such a treatment, however, is
the model/assumptions used in order to assign the aforemen-
tioned transition probabilities. Caremust be taken as this will
eventually affect the effectiveness of the overall analysis and
the soundness of its results. For example, at [5] (Figs. 11–
15), the edge weights of the example program seem to be
known in advance and no insight on how they were deduced
is given. When specific program inputs are not known, deter-
mining the probability of a program reaching a specific state
is generally undecidable.

Abstractly, transitionprobabilities are just a set of numbers
obeying the following properties:

∀i :
n−1∑

j=0

pi j = 1, ∀i, j : 0 ≤ pi j ≤ 1.

It is not necessary to treat the pi j ’s as probabilities; they can
be understood as weights whose interpretation depends on
the application domain and reflects the relationship between
a source and destination. In our case, the entities are basic
blocks and the associated weights can be assigned based on
their properties. The resulting transition matrix can then be
viewed as a summary of the system’s overall entity relation-
ships towhich standardMarkov analysis tools can be applied.
Note also that such a transitionmatrix reflects the correspond-
ing CFG’s spatial characteristics, as each pi j quantifies the
relationship between i and one of its neighbors. By extracting
and comparing the matrices of two CFGs, we gain insight on
how similar or different the corresponding functions are. In

our experiments we evaluated the following weight assign-
ment schemes.

1. Each transition receives a uniform probability. We did
not find this scheme to be of any practical use, apart from
an analysis similar to the one described at chapter 15–3
of [5].

2. Edges towards basic blocks with a higher number of
instructions are assigned larger weights. The rationale
here is that computer programs generally receive and pro-
cess user input and thus execution ismore likely to reach a
basic block with more instructions, as this is where (most
likely) actual processingwill take place. Even though this
scheme gives a more detailed overview of the CFG’s lay-
out, it is inappropriate for detecting exact matches, as,
small rearrangements of instructions result in significant
changes in the transition matrix. This, however, makes it
more suitable for detecting inexact matches.

3. The last scheme takes into account various locality opti-
mizations [1] performed by the compilers which built
the executables. During certain optimization passes, a
function’s CFG may be split into several chunks which
might be placed in distant physical locations within the
executable (and consequently in distant virtual memory
addresses aswell). Basic blocks are distributed among the
aforementioned chunks, according to the compiler’s view
of howoften eachonemight be reachedwhen the function
in question is executed. In this manner a function is split
into hot paths (highly likely to be executed) and cold ones
(less likely to be reached). Hence, we assign to an edge
weight inversely proportional to the distance between its
source and destination (where distance ismeasured by the
addresses the code is located). This choice seems natural
and conforms to the operation of an optimizing compiler.

We found the third of the above schemes to yield the best
trade-off between accuracy and matching power.

Algorithm 1Weight assignment
1: procedure assign_edge_weights(CFG f)
2: chunks ← c f g_chunks(CFG f)

3: chunk_weights ← {|chunks|, |chunks| − 1, . . . , 1}
4: for all v ∈ VCFG f do
5: weight ← 0
6: for all s ∈ succ(v) do
7: i ← chunk_index(chunks, s)
8: weight ← weight + chunk_weights[i]
9: weight ← 1/weight
10: for all s ∈ succ(v) do
11: i ← chunk_index(chunks, s)
12: (v, s)weight = weight ∗ chunk_weights[i]

123

314 C. Karamitas, A. Kehagias

Algorithm 1 shows the process of assigning weight values
to the edges of an arbitrary CFG. It begins by retrieving the
list of chunks of function with CFG CFG f and stores them
in variable chunks (line 2). For chunk i , chunk_weights[i]
contains an initial reference weight (line 3). For example,
for a function with 4 chunks, the first chunk (index 0) is
given a weight of 4, the highest weight, while remaining
chunks are given successively lower weight values ranging
from 3 to 1. The core of the algorithm is a single loop that
traverses all CFG vertices (line 4). For each vertex, the sum
of its edge weights is assembled in weight by examining
its successors’ chunk indexes one by one (line 8). Finally
weight is converted to a weight factor (line 9), which is then
multipliedwith the correspondingweight of each successor’s
chunk (line 12) to give the final value of an edge’s weight.

Before a lumping algorithm can be used, the states of the
original system have to be split in a set of, so called, initial
components P0 = {P0,0, P0,1, . . . , P0,N−1}. Our reference
implementation begins by distributing basic blocks into com-
ponents so that no basic block is in the same component with
any of its successors (except if the basic block in question
has a self-loop):

∀v ∈ VCFG f : v ∈ P0,i ⇒ (succ(v) − {v}) ∩ P0,i = ∅

Algorithm 2, which is composed of several procedures, is
responsible for returning the set of initial components given
an arbitrary CFG. We begin our description from procedure
f ind_component(). Given the current set of components P0
and an arbitrary CFG vertex v, f ind_component() iterates
through all components defined so far (line 3) and locates
one which contains vertices (i) that are not v’s successors
(line 4) (ii) that do not have v as successor (line 6). If no such
component exists, the empty set is returned.

Procedure process_component(), as its name suggests,
processes one component P ∈ P0. It iterates through all ver-
tices in P (line 15) and looks for incompatibilities (line 16). If
such an incompatibility is found, the vertex under examina-
tion is removed from its component (line 18) and a another,
compatible, component is looked up (line 19). Recall that,
if no compatible component is found, a new empty set is
returned. Continuing, v is added to the newly found compo-
nent Q (line 20) and the latter is added in the component set if
not already there (line 22). Practically, process_component()
splits P into one compatible and several incompatible parts.
The incompatible vertices are moved to either a new compo-
nent, or an existing compatible one.

Themain procedure of algorithm 2, which we have named
create_initial_components(), is just a fixed-point loop that
processes components one-by-one, until no more compo-
nents can be split.

Algorithm 2 Initial partitioning algorithm
1: procedure f ind_component(v, P0)
2: Q ← Ø
3: for all P ∈ P0 do
4: if (succ(v) − {v}) ∩ P = Ø then
5: r ← True
6: for all q ∈ P do
7: if v ∈ succ(q) then
8: r ← False
9: break
10: if r = True then
11: Q ← P
12: break

return Q

13: procedure process_component(P, P0)
14: change ← False
15: for all v ∈ P do
16: if (succ(v) − {v}) ∩ P �= Ø then
17: change ← True
18: P ← P − {v}
19: Q ← f ind_component(v, P0)
20: Q ← Q ∪ {v}
21: if Q /∈ P0 then
22: P0 ← P0 ∪ {Q}

return change

23: procedure create_ini tial_components(CFG f)
24: P0 = {VCFG f }
25: change ← True
26: while change = True do
27: change ← False
28: for all P ∈ P0 do
29: change ← change ∨ spli t(P, P0)

return P0

Finally we apply a lumping algorithm [6] to refactor the
sets in P0, and use the lumped transition matrix as our
feature vector’s last element (other matrix characteristics,
like its eigenvalues, might be used instead). An overview
of the overall lumping process appears in Algorithm 3;
markov_lumping() is described in [6].

Algorithm 3 Overall lumping
1: procedure lump(CFG f)
2: P0 ← create_ini tial_components(CFG f)

3: P ← markov_lumping(P0) return P

5 A binary diffing algorithm

We now present REveal, our proof-of-concept implementa-
tion. REveal consists of two main components and several
helper libraries, all coded in Python. The first component is
an IDA Python plug-in for IDA Pro. It computes the feature
vectors of all functions found in an IDA Pro database and
saves them in a standard Pickle format. The second compo-
nent implements our binary diffing algorithms as described

123

Function matching between binary executables: efficient algorithms and features 315

in this section. Given two Pickle files, like those mentioned
previously, it attempts to produce a mapping between the
functions of the corresponding programs, by locating fea-
ture vectors with equal features in the exported data. Last but
not least, the helper libraries implement various graph theory
abstractions and algorithms.

Given twomultisets of function feature vectors, FVp1 and
FVp2 , extracted from two programs under comparison, p1
and p2, various strategies, referred to as matchers from now
on, might be used for mapping elements from the first set to
the second, or vice versa. REveal implements the following
three:

1. Singleton matcher: This matching strategy is shown in
algorithm 5. Given FVp1 and FVp2 , singletons (feature
vectors which exist only once in each set) are compared
and matched by iteratively scanning over the Cartesian
product of the aforementioned multisets.

2. Structural matcher: Shown in algorithm 6, the struc-
tural matcher iteratively matches predecessors and suc-
cessors of already matched functions. This is done by
creating multisets, FV ′

p1 and FV ′
p2 , consisting solely

of feature vectors of callers and callees, respectively, of
functions matched in previous steps. This process carries
on until no more new matches can be found.

3. Monotonicmatcher:When linking programs consisting
of multiple object files, linkers don’t move code belong-
ing to a single object file around, as this would introduce
several complications in the overall compilation process.
The monotonic matcher exploits this fact by matching
functions which are physically close to other functions
that have already been matched. More formally, if f1,
f2 are functions in program p1 and g1, g2 functions in
program p2 and f1 → g1, f2 → g2, address(f1) <

address(f2) and address(g1) < address(g2), the
monotonic matcher attempts to find matching singletons
between functions of p1 whose addresses fall in the inter-
val (address(f1), address(f2)) and functions of p2
in (address(g1), address(g2)). In other words, assum-
ing that we have two pairs of matched functions, whose
matched elements are monotonically sorted in terms of
their addresses, we try to find matching singletons in the
sets consisting of feature vectors of functions that lie
between f1 and f2 in p1 with functions that lie between
g1 and g2 in p2. The monotonic matcher is shown in
algorithm 7.

Other strategies that might be used in real life applica-
tions include the import name matcher and the export
name matcher, which match imported and exported sym-

bols respectively, based on their names and ordinals. These
matchers can be very effective at creating an initial set of
reliable matches which can be enriched, with the help of
the abovementioned matching strategies, to produce an even
larger set of results. It is essential to note that, in the experi-
ments presented in the following sections, no symbol names
were taken into account and consequently, the import and
export name matchers were not enabled.

The core of REveal is based on algorithm 4, which is a
simple loop that executes all matching strategies in sequence
until no more matches can be found. The input to algorithm 4
are the multisets of function feature vectors FVp1 and FVp2
of programs p1 and p2 respectively. The singleton matching
logic is invoked at line 6, the structural matching logic at
line 8 and the monotonic matching logic at line 10. Variable
M is the set that holds function matches, elements of the
form f → g, where f is a function in program p1 and
g a function in program p2. The procedures, implementing
the aforementioned matching strategies, populate M with
elements of this form and return the total number of matches
discovered.

Algorithm 4 REveal’s main algorithm
1: M ← Ø

2: procedure match(FVp1 , FVp2)
3: change ← True
4: while change = True do
5: change ← False
6: if singleton_matcher(FVp1 , FVp2 , M) > 0 then
7: change ← True

8: if structural_matcher(FVp1 , FVp2 , M) > 0 then
9: change ← True

10: if monotonic_matcher(FVp1 , FVp2 , M) > 0 then
11: change ← True

The singletonmatching logic, implemented in singleton_
matcher(), is shown in algorithm 5. Lines 4–5 iterate
through theCartesian product of the input feature vectormul-
tisets and try to match equal elements that appear only once
in both. In such an event, the corresponding functions are
retrieved (lines 6 and 7), the set of matches is updated (line
8), and the feature vectors are removed from their multisets
(lines 9 and 10). Last but not least, if our oracle signifies a
match (line 11), the number of correct matches is updated
(line 12). On the opposite case, the number of mismatches is
increased instead (line 12). The number of correct matches
is eventually returned.

123

316 C. Karamitas, A. Kehagias

Algorithm 5 Singleton matcher
1: procedure singleton_matcher (FVp1 , FVp2 , M)
2: num_matches ← 0
3: num_mismatches ← 0
4: for all (f vp1 , f vp2) ∈ FVp1 × FVp2 do
5: if f vp1 = f vp2 and |{ f vp1 } ∩ FVp1 | = 1 and |{ f vp2 } ∩

FVp2 | = 1 then
6: f p1 ← FV−1

p1 [f vp1]
7: f p2 ← FV−1

p2 [f vp2]
8: M ← M ∪ { f p1 → f p2 }
9: FVp1 ← FVp1 − { f p1 → f vp1 }
10: FVp2 ← FVp2 − { f p2 → f vp2 }
11: if oracle(f p1 , f p2) = True then
12: num_matches ← num_matches + 1
13: else
14: num_mismatches ← num_mismatches + 1

return num_matches

The structural matcher is shown in algorithm 6. By
the time it is invoked, in the loop body of algorithm 4,
singleton_matcher() has already been called once and thus
M has already been populated with a set of initial matches.
At lines 8–10, temporary sets, consisting solely of feature
vectors of matched functions’ successors, are created and
singleton_matcher() is used once again to further expand
M . The exact same procedure is repeated at lines 11–13, but,
this time, predecessors are taken into account. The aforemen-
tioned steps are repeated for as long as M grows (guaranteed
by the outer while loop). From a higher level perspective,
algorithm 6 is the equivalent of traversing the compared
programs’ call-graphs and matching neighbors of already
matched nodes.

Algorithm 6 Structural matcher
1: procedure structural_matcher (FVp1 , FVp2 , M)
2: num_matches ← 0
3: change ← True
4: while change = True do
5: change ← False
6: for all f p1 → f p2 ∈ M do
7: tmp_num_matches ← 0

8: FV ′
p1 ← {FVp1 [f] | f ∈ succ(f p1)}

9: FV ′
p2 ← {FVp2 [f] | f ∈ succ(f p2)}

10: tmp_num_matches ← tmp_num_matches +
singleton_matcher(FV ′

p1 , FV ′
p2 , M)

11: FV ′
p1 ← {FVp1 [f] | f ∈ pred(f p1)}

12: FV ′
p2 ← {FVp2 [f] | f ∈ pred(f p2)}

13: tmp_num_matches ← tmp_num_matches +
singleton_matcher(FV ′

p1 , FV ′
p2 , M)

14: if tmp_num_matches > 0 then
15: change ← True

16: num_matches ← num_matches+ tmp_num_matches
return num_matches

The monotonic matching logic, briefly discussed above,
is shown in algorithm 7. The algorithm starts by sort-
ing M based on the addresses of the matched functions
at line 6 (that is, for each f1 → g1, f2 → g2 ∈ M ,
f1 → g1 > f2 → g2 iff address(f1) > address(f2) or
address(g1) > address(g2)). The main body of the mono-
tonic matching logic consists of a loop (lines 8–9 and 14),
which iterates through M’s elements in pairs (that is, the first
iteration will examine M[0] and M[1], the second iteration
M[1] and M[2] and so on). If a pair whose elements are
monotonically sorted, in terms of their addresses, is found,
multisets consisting of feature vectors of functions, whose
addresses lie between the range of the matched functions,
are constructed for both programs and singleton_matcher()
is again used for discovering new matches (lines 11–13).
The while loop at line 4 guarantees that the overall mono-
tonicmatching logic is iteratively executed until nomore new
matches can be found.

Algorithm 7Monotonic matcher
1: procedure monotonic_matcher (FVp1 , FVp2 , M)
2: num_matches ← 0

3: change ← True
4: while change = True do
5: change ← False

6: M ← sort(M)

7: tmp_num_matches ← 0

8: f1 → g1 ← M[0]
9: for all f2 → g2 ∈ M[1 . . .] do
10: if address(g1) < address(g2) then
11: FV ′

p1 ← {FVp1 [f] | address(f1) < address(f) <
address(f2)}

12: FV ′
p2 ← {FVp2 [g] | address(g1) < address(g) <

address(g2)}
13: tmp_num_matches ← tmp_num_matches +

match_singletons(FV ′
p1 , FV ′

p2 , M)

14: f1, g1 ← f2, g2

15: if tmp_num_matches > 0 then
16: change ← True

return num_matches

6 Experimental results

Our experimental setup consists of an Intel Core-i7 2.4 Ghz
system equipped with 8 GB of RAM. We evaluate our pro-
totype binary diffing tool, code-named REveal, and compare
it with Diaphora, which we believe to be the current industry
standard in binary diffing. To further clarify, the version of
Diaphora used in the experiments is this of commit 566bfce
(Dec. 14, 2018), on IDA Pro 6.95, without the decompiler
suite (purchase and use of the decompiler package is cur-
rently scheduled for a future publication).

123

Function matching between binary executables: efficient algorithms and features 317

For the purpose of evaluating our tool, we conducted two
types of experiments. In the first type, we try to find similar-
ities between two different versions of the same program Pi ,
say P0

i and P1
i . For each such version pair, we use our binary

diffing tool and Diaphora to find similarities between binary
executables compiled for ia32, amd64, arm and aarch64
(P0

i,ia32 vs. P1
i,ia32, P

0
i,amd64 vs. P1

i,amd64 and so on). The
second batch of experiments concerns malware variants. We
collect 18 unpacked executable binaries belonging to 5 mal-
ware families and diff them with one another. We use the
diffing results to classifymalware samples into families using
the following, oversimplified approach; each sample is added
to the same family as the samplewithwhich it shares themost
common functions. Despite the aforementioned naive way of
classifying malware, the second batch of experiments serves
as a good example of detecting similarities in real world soft-
ware.

6.1 Binary diffing open source software

Each experiment conducted in this batch, consists of the fol-
lowing steps. First, the IDA Pro databases of two versions
of a program are opened. An IDAPython script is, then,
executed that obfuscates the names of all functions. This pre-
processing step is required for the experiments to bemore fair
as the SQLite queries internally used by Diaphora, during
the matching process, do take symbol names into account.
By obfuscating them we simulate a real life scenario where
no symbols are available. Next, Diaphora is used once in
order to export information from both databases and a sec-
ond time in order to actually perform the diffing process. The
same procedure is followed for our tool, REveal. Last but
not least, the results produced by the two tools are extracted,
parsed and formatted for easier evaluation. To further stress
the effectiveness of REveal, we compare its results against
those produced by Diaphora when used on a non-obfuscated
database, thus clearly giving the latter an early advantage.

Both tools are evaluated based on the number of exact
matches found. That is, functions which are not exactly simi-
lar are not considered. In the case ofDiaphora, given aSQLite
database holding binary diffing results, the exact number of
perfect matches can be computed using the following SQL
query. Notice howwe avoid comparing the names ofmatched
anonymous functions and always count them as true posi-
tives.

SELECT COUNT(*) FROM results WHERE type =
"best" AND (name = name2 OR name LIKE "sub_%%"
OR name2 LIKE "sub_%%");

The full list of experiments is shown in Table 1. Numbers,
corresponding to experiment identifiers, are assigned to pairs
of lines. Each pair shows information on the two programs

Table 1 List of experiments conducted

Program Version Architecture Compiler

1 ncmc v0.1.7 aarch64 GCC 4.2.0

v0.1.8 aarch64 GCC 4.2.0

2 ncmc v0.1.7 amd64 GCC 4.2.0

v0.1.8 amd64 GCC 4.2.0

3 ncmc v0.1.7 arm GCC 4.3.0

v0.1.8 arm GCC 4.3.0

4 ncmc v0.1.7 ia32 GCC 4.2.0

v0.1.8 ia32 GCC 4.2.0

5 ffmpeg 20180408 aarch64 GCC 4.9.x

20180731 aarch64 GCC 4.9.x

6 ffmpeg 20180408 amd64 GCC 4.9.x

20180731 amd64 GCC 4.9.x

7 ffmpeg 20180408 arm GCC 4.9.x

20180731 arm GCC 4.9.x

8 ffmpeg 20180408 ia32 GCC 4.9.x

20180731 ia32 GCC 4.9.x

9 nmap 7.12 aarch64 GCC 4.9.x

7.31 aarch64 GCC 4.9

10 nmap 7.12 amd64 GCC 4.9.x

7.31 amd64 GCC 4.9

11 nmap 7.12 arm GCC 4.9.x

7.31 arm GCC 4.9

12 nmap 7.12 ia32 GCC 4.9.x

7.31 ia32 GCC 4.9

13 vmlinux 4.4.1 aarch64 GCC 4.9.x

4.4.40 aarch64 GCC 4.9.x

14 vmlinux 4.4.1 amd64 GCC 8.2.0

4.4.40 amd64 GCC 8.2.0

15 vmlinux 4.4.1 arm GCC 4.9.x

4.4.40 arm GCC 4.9.x

16 vmlinux 4.4.1 ia32 GCC 8.2.0

4.4.40 ia32 GCC 8.2.0

that were compared; their versions, their architectures and
the compilers used for building them (according to metadata
found in each executable).

It should be noted that the Linux kernel binaries were
compiled by us, while the remaining binary executables
were directly downloaded from the respective public domain
GitHub repositories. For the sake of having ground truth, we
had to take into account only open source projects that pub-
lish precompiled executables with populated symbol tables
and/or debug symbols for all the aforementioned architec-
tures.

Table 2 summarizes the results of this series of experi-
ments. Entries in the table consist of triplets of rows with
the first line in each triplet showing the results produced by

123

318 C. Karamitas, A. Kehagias

Table 2 Summary of
experimental results

Tool Time Matches Mismatches

1 Diaphora 12 s 427 (52.073%) 46 (5.610%)

Diaphora (unobfuscated) 10 s 633 (77.195%) 77 (9.390%)

REveal 2 s 577 (70.366%) 81 (9.878%)

2 Diaphora 10 s 388 (51.255%) 54 (7.133%)

Diaphora (unobfuscated) 9 s 600 (79.260%) 75 (9.908%)

REveal 2 s 542 (69.487%) 89 (11.410%)

3 Diaphora 9 s 514 (60.329%) 57 (6.690%)

Diaphora (unobfuscated) 10 s 618 (72.535%) 73 (8.568%)

REveal 2 s 675 (72.503%) 91 (9.774%)

4 Diaphora 7 s 264 (34.921%) 23 (3.042%)

Diaphora (unobfuscated) 9 s 277 (36.640%) 25 (3.307%)

REveal 1 s 496 (59.401%) 77 (9.222%)

5 Diaphora 373 s 6658 (52.620%) 0 (0.000%)

Diaphora (unobfuscated) 410 s 10951 (86.549%) 0 (0.000%)

REveal 340 s 11,599 (91.381%) 61 (0.481%)

6 Diaphora 356 s 8877 (55.447%) 0 (0.000%)

Diaphora (unobfuscated) 369 s 13,732 (85.707%) 0 (0.000%)

REveal 475 s 13,074 (80.361%) 65 (0.400%)

7 Diaphora 384 s 9970 (59.608%) 0 (0.000%)

Diaphora (unobfuscated) 474 s 12,499 (74.728%) 0 (0.000%)

REveal 586 s 13,888 (81.752%) 73 (0.430%)

8 Diaphora 380 s 6417 (42.396%) 0 (0.000%)

Diaphora (unobfuscated) 473 s 6519 (43.058%) 0 (0.000%)

REveal 522 s 11,402 (74.266%) 52 (0.339%)

9 Diaphora 101 s 2212 (20.577%) 50 (0.465%)

Diaphora (unobfuscated) 93 s 5907 (54.949%) 51 (0.474%)

REveal 186 s 6205 (57.598%) 46 (0.427%)

10 Diaphora 89 s 2390 (22.838%) 55 (0.526%)

Diaphora (unobfuscated) 98 s 6228 (59.513%) 57 (0.545%)

REveal 184 s 5993 (55.475%) 36 (0.333%)

11 Diaphora 90 s 2275 (20.902%) 55 (0.505%)

Diaphora (unobfuscated) 91 s 3866 (35.54%) 51 (0.469%)

REveal 193 s 5897 (51.163%) 34 (0.295%)

12 Diaphora 89 s 1780 (16.804%) 83 (0.784%)

Diaphora (unobfuscated) 91 s 1824 (17.219%) 74 (0.699%)

REveal 174 s 5974 (55.095%) 29 (0.267%)

13 Diaphora 216 s 7310 (27.708%) 56 (0.212%)

Diaphora (unobfuscated) 215 s 20,557 (77.921%) 34 (0.129%)

REveal 960 s 22,832 (86.541%) 5 (0.019%)

14 Diaphora 328 s 9856 (23.735%) 119 (0.287%)

Diaphora (unobfuscated) 312 s 31,663 (76.249%) 234 (0.564%)

REveal 1991 s 33,094 (79.693%) 262 (0.631%)

15 Diaphora 142 s 5212 (23.907%) 5 (0.023%)

Diaphora (unobfuscated) 148 11,758 (53.933%) 4 (0.018%)

REveal 433 s 19,513 (89.456%) 4 (0.018%)

16 Diaphora 610 s 9479 (23.686%) 73 (0.182%)

Diaphora (unobfuscated) 611 s 10,101 (25.241%) 64 (0.160%)

REveal 1536 s 33,722 (84.261%) 167 (0.417%)

123

Function matching between binary executables: efficient algorithms and features 319

Diaphora when used on obfuscated IDA Pro databases. On
the contrary, the second row shows the outcome of Diaphora
on normal IDA Pro databases, without the aforementioned
obfuscation step. Last but not least, the third row in each
triplet displays the results produced byREveal. Since REveal
does not take into account symbol names, an obfuscated IDA
Pro databasemakes no difference on the outcome.Notice that
the number of each triplet corresponds to the experiment ordi-
nal as shown in Table 1.

One of the most notable conclusions that can be drawn
from Table 2 is that REveal outperforms Diaphora, in terms
of correctly, according to ground truth, matched functions. In
fact, on obfuscated experiments REveal always outperforms
Diaphora. Even in unobfuscated experiments, Diaphora out-
performsREveal in only 4 out of 16 experiments (highlighted
in grey), despite receiving a significant boost from using
unobfuscated symbol names. The ffmpeg and vmlinux
experiments, for all four architectures, are notable exam-
ples of this behavior. In the ffmpeg case, REveal reports
11599/13074/13888/11402matches, corresponding to a cov-
erage of about 74–91%of the compared binaries, while in the
vmlinux case it finds 960/1991/433/1536 correct matches,
successfully matching almost 80% of the given Linux ker-
nels.

The increasedmatch rate, however, comes at a cost, which
brings us to our second conclusion. When comparing large,
real life programs, REveal is much slower than Diaphora.
Take experiments 14 and 16 as an example. REveal takes
1991/1536 s to complete respectively, while Diaphora only
needs 312/611 when symbol information is available and
328/610 when not. Evidently, REveal can be quite slower
than Diaphora.

6.2 Malware classification

As it has already been discussed, in this batch of experi-
ments we try to classify 18 malware samples in 5 families.
The actual families, the aforementioned samples originally
belong to, are known in advance and used as the ground truth
for the evaluation of our oversimplified classification process.
Once again, we compare the results produced byREveal with
those reported by Diaphora. This time, no obfuscation step
is required, as the unpacked malware samples come with no
symbol names.

The malware families in question, along with the cor-
responding number of samples are listed in Table 3. All
unpacked executables are compared with one another and
are classified into families based on the outcome of the diff-
ing process as follows; each sample is added to the same
family with the sample it shares the most common functions
with. As it has already been mentioned, this batch of exper-
iments focuses on measuring the effectiveness of our binary
diffing technique rather than the classification process itself.

Table 3 List of malware samples used grouped by family

Malware family Number of samples

WannaCry 4

Loki 3

Formbook 4

AZOrult 2

Duqu 5

That said, the classification procedure, followed in this sec-
tion, requires the execution of 18! experiments, and thus the
full table of results would be very long. For this purpose,
Table 4 shows only those experiment instances which even-
tually draw the classification verdict. That is, we only show
the results of these experimentswhere the comparedmalware
executables had the highest number of matches and conse-
quently classified into the samemalware family. The relevant
results are shown in Table 5. The first column in the latter
corresponds to the experiment ordinal of Table 4.

First thing to note is that Table 5 has no column showing
the number of mismatches. This is reasonable, as malware
samples comewith no symbol names and thus ground truth is
not available.We emphasize that, sincewe are only interested
in the clustering outcome, the exact number of true and false
positives are of no interest to us, as the classification verdict
is drawn by comparing the relative similarity scores between
the compared samples.

As it can be seen, both REveal and Diaphora perform very
well with success rates ranging from 79 to 100%, which are
quite impressive. Evidently, malware samples in our dataset,
belonging to the same family, share a lot of common code
and both tools detect this adequately. The lines highlighted
in grey, pinpoint those experiment instances where Diaphora
won by matching more functions than REveal. In 2 of the
aforementioned 8 cases (9 and 10), Diaphora detects a single
extra function which seems to be common in both samples
(415matches reported byREveal vs. 416 byDiaphora). In the
remaining 6 cases (17, 19, 20, 22, 23 and 26) Diaphora finds
an additional 6 for a final score of 111 versus 105 achieved
by REveal.

Careful readers may have noticed a certain discrepancy in
experiment number 1 in Table 5, whichmight be less obvious
in other experiment instances of both this and the previous
section.One can see thatDiaphoramatches 234 functions and
the percentage reported is 100%, while REveal matches 475
with a reported percentage of 93.874%.Clearly this shouldn’t
be possible. This anomaly, however, can be explained by
taking a closer look at the list of functionsDiaphora considers
for diffing purposes. As it can be seen by studying the source
code, thunk and library functions are, by default, ignored and

123

320 C. Karamitas, A. Kehagias

Table 4 List of experiments conducted

Malware family Sample SHA256

1 AZORult 301b69021ba9cfa4dc77b6727f54f15ee5c2cbe8b900c33284b673ef95a0f875

AZORult 83f80a5fd364f30b185a3127d73990681977887e7c74d419ce47e50d35cf9b63

2 Formbook 233fd6693019a87459d2f244b288548309b823b1a8880231160ecfc40c9fdd67

Formbook 3ea7fefb5b0e4eab0df80a20e5ae83c5baaaf84dff229d4c3f0ce1032b92e774

3 Formbook 233fd6693019a87459d2f244b288548309b823b1a8880231160ecfc40c9fdd67

Formbook ba510ea2775f9148b188eab984e7e35ca5208a5b375497017e7720b9e9fc3640

4 Formbook 233fd6693019a87459d2f244b288548309b823b1a8880231160ecfc40c9fdd67

Formbook f7dbb04865c110568e2af9dd6b5397b8080d19cb7c6b34007c722913b6af7de1

5 Formbook 3ea7fefb5b0e4eab0df80a20e5ae83c5baaaf84dff229d4c3f0ce1032b92e774

Formbook ba510ea2775f9148b188eab984e7e35ca5208a5b375497017e7720b9e9fc3640

6 Formbook 3ea7fefb5b0e4eab0df80a20e5ae83c5baaaf84dff229d4c3f0ce1032b92e774

Formbook f7dbb04865c110568e2af9dd6b5397b8080d19cb7c6b34007c722913b6af7de1

7 Formbook ba510ea2775f9148b188eab984e7e35ca5208a5b375497017e7720b9e9fc3640

Formbook f7dbb04865c110568e2af9dd6b5397b8080d19cb7c6b34007c722913b6af7de1

8 Loki 243b9d53bca8e3eb0c0e67a196a5f9021afea1b82e75e89a45f90d560f8a2270

Loki bf88c1dbe7222c5360e08bc0261049a731ca967b2fbfe7a7ac285dcd8bd0fc60

9 Loki 243b9d53bca8e3eb0c0e67a196a5f9021afea1b82e75e89a45f90d560f8a2270

Loki ca6a1824220944d262451d0854e3a2d15aa111c3ac5244662f32bf3b8e377386

10 Loki bf88c1dbe7222c5360e08bc0261049a731ca967b2fbfe7a7ac285dcd8bd0fc60

Loki ca6a1824220944d262451d0854e3a2d15aa111c3ac5244662f32bf3b8e377386

11 WannaCry 066e9388d68db89aaca79c7ad0ced6fab9921c2c8e849ae863725df651129bf0

WannaCry 6973990a7e9eab21d19b40ef64c167343b2679a73ca2be639607d8a0baf51b33

12 WannaCry 066e9388d68db89aaca79c7ad0ced6fab9921c2c8e849ae863725df651129bf0

WannaCry a942718565fd880b3c12299786c82ad65986fdc6dfc7ed9ee131a8665abb16f7

13 WannaCry 066e9388d68db89aaca79c7ad0ced6fab9921c2c8e849ae863725df651129bf0

WannaCry fe4ab64b2aaa8a22adbcc6948e81a9eb600dea9be6f1bcafd8289b6f562db78d

14 WannaCry 6973990a7e9eab21d19b40ef64c167343b2679a73ca2be639607d8a0baf51b33

WannaCry a942718565fd880b3c12299786c82ad65986fdc6dfc7ed9ee131a8665abb16f7

15 WannaCry 6973990a7e9eab21d19b40ef64c167343b2679a73ca2be639607d8a0baf51b33

WannaCry fe4ab64b2aaa8a22adbcc6948e81a9eb600dea9be6f1bcafd8289b6f562db78d

16 WannaCry a942718565fd880b3c12299786c82ad65986fdc6dfc7ed9ee131a8665abb16f7

WannaCry fe4ab64b2aaa8a22adbcc6948e81a9eb600dea9be6f1bcafd8289b6f562db78d

17 Duqu 2c9c3ddd4d93e687eb095444cef7668b21636b364bff55de953bdd1df40071da

Duqu 2ecb26021d21fcef3d8bba63de0c888499110a2b78e4caa6fa07a2b27d87f71b

18 Duqu 2c9c3ddd4d93e687eb095444cef7668b21636b364bff55de953bdd1df40071da

Duqu 6c803aac51038ce308ee085f2cd82a055aaa9ba24d08a19efb2c0fcfde936c34

19 Duqu 2c9c3ddd4d93e687eb095444cef7668b21636b364bff55de953bdd1df40071da

Duqu 6e09e1a4f56ea736ff21ad5e188845615b57e1a5168f4bdaebe7ddc634912de9

20 Duqu 2c9c3ddd4d93e687eb095444cef7668b21636b364bff55de953bdd1df40071da

Duqu d12cd9490fd75e192ea053a05e869ed2f3f9748bf1563e6e496e7153fb4e6c98

21 Duqu 2ecb26021d21fcef3d8bba63de0c888499110a2b78e4caa6fa07a2b27d87f71b

Duqu 6c803aac51038ce308ee085f2cd82a055aaa9ba24d08a19efb2c0fcfde936c34

22 Duqu 2ecb26021d21fcef3d8bba63de0c888499110a2b78e4caa6fa07a2b27d87f71b

Duqu 6e09e1a4f56ea736ff21ad5e188845615b57e1a5168f4bdaebe7ddc634912de9

23 Duqu 2ecb26021d21fcef3d8bba63de0c888499110a2b78e4caa6fa07a2b27d87f71b

Duqu d12cd9490fd75e192ea053a05e869ed2f3f9748bf1563e6e496e7153fb4e6c98

123

Function matching between binary executables: efficient algorithms and features 321

Table 4 continued

Malware family Sample SHA256

24 Duqu 6c803aac51038ce308ee085f2cd82a055aaa9ba24d08a19efb2c0fcfde936c34

Duqu 6e09e1a4f56ea736ff21ad5e188845615b57e1a5168f4bdaebe7ddc634912de9

25 Duqu 6c803aac51038ce308ee085f2cd82a055aaa9ba24d08a19efb2c0fcfde936c34

Duqu d12cd9490fd75e192ea053a05e869ed2f3f9748bf1563e6e496e7153fb4e6c98

26 Duqu 6e09e1a4f56ea736ff21ad5e188845615b57e1a5168f4bdaebe7ddc634912de9

Duqu d12cd9490fd75e192ea053a05e869ed2f3f9748bf1563e6e496e7153fb4e6c98

Table 5 Summary of experimental results

Tool Matches

1 Diaphora 234 (100.000%)

REveal 475 (93.874%)

2 Diaphora 333 (80.825%)

REveal 378 (91.525%)

3 Diaphora 376 (91.262%)

REveal 379 (91.768%)

4 Diaphora 342 (82.609%)

REveal 379 (91.325%)

5 Diaphora 332 (80.583%)

REveal 373 (90.315%)

6 Diaphora 329 (79.854%)

REveal 369 (89.346%)

7 Diaphora 343 (83.252%)

REveal 375 (90.799%)

8 Diaphora 416 (100.000%)

REveal 416 (99.284%)

9 Diaphora 416 (100.000%)

REveal 415 (99.045%)

10 Diaphora 416 (100.000%)

REveal 415 (99.045%)

11 Diaphora 91 (98.913%)

REveal 107 (85.600%)

12 Diaphora 91 (98.913%)

REveal 107 (85.600%)

13 Diaphora 91 (98.913%)

REveal 107 (85.600%)

14 Diaphora 91 (98.913%)

REveal 107 (85.600%)

15 Diaphora 91 (98.913%)

REveal 107 (85.600%)

16 Diaphora 92 (100.000%)

REveal 108 (86.400%)

17 Diaphora 111 (100.000%)

REveal 105 (84.677%)

18 Diaphora 67 (60.909%)

REveal 84 (68.293%)

Table 5 continued

Tool Matches

19 Diaphora 111 (100.000%)

REveal 105 (84.677%)

20 Diaphora 111 (100.000%)

REveal 105 (84.677%)

21 Diaphora 67 (60.909%)

REveal 84 (68.293%)

22 Diaphora 111 (100.000%)

REveal 105 (84.677%)

23 Diaphora 111 (100.000%)

REveal 105 (84.677%)

24 Diaphora 67 (60.909%)

REveal 84 (68.293%)

25 Diaphora 67 (60.909%)

REveal 84 (68.293%)

26 Diaphora 111 (100.000%)

REveal 105 (84.677%)

this results in the overall match percentage computed using
a denominator smaller than the one used by REveal.

Last but not least, it is evident that both tools perform
really well in terms of execution time, requiring from 1 to 2 s
to finish the overall matching process. This suggests that both
REveal and Diaphora might be used in real life applications
involving malware clustering.

7 Conclusion

We have presented a combination of (i) algorithms and
(ii) features which, as our experiments indicate, perform
efficient function matching of two binary programs. Our
proof-of-concept implementation, planned to be released as
an open-source project, compares favorably with Diaphora,
the leading industry standard in binary diffing. We conclude
by listing several issues which require further research.

123

322 C. Karamitas, A. Kehagias

1. Coming up with equally efficient distancemetrics for the
proposed features is a challenging task. Using distance
metrics, our algorithms will be capable of considering
inexact, non-perfect matches and will allow for a fair
comparison of our approach with other binary diffing
software. REveal currently implements limited inex-
act matching capabilities with more elaborate research
scheduled for the future.

2. We believe the Markovian properties of computer pro-
grams merit further research. For example, the weight
assignment schemes presented in Sect. 4 can be con-
siderably improved and extended, so as to mirror more
distinctive characteristics of the subject CFGs. Devel-
opment of more elaborate and efficient Markov-based
features is definitely possible.

3. We have successfully performed binary diffing experi-
ments on fourwidespread computer architectures. Lifting
machine code to an IR and encoding its semantics is of
paramount importance in real life applications of cross-
architecture binary diffing. An added benefit is that, a
carefully chosen IR will also reduce noise caused by
variance in code generated by different versions of a com-
piler, different levels of code optimizations, instruction
set idiosyncrasies and so on.

4. A new version of Zynamics BinDiff was released at
the time the current paper was completed. Comparing
REveal against it, aswell as against other tools likeYaDiff
or DarunGrim, is essential at evaluating the effectiveness
of our approach. Additionally, Diaphora is said to pro-
duce better results with the help of the IDA decompiler
plug-in; this is also something that should be considered
in future research.

5. Last but not least, a complete binary diffing approach
should not only depend on the CG and CFG, the control-
flow dependencies, but should also take into account data
dependence relations present in the examined programs.
Towards this, PDG (Program Dependence Graph) based
techniques have already been proposed and studied [14].
In such an approach, feature vectors can be extracted
from the compared programs’ data elements to aid in the
overall diffing process.

References

1. Aho, A., Lam, M., Sethi, R., Ullmanr, J.: Compilers: Principles,
Techniques, and Tools, 2nd edn. Addison-Wesley Longman Pub-
lishing Co., Boston (2006)

2. Bourquin, M., King, A., Robbins, E.: BinSlayer: accurate com-
parison of binary executables. In: 2nd ACM SIGPLAN Program
Protection and Reverse Engineering (2013)

3. Cesare, S., Xiang, Y.: Classification of malware using structured
control flow. In: Proceedings of the 8th Australasian Symposium
on Parallel and Distributed Computing (AusPDC 2010) (2010)

4. Cesare, S., Xiang, Y., Zhou, W.: Control flow-based malware vari-
ant detection. IEEE Trans. Dependable Secur Comput 11, 307–317
(2013)

5. Deo,N.: GraphTheorywithApplications to Engineering andCom-
puter Science. Prentice-Hall Inc, Upper Saddle River (1974)

6. Derisavi, S.,Hermanns,H., Sanders,W.:Optimal state-space lump-
ing in Markov chains. Inf. Process. Lett. 87, 309–315 (2003)

7. Koret, J.: Diaphora: A Free and Open Source ProgramDiffing Tool
[Online]. http://diaphora.re/. Accessed 15 Apr 2019

8. Dullien, T., Rolles, R.: Graph-based comparison of executable
objects. In: Proceedings of the Symposium sur la Securite des Tech-
nologies de l’Information et des Communications (2005)

9. Dullien, T., Carrera, E., Eppler, S.M., Porst, S.: Automated attacker
correlation for malicious code. In: NATO Information Systems
Technology (IST) 091 (2010)

10. Eschweiler, S., Yakdan, K., Gerhards-Padilla, E.: discovRE: effi-
cient cross-architecture identification of bugs in binary code. In:
SP ’15 Proceedings of the 2015 IEEE Symposium on Security and
Privacy (2016)

11. Flake, H.: Structural comparison of executable objects. In: Pro-
ceedings of the IEEE Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA) (2004)

12. Gao, D., Reiter, M., Song, D.: BinHunt: automatically finding
semantic differences in binary programs. In: Information andCom-
munications Security, pp. 238–255 (2008)

13. Hex-Rays: IDAPro [Online]. https://www.hex-rays.com/products/
ida/. Accessed 15 Apr 2019

14. Henderson, T.A.D., Podgurski, A.: Sampling code clones from
program dependence graphs with GRAPLE. In: SWAN 2016 Pro-
ceedings of the 2nd International Workshop on Software Analytics
(2016)

15. Howard, R.: Dynamic Probabilistic Systems: volume I: Markov
Models. Wiley, Hoboken (1971)

16. Howard, R.: Dynamic Probabilistic Systems. Volume II: Semi-
Markov and Decision Processes. Wiley, Hoboken (1971)

17. Hu,X., Chiueh, T., Shin,K.G.: Large-scalemalware indexing using
function-call graphs. In: Computer and Communications Security,
pp. 611–620 (2009)

18. Intel: Intel X86 Encoder Decoder Software Library [Online].
https://software.intel.com/en-us/articles/xed-x86-encoder-
decoder-software-library. Accessed 15 Apr 2019

19. Intel: Intel X86 Encoder Decoder [Online]. https://intelxed.github.
io/ref-manual/xed-iform-enum_8h.html. Accessed 15 Apr 2019

20. Jurczyk, M.: Using Binary Diffing to Discover Windows Kernel
Memory Disclosure Bugs [Online]. https://googleprojectzero.
blogspot.gr/2017/10/using-binary-diffing-to-discover.html.
Accessed 15 Apr 2019

21. Karamitas, C.: Python Bindings for Intel’s XED [Online]. https://
github.com/huku-/pyxed. Accessed 15 Apr 2019

22. Karamitas, C., Kehagias, A.: Efficient Features for function match-
ing between binary executables. In: 2018 IEEE 25th Int Conf Softw
Anal Evol Reengineering (SANER), vol. 1, pp. 335–345 (2018)

23. Kostakis, O., Kinable, J., Mahmoudi, H., Mustonen, K.: Improved
call graph comparison using simulated annealing. In: Proceedings
of the 2011 ACM Symposium on Applied Computing (2011)

24. Levenshtein, V.: Binary codes capable of correcting deletions,
insertions and reversals. In: Soviet Physics Doklady, pp. 707–710
(1966)

25. Ming, J., Pan, M., Gao, D.: iBinHunt: binary hunting with inter-
procedural control flow. In: Lecture Notes in Computer Science,
pp. 92–109 (2013)

26. Ming, J., Xu, D., Jiang, Y., Wu, D.: BinSim: trace-based semantic
binary diffing via system call sliced segment equivalence check-
ing. In: 26th USENIX Security Symposium (USENIX Security 17)
(2017)

123

http://diaphora.re/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library
https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library
https://intelxed.github.io/ref-manual/xed-iform-enum_8h.html
https://intelxed.github.io/ref-manual/xed-iform-enum_8h.html
https://googleprojectzero.blogspot.gr/2017/10/using-binary-diffing-to-discover.html
https://googleprojectzero.blogspot.gr/2017/10/using-binary-diffing-to-discover.html
https://github.com/huku-/pyxed
https://github.com/huku-/pyxed

Function matching between binary executables: efficient algorithms and features 323

27. McAfee: McAfee Labs Threats Report April (2017) [Online].
https://www.mcafee.com/us/resources/reports/rp-quarterly-
threats-mar-2017.pdf. Accessed 15 Apr 2019

28. Panda Security: Pandalabs Quarterly Report Q1 (2017) [Online].
http://www.pandasecurity.com/mediacenter/src/uploads/2017/
05/Pandalabs-2017-T1-EN.pdf. Accessed 15 Apr 2019

29. Ramalingam, G.: On loops, dominators, and dominance frontiers.
In: PLDI’00 Proceedings of the ACM SIGPLAN 2000 conference
on Programming Language Design and Implementation, pp. 233–
241 (2000)

30. SafeCorp: Detecting Software IP Theft Using CodeMatch
[Online]. https://www.safe-corp.com/documents/CodeMatch_
Whitepaper.pdf. Accessed 15 Apr 2019

31. Tarjan, R.: Testing flow graph reducibility. In: STOC’73 Pro-
ceedings of the Fifth Annual ACM Symposium on Theory of
Computing, pp. 96–107 (1973)

32. Valmari, A., Franceschinis, G.: Simple O(mlogn) time Markov
chain lumping. In: TACAS’10 Proceedings of the 16th Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 38–52 (2010)

33. Wang, Z., Pierce,K.,McFarling, S.: BMAT: a binarymatching tool.
In: Second ACM Workshop on Feedback-Directed and Dynamic
Optimization (1999)

34. Wang, Z., Pierce, K., McFarling, S.: BMAT: a binary matching tool
for stale profile propagation. J Instr Level Parallel 2, 1–20 (2000)

35. Zynamics: BinDiff [Online]. https://www.zynamics.com/bindiff.
html. Accessed 15 Apr 2019

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2017.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2017.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2017/05/Pandalabs-2017-T1-EN.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2017/05/Pandalabs-2017-T1-EN.pdf
https://www.safe-corp.com/documents/CodeMatch_Whitepaper.pdf
https://www.safe-corp.com/documents/CodeMatch_Whitepaper.pdf
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html

	Function matching between binary executables: efficient algorithms and features
	Abstract
	1 Introduction
	2 Previous work
	3 Preliminaries
	4 Features
	4.1 Function type
	4.2 Vertex and edge taxonomy
	4.3 Digraph signatures
	4.4 Inlinks and outlinks
	4.5 Instruction histogram
	4.6 String histogram
	4.7 Markov lumping of CFGs

	5 A binary diffing algorithm
	6 Experimental results
	6.1 Binary diffing open source software
	6.2 Malware classification

	7 Conclusion
	References

