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Abstract
We introduce and study theGeneralized Cops and Robbers (GCR) game, an N -player pursuit
game in graphs. The two-player version is essentially equivalent to the classic Cops and
Robbers (CR) game. The three-player version can be understood as two CR games played
simultaneously on the same graph; a player can be at the same time both pursuer and evader.
The same is true for four or more players. We formulate GCR as a discounted stochastic
game of perfect information and prove that, for three or more players, it has at least two Nash
equilibria: one in positional deterministic strategies and another in nonpositional ones. We
also study the capturing properties ofGCRNash equilibria in connectionwith the cop number
of a graph. Finally, we briefly discuss GCR as a member of a wider family of multi-player
graph pursuit games with rather interesting properties.

Keywords N -player game · Pursuit · Cops and robbers

1 Introduction

We introduce and study Generalized Cops and Robbers (GCR); it is a multi-player pursuit
game closely related to the classic two-player Cops and Robbers (CR) game [13,15].

GCR is played on a finite, simple, undirected graph G by N players P1, P2, . . . , PN (with
N ≥ 2). The players start at given vertices of the graph, and at each turn, one player moves
to a vertex in the closed neighbourhood of his current position; the other players stay at their
current vertices. The game effectively terminates when, for some n ∈ {1, 2, . . . , N − 1}, Pn
captures Pn+1, i.e., when they are located in the same vertex; if no capture ever takes place,
the game continues ad infinitum.

Let us denote the GCR game with N players by ΓN . Then Γ2 is very similar to the classic
CR game, where P1 (the “cop”) tries to capture P2 (the “robber”). In Γ3, P1 tries to capture
P2 who tries to evade P1 and capture P3; P1 can never be captured and P3 can never capture.
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Hence Γ3 can be understood as two CR games played simultaneously on the same graph; a
player is both pursuer and evader at the same time. The situation is extended similarly for
higher N values.

As we will show, Γ2 can be formulated as a zero-sum stochastic game which has a value
(and both players have optimal strategies). On the other hand, for N ≥ 3,ΓN is a nonzero-sum
game and the main question is the existence of Nash equilibria (NE). As we will show, more
than one such equilibria always exists and they sometimes lead to surprising player behaviour.
In this sense, GCR presents novel and (we hope) mathematically interesting problems.

There is a rich literature on pursuit games in graphs, Euclidean spaces and other more
general structures, but it is generally confined to two-player games.

The seminal works on pursuit games in graphs are [13,15] in which the classic CR game
was introduced. A great number of variations of the classic game have been studied; an exten-
sive and recent review of the related literature appears in the book [1]. However, practically
all of this literature concerns two-player games. Classic CR and its variants may involve
more than one cops, but all of them are tokens controlled by a single cop player. A very
interesting paper [2] deals with “Generalized Cops and Robbers games,” but again the scope
is restricted to two-player games. In fact, the only previous work (of which we are aware)
dealing with multi-player games of pursuit in graphs is our own [11]. It is also remarkable
that, while classic CR and many of its variants admit a natural game-theoretic formulation
and study, this has not been exploited in the CR literature.

Regarding pursuit in Euclidean spaces, the predominant approach is in terms of differential
games as introduced in the seminal book [9]. There is a flourishing literature on the subject,
which contains many works involving multiple pursuers, but they are generally assumed to
be collaborating [5,10,14,17,19]. The case of antagonistic pursuers has been studied in some
papers [8,18], but the methods used in these works do not appear to be easily applicable to
the study of pursuit/evasion on graphs.

This paper is organized as follows. Section 2 is preliminary: we introduce notation, define
states, histories and strategies and give a general form of the payoff function. In Sect. 3,
we prove that, for any graph and any number of players, GCR has a NE in deterministic
positional strategies; this result is applicable not only to GCR but to a wider family of
pursuit games, as will be discussed later. In Sect. 4, we show that in the two-player GCR
game: (i) the value of the game exists (essentially it is the logarithm of the optimal capture
time) and (ii) both players have optimal deterministic positional strategies. Because of the
close connection of GCR to the classical CR game, these results also hold for CR; while
they have been previously established by graph theoretic methods, we believe our proof is
the first game-theoretic one. In Sect. 5, we study the three-player GCR game and prove: (i)
the existence of a NE in deterministic positional strategies; (ii) the existence of an additional
NE in deterministic but nonpositional strategies; (iii) various results connecting the classic
cop number of a graph to capturability. In Sect. 6, we briefly discuss N -players GCR when
N ≥ 4. In Sect. 7, we show that the ideas behind GCR can be generalized to obtain a large
family of multi-player pursuit games on graphs. Finally, in Sect. 8 we summarize, present
our conclusions and discuss future research directions.

2 Preliminaries

The following notations will be used throughout the paper.

1. Given a graph G = (V , E), for any x ∈ V , N (x) is the neighbourhood of x : N (x) =
{y : {x, y} ∈ E}; N [x] is the closed neighbourhood of x : N [x] = N (x) ∪ {x}.
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2. The cardinality of set A is denoted by |A|; the set of elements of Awhich are not elements
of B is denoted by A\B.

3. N is the set of natural numbers {1, 2, 3, . . .} and N0 is {0, 1, 2, 3, . . .}. For any M ∈ N,
we define [M] = {1, 2, . . . , M}.

4. The graph distance (length of shortest path in G) between x, y ∈ V is denoted by
dG (x, y) or simply by d (x, y).

In Sect. 1, we have described GCR informally; now, we define the elements of the game
rigorously.

The game proceeds at discrete turns (time steps), and at every turn, all players except one
must remain at their locations. In other words, at every turn t ∈ N, for every player except
one, the action set [see (2.1) below] is a singleton. This, in addition to the fact that all players
are aware of all previously executed moves, means that GCR is a perfect information game.

Any player Pn can have the first move, but afterwards they move in the sequence implied
by their numbering:

Pn → Pn+1 → · · · → PN → P1 → P2 → · · · .

When a player has the move, he can either move to a vertex adjacent to his current one or
stay in place. Hence the game position or game state has the form s = (

x1, x2, . . . , xN , p
)

where xn ∈ V is the position (vertex) of the nth player and p ∈ [N ] is the number of the
player who has the next move. The set of nonterminal states is

S =
{(

x1, x2, . . . , xN , p
)

:
(
x1, x2, . . . , xN

)
∈ V × V × · · · × V and p ∈ [N ]

}
.

We introduce an additional terminal state s. Hence the full state set is

S = S ∪ {s} .

We define Sn to be the set of states in which Pn has the next move:

for each n ∈ [N ] : Sn =
{
s : s =

(
x1, x2, . . . , xN , n

)
∈ S

}
.

Hence the set of nonterminal states can be partitioned as follows:

S = S1 ∪ S2 ∪ · · · ∪ SN .

For any n ∈ [N − 1], we say that Pn captures Pn+1 iff they are located in the same vertex;
the set of Pn-capture states, i.e., those in which Pn captures Pn+1 is S̃n :

for each n ∈ [N − 1] : S̃n =
{
s : s = (x1, x2, . . . , xN , p) ∈ S and xn = xn+1

}
.

Hence nonterminal states can be partitioned into two sets:

capture states: SC = S̃1 ∪ S̃2 ∪ · · · ∪ S̃N−1,

noncapture states: SNC = S\SC .

As already mentioned, when Pn has the move, he can move to any vertex in the closed
neighbourhood of xn ; when another player has the move, Pn can only stay in place; when
the game is in a capture state or in the terminal state, every player has only the “null move”
λ. Formally, when the game state is s, the nth player’s action set is denoted by An (s) and
defined by

An (s) =
⎧
⎨

⎩

N
[
xn

]
when s = (

x1, x2, . . . , xN , n
) ∈ Sn ∩ SNC ,

{xn} when s = (
x1, x2, . . . , xN ,m

) ∈ Sm ∩ SNC with m �= n,

{λ} when s ∈ SC ∪ {s} .

(2.1)
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The players’ actions (i.e., moves) effect state-to-state transitions in the obvious manner.
Suppose the game is at position s ∈ Sn and Pn makes the move an ∈ An (s); then, T (s, an)
denotes the resulting game position. A capture state always transits to s and s always transits
to itself:

∀s ∈ SC : T (s, λ) = s and T (s, λ) = s.

In what follows xnt denotes Pn’s position (vertex) at time t . Now we define the capture time
to be

TC = min
{
t : x1t = x2t or x2t = x3t or . . . or xN−1

t = xNt
}

.

If no capture takes place, the capture time is TC = ∞. Hence the game can evolve as follows.

1. IfTC = 0, then the initial state s0 is a capture state and st = s for every t ∈ N = {1, 2, . . .}.
2. If 0 < TC < ∞, then:

(a) at the 0th turn the game starts at some preassigned state s0 ∈ SNC ;
(b) at the t th turn (for 0 < t < TC ), the game moves to some state st ∈ SNC ;
(c) at the TC th turn the game moves to some capture state sTC ∈ SC and
(d) at t = TC +1 the game moves to the terminal state and stays there: for every t > TC ,

st = s.

3. Finally, if TC = ∞ then st ∈ SNC for every t ∈ N0 = {0, 1, 2, . . .}.
According to the above, the game starts at some preassigned state s0 = (

x10 , x
2
0 , x

3
0 , p0

)
and

at the t th turn (t ∈ N) is in the state st = (
x1t , x

2
t , . . . , x

N
t , pt

)
. This results in a game history

s = s0s1s2 . . . . In other words, we assume each play of the game lasts an infinite number
of turns; however, if TC < ∞ then st = s for every t > TC ; hence, while the game lasts an
infinite number of turns, it effectively ends at TC . We define the following history sets.

1. Histories of length k : Hk = {s = s0s1 . . . sk};
2. Histories of finite length: H∗ = ∪∞

k=1Hk ;
3. Histories of infinite length: H∞ = {s = s0s1 . . . sk . . .}.
A deterministic strategy (also known as a pure strategy) is a function σ n which assigns

a move to each finite-length history:

σ n : H∗ → V

At the start of the game, Pn selects a σ n which determines all his subsequent moves.
We will only consider legal1 deterministic strategies.2 A strategy profile is a tuple σ =(
σ 1, σ 2, . . . , σ N

)
, which specifies one strategy for each player. We are particularly inter-

ested in positional strategies, i.e., σ n such that the next move depends only on the current
state of the game (but not on previous states or current time):

σ n (s0s1 . . . st ) = σ n (st ) .

We define σ−n = (
σ j

)
j∈[N ]\{n}; for instance, if σ = (

σ 1, σ 2, σ 3
)
then σ−1 = (

σ 2, σ 3
)
.

To complete the description of GCR, we must specify the players’ payoff functions; we
will do this in several steps. In this section, we give a general form of the payoff function,

1 That is, they never produce moves outside the player’s action set.
2 As will be seen, since GCR is a game of perfect information, the player loses nothing by using only
deterministic strategies.
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which applies not only to GCR, but to a broader family of N -player games (with N ≥ 2).
In the next section, we will prove that any game of this family admits at least one NE in
positional deterministic strategies. In subsequent sections, we will treat separately the cases
of GCR with N = 2, N = 3 and N ≥ 4 players; in each case, by completely specifying
the payoff function, we will reach additional conclusions regarding the properties of the
respective game.

For the timebeing,weonly specify that the total payoff function of thenth player (n ∈ [N ])
has the form

Qn (s0, σ ) =
∞∑

t=0

γ t qn (st ) , (2.2)

where qn is the turn payoff (it depends on st , the game state at time t) which is assumed to
be bounded:

∃M : ∀n ∈ [N ] ,∀s ∈ S : ∣
∣qn (s)

∣
∣ ≤ M;

and γ ∈ (0, 1) is the discount factor.
Since the total payoff is the sum of the discounted turn payoffs, GCR is a multi-player

discounted stochastic game [6]. Recall that a stochastic game is one which consists of a
sequence of one-shot games, each of which depends on the previous game played and the
actions of the players. In GCR, the players can limit themselves to deterministic strategies;
since the state transitions are also deterministic, while GCR is a “stochastic game” in the
above sense, in all cases of interest it will actually evolve in a deterministic manner.

We will denote by ΓN (G|s0) the GCR game played by N players on graph G, starting
from state s0. Our results hold for any γ ∈ (0, 1) so, for simplicity of notation, we omit the
γ dependence. In addition, γ will be omitted from statements of theorem, lemmas, etc. in
the rest of the paper, since all the results presented hold for any γ ∈ (0, 1).

3 Nash Equilibria for Perfect Information Discounted Games

The following theorem establishes that every ΓN (G|s0) has a NE in deterministic (i.e., pure)
positional strategies. The proof of the theorem is based on a more general theorem by Fink
[7], which establishes the existence of a NE in probabilistic (i.e., mixed) positional strategies;
the proof presented here essentially shows that in turn-based (and hence perfect information)
games, deterministic strategies can be used without loss to the players. As will be explained
a little later, the theorem actually applies to a broad family of games, which includes GCR.

Theorem 3.1 For every graph G, every N ≥ 2 and every initial state s0 ∈ S, the game
ΓN (G|s0) admits a profile of deterministic positional strategies σ̂ = (

σ̂ 1, σ̂ 2, . . . , σ̂ N
)
such

that

∀n ∈ [N ] ,∀s0 ∈ S,∀σ n : Qn (
s0, σ̂

n, σ̂−n) ≥ Qn (
s0, σ

n, σ̂−n) . (3.1)

For every s and n, let un (s) = Qn (s, σ̂ ). Then the following equations are satisfied

∀n,∀s ∈ Sn : σ̂ n (s) = arg max
an∈An(s)

[
qn (s) + γ un

(
T

(
s, an

))]
, (3.2)

∀n,m,∀s ∈ Sn : um (s) = qm (s) + γ um
(
T

(
s, σ̂ n (s)

))
. (3.3)

Proof Fink has proved in [7] that every N -player discounted stochastic game has a positional
NE in probabilistic strategies; this result holds for the general game (i.e., with concurrent
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moves and probabilistic strategies and state transitions). According to [7], at equilibrium the
following equations must be satisfied for all m and s:

um (s) = max
pm (s)

∑

a1∈A1(s)

∑

a2∈A2(s)

. . .
∑

aN∈AN (s)

p1a1 (s) p2a2 (s) . . . pNaN (s)

×
[

qm (s) + γ
∑

s′
Π

(
s′|s, a1, a2, . . . , aN

)
um

(
s′)

]

, (3.4)

where we have modified Fink’s original notation to fit our own; in particular:

1. um (s) is the expected value of um (s);
2. pmam (s) is the probability that, given the current game state is s, the mth player plays

action am ;
3. pm (s) = (

pmam (s)
)
am∈Am (s) is the vector of all such probabilities (one probability per

available action);
4. Π

(
s′|s, a1, a2, . . . , aN )

is the probability that, given the current state is s and the player
actions are a1, a2, . . . , aN , the next state is s′.

Now choose any n and any s ∈ Sn . For all m �= n, the mth player has a single move, i.e., we
have Am (s) = {am}, and so pmam (s) = 1. Also, since transitions are deterministic,

∑

s′
Π

(
s′|s, a1, a2, . . . , aN

)
un

(
s′) = un

(
T

(
s, an

))
.

Hence, for m = n, (3.4) becomes

un (s) = max
pn(s)

∑

an∈An(s)

pnan (s)
[
qn (s) + γ un

(
T

(
s, an

))]
. (3.5)

Furthermore, let us define σ̂ n (s) (for the specific s and n) by

σ̂ n (s) = arg max
an∈An(s)

[
qn (s) + γ un

(
T

(
s, an

))]
. (3.6)

If (3.5) is satisfied by more than one an , we set σ̂ n (s) to one of these arbitrarily. Then,
to maximize the sum in (3.5) the nth player can set pnσ̂ n(s) (s) = 1 and pna (s) = 0 for all
a �= σ̂ n (s). Since this is true for all states and all players (i.e., every player can, without loss,
use deterministic strategies), we also have un (s) = un (s). Hence (3.5) becomes

un (s) = max
an∈An(s)

[
qn (s) + γ un

(
T

(
s, an

))] = qn (s) + γ un
(
T

(
s, σ̂ n (s)

))
. (3.7)

For m �= n, the mth player has no choice of action and (3.5) becomes

um (s) = qm (s) + γ um
(
T

(
s, σ̂ n (s)

))
. (3.8)

We recognize that (3.6)–(3.8) are (3.2)–(3.3). Also, (3.6) defines σ̂ n (s) for every n and s and
so we have obtained the required deterministic positional strategies σ̂ = (

σ̂ 1, σ̂ 2, . . . , σ̂ N
)
.

��
Note that the initial state s0 plays no special role in the system (3.2)–(3.3). In other words,

using the notation u (s) = (
u1 (s) , u2 (s) , . . . , uN (s)

)
and u = (u (s))s∈S , we see that u

and σ̂ are the same for every starting position s0 and every game ΓN (G|s0) (when N ,G and
γ are fixed).

Fink’s proof requires that, for every n, the total payoff is Qn (s0, σ ) = ∑∞
t=0 γ t qn (st ),

but does not place any restrictions (except boundedness) on qn . The same is true of our proof;
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hence, Theorem 3.1 applies not only to the GCR game, for which the form of qn will be
specified in Sects. 4, 5 and 6, but to a wider family of games, which will be discussed in
Sect. 7.

4 GCRwith Two Players and (Classic CR)

We now proceed to a more detailed study of Γ2 (G|s0). To this end, we first specify the form
of the turn payoff functions q1 and q2:

q1 (s) = −q2 (s) =
{
1 iff s ∈ S̃1

0 else.
. (4.1)

Recalling that TC is the capture time (and letting γ ∞ = 0), for every s0 and deterministic σ

which result in capture at time TC , we clearly have:

Q1 (s0, σ ) = −Q2 (s0, σ ) = γ TC .

So Γ2 (G|s0) is a zero-sum game. Furthermore, since γ TC is a decreasing function of TC
it follows that P1 (resp. P2) will maximize his payoff by minimizing (resp. maximizing)
capture time Tc. Hence we have the following simple description:

Γ2 (G|s0) is a two-player game in which, starting from an initial position s0 =(
x1, x2, p

)
, P1 attempts to capture P2 in the shortest possible time and P2 attempts to

delay capture as long as possible.

This is true whenever both players use deterministic strategies, which they can do without
loss since Γ2 (G|s0) is a perfect information game. In particular, according to Theorem 3.1
, this holds when they play optimally. In fact, according to Theorem 3.1 (for every G and s0)
Γ2 (G|s0) has a NE σ̂ = (

σ̂ 1, σ̂ 2
)
in deterministic positional strategies. And, since Γ2 (G|s0)

is a zero-sum game, it follows that σ̂ 1, σ̂ 2 are optimal and yield the value of the game. More
precisely, we have the following.

Theorem 4.1 For every graph G and every initial state s0 ∈ S, the profile of deterministic
positional strategies σ̂ = (

σ̂ 1, σ̂ 2
)
specified by Theorem 3.1 satisfies

max
σ 1

min
σ 2

Q1 (
s0, σ

1, σ 2) = Q1 (
s0, σ̂

1, σ̂ 2) = min
σ 2

max
σ 1

Q1 (
s0, σ

1, σ 2) .

Furthermore, σ̂ 1, σ̂ 2 and Qn
(
s0, σ̂ 1, σ̂ 2

)
can be computed by a value iteration algorithm

[16]. Hence Γ2 (G|s0) is completely solved.
Let us now discuss the connection of Γ2 (G|s0) to the classic CR game. Note that the

above description of Γ2 (G|s0) is almost identical to that of the time optimal version of the
classic CR game (e.g., see [1, Section 8.6]). We only have the following differences.

1. In Γ2 (G|s0), time is measured in turns; in classic CR, it is measured in rounds, where
each round consists of one P1 turn and one P2 turn.

2. In Γ2 (G|s0), the starting position s0 is given; in classic CR, it is chosen by the players,
in an initial “placement” round. In other words, classic CR starts with an “empty” graph;
in the first turn of the 0th round, P1 chooses his initial position; in the second turn P2,
having observed P1’s placement chooses his initial position (after placement, classic CR
is played exactly as Γ2 (G|s0)).3

3 It is worth noting that Γ2 (G|s0) can be expanded to incorporate a placement round as well. This is done
as follows. Using ξ to denote that a player is positioned “outside” the graph, we must introduce a starting
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At any rate, the important points are the following.

1. Having computed the values u (s0) of Γ2 (G|s0) for every s0 ∈ S, we can easily obtain
the optimal capture time T̂C of the classic CR game4 as follows:

T̂C = log
(
maxx1 minx2 u

1
((
x1, x2, 1

)))

log γ
;

furthermore, any x̂1, x̂2 which satisfy T̂C = log u1
((
x̂1 ,̂x2,1

))

log γ
are optimal initial placements

for P1 and P2; and the optimal policies of Γ2 (G|s0) are time optimal policies (after
placement) of the classic CR.

2. In the classic CR literature, a graph G is called cop-win iff a single cop can capture the
robber when both cop and robber play optimally on G. In the more general case, where
the cop player controls one or more cop tokens, the cop number of G is denoted by c (G)

and defined to be the smallest number of cop tokens which guarantees capture when CR
is played optimally on G. Clearly a graph is cop-win iff c (G) = 1. It is easily seen that
we can check whether G is cop-win by solving Γ2 (G|s0) (for all s0) as indicated by the
following equivalence:

c (G) = 1 ⇔ max
x1

min
x2

u1
((
x̂1, x̂2, 1

))
> 0. (4.2)

While the above questions regarding classic CR have been studied in the related literature
and answered using graph theoretic methods, the connection to game theory appears to not
have been previously exploited.

5 GCRwith Three Players

By substituting N = 3 in the definitions of Sect. 2,weobtain the gameΓ3 (G|s0); in particular,
we get the sets of capture states

S̃1 = {
s : (

x1, x2, x3, p
)
, x1 = x2

}
(P1 captures P2),

S̃2 = {
s : (

x1, x2, x3, p
)
, x2 = x3

}
(P2 captures P3)

and we use these to define the turn payoffs qn as follows

q1 (s) =
{
1 iff s ∈ S̃1,
0 else;

q2 (s) =
⎧
⎨

⎩

−1 iff s ∈ S̃1,
1 iff s ∈ S̃2\S̃1,
0 else;

q3 (s) =
{−1 iff s ∈ S̃2\S̃1,
0 else.

. (5.1)

Note that, according to previous remarks, P2 (resp. P3) is rewarded (resp. penalized) when
P2 captures P3 and is not simultaneously captured by P1. Also, recall that the total payoff
function is, as usual,

Footnote 3 continued
state (ξ, ξ) (no player has played yet) and, for each x ∈ V , a state (x, ξ) (P1 has already played his first
move but not P2). Actions, state transitions, payoffs, etc. can be similarly modified to represent the “classic”
CR move sequence. Under this approach (which can also be applied to the ΓN (G|s0) games introduced in
later sections), all our essential results still hold. This route is eschewed in the current paper, for reasons of
simplicity.
4 Up to a time rescaling, due to the above-mentioned difference in time units.
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∀n ∈ [3] : Qn (s0, s1, . . .) =
∞∑

t=0

γ t qn (st ) .

We are now ready to study Γ3 (G|s0).

5.1 Nash Equilibria: Positional and Nonpositional

By Theorem 3.1, we know that Γ3 (G|s0) has, for every G and s0, a NE in deterministic
positional strategies. In addition, as we will now show, Γ3 (G|s0) has at least one NE in
nonpositional deterministic strategies.

To this end,wewill introduce a family ofauxiliary games and threat strategies [3,4,20]. For
every n ∈ [3] , we define the game Γ̃ n

3 (G|s0) played on G (and starting at s0) by Pn against
a player P−n who controls the remaining two entities. For example, in Γ̃ 1

3 (G|s0), P1 plays
against P−1 who controls P2 and P3. The Γ̃ n

3 (G|s0) elements (e.g., movement sequence,
states, action sets and capturing conditions) are the same as in Γ3 (G|s0). Pn uses a strategy
σ n and P−n uses a strategy profile σ−n ; these form a strategy profile σ = (

σ 1, σ 2, σ 3
)

(which can also be used in Γ3 (G|s0)). The payoffs to Pn and P−n in Γ̃ n
3 (G|s0) are

Q̃n (s0, σ ) = Qn (s0, σ ) =
∞∑

t=0

γ t qn (st ) and Q̃−n (s0, σ ) = −Q̃n (s0, σ ) .

Since the capture rules of Γ̃ n
3 (G|s0) are those of Γ3 (G|s0), P−n can use one of his tokens

to capture the other. For instance, in Γ̃ 1
3 (G|s0), P−1 can use P2 to capture P3. (As will be

seen in a later example, in certain cases this can be an optimal move.) Note, however, that in
this case P1 receives zero payoff (since he did not capture) and P−1 also receives zero payoff
(since, by construction, Γ̃ 1

3 (G|s0) is a zero-sum game).
In short, Γ̃ n

3 (G|s0) is a two-player zero-sum discounted stochastic game and the next
lemma follows from the results of [6, Theorem 4.3.2].

Lemma 5.1 For every n,G and s0, the game Γ̃ n
3 (G|s0) has a value and the players have

optimal deterministic positional strategies.

Furthermore, the value and optimal strategies can be computed byShapley’s value iteration
algorithm [16]. Let us denote by φ̂n

n (resp. φ̂−n
n ) the optimal strategy of Pn (resp. P−n) in

Γ̃ n
3 (G|s0). For example, in Γ̃ 1

3 (G|s0), P1 has the optimal strategy φ̂1
1 and P−1 has the optimal

strategy φ̂−1
1 = (

φ̂2
1 , φ̂

3
1

)
. In fact, the same φ̂m

n ’s (for fixed n and any m ∈ [3]) are optimal in
Γ̃ n
3 (G|s0) for every initial position s0.
We return to Γ3 (G|s0), and for each Pn , we introduce the threat strategy π̂n defined as

follows:

1. as long as every player Pm (with m �= n) follows φ̂m
m , Pn follows φ̂n

n ;
2. as soon as some player Pm (with m �= n) deviates from φ̂m

m , Pn switches to φ̂n
m and uses

it for the rest of the game.5

Note that the π̂n strategies are not positional. In particular, the action of a player at time
t may be influenced by the action (deviation) performed by another player at time t − 2.
However, as we will now prove,

(
π̂1, π̂2, π̂3

)
is a (nonpositional) NE in Γ3 (G|s0).

5 Since Γ3 (G|s0) is a perfect information game, the deviation will be detected immediately.
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Theorem 5.2 For every G, s0 and γ , we have:

∀n ∈ {1, 2, 3} ,∀πn : Qn(s, π̂1, π̂2, π̂3) ≥ Qn(s, πn, π̂−n). (5.2)

Proof We choose some initial state s0 and fix it for the rest of the proof. Now let us prove
(5.2) for the case n = 1. In other words, we will show that

∀π1 : Q1(s0, π̂
1, π̂2, π̂3) ≥ Q1(s0, π

1, π̂2, π̂3). (5.3)

We take any π1 and let

the history produced by (π̂1, π̂2, π̂3) be ŝ = ŝ0̂s1̂s2 . . . ,

the history produced by (π1, π̂2, π̂3) be s̃ = s̃0̃s1̃s2 . . . ,

(where ŝ0 = s̃0 = s0). We define T1 as the earliest time in which π1 and π̂1 produce different
states:

T1 = min {t : s̃t �= ŝt } ,

If T1 = ∞, then s̃ = ŝ and

Q1(s, π̂1, π̂2, π̂3) = Q1(s, π1, π̂2, π̂3). (5.4)

If T1 < ∞, on the other hand, then s̃t = ŝt for every t < T1 and we have

Q1(s, π̂1, π̂2, π̂3) =
T1−2∑

t=0

γ t q1 (̂st ) +
∞∑

t=T1−1

γ t q1 (̂st )=
T1−2∑

t=0

γ t q1 (̃st ) +
∞∑

t=T1−1

γ t q1 (̂st ) ,

(5.5)

Q1(s, π1, π̂2, π̂3) =
T1−2∑

t=0

γ t q1 (̃st ) +
∞∑

t=T1−1

γ t q1 (̃st ) . (5.6)

We define s∗ = ŝT1−1 = s̃T1−1 and proceed to compare the sums in (5.5) and (5.6).
First consider

∑∞
t=T1−1 γ t q1 (̂st ). The history ŝ = ŝ0̂s1̂s2 . . . is produced by (φ̂1

1 , φ̂2
2 , φ̂3

3 )

and, since the φ̂n
n ’s are positional strategies, we have

∞∑

t=T1−1

γ t q1 (̂st ) = γ T1−1
∞∑

t=0

γ t q1
(
ŝT1−1+t

) = γ T1−1 Q̃1 (
s∗, φ̂1

1 , φ̂
2
2 , φ̂

3
3

)
, (5.7)

i.e., up to the multiplicative constant γ T1−1, the sum in (5.7) is the payoff to P1 in Γ̃ 1
3 (G|s∗),

under the strategies φ̂1
1 ,

(
φ̂2
2 , φ̂

3
3

)
. Since Γ̃ 1

3 (G|s∗) is a zero-sum game in which the optimal
response to φ̂1

1 is
(
φ̂2
1 , φ̂

3
1

)
, we have

γ T1−1 Q̃1 (
s∗, φ̂1

1 , φ̂
2
2 , φ̂

3
3

) ≥ γ T1−1 Q̃1 (
s∗, φ̂1

1 , φ̂
2
1 , φ̂

3
1

)
. (5.8)

Next consider
∑∞

t=T1−1 γ t q1 (̃st ). The history s̃ = s̃0̃s1̃s2 . . . is produced by (π1, φ̂2
1 , φ̂

3
1)

and, since π1 is not necessarily positional, s̃T1 s̃T1+1̃sT1+2 . . . may depend on s̃0̃s1 . . . s̃T1−2.
However, we can introduce a (not necessarily positional) strategy ρ1 which will produce the
same history s̃T1 s̃T1+1̃sT1+2 . . . as σ 1.6 Then, since in Γ̃ 1

3 (G|s∗) the optimal response to(
φ̂2
1 , φ̂

3
1

)
is φ̂1

1 , we have

6 We define ρ1 such that, when combined with s̃T1−1, φ̂
2
1 , φ̂3

1 , will produce the same history

s̃T1 s̃T1+1 s̃T1+2 . . . as σ 1. Note that ρ1 will in general depend (in an indirect way) on s̃0 s̃1 . . . s̃T1−2.
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γ T1−1 Q̃1 (
s∗, φ̂1

1 , φ̂
2
1 , φ̂

3
1

) ≥ γ T1−1 Q̃1 (
s∗, ρ1, φ̂2

1 , φ̂
3
1

) =
∞∑

t=T1−1

γ t q1 (̃st ) . (5.9)

Combining (5.5)–(5.9), we have:

Q1(s0, π̂
1, π̂2, π̂3) =

T1−2∑

t=0

γ t q1 (̃st ) + γ T1−1 Q̃1(s∗, φ̂1
1 , φ̂

2
2 , φ̂

3
3)

≥
T1−2∑

t=0

γ t q1 (̃st ) + γ T1−1 Q̃1(s∗, φ̂1
1 , φ̂

2
1 , φ̂

3
1)

≥
T1−2∑

t=0

γ t q1 (̃st ) + γ T1−1 Q̃1(s∗, ρ1, φ̂2
1 , φ̂

3
1) = Q1(s, π1, π̂2, π̂3).

and we have proved (5.3), which is (5.2) for n = 1. The proof for the cases n = 2 and n = 3
is similar and hence omitted. ��

We have seen that every Γ3 (G|s0) has at least two deterministic NE (one in positional
strategies and another in nonpositional ones); and in fact, as is well known, a stochastic game
may possess any number of NE. On the other hand, we only know how to compute a single
NE ofΓ3 (G|s0), namely the nonpositional one of Theorem 5.2, which is constructed in terms
of the two-player strategies of Γ̃ n

3 (G|s0). One may be tempted to construct additional NE of
Γ3 (G|s0) using the optimal strategies of Γ2 (G|s0). For example, one may reason as follows:
P3’s best chance to avoid capture in Γ3 (G|s0) is by ignoring P1 and playing his best (in
Γ2 (G|s0)) evasion strategy against P2. By a similar reasoning for the other players, one may
conclude that

(
σ̂ 1, σ̂ 2, σ̂ 3

)
is a NE of Γ3 (G|s0) if (i)

(
σ̂ 1, σ̂ 2

)
is a NE of Γ2 (G|s0) played

between P1 and P2, and (ii)
(
σ̂ 2, σ̂ 3

)
is a NE of Γ2 (G|s0) played between P2 and P3.7 But

this conclusion is wrong, as shown by the following example.

Example 5.3 Take the graph of Fig. 1 with the players positioned as indicated (i.e., x10 =
1, x20 = 12, x30 = 2). Now consider Γ2 (G| (12, 2, 3)) played on G by P2 (as pursuer) and P3
(as evader); suppose for the time being that P1 is not on the graph. In Γ2 (G| (12, 2, 3)), P3’s
best strategy is to move towards vertex 10, postponing capture as long as possible; P2’s best
strategy is to always move towards P3. Next consider Γ3 (G| (1, 12, 2, 3)) with P1, P2, P3
having their usual roles. In this game, P3’s best strategy is to first move into vertex 1 and
afterwards always keep P1 between himself and P2; he can always achieve this and thus avoid
capture ad infinitum. And P2’s best strategy is to stay at vertex 12, keeping away from P1
for as long as possible. So in this example P2 and P3’s optimal Γ2 (G| (12, 2, 3)) strategies
are not good (and certainly not in NE) in Γ3 (G| (1, 12, 2, 3)).

7 A clarification is needed here: the domain of Γ2 (G|s0) (positional) strategies is V × V × {1, 2}, while the
domain of Γ3 (G|s0) (positional) strategies is V × V × V × {1, 2}. However, we can “extend” a Γ2 (G|s0)
strategy to use it in Γ3 (G|s0). For example, suppose σ 1

(
x1, x2

)
is a P1 strategy in Γ2 (G|s0); then, it can

also be extended to a Γ3 (G|s0) strategy σ̃ 1
(
x1, x2, x3

)
by letting

∀x3 : σ̃ 1
(
x1, x2, x3

)
= σ 1

(
x1, x2

)
.

In other words, P1 applies σ 1 in Γ3 (G|s0) by ignoring P3’s position. We will often use this and similar
constructions in what follows, without further comment; and we will denote the Γ2 (G|s0) and Γ3 (G|s0)
strategies by the same symbol, e.g., σ n .
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1 2 3 4 5 6 7 8 9 10

11

12

P1 P3

P2

Fig. 1 A case in which the CR optimal strategies do not achieve NE in Γ3(G|s0)

5.2 Capturability

In Sect. 4, we have presented a connection between the cop number of G and “capturability”
in Γ2 (G|s0); this was described by (4.2) which can be equivalently rewritten as

(∀s0 every optimal σ̂ of Γ2 (G|s0) results in capture) ⇔ c (G) = 1. (5.10)

The analogue of (5.10) in Γ3 (G|s0) would be:

(∀s0 every NE σ̂ of Γ3 (G|s0) results in capture) ⇔ c (G) = 1. (5.11)

As will be seen, (5.11) is not true. But connections between cop number and capturability
exist, as will be established in the remainder of this section. To this end, we first define the
capture function K3 (G|s0, σ ).

Definition 5.4 For the game Γ3 (G|s0) played with strategies σ = (
σ 1, σ 2, σ 3

)
, we write

K3 (G|s0, σ ) =
⎧
⎨

⎩

0 when Q1 (s0, σ ) = Q2 (s0, σ ) = Q3 (s0, σ ) = 0,
1 when Q1 (s0, σ ) > 0,
2 when Q2 (s0, σ ) > 0.

Roughly, K3 (G|s0, σ ) tells us which player (if any) achieves a capture in Γ3 (G|s0) played
with

(
σ 1, σ 2, σ 3

)
:

1. K3 (G|s0, σ ) = 0 ⇔ Q1 (s0, σ ) = Q2 (s0, σ ) = Q3 (s0, σ ) = 0 ⇔ no capture takes
place;

2. K3 (G|s0, σ ) = 1 ⇔ Q1 (s0, σ ) > 0 ⇔ P1 captures P2;
3. K3 (G|s0, σ ) = 2 ⇔ Q2 (s0, σ ) > 0 ⇔ P2 captures P3 (and avoids being captured by

P1).

A weaker version of (5.11) is:

(∀s0 there exists a capturing NE σ̂ of Γ3 (G|s0)) ⇒ c (G) = 1

and this can be rewritten and proved in terms of K3 (G|s0, σ ), as follows.

Theorem 5.5 The following holds for every G:

(∀s0 there exists a NE σ̂ of Γ3 (G|s0) : K3 (G|s0, σ̂ ) > 0) ⇒ c (G) = 1. (5.12)

Proof To prove the theorem, we will assume

(∀s0 there exists a NE σ̂ of Γ3 (G|s0) : K3 (G|s0, σ̂ ) > 0) and c (G) > 1 (5.13)

and reach a contradiction. To this end, choose s0 = (
x1, x2, x3, 1

)
as follows.
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Fig. 2 A graph G in which
Γ3 (G|s0) has a noncapturing NE

1 2 3 4 5

P1 P3 P2

1. Take arbitrary x1.
2. Take some x2 such that for s′

0 = (
x1, x2, 1

)
there exists a σ 2 which is escaping in

Γ2
(
G|s′

0

)
. (This is always possible, since c (G) > 1.)

3. Take some x3 such that for s′′
0 = (

x2, x3, 1
)
there exists a σ 3 which is escaping in

Γ2
(
G|s′′

0

)
. (This is always possible, since c (G) > 1.)

Now let σ̂ = (
σ̂ 1, σ̂ 2, σ̂ 3

)
be a capturing NE of Γ3 (G|s0) and consider the following cases.

1. K3 (G|s0, σ̂ ) = 1; then, for some T1 we will have

Q2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = −γ T1 < 0 ≤ Q2 (
s0, σ̂

1, σ 2, σ̂ 3) .

Thus, when P1 and P2 play σ̂ 1 and σ 2, respectively, P2 will always escape P1. (Since
P3 can never influence, P2 moves.) And furthermore, P2 may in fact capture P3, since
σ̂ 3 is not necessarily an escaping strategy.

2. K3 (G|s0, σ̂ ) = 2; then, for some T2 we will have

Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = −γ T2 < 0 = Q3 (
s0, σ̂

1, σ̂ 2, σ 3)

Thus, when P2 and P3 play σ̂ 2 and σ 3, respectively, P3 will always escape P2. (Since
P1 can never influence, P3 moves.)

Since in every case some Pn can unilaterally improve Qn (s0, σ̂ ), σ̂ cannot be a NE of
Γ3 (G|s0). ��

Hence for every cop-win graph G and every starting state s0, Γ3 (G|s0) has a capturing
NE. However, perhaps surprisingly, there exist cop-win graphs and starting states for which
Γ3 (G|s0) also has noncapturing NE, as the following example shows.

Example 5.6 Take a path with P1 and P2 at the endpoints and P3 at the middle, as shown in
Fig. 2.

The strategy profile σ = (
σ 1, σ 2, σ 3

)
is defined as follows.

1. σ 1: P1 stays in place as long as P2 does not move; if P2 moves, P1 chases him.
2. σ 2: P2 stays in place as long as P3 does not move; if P3 moves, P2 chases him.
3. σ 3: P3 stays in place as long as nobody moves; if P1 moves, P3 goes towards P2; if P2

moves, P3 goes towards P1.

We will now show σ is a noncapturing NE of Γ (G|s0). Obviously we have

∀n ∈ {1, 2, 3} : Qn (
s0,

(
σ 1, σ 2, σ 3)) = 0.

We will show no player profits by unilaterally changing his strategy.

1. Say P1 uses any strategy σ 1. If, by σ 1, he moves at some time, then P3 goes towards P2
and P2 goes towards P3 resulting in a capture of P3 by P2. Hence

Q1 (
s0,

(
σ 1, σ 2, σ 3)) = 0 = Q1 (

s0,
(
σ 1, σ 2, σ 3)) . (5.14)
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2. Say P2 uses any strategy σ 2. If, by σ 2, he moves at some time, then P3 goes towards P1
and P1 goes towards P2 resulting in a capture of P2 by P1. Hence

Q2 (
s0,

(
σ 1, σ 2, σ 3)) < 0 = Q2 (

s0,
(
σ 1, σ 2, σ 3)) . (5.15)

3. Say P3 uses any strategy σ 3. If, by σ 3, he moves at some time, then P2 goes towards P3
and then P1 goes towards P2. Depending on P3’s moves, we may have a capture of P2
by P1 or of P3 by P2. In either case (by the upper bound on P3’s payoff),

Q3 (
s0,

(
σ 1, σ 2, σ 3)) ≤ 0 = Q3 (

s0,
(
σ 1, σ 2, σ 3)) . (5.16)

Combining (5.14)–(5.16), we get

∀n ∈ {1, 2, 3} ,∀σ n : Qn (
s0,

(
σ n, σ−n)) ≤ Qn (s0, σ )

which shows that σ is a noncapturing NE of Γ (G|s0).
The above example shows that the converse of Theorem 5.5 does not hold, i.e., there exist

cop-win graphs G and initial states s0 such that Γ3 (G|s0) has noncapturing NE. However,
we can prove a weaker result: the converse does hold when G is a tree.

The first step in our proof is to revisit the two-player game Γ̃ 2
3 (G|s0) of Sect. 5.1. Recall

that it is played between P2 and P−2 who controls the tokens P1 and P3. We now prove the
following.

Theorem 5.7 If c (G) = 1, then every optimal profile σ̂ = (
σ̂ 1, σ̂ 2, σ̂ 3

)
of Γ̃ 2

3 (G|s0) is a
NE of Γ3 (G|s0).
Proof Let us choose some initial state s0 and some optimal (in Γ̃ 2

3 (G|s0)) profile σ̂ =(
σ̂ 1, σ̂ 2, σ̂ 3

)
, and keep them fixed for the rest of the proof.

For any σ = (
σ 1, σ 2, σ 3

)
, the capture functionK3 (G|s0, σ )will take a value in {0, 1, 2}.

The values correspond to three outcomes in Γ3 (G|s0) and the same outcomes are obtained
in Γ̃ 2

3 (G|s0) (the two games differ in their payoffs but are played by the same rules):

1. K3 (G|s0, σ ) = 1 means P1 captures P2;
2. K3 (G|s0, σ ) = 2 means P2 captures P3 (and is not captured by P1);
3. K3 (G|s0, σ ) = 0 means neither P2 nor P3 is captured.

So we will consider the three mutually exclusive cases separately.
I. K3

(
G|s0,

(
σ̂ 1, σ̂ 2, σ̂ 3

)) = 1. Let us examine each player’s payoff.

1. For all
(
σ 1, σ 3

)
such that K3

(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) = 1,
(
σ̂ 1, σ̂ 2, σ̂ 3

)
optimality in

Γ̃ 2
3 (G|s0) implies

Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = Q̃−2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q̃−2 (
s0, σ

1, σ̂ 2, σ 3)

= Q1 (
s0, σ

1, σ̂ 2, σ 3) .

And for all
(
σ 1, σ 3

)
such that K3

(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) �= 1, we have

Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) > 0 = Q1 (
s0, σ

1, σ̂ 2, σ 3) .

Hence

∀σ 1, σ 3 : Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q1 (
s0, σ

1, σ̂ 2, σ 3)

⇒ ∀σ 1 : Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q1 (
s0, σ

1, σ̂ 2, σ̂ 3) (5.17)
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2. For all
(
σ 1, σ 2, σ 3

)
, we have

Q2 (
s0, σ

1, σ 2, σ 3) = Q̃2 (
s0, σ

1, σ 2, σ 3) ;
combining with optimality in Γ̃ 2

3 (G|s0), we get
∀σ 2 : Q2 (

s0, σ̂
1, σ̂ 2, σ̂ 3) = Q̃2 (

s0, σ̂
1, σ̂ 2, σ̂ 3) ≥ Q̃2 (

s0, σ̂
1, σ 2, σ̂ 3)

= Q2 (
s0, σ̂

1, σ 2, σ̂ 3) . (5.18)

3. And finally

∀σ 1, σ 3 : Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = 0 ≥ Q3 (
s0, σ

1, σ̂ 2, σ 3) ⇒ ∀σ 3 : Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3)

= 0 ≥ Q3 (
s0, σ̂

1, σ̂ 2, σ 3) . (5.19)

Combining (5.17)–(5.19), we see that

K3
(
G|s0,

(
σ̂ 1, σ̂ 2, σ̂ 3)) = 1 ⇒ ∀n,∀σ n : Qn (s0, σ̂ ) ≥ Qn (

s0, σ
n, σ̂−n) . (5.20)

II. K3
(
G|s0,

(
σ̂ 1, σ̂ 2, σ̂ 3

)) = 2. Then the following hold.

1. From
(
σ̂ 1, σ̂ 3

)
optimality, we have

∀σ 1, σ 3 : 0 = Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) > Q̃−2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q̃−2 (
s0, σ

1, σ̂ 2, σ 3) .

(5.21)

We cannot have K3
(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) = 1, because then we would also have
Q̃−2(s0, σ 1, σ̂ 2, σ 3) > 0, which contradicts (5.21). If we have eitherK3(G|s0, (σ 1, σ̂ 2,

σ 3)) = 2 or K3(G|s0, (σ 1, σ̂ 2, σ 3)) = 0, then

Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = 0 = Q1 (
s0, σ

1, σ̂ 2, σ 3) .

In short

∀σ 1, σ 3 : Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = 0 = Q1 (
s0, σ

1, σ̂ 2, σ 3) ⇒ ∀σ 1 : Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3)

= Q1 (
s0, σ

1, σ̂ 2, σ̂ 3) (5.22)

2. By the same argument as in the previous case, we get

∀σ 2 : Q2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q2 (
s0, σ̂

1, σ 2, σ̂ 3) . (5.23)

3. Finally

∀σ 1, σ 3 : 0 > Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = Q̃−2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q̃−2 (
s0, σ

1, σ̂ 2, σ 3) .

(5.24)

We cannot have K3
(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) = 0 or K3
(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) = 1, because
then we would also have Q̃−2

(
s0, σ 1, σ̂ 2, σ 3

) ≥ 0 which contradicts (5.24). Hence
K3

(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) = 2 and then

Q3 (
s0, σ

1, σ̂ 2, σ 3) = Q̃−2 (
s0, σ

1, σ̂ 2, σ 3) ;
hence, from (5.24) we get

∀σ 1, σ 3 : Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q3 (
s0, σ

1, σ̂ 2, σ 3)

and then

∀σ 3 : Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = Q3 (
s0, σ̂

1, σ̂ 2, σ 3) . (5.25)
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Combining (5.22)–(5.25),we see that

K3
(
G|s0,

(
σ̂ 1, σ̂ 2, σ̂ 3)) = 2 ⇒ ∀n,∀σ n : Qn (s0, σ̂ ) ≥ Qn (

s0, σ
n, σ̂−n) . (5.26)

III. K3
(
G|s0,

(
σ̂ 1, σ̂ 2, σ̂ 3

)) = 0.

1. For all σ 1, σ 3, we have

Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = 0 = Q̃−2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q̃−2 (
s0, σ

1, σ̂ 2, σ 3) . (5.27)

We cannot have K3
(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) = 1, because then we would also have
Q̃−2

(
s0, σ 1, σ̂ 2, σ 3

)
> 0, which would contradict (5.27). IfK3

(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) =
2 or K3

(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) = 0 then Q1
(
s0, σ 1, σ̂ 2, σ 3

) = 0 and so

∀σ 1, σ 3 : 0 = Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = Q1 (
s0, σ

1, σ̂ 2, σ 3) ⇒ ∀σ 1 : Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3)

= Q1 (
s0, σ

1, σ̂ 2, σ̂ 3) . (5.28)

2. By the same argument as in the previous cases, we get

∀σ 2 : Q2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q2 (
s0, σ̂

1, σ 2, σ̂ 3) . (5.29)

3. Finally, we have seen that, for all
(
σ 1, σ 3

)
, either K3

(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) = 2 or
K3

(
G|s0,

(
σ 1, σ̂ 2, σ 3

)) = 0; in both cases

∀σ 1, σ 3 : Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = Q̃−2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q̃−2 (
s0, σ

1, σ̂ 2, σ 3)

= Q3 (
s0, σ

1, σ̂ 2, σ 3)

and so

∀σ 3 : Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3) ≥ Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3) . (5.30)

Combining (5.28)–(5.30), we see that

K3
(
G|s0,

(
σ̂ 1, σ̂ 2, σ̂ 3)) = 0 ⇒ ∀n,∀σ n : Qn (s0, σ̂ ) ≥ Qn (

s0, σ
n, σ̂−n) . (5.31)

In conclusion, combining (5.20), (5.26) and (5.31) we see that every profile
(
σ̂ 1, σ̂ 2, σ̂ 3

)

which is optimal in Γ̃ 2
3 (G|s0) is also a NE of Γ3 (G|s0). ��

Before we prove additional facts about Γ̃ 2
3 (G|s0), we need the following.

Definition 5.8 A graph G is called median if for every three vertices x , y and z there exists
a unique vertex m (x, y, z) (the median vertex of x, y, z) which belongs to shortest paths
between each pair of x, y, z.

The following facts are well known [12]. First, every tree is a median graph. Second, in a
tree the union of the three (unique) shortest paths between the pairs of vertices x , y and z is

1. either a path, in which case the median m (x, y, z) is equal to one of x , y or z;
2. or a subtree formed by three paths meeting at a single central node,which is the median

of x , y and z.

Now we can prove some additional properties of Γ̃ 2
3 (G|s0).

Theorem 5.9 If G is a path then, for any s0, every strategy profile σ̂ = (
σ̂ 1, σ̂ 2, σ̂ 3

)
which

is optimal in Γ̃ 2
3 (G|s0) is capturing.
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Proof If s0 is a capture state, the theorem is obviously true. Take any noncapture starting
state s0 = (

x10 , x
2
0 , x

3
0 , p

)
; since G is a path, it is a median graph and one of x10 , x

2
0 , x

3
0 is the

median of the other two (we will also say that either x10 , x
2
0 , x

3
0 or P1, P2, P3 are collinear).

We define strategies σ 1, σ 2, σ 3 for each case.

1. If x10 is the median of x20 and x30 , then: P1 moves towards P2, P2 moves away from P1
and P3 stays in place; eventually, P2 is captured.

2. If x20 is the median of x10 and x30 , then: P1 moves towards P2, P2 moves towards P3 and
P3 moves away from P2; eventually, P3 is captured.

3. If x30 is the median of x10 and x20 , then: P1 moves towards P2, P2 moves away from P1
and P3 moves away from P2; eventually, P2 is captured.

In every case, σ = (
σ 1, σ 2, σ 3

)
is capturing and optimal. Since σ is capturing, the same

holds for every optimal profile σ̂ , because they all yield the same payoff. ��
The above defined σ will be called path strategies and will be used to prove the following

lemma, needed to extend Theorem 5.9 to trees.

Lemma 5.10 If G is a tree then there exists a positional profile σ̃ = (
σ̃ 1, σ̃ 2, σ̃ 3

)
for which

the following hold in Γ̃ 2
3 (G|s0).

1. For every s0:
(
s0, σ̃ 1, σ̃ 2, σ̃ 3

)
results in capture.

2. If
(
s0, σ̃ 1, σ̃ 2, σ̃ 3

)
results in capture of P2 then, for every σ 2,

(
s0, σ̃ 1, σ 2, σ̃ 3

)
results in

capture of P2.
3. If

(
s0, σ̃ 1, σ̃ 2, σ̃ 3

)
results in capture by P2 then for every σ 1, σ 3,

(
s0, σ 1, σ̃ 2, σ 3

)
results

in capture by P2.

Proof A rough description of σ̃ is quite simple: each player tries to reach the median as fast
as possible; as soon as this happens, the players are collinear and they start playing their
path strategies. We next give a (straightforward but rather tedious) rigorous proof. In what
follows, we denote the median of x1t , x

2
t , x

3
t by mt .

For Part 1 of the theorem, we distinguish two cases.
Case A Suppose that at some time t the game state is

(
x1t , x

2
t , x

3
t , p

)
where one of x1t , x

2
t , x

3
t

is the median of the other two (they are collinear). In this case σ̃ = σ , i.e., the players use
the path strategies of Theorem 5.9. It is easily checked that the players remain collinear for
the rest of the game and a capture results.
Case B Suppose that x10 , x

2
0 , x

3
0 are not collinear. The initial part of σ̃ 1, σ̃ 2, σ̃ 3 prescribes

that every player moves directly towards the median mt . As a result, let t0 denote the first
time when a (single) player Pn is at distance 1 from mt , as depicted in Figs. 3 and 4 (in the
figures we only show the subtree of G which is defined by the positions of P1, P2 and P3;
dotted lines indicate paths of length one or more). We will now define σ̃ 1, σ̃ 2, σ̃ 3 depending
on which Pn first reaches mt ; when some move is not specified, the respective strategy can
be defined arbitrarily.

1. Suppose Pn = P1, i.e., at t0 we have d
(
x1t0 ,mt0

) = 1, as shown in Fig. 3a. P3 stays in
place at t0 +2, P1 entersmt at t0 +3 and the players become collinear. Now every player
starts using his path strategy. It is easy to check that this results in capture of P2.

2. Suppose Pn = P2, i.e., at t0 we have d
(
x2t0 ,mt0

) = 1. Now we must distinguish two
subcases.

(a) Say d
(
x1t0 ,mt0

) = 2, as in Fig. 3b. P3 stays in place at t0 + 1 and t0 + 4, P1 moves to
a at t0 + 2 and to mt at t0 + 5, when the players become collinear and start playing
their path strategies; eventually, P2 is captured.



Dynamic Games and Applications

P1

mt0

P3

P2

(a)

P1

a
mt0

P3

P2

(b)

P1

a b
mt0

P3

P2

(c)

Fig. 3 Possible placements of P1, P2, P3 in the proof of Theorem 5.10

P1 a mt0 u P2

P3(a)

P1 a b mt0 u P2

P3,(b)

P1 a b c mt0 u P2

P3(c)

P1 mt0 v u P2,

P3,(d)

Fig. 4 Possible placements of P1, P2, P3 in the proof of Theorem 5.10

(b) Say d
(
x1t0 ,mt0

) ≥ 3, as in Fig. 3c. P2 enters mt at time t0 + 3, the players become
collinear and start playing their path strategies; eventually, P3 is captured.

3. Suppose Pn = P3, i.e., at t0 we have d
(
x3t0 ,mt0

) = 1. Now we must distinguish four
subcases.

(a) Say d
(
x1t ,mt

) = 2, d
(
x2t ,mt

) = 2, as in Fig. 4a. P1 enters a at t0 + 1, P2 enters u
at t0 + 2 and P3 stays in place at t0 + 3. At t0 + 4 P1 enters mt , the players become
collinear and start playing their path strategies; eventually, P2 is captured.

(b) Say d
(
x1t ,mt

) = 3, d
(
x2t ,mt

) = 2, as in Fig. 4b. P1 enters a at t0 + 1, P2 enters u
at t0 + 2 and P3 stays in place at t0 + 3. At t0 + 4 P1 enters b and at t0 + 7 he enters
mt , the players become collinear and start playing their path strategies; eventually,
P2 is captured.

(c) Say d
(
x1t ,mt

) ≥ 4, d
(
x2t ,mt

) = 2, as in Fig. 4c. P2 enters u at t0 + 2 and mt

at t0 + 5, at which time the players become collinear and start playing their path
strategies; eventually, P3 is captured.

(d) Say d
(
x2t ,mt

) ≥ 3, as in Fig. 4d. At t0+3 P3 entersmt , the players become collinear
and start playing their path strategies; eventually, P2 is captured.

This completes the description of σ̃ = (
σ̃ 1, σ̃ 2, σ̃ 3

)
and it is readily seen that it always leads

to capture; so the first part of the theorem has been proved.
For Part 2 of the theorem, assume that

(
s0, σ̃ 1, σ̃ 2, σ̃ 3

)
leads to P2 capture; there are two

ways for this to happen. Either the players are collinear in s0 and P2 is not in the middle;
in this case, P2 is captured for every σ 2 he uses, or the players are not collinear in s0 but
eventually reach one of cases 1, 2.a, 3.a, 3.b, 3.d; in this case, if P2 uses a σ 2 which deviates
from σ̃ 2, he will approach mt no faster than if he used σ̃ 2 and a straightforward examination
of cases 1, 2.a, 3.a, 3.b, 3.d shows that

(
s0, σ̃ 1, σ 2, σ̃ 3

)
will also lead to capture of P2.

The proof of Part 3 is similar to that of Part 2 and hence omitted. ��
Now we can expand Theorem 5.9 from paths to trees.

Theorem 5.11 If G is a tree then, for any s0, every strategy profile σ̂ = (
σ̂ 1, σ̂ 2, σ̂ 3

)
which

is optimal in Γ̃ 2
3 (G|s0) is capturing.
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Proof Let σ̂ = (
σ̂ 1, σ̂ 2, σ̂ 3

)
be an optimal (for any s0) strategy profile and take some s0 such

that
(
s0, σ̃ 1, σ̃ 2, σ̃ 3

)
leads to capture of P2. Then, by Part 2 of Lemma 5.10, we have

∀σ 2 : Q̃2 (
s0, σ̃

1, σ 2, σ̃ 3) < 0

and so

Q̃2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = min
σ 1,σ 3

max
σ 2

Q̃2 (
s0, σ

1, σ 2, σ 3) ≤ max
σ 2

Q̃2 (
s0, σ̃

1, σ 2, σ̃ 3) < 0;

in other words,
(
s0, σ̂ 1, σ̂ 2, σ̂ 3

)
leads to capture of P2. Similarly, by Part 3 of Lemma 5.10

we can prove that, for every s0 such that
(
s0, σ̃ 1, σ̃ 2, σ̃ 3

)
leads to capture of P3, the same

holds for
(
s0, σ̂ 1, σ̂ 2, σ̂ 3

)
. Since, by Part 1 of Lemma 5.10, for every s0,

(
s0, σ̃ 1, σ̃ 2, σ̃ 3

)

leads to capture (of either P2 or P3) we have proved the theorem. ��

Now we return to the three-player game Γ3 (G|s0) and show that: if G is a tree, then
Γ3 (G|s0) has a capturing NE for every initial state s0. (Hence, while the converse of Theorem
5.5 does not hold for every cop-win graph, it holds for the special case of trees.)

Theorem 5.12 If G is a tree, then

∀s0 there exists a NE σ̂ of Γ3 (G|s0) : K3 (G|s0, σ̂ ) > 0.

Proof Since G is a tree, every optimal profile σ̂ = (
σ̂ 1, σ̂ 2, σ̂ 3

)
of Γ̃ 2

3 (G|s0) is capturing in
both Γ̃ 2

3 (G|s0) (by Theorem 5.11); and in Γ3 (G|s0) (since the two games are played by the
same rules). Hence K3 (G|s0, σ̂ ) > 0. And σ̂ is a NE of Γ3 (G|s0) by Theorem 5.7 (since
every tree G has c (G) = 1). ��

We conclude this section with a result for graphs which are not cop-win.

Theorem 5.13 c (G) > 1 ⇒ (∃s0 : Γ3 (G|s0) has a noncapturing NE σ̂ )

Proof We will construct the required s0 and σ̂ = (
σ̂ 1, σ̂ 2, σ̂ 3

)
. Since c (G) > 1, there exist

an s̃0 = (
x1, x2, p

)
and a Γ2 (G |̃s0)-optimal noncapturing profile σ̃ = (

σ̃ 1, σ̃ 2
)
. Now let

s0 = (
x1, x2, x1, 1

)
and define the Γ3 (G |̃s0) strategies as follows: σ̂ 2 is σ̃ 2 (expanded to

work in Γ3 (G |̃s0) ) and, for n ∈ {1, 3}, σ̂ n specifies that Pn always stays in place. Then,
since σ̂ 2 is an optimal evasion strategy we have

∀σ 1 : Q1 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = 0 = Q1 (
s0, σ

1, σ̂ 2, σ̂ 3) .

Also, P2 must enter x1 to capture P3, but then he would first be captured by P1. Hence we
have

∀σ 2 : Q2 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = 0 ≥ Q2 (
s0, σ̂

1, σ 2, σ̂ 3) .

Finally, since P3 never receives positive payoff, we have

∀σ 3 : Q3 (
s0, σ̂

1, σ̂ 2, σ̂ 3) = 0 ≥ Q3 (
s0, σ̂

1, σ̂ 2, σ 3) .

So s0 is a noncapturing NE of Γ (G|s0). ��
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6 GCRwith N Players, N ≥ 4

We will now briefly examine ΓN (G|s0) for N ≥ 4. Most of the game elements have been
defined in Sect. 2; we define the turn payoffs qn by generalizing (5.1). Namely, at every turn
Pn receives:

1. a payoff of −1 if he is captured by Pn−1;
2. a payoff of 1 if he captures Pn+1, but is not simultaneously captured by Pn−1;
3. a payoff of 0 in every other case.

The above turn payoffs and the total payoff Qn of (2.2) complete the specification of
ΓN (G|s0).

Since it is a multi-player discounted stochastic game of perfect information, ΓN (G|s0)
has (by Theorem 3.1) a NE in deterministic positional strategies. The N -player analogue of
Theorem 5.2 also holds.

Theorem 6.1 For every G, s0 and γ , ΓN (G|s0) has a NE π̂ = (π̂1, π̂2, . . . , π̂N ) in deter-
ministic (generally nonpositional) strategies.

Proof Theproof involves theuseof the auxiliary two-player, zero-sumgames Γ̃ 1
N (G|s0) , . . . ,

Γ̃ N
N (G|s0) . In Γ̃ n

N (G|s0), Pn plays against P−n ,whocontrols the tokens P1, . . . , Pn−1, Pn+1,

. . . , PN . The threat strategies π̂ = (π̂1, π̂2, . . . , π̂N ) are defined in the same manner as in
Sect. 5.1, in terms of the strategies

(
φ̂m
n

)
m,n∈[N ] which are optimal in the corresponding

Γ̃ n
N (G|s0) games. The rest of the proof is omitted, since it follows closely that of Theo-

rem 5.2. ��
Similarly to Γ3 (G|s0), if ΓN (G|s0) has a capturing NE for every initial state s0, then

G is cop-win. This is stated in the following theorem, where KN (G|s0, σ ) is the obvious
generalization of the capturability function K3 (G|s0, σ ). (The proof is omitted, since it is
similar to that of Theorem 5.5.)

Theorem 6.2 The following holds for every G:

(∀s0 there exists a NE σ̂ of ΓN (G|s0) : KN (G|s0, σ̂ ) > 0) ⇒ c (G) = 1. (6.1)

On the other hand, Theorem 5.7 does not generalize to the case N ≥ 4. The following
example shows that, even when G is a path, there may exist optimal profiles σ̂ of Γ̃ n

N (G|s0)
which are not NE of ΓN (G|s0).
Example 6.3 In Fig. 5, G is a path, the tokens are positioned as depicted and P4 has the
starting move; in short, s0 = (1, 3, 4, 5, 4).

In the game Γ̃ 2
4 (G|s0), P2 plays against P−2 who controls P1, P3, P4. Clearly the optimal

P−2 move from s0 is to move P4 into vertex 4, since then the game ends and P−2 receives
his maximum possible payoff of 0. (Otherwise, on his first move P2 captures P3 and P−2

receives negative payoff.) So every σ̂−2 = (
σ̂ 1, σ̂ 3, σ̂ 4

)
which is optimal in Γ̃ 2

4 (G|s0) must
satisfy σ̂ 4 (s0) = 4. But such a σ̂−2 cannot be (part of) a NE of Γ4 (G|s0), because in this
game P4 can improve his payoff by moving from 5 to 6, rather than 4.

Fig. 5 A path G in which a
Γ̃ 2
4 (G|s0)-optimal strategy

profile is not a NE of Γ 2
4 (G|s0) 1 2 3 4 5 6

P1 P2 P3 P4
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In Sect. 5, we have shown (Theorem 5.12) that, when G is a tree, for every s0 there exists
a capturing NE of Γ3 (G|s0); the proof depended on Theorem 5.7 which, as seen, does not
generalize for N ≥ 4. Hence we have not been able to generalize Theorem 5.12 either. On
the other hand, we have not found a counterexample (i.e., a tree and some initial state for
which no capturing NE exists); hence, the matter remains open.

The following generalizes Theorem 5.13 and is proved very similarly.

Theorem 6.4 For every N ≥ 3, we have

c (G) > 1 ⇒ (∃s0 : ΓN (G|s0) has a noncapturing NE σ̂ ) .

7 MoreMulti-player Pursuit Games

In Sect. 2, we have developed a framework which we have used in Sects. 4, 5 and 6 to study
the game ΓN (G|s0), for various N values. As we will now explain, this framework applies
to a wider family of graph pursuit games.

We have in mind games played by players P1, P2,…, PN who take turns in moving tokens
along the edges of a graph. For the time being, assume that each player controls one token
and has, in general, two goals: (i) to capture some (other players’) tokens and (ii) to avoid
capture of his own token.

Any such situation can be described, by the formulation of Sect. 2, as a multi-player
discounted stochastic game of perfect information. Assuming, without loss of generality, that
the playersmove in the sequence implied by their numbering, the actual “capture relationship”
will be encoded by the turn payoff functions qn . To preserve the semantics of pursuit/evasion,
they should have the form8

qn
((

x1, . . . , xN , p
))

=
⎧
⎨

⎩

1 when for some m : xn = xm,m ∈ An,

−1 when for some m : xn = xm,m ∈ Bn,

0 else.
(7.1)

where

1. An is the set of Pn’s “targets” (i.e., the players whom he can capture) and
2. Bn is the set of Pn’s “pursuers” (i.e., the players who can capture him).

For example, in Γ2 (G|s0) we have players P1 and P2 with respective sets

A1 = {P2} , B1 = ∅, A2 = ∅, B2 = {P1} ;
while in Γ3 (G|s0) we have players P1, P2 and P3 with respective sets

A1 = {P2} , B1 = ∅, A2 = {P3} , B2 = {P1} , A3 = ∅, B3 = {P2}
and the additional condition of no simultaneous captures (which, as, requires a small modi-
fication of (7.1)).

As a final example, consider a game which we could call “Cyclic Cops and Robbers”;
it involves players P1, P2 and P3 in which: P1 chases P2 and avoids P3; P2 chases P3 and
avoids P1; P3 chases P1 and avoids P2. In this game, we will have

A1 = {P2} , B1 = {P3} , A2 = {P3} , B2 = {P1} , A3 = {P1} , B3 = {P2} .

8 The conditions in (7.1) encode “minimum” requirements, additional restrictions may be imposed, e.g., no
simultaneous captures.
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Fig. 6 In this graph, Cyclic Cops
and Robbers have only
noncapturing NE

1

2

3 4

P1

P2 P3

This game has some interesting properties; they will be fully described in a separate publica-
tion, but as an example suppose it is played on the star graph of Fig. 6, with initial positions
as indicated. It is easily checked that, even though the star graph is cop-win, the game has
only noncapturing NE.

Many similar games can be constructed along these lines and the corresponding capture
relationships can be quite involved. Let us represent the capture relationships by a directed
graph, with vertices representing players and (Pk, Pm) being an arc iff Pk can capture Pm .
Then ourΓ2 game corresponds to a directed path and “Cyclic Cops andRobbers” corresponds
to a directed cycle. One can visualize more complex capture relationships, corresponding to
directed graphs with multiple successors, cycles, etc.

At any rate, all such games (i) fall within the game-theoretic framework of Sect. 2 and
hence (ii) by Theorem 3.1 possess a well-defined game-theoretic solution, namely a NE in
deterministic positional strategies.

In fact, the framework of Sect. 2 can accommodate further generalizations for which
Theorem 3.1 will still hold. We list some additional generalizations to the idea of graph
pursuit game.

1. PayoffsThe turn payoffs qn can take values in [−1, 1] rather than {−1, 1}. As an example,
we have introduced and studied the game of Selfish Cops and Robbers [11], in which two
cops pursue a robber but do not split the capture payoff equally; instead, the capturing
(resp. noncapturing) cop receives payoff (1 − ε) (resp. ε), where ε ∈ [

0, 1
2

]
. Hence each

cop has a motive to be the one who actually captures the robber; if this “selfishness” is
sufficiently strong (this will depend on the ε value), it can be exploited by the robber to
avoid capture ad infinitum.

2. Teams So far we have assumed that each player controls a single token. But we can
also assume that a game is played by N players (with N ≥ 2) with Pn controlling Kn

tokens. An example of this is the classic CR game with more than one cop tokens (all
of them controlled by a single cop player). Another example is the Γ̃ n

N (G|s0) auxiliary
games of Sects. 5.1 and 6. These are two-player games, but the idea can be applied to
multi-player games as well. For example, we could have the three-player GCR game
with P1 controlling two pursuer tokens and each of P2 and P3 controlling one pursuer
and one evader token.

3. Game terminationSo farwe have assumed that the game terminates upon the first capture,
but this can also be modified. For example, the game could end upon the elimination of
all tokens of one player, or when no more captures are possible.

Since all of the above modifications can be accommodated by the formulation of Sect. 2,
the respective games can be analysed by game-theoretic methods. At the very least, by



Dynamic Games and Applications

Theorem 3.1 they all possess NE; further results can be obtained by exploiting the special
characteristics of each game.

Here is a final variation on pursuit games. Suppose that the game starts with the graph G
being empty,9 fixed move order P1 → P2 → · · · → PN → · · · and fixed payoff functions
qn . However, at the very start of the game (i.e., even before token placement) each player
can choose one of the available qn’s. In other words, Pn will play with payoff qmn , where
(m1,m2, . . . ,mN ) is a permutation of (1, 2, . . . , N ). This amounts to each player choosing
one of the available “roles.” In certain cases, the choice is obvious; for instance, in classic
CR and for a given cop-win (resp. robberwin) G, every player prefers to be the cop (resp.
robber). However, depending on the payoff functions and the graph in which the game is
played, situations will arise where the choice of role involves a quite complex and (perhaps)
interesting “meta-game.”

8 Conclusion

In this paper, we have introduced and studied the Generalized Cops and Robbers game
ΓN (G|s0), a multi-player pursuit game in graphs. The two-player versionΓ2 (G|s0) is essen-
tially equivalent to the classicCRgame. The three-player versionΓ3 (G|s0) can be understood
as two CR games played simultaneously on the same graph; a player can simultaneously be
pursuer and evader. This also holds for ΓN (G|s0) when N ≥ 4.

Using a formulation of ΓN (G|s0) as a discounted stochastic game of perfect information,
we have proved that it has at least one NE in positional deterministic strategies. Using
auxiliary two-player games Γ̃ n

N (G|s0), we have also proved the existence of an additional
NE in nonpositional deterministic strategies. We have also studied the capturing properties
of the ΓN (G|s0) NE in connection with the cop number c (G).

Both ΓN (G|s0) and Γ̃ n
N (G|s0) are members of a general family of graph pursuit games,

which can be described by the framework of Sect. 2 and its generalizations, presented in
Sect. 7. This family is a broad generalization of the two-player graph pursuit games previously
studied to the multi-player case; it contains games with rather unexpected properties, and
hence, we believe, it deserves additional study.
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