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Several variants of the cops and robbers (CR) game have been studied in the literature. 
In this paper we examine a novel variant, which is played between two cops, each one 
independently trying to catch a “passive robber”. We call this the Selfish Cops and Passive 
Robber (SCPR) game. In short, SCPR is a stochastic two-player, zero-sum game where the 
opponents are the two cop players. We study sequential and concurrent versions of the SCPR 
game. For both cases we prove the existence of value and optimal strategies and present 
algorithms for the computation of these.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Several variants of the cops and robbers (CR) game have been studied in the past. In this paper we examine a novel 
variant, which is played between two cops, each one independently trying to catch a “passive robber”. We call this the 
Selfish Cops and Passive Robber (SCPR) game. Here is a brief and informal description of the game (a more detailed description 
will be provided in Section 2).

1. The game is played on an undirected, finite, simple and connected graph.
2. The game is played by two cop players C1 and C2, each controlling a cop token (the tokens will also be referred to as 

C1 and C2).
3. A robber token R is also used, which is moved according to a (deterministic or random) law known to both cop players.
4. At every turn of the game the tokens are moved from vertex to vertex, along the edges of the graph.
5. The winner is the first player whose token lies at the same vertex as the robber token (that is, the player who “captures 

the robber”).

We emphasize that SCPR is a game played between two cop players; the robber is not associated to a player and does not 
attempt to evade capture. As far as we know this CR variant has not been previously studied.

As an example, consider two cops located at opposite ends of a path with N vertices and one robber located at some 
intermediate vertex. A cop wins if he reaches the robber before the other cop. We repeat that the robber is not actively 
trying to evade; his every move is governed by a probability law conditioned on the current positions of himself and 
the cops. This law is known to the cops. For each cop, what is the optimal strategy and what is the corresponding win 
probability?
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1. The simplest case is when the robber is stationary. In this case, the cop closest to him wins with probability one; each 
cop’s optimal strategy is to always move towards the robber.

2. A slightly harder case is that of the “drunk robber” [16–18,20] who performs a random walk on the graph. The optimal 
cop strategies are the same as in the stationary robber case, but the computation of the win probabilities is not trivial 
(in Section 4 we provide an algorithm to compute them).

3. Examples can also be constructed in which the optimal cop strategy is not to always move towards the robber (one 
such example is given in Section 4.2).

The above examples should give a clearer idea of the problem which we study in the current paper. Of course our results 
are not limited to paths, but hold for general graphs.

The study of Cops and Robbers was initiated by Quilliot [27] and Nowakowski and Winkler [24] and an extensive graph 
theoretic literature exists on the problem (we will provide some references a little later). However, we study SCPR from a 
somewhat different angle, using the theory of stochastic games as presented in the book by Filar and Vrieze [13] (a stochastic 
game consists of a sequence of one-shot games where the game played at any time depends probabilistically on the previous 
game played and the actions of the agents in that game). In the current paper we study qualitative SCPR games, in which 
the payoff is the winning probability; in a forthcoming paper we will discuss quantitative SCPR games, in which the payoff 
is the expected capture time. The concepts of qualitative and quantitative pursuit games (a special category of which are CR 
games) have been introduced in [15] under the names “game of kind” and “game of degree”. Informally, in a qualitative 
game a late capture is as good as a fast one; in a quantitative game the pursuer wants to capture the evader as soon as 
possible.

For the graph theoretic point of the view the reader can consult the recent book [25] which contains a good overview 
of the extensive literature. As already mentioned, this literature is mainly oriented to graph theoretic and combinatorial 
considerations. Indeed CR can be seen as a combinatorial game, as pointed out in [7,8]. On the topic of combinatorial games 
the reader can consult the introductory text [1] as well as the classic book (in four volumes) [5] by Berlekamp and Conway.

We believe that game theory offers a natural (but not often used in the “mainstream” CR literature) framework for the 
analysis of CR games. In particular, as already mentioned, we consider SCPR as a stochastic game. Stochastic games were 
introduced by Shapley [28]. A classic book on the subject is [13], which also contains a rich bibliography; see also [23].

Several game theoretic models can be applied to the study of CR games. For instance, as will be seen in Section 2, SCPR 
is a recursive game [12]: as soon as a non-zero-payoff is received the play moves to an absorbing state. This point of view 
can be applied to classical CR games as well.

Let us also mention a construction which has been used in several “classic” CR papers [7,8,14]. Suppose that a “classic” 
CR game is played between one cop and one robber on the undirected graph G = (V , E). We now construct the game 
digraph D = (S, A), where the vertex set is S = V × V × {1, 2} (with i ∈ {1, 2} denoting the player who has the next move) 
and the arc set A encodes possible vertex-to-vertex transitions. Then a play of the CR game can be understood as a walk 
on D; the cop wins if he can force the walk to pass through a vertex of the form (x, x, i). Hence CR can be seen as a 
game in which the two players push a token along the arcs of the digraph. As pointed out in [7,8] many CR variants and 
several other pursuit games on graphs (including their concurrent versions) can be formulated in a similar manner. It turns 
out that such “digraph games” have been studied by several researchers and the related literature is spread among many 
communities. The earliest such works of which we are aware are [4,22]. Related examples appear in [3,11,29]. But probably 
the most widespread application of this point of view appears in the literature of reachability games [6] and, more generally, 
ω-regular games [21]. In a reachability game two players take turns moving a token along the arcs of a digraph; player 1 
wants to place the token on one of the nodes of a subset of the digraph vertices while player 2 wants to avoid this event. 
In addition to “classic” sequential reachability games, many other variants have been studied, for example, stochastic [9], 
concurrent [2], n-player [10] etc.

All of the above approaches find immediate application to both classical CR games and selfish cops variants, such as the 
one presented in the current paper.

The paper is organized as follows. In Section 2 we present definitions and notation which will be used in the rest 
of the paper. In Section 3 we study the sequential version of the SCPR game and in Section 4 the concurrent version. In 
both sections we obtain analogous results; namely both the sequential and concurrent SCPR game have a value, Cop 1 
has an ε-optimal deterministic stationary Markovian strategy and Cop 2 has an optimal deterministic stationary Markovian 
strategy; furthermore we give algorithms which compute values and strategies efficiently; the algorithm for concurrent SCPR 
is somewhat more complicated but it can be simplified in case robber movement is governed by an “oblivious deterministic” 
law. Finally, in Section 5 we present concluding remarks and discuss future research directions.

2. Preliminaries

The SCPR game is played on an undirected, finite, simple and connected graph G = (V , E), where V is the vertex set and 
E is the edge set. Unless otherwise stated, we will assume that the cop number c (G) of the graph equals one (recall that 
c (G) is the minimum number of cops required to guarantee capture of the robber on G).

The game proceeds in turns numbered by t ∈ N0 = {0,1,2, ...} and, as already mentioned, involves three tokens: C1, C2
and R . These will also be referred to as the first, second and third token, respectively, and their locations at the end of 
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the t-th turn are indicated by X1
t , X2

t , X3
t . The starting position at the 0-th turn is given: for i ∈ {1,2,3}, Xi

0 = xi
0 ∈ V . In 

subsequent turns, the positions are changed according to the rules of the particular variant (sequential or concurrent) and 
subject to the constraint that movement always follows the graph edges: Xi

t+1 ∈ N
[

Xi
t

]
(the closed neighborhood of Xi

t ). As 
will be seen in the sequel, in the general case token moves are governed by probabilistic strategies; hence X1

t , X2
t , X3

t are 
random variables.

2.1. Sequential SCPR

In the sequential version of SCPR players take turns in moving their tokens. More specifically, on odd-numbered turns C1
is moved by the first cop player; on even-numbered turns first C2 is moved by the second cop player and then R is moved 
according to a (deterministic or random) law known to both cop players. Consequently, for t = 2l + 1 we have X2

t = X2
t−1

and X3
t = X3

t−1; for t = 2l we have X1
t = X1

t−1. An additional sequence of variables U0, U1, U2, U3, ... indicates the player to 
move in the next turn; in other words, U0 = U2 = ... = 1, U1 = U3 = ... = 2. We also define the vector St = (

X1
t , X2

t , X3
t , Ut

)
.

A game position or state is a vector s = (
x1, x2, x3, u

)
where x1, x2, x3 are the positions of the three tokens and u indicates 

which cop is about to play. For instance, s = (2,3,5,1) denotes the situation in which C1, C2, R are located at vertices 2, 3 
and 5, respectively, and C1 will move in the next turn. We define the following sets of states

for all i ∈ {1,2} : Si = V × V × V × {i} .

In other words, S1 (resp. S2) is the set of states “belonging” to the first (resp. second) player. A C1-capture state is an 
s = (

x1, x2, x3, u
)

such that x1 = x3. A C2-capture state is an s = (
x1, x2, x3, u

)
such that x2 = x3 and x1 �= x3. We see that 

C1 is slightly favored, since an (x, x, x, u) state is considered a C1 capture; however, because of symmetry, reversing the 
definitions of Ci -captures would yield essentially the same results. We will also use a terminal state, denoted by τ ; the 
behavior of the terminal state will be described in detail a little later. At any rate, the full state space of the sequential SCPR 
game is

S = S1 ∪ S2 ∪ {τ } .

The random variable Ai
t denotes the move (or action) of the i-th token at time t . When the game state is s, the set of 

moves available to the i-th token is denoted by Ai (s). For instance, when s = (
x1, x2, x3,1

)
we have A1 (s) = N

[
x1

]
(the 

closed neighborhood of x1) and A2 (s) = {
x2

}
. Similar things hold for states s = (

x1, x2, x3,2
)
. For s = τ we have Ai (s) = {λ}, 

where λ is the null move. Legal moves result to “normal” state transitions; for example, suppose the current state is s =
(2,3,5,1) and the next moves are a1 = 3, a2 = 3, a3 = 5; then, assuming 3 ∈ N [2], the next state is s′ = (3,3,5,2). However, 
the terminal state τ raises the following exceptions.

1. If the current state s is a Ci -capture state (i ∈ {1,2}), then the next state is s′ = τ , irrespective of the token moves. In 
other words, a capture state always transits to the terminal state.

2. If the current state s is the terminal (that is, s = τ ), then the next state is s′ = τ irrespective of the token moves. In 
other words, the terminal always transits to itself.

A play or infinite history of the SCPR game is an infinite sequence s0s1s2...sn... of game states. The set of all infinite 
histories is denoted by

H∞ = {s0s1s2...st ... : st ∈ S for t ∈N0} .

A finite history is a sequence s0s1s2...sn of game states; the set of all histories of length n is denoted by

Hn = {s0s1s2...sn−1 : st ∈ S for t ∈ {0,1, ...,n − 1}} ;

the set of all finite histories is H =
∞⋃

n=0

Hn .

We have already mentioned that each cop player moves his respective token. Rather than specifying each move sepa-
rately, we assume (as is usual in Game Theory) that before the game starts, each cop player selects a strategy which controls 
all subsequent moves. Despite the fact that there is no robber player, we will assume that robber movement is also con-
trolled by a “strategy”, which has been fixed before the game starts and is known to the cop players. Hence the i-th token 
(i ∈ {1,2,3}) is controlled by the strategy (conditional probability function):

σi (a|s0s1...st) = Pr
(

Ai
t+1 = a|

(
X1

0, X2
0, X3

0, U0

)
= s0, ...,

(
X1

t , X2
t , X3

t , Ut

)
= st

)
.

The above definition is sufficiently general to describe every possible manner of move selection. We will only consider 
strategies which assign zero probability to illegal moves. The following classes of strategies are of particular interest.
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1. A strategy σi is called stationary Markovian (or positional) if and only if σi (a|s0s1...st) = σi (a|st); that is, the probability 
of the next move depends only on the current state of the game.

2. A strategy σi is called oblivious if and only if it is stationary Markovian and σi
(
a| (y1, y2, y3, u

)) = σi
(
a|yi, u

)
; that is, 

the probability of the next move of the token depends only on (i) the current location of the token and (ii) the active 
player.

3. A strategy σi is called deterministic if and only if, for every s0s1...st ∈ H , σi (x|s0s1...st) ∈ {0,1}; hence for every history, 
the i-th token moves to its next location deterministically.

To simplify presentation, we will often use the following notation for deterministic strategies. We define the deterministic 
strategy to be a function σ i : H → V , defined as follows: for every finite history s0s1...st , σ i (s0s1...st) = a, where a is the 
unique vertex such that σi (a|s0s1...st) = 1. If σi is stationary Markovian then we write σ i (st) = a.

In all subsequent notation, the dependence on the fixed and known σ3 is suppressed.
Suppose the game is in state s. Now C1 plays a1, C2 plays a2 and R ’s move a3 is selected according to the (fixed) 

strategy σ3; hence the game will move into some new state s′ with a certain probability depending on a1, a2 and σ3. 
We denote this probability by Pr

(
s′|s,a1,a2

)
. Note that, when a cop reaches the vertex occupied by the robber we have a 

capture with probability one, irrespective of the robber’s move.
Payoff is defined as follows. In each turn of the game, C1 receives an immediate payoff equal to

q (s) =
{

1 if and only if s is a C1-capture state,
0 otherwise.

(1)

C2 receives −q (s). Hence, a play s0s1.... results in (total) payoff

Q (s0s1....) =
∞∑

t=0

q (st) (2)

for C1 and −Q (s0s1....) for C2. Note that both players have an incentive to capture R .

1. If C1 captures the robber, he receives a total payoff of one (comprising of immediate payoff of one for the capture turn 
and zero for all other turns); otherwise his total payoff is zero.

2. C2 never receives positive payoff (even if he captures the robber). However, we have assumed c (G) = 1 and this implies 
that a single cop can always catch the robber. Hence, if C2 does not capture R , then C1 will and thus C2 will receive a 
negative payoff; this provides the incentive for C2 to capture R .

Sequential SCPR is a stochastic zero sum game [13]. Each player will try to maximize his expected payoff. Suppose the 
game starts at position s0, Ci moves according to strategy σi (for i ∈ {1,2}) and R moves according to a fixed and known 
strategy σ3. Every triple (σ1, σ2, σ3) induces a probability measure on H∞ , the set of all infinite game histories. Hence the 
expected payoff to C1 is

J (σ1,σ2|s0) = E

( ∞∑
t=0

q (st) |
(

X1
0, X2

0, X3
0, U0

)
= s0

)
(3)

and is well defined; − J (σ1, σ2|s0) is the expected payoff to C2. It is easily seen that

J (σ1,σ2|s0) = Pr (“C1 wins”|“the game starts at s0 and, for i ∈ {1,2} , Ci uses σi”) .

We always have

sup
σ1

inf
σ2

J (σ1,σ2|s0) ≤ inf
σ2

sup
σ1

J (σ1,σ2|s0) ; (4)

if the two sides of (4) are equal, then we define the value of the game (when started at s0) to be

v (s0) = sup
σ1

inf
σ2

J (σ1,σ2|s0) = inf
σ2

sup
σ1

J (σ1,σ2|s0) . (5)

We will denote the vector of values for all starting states by v; in other words, v = (v (s))s∈S . Given some ε ≥ 0, we say 
that:

1. a strategy σ #
1 is ε-optimal (for C1) if and only if ∀s0 : v (s0) − infσ2 J

(
σ #

1 , σ2|s0
) ≤ ε;

2. a strategy σ #
2 is ε-optimal (for C2) if and only if ∀s0 : v (s0) − supσ1

J
(
σ1, σ

#
2 |s0

) ≥ −ε.

A 0-optimal strategy is also simply called optimal.
Finally, let � be a matrix game: a (one-shot) two-player, zero-sum game with finite action set Ai for the i-th player and 

the payoff to the first player being �
(
a1,a2

)
when i-th player plays ai ∈ Ai (with i ∈ {1,2}). As is well known [26], such a 

game always has a value, which we will denote by Val
[
�

(
a1,a2

)]
.
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2.2. Concurrent SCPR

Most of the CR literature studies sequential versions of the CR game. However, we have recently introduced a concurrent
version of the classic CR [19]. Now we extend concurrency to the SCPR game.

The concurrent SCPR game differs from the sequential game in a basic aspect: in every turn the C1, C2, R tokens are 
moved simultaneously (hence, when making his move, each player does not know the other player’s move; note that both of 
them know the probability of each possible R next move, since σ3 is known in advance). Once again we will assume, unless 
otherwise indicated, that ̂c (G) = 1 (note that a graph G has concurrent cop number ĉ (G) = k if and only if it has sequential 
(in other words “classic”) cop number c (G) = k [19]).

In addition, in concurrent SCPR we can have “en-passant capture”, in which a cop and the robber start at opposite ends 
of the same edge and move in opposite directions; in this case the robber is “swept” by the cop and moved into the cop’s 
destination; in such a case the capture is credited to the sweeping cop (there is one exception: if the sweeping move results 
in a C1-capture position (x, x, x), then the capture is credited to C1 even when the sweeping cop is C2).

With concurrent movement, game states are vectors 
(
x1, x2, x3

)
where xi ∈ V indicates (as previously) the position of 

the i-th token; the u variable is no longer necessary, since all tokens are moved in every turn. Capture states now have the 
form 

(
x1, x2, x3

)
with either x1 = x3 or x2 = x3 (or both) and the definition and behavior of the terminal state τ are the 

same as previously. For the state space, we define

Ŝa = V × V × V , Ŝ = Ŝa ∪ {τ }
and ̂S is the full state space of the of concurrent SCPR game.

Regarding Ai (s) (the actions available to the i-th player when in game state s) we always have Ai
((

x1, x2, x3
)) ∈ N

[
xi

]
. 

The definitions of (finite and infinite) histories and strategies are the same as in the sequential case, except that we now 
use the state space ̂S. The meaning of the sets Ĥn , Ĥ , Ĥ∞ is analogous to that of Hn , H , H∞. The strategies σi (i ∈ {1,2,3}) 
are defined in the same manner as in the sequential case (again, for deterministic moves we introduce the deterministic 
strategy functions σ i ).

Payoff of the concurrent SCPR game is defined in exactly the same manner as in the sequential case. Again, concurrent 
SCPR is a stochastic zero sum game and each player will try to maximize his expected payoff.

3. Results for the sequential SCPR

In this section we establish that sequential SCPR has a value which can be computed by value iteration.

Theorem 3.1. Given some graph G = (V , E). For every s ∈ S1 ∪ S2 , the sequential SCPR game starting at s has a value v (s). The vector 
of values v = (v (s))s∈S is the smallest (componentwise) solution of the following optimality equations:

v (τ ) = 0; (6)

for all s =
(

x1, x2, x3,1
)

∈ S1 : v (s) = max
a1

[
q (s) +

∑
s′∈S

Pr
(

s′|s,a1, x2
)

v
(
s′)] ; (7)

for all s =
(

x1, x2, x3,2
)

∈ S2 : v (s) = min
a2

[
q (s) +

∑
s′∈S

Pr
(

s′|s, x1,a2
)

v
(
s′)] . (8)

Furthermore C2 has a deterministic stationary Markovian optimal strategy and, for every ε > 0, C1 has a deterministic stationary 
Markovian ε-optimal strategy.

Proof. It is easily checked that, for every graph G and every starting position s, the sequential SCPR game is a positive zero 
sum stochastic game. Hence (by [13, Theorem 4.4.1]) it possesses a value which (by [13, Theorem 4.4.3]) is the smallest 
componentwise solution to the following system of optimality equations:

v (τ ) = 0; for all s ∈ S1 ∪ S2 : v (s) = Val

[
q (s) +

∑
s′∈S

Pr
(

s′|s,a1,a2
)

v
(
s′)] . (9)

However, in each turn of the sequential SCPR game, one of the players has a single available action. For instance, when the 
state is s = (

x1, x2, x3,1
)
, C2’s action set is 

{
x2

}
. Hence in (9) we are taking the value of an one-shot game with the game 

matrix consisting of a single column. It follows that

for all s =
(

x1, x2, x3,1
)

: Val

[
q (s) +

∑
s′∈S

Pr
(

s′|s,a1,a2
)

v
(
s′)] = max

a1

[
q (s) +

∑
s′∈S

Pr
(

s′|s,a1, x2
)

v
(
s′)]

which proves (7); (8) can be proved similarly.
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The existence of stationary Markovian optimal strategy for C2 follows from [13, Corollary 4.4.2]. It is a deterministic 
strategy because for each state s ∈ S2 the corresponding optimal C2 move is the one minimizing (8). Similarly, the existence 
of a stationary Markovian ε-optimal strategy for C1 follows from [13, Problem 4.16]; the strategy is deterministic, because 
for each state s ∈ S1 the corresponding optimal C1 move is the one maximizing (7). �

For the computation of the solution to (7)–(8) we have the following.

Proposition 3.2. Given some graph G = (V , E). Define v(0) by

v(0) (τ ) = 0; for all s ∈ S1 ∪ S2 : v(0) (s) = q (s)

and v(1), v(2), ... by the following recursion:

v(i) (τ ) = 0; (10)

for all s =
(

x1, x2, x3,1
)

∈ S1 : v(i) (s) = max
a1

[
q (s) +

∑
s′∈S

Pr
(

s′|s,a1, x2
)

v(i−1)
(
s′)] ; (11)

for all s =
(

x1, x2, x3,2
)

∈ S2 : v(i) (s) = min
a2

[
q (s) +

∑
s′∈S

Pr
(

s′|s, x1,a2
)

v(i−1)
(
s′)] . (12)

Then, for every s ∈ S1 ∪ S2 , limi→∞ v(i) (s) exists and equals v (s), the value of the sequential SCPR game played on G, starting from s.

Proof. Obviously, for all s ∈ S, v (s) ∈ [0,1]. Hence v is a (componentwise) finite vector. Then from [13, Theorem 4.4.4] we 
know that, defining v(0) by

v(0) (τ ) = 0; for all s ∈ S1 ∪ S2 : v(0) (s) = q (s)

and v(1), v(2), ... by the recursion

v(i) (τ ) = 0, for all s ∈ S1 ∪ S2 : v(i) (s) = Val

[
q (s) +

∑
s′∈S

Pr
(
s′|s,a1,a2

)
v(i−1)

(
s′)] , (13)

we get limi→∞ v(i) = v (the value vector of Theorem 3.1). The equivalence of (13) to (10)–(12) is established by the argument 
used in the proof of Theorem 3.1. �
Remark 3.3. The significance of Theorem 3.1 is the following. Since SCPR is a positive zero sum stochastic game, it will 
certainly have a value, which satisfies the optimality equations (9); each equation of the system (9) involves the value of 
a one-shot game. However, the optimality equations can be expressed in the simpler form (7)–(8) which shows that the 
values of the one-shot games can be computed by simple max and min operations.

Remark 3.4. Similar remarks can be made about Proposition 3.2, where the iteration (10)–(12) is computationally simpler 
(involves only max and min operations) than (13). Note the similarity of (10)–(12) to the algorithm of [14] for determining 
the winner of a classic CR game. The similarity becomes stronger in the case of deterministic σ3. In this case, Pr

(
s′|s,a1, x2

)
equals 1 for a single s′ = T 

(
s,a1, x2

)
and Pr

(
s′|s, x1,a2

)
equals 1 for a single s′ = T 

(
s, x1,a2

)
; where T 

(
s,a1,a2

)
is the tran-

sition function which yields the next state when, from s, C1 plays a1 and C2 plays a2; there is also a suppressed dependence 
on the move of R , which is σ 3 (s). Using this notation, (10)–(12) simplify to

for all s =
(

x1, x2, x3,1
)

∈ S1 : v(i) (s) = max
a1

[
q (s) + v(i−1)

(
T
(

s,a1, x2
))]

, (14)

for all s =
(

x1, x2, x3,2
)

∈ S2 : v(i) (s) = min
a2

[
q (s) + v(i−1)

(
T
(

s, x1,a2
))]

; (15)

these parallel closely the algorithm of [14, p. 2494].

Remark 3.5. Finally, note that Theorem 3.1 and Proposition 3.2 hold even when c (G) > 1; the reason for which we have 
previously required c (G) = 1 has to do with the appropriateness of the payoff function introduced in Section 2. In particular, 
when c (G) > 1 our argument about C2’s incentive to capture R does not hold necessarily (hence, depending on σ3, C2 may 
ensure payoff of 0 without ever capturing R).
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4. Results for the concurrent SCPR

In this section we establish that concurrent SCPR has a value which can be computed by value iteration. We first consider 
the case in which R is controlled by a general probability function σ3 (“random robber”) and then examine in greater detail 
the case in which σ3 is oblivious deterministic (“oblivious deterministic robber”).

4.1. Random robber

The two main results on concurrent SCPR are immediate consequences of the more general results of [13].

Theorem 4.1. Given some graph G = (V , E). For every s = (
x1, x2, x3

) ∈ Ŝa, the concurrent SCPR game starting at s has a value v (s). 
The vector of values v = (v (s))s∈S is the smallest (componentwise) solution of the following optimality equations

v (τ ) = 0; for all s ∈ Ŝa : v (s) = Val

[
q (s) +

∑
s′∈S

Pr
(
s′|s,a1,a2

)
v

(
s′)] . (16)

Furthermore, C2 has a stationary Markovian optimal strategy and, for every ε > 0, C1 has a stationary Markovian ε-optimal strategy.

Proof. For every graph G (and every starting position s) SCPR is a positive stochastic game. Hence (by [13, Theorem 4.4.1]) 
it possesses a value which (by [13, Theorem 4.4.3]) satisfies the optimality equation (16). Furthermore C2 has a stationary 
Markovian optimal strategy by [13, Corollary 4.4.2] and, for every ε > 0, C1 has a stationary Markovian ε-optimal strategy 
by [13, Problem 4.16]. �
Proposition 4.2. Given some graph G = (V , E), let s = (

x1, x2, x3
) ∈ Ŝa. Define v(0) by

v(0) (τ ) = 0; for all s ∈ Ŝa : v(0) (s) = q (s)

and v(1), v(2), ... by the following recursion

v(i) (τ ) = 0; for all s ∈ Ŝa : v(i) (s) = Val

[
q (s) +

∑
s′∈S

Pr
(
s′|s,a1,a2

)
v(i−1)

(
s′)] . (17)

Then, for every s ∈ Ŝa, limi→∞ v(i) (s) exists and equals v (s), the value of the concurrent SCPR game played on G, starting from s.

Proof. This follows immediately from [13, Theorem 4.4.4]. �
4.2. Oblivious deterministic robber

Theorem 3.1 and Proposition 3.2 are “simpler” than Theorem 4.1 and Proposition 4.2, in the sense that the former do not 
involve the computation of matrix game values. We will now show that, when σ3 is oblivious deterministic, we can obtain 
a similar simplification of Theorem 4.1. Before presenting these results in rigorous form, let us describe them informally.

1. Suppose first that a game is played between a single cop and an oblivious deterministic robber. We will prove that 
there exists a stationary Markovian deterministic cop strategy σ ∗ by which the cop can capture the robber in minimum 
time.

2. Next consider two cops and an oblivious deterministic robber. We will prove that the extension of σ ∗ to SCPR is optimal
for both cops. More specifically, neither cop loses anything by using it; and one of the two will capture the robber with 
probability one.

Let us now formalize the above ideas. We pick any graph G = (V , E) and any oblivious deterministic robber strategy σ 3
and keep these fixed for the remainder of the discussion. Further, let S denote the set of all functions σ : V × V → V with 
the restriction that for all 

(
x1, x3

) ∈ V × V : σ (
x1, x3

) ∈ N
[
x1

]
. In other words, S is the set of legal stationary Markovian 

deterministic cop strategies for the “classic” CR game of one cop and one robber.
Now pick some σ ∈ S and play the game with starting positions X1

0 = x1
0 ∈ V (for the cop) and X3

0 = x3
0 ∈ V (for the 

robber). The following sequence (dependent on σ , x1
0, x3

0) of cop and robber positions will be produced:

X1
0 = x1

0, X3
0 = x3

0, X1
1 = σ

(
x1

0, x3
0

)
, X3

1 = σ 3

(
x3

0

)
, ... ;

let Tσ

(
x1

0, x3
0

)
be the capture time, in other words, the smallest t such that X1

t = X3
t , for the sequence produced by σ , x1

0, x3
0

(and σ 3). Also define
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V × V =
{(

x1, x3
)

: x1 ∈ V , x3 ∈ V , x1 �= x3
}

.

Then we have the following.

Lemma 4.3. Given a graph G = (V , E) and an oblivious deterministic robber strategy σ 3 . Let

for all x1 ∈ V : T (0)
(

x1, x1
)

= 0, for all
(

x1, x3
)

∈ V × V : T (0)
(

x1, x3
)

= ∞.

Now perform the following iteration for i = 1, 2, ...:

for all x1 ∈ V : T (i)
(

x1, x1
)

= 0; for all
(

x1, x3
)

∈ V × V : T (i)
(

x1, x3
)

= min
x′∈N

[
x1

] [1 + T (i−1)
(

x′,σ3

(
x3

))]
;

(18)

for all x1 ∈ V : T (i)
(

x1, x1
)

= 0; for all
(

x1, x3
)

∈ V × V : σ (i)
(

x1, x3
)

= arg min
x′∈N

[
x1

] [1 + T (i−1)
(

x′,σ3

(
x3

))]
.

(19)

Then the limits

lim
i→∞

σ (i)
(

x1, x3
)

, lim
i→∞

T (i)
(

x1, x3
)

exist for all 
(
x1, x3

) ∈ V × V . Furthermore, letting σ ∗ (
x1, x3

) = limi→∞ σ (i) (
x1, x3

)
and T ∗ (

x1, x3
) = minσ∈S Tσ

(
x1, x3

)
, we have

for all
(

x1, x3
)

∈ V × V : lim
i→∞ T (i)

(
x1, x3

)
= Tσ ∗

(
x1, x3

)
= T ∗ (

x1, x3
)

. (20)

Proof. The proof is based on a standard dynamic programming argument. First note that, for every 
(
x1, x3

) ∈ V × V , 
T ∗ (

x1, x3
)
< |V |. This is true because C1 can reach any vertex of V in at most |V | − 1 moves; so C1 can simply go to 

X3|V | (the known location of R at time t = |V |) and wait for the robber there.
Next we prove by induction that

T ∗ (
x1, x3

)
= n ⇒

(
∀i ≥ n : T ∗ (

x1, x3
)

= T (i)
(

x1, x3
))

. (21)

For n = 0, T ∗ (
x1, x3

) = 0 implies x1 = x3 and, from the algorithm, T ∗ (
x1, x1

) = 0 = T (i)
(
x1, x1

)
for all i ∈ N0. Now suppose 

that (21) holds for n = 1, 2, ..., k and consider the case n = k + 1, in which T ∗ (
x1, x3

) = k + 1 is the smallest number of 
steps in which C1 can reach R . This also means that (i) there exists some x′ ∈ N

[
x1

]
from which C1 can reach R (who now 

starts at σ 3
(
x3

)
) in k steps and (ii) there does not exist any x′′ ∈ N

[
x1

]
from which C1 can reach R in m < k steps (because 

then C1 starting at x1 could reach R in m + 1 < k + 1 steps). In other words

T ∗ (
x1, x3

)
= k + 1 ⇒ T ∗ (

x1, x3
)

= min
x′∈N

[
x1

] [1 + T (k)
(

x′, σ 3

(
x3

))]
= T (k+1)

(
x1, x3

)
.

It is also easy to check that:

T (k+1)
(

x1, x3
)

= k + 1 ⇒
(
∀i > k + 1 : T (i)

(
x1, x3

)
= k + 1

)
.

Hence the induction has been completed.
Given (21), we see immediately that

for all
(

x1, x3
)

∈ V × V , i ≥ |V | : T (i)
(

x1, x3
)

= T ∗ (
x1, x3

)
which implies that both limi→∞ T (i)

(
x1, x3

) = T ∗ (
x1, x3

)
and limi→∞ σ (i)

(
x1, x3

)
exist. Taking the limit (as i tends to ∞) 

in (18)–(19) we get the optimality equations

T ∗ (
x1, x3

)
= min

x′∈N
[
x1

] [1 + T ∗ (
x′, σ 3

(
x3

))]
,

σ ∗ (
x1, x3

)
= arg min

x′∈N
[
x1

] [1 + T ∗ (
x′, σ 3

(
x3

))]
.

Hence, it is clear from the iteration (18)–(19) that Tσ ∗
(
x1, x3

) = T ∗ (
x1, x3

)
, for all 

(
x1, x3

) ∈ V × V . �
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Now let us use σ ∗ of Lemma 4.3 to define strategies σ ∗
i for Ci (i ∈ {1,2}) as follows:

for all
(

x1, x2, x3
)

∈ Ŝa : σ ∗
1

(
x1, x2, x3

)
= σ ∗ (

x1, x3
)

;
for all

(
x1, x2, x3

)
∈ Ŝa : σ ∗

2

(
x1, x2, x3

)
= σ ∗ (

x2, x3
)

.

Then the following holds.

Theorem 4.4. Given some graph G = (V , E), suppose SCPR is played on G and the robber is controlled by an oblivious deterministic 
strategy σ 3 . Then σ ∗

i is an optimal strategy for Ci (i ∈ {1,2}), for every starting position s = (
x1, x2, x3

) ∈ Ŝa. Furthermore

for all s =
(

x1, x2, x3
)

∈ Ŝa : Tσ ∗
1

(
x1, x3

) ≤ Tσ ∗
2

(
x2, x3

) ⇒ v (s) = 1,

Tσ ∗
1

(
x1, x3

)
> Tσ ∗

2

(
x2, x3

) ⇒ v (s) = 0.

Proof. The key fact is this: when σ 3 is oblivious deterministic, the players C1 and C2 interact only at the last phase of the 
game, when R is captured. In effect each cop plays a “decoupled” classic CR game, in which σ ∗ of Lemma 4.3 guarantees 
capture in minimum time. Of course in the full SCPR game there is always the possibility that the other cop can capture R at 
an earlier time. Hence the best Ci can do is to attempt to capture R at the earliest possible time and an optimal strategy to 
this end is σ ∗

i ; he has no incentive to deviate from σ ∗
i (by using another deterministic or probabilistic strategy) because this 

can never reduce his projected capture time. Hence σ ∗
i is optimal for Ci . Since σ ∗

1, σ ∗
2 and σ 3 are deterministic, the outcome 

of the game is also deterministic. In particular, when Tσ ∗
1

(
x1, x3

) ≤ Tσ ∗
2

(
x2, x3

)
, with probability 1 C1 reaches R before or 

at the same time as C2; hence v (s) = 1; when Tσ ∗
1

(
x1, x3

)
> Tσ ∗

2

(
x2, x3

)
, C2 reaches R before C1 with probability 1; hence 

v (s) = 0. �
The next theorem gives an additional characterization of the value v (s). In the statement of the theorem we will use 

the following notation: suppose the game is in the state s, C1 plays a1, C2 plays a2 and R plays the (predetermined) move 
σ 3 (s); then we denote the next game state by ̂T

(
s,

(
a1,a2, σ 3 (s)

))
. We have the following.

Theorem 4.5. Given some graph G = (V , E), suppose SCPR is played on G and the robber is controlled by an oblivious deterministic 
strategy σ 3 . Then, for all s ∈ Ŝa, we have

v (s) = max
a1

min
a2

[
q (s) + v

(̂
T
(

s,
(

a1,a2, σ 3 (s)
)))]

= min
a2

max
a1

[
q (s) + v

(̂
T
(

s,
(

a1,a2, σ 3 (s)
)))]

. (22)

Proof. Since σ 3 is deterministic, Pr
(̂
T
(
s,

(
a1,a2, σ 3 (s)

)) |s,a1,a2
) = 1. Hence, by [13, Theorem 4.4.3]:

v (s) = Val

[
q (s) +

∑
s′∈S

Pr
(
s′|s,a1,a2

)
v

(
s′)] = Val

[
q (s) + v

(̂
T
(

s,
(

a1,a2, σ 3 (s)
)))]

.

Since σ ∗
1 and σ ∗

2 are also deterministic, at every turn of the game they produce an action with probability one. Hence there 
exist actions a1 = σ ∗

1 (s), a2 = σ ∗
2 (s) such that

v (s) = q (s) + v
(̂

T
(

s,
(

a1,a2, σ 3 (s)
)))

.

From Theorem 4.4, v (s) ∈ {0,1}, hence we consider two cases.

1. Suppose v (s) = 1. This means, that starting at s, C1 will certainly capture R .

(a) If s is a C1-capture state, then q (s) = 1 and, for any actions a1, a2, ̂T
(

s,
(

a1,a2, σ 3 (s)
))

= τ , in which case

v
(̂

T
(

s,
(

a1,a2, σ 3 (s)
)))

= v (τ ) = 0.

Hence v (s) = maxa1 mina2

[
q (s) + v

(̂
T
(
s,

(
a1,a2, σ 3 (s)

)))] = 1.

(b) If s is not a C1-capture state, then q (s) = 0 and v 
(̂

T
(

s,
(

a1,a2, σ 3 (s)
)))

= 1. Suppose there existed some â2

such that v 
(̂

T
(

s,
(

a1, â2, σ 3 (s)
)))

= 0. This would mean that, starting at ̂T
(

s,
(

a1, â2, σ 3 (s)
))

, C2 would certainly 

capture R before C1 and, since a1 is the optimal (fastest capturing) move for C1, we would also have

for all a1 ∈ A1 (s) : q (s) + v
(̂

T
(

s,
(

a1, â2, σ 3 (s)
)))

= 0.

But then v (s) = Val
[
q (s) + v

(̂
T
(
s,

(
a1,a2, σ 3 (s)

)))] = 0, contrary to the assumption. So we must instead have
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Fig. 1. An example where deterministic robber strategy results in probabilistic optimal cop strategies.

Table 1
A part of the robber strategy σ3.(

x1
t , x2

t , x3
t

)
x3

t+1 = σ 3
(
x1

t , x2
t , x3

t

)
(2,6,1) 4
(2,6,4) 3
(2,5,4) 5
(3,6,4) 5
(3,5,4) 3

Table 2
Possible states at the end of the first turn.

s0 = (2,6,1) a1
1 = 2 a2

1 = 6 a3
1 = σ 3 (2,6,1) = 4 s1 = (2,6,4)

s0 = (2,6,1) a1
1 = 2 a2

1 = 5 a3
1 = σ 3 (2,6,1) = 4 s1 = (2,5,4)

s0 = (2,6,1) a1
1 = 3 a2

1 = 6 a3
1 = σ 3 (2,6,1) = 4 s1 = (3,6,4)

s0 = (2,6,1) a1
1 = 3 a2

1 = 5 a3
1 = σ 3 (2,6,1) = 4 s1 = (3,5,4)

for all a2 ∈ A2 (s) : q (s) + v
(̂

T
(

s,
(

a1,a2, σ 3 (s)
)))

= 1

which implies v (s) = maxa1 mina2

[
q (s) + v

(̂
T
(
s,

(
a1,a2, σ 3 (s)

)))] = 1.
2. Now suppose v (s) = 0. Then s is not a C1-capture state, hence q (s) = 0. Now, we will show that

for all a1 ∈ A1 (s) : there exists a2 ∈ A2 (s) : v
(̂

T
(

s,
(

a1,a2, σ 3 (s)
)))

= 0. (23)

If this is not the case, then

there exists ã1 ∈ A1 (s) : for all a2 ∈ A2 (s) : v
(̂

T
(

s,
(̃

a1,a2, σ 3 (s)
)))

= 1.

Then C1 will certainly capture R (before C2) starting from the game position T 
(
s,

(̃
a1,a2, σ 3 (s)

))
and this will be true 

for any a2 ∈ A2 (s). But this means that C1, starting from game position s and playing ã1, will certainly capture R
before C2; which in turn means v (s) = 1, contrary to the hypothesis. Hence (23) holds and this implies that

for all a1 ∈ A1 (s) : min
a2

v
(̂

T
(

s,
(

a1,a2, σ 3 (s)
)))

= 0

⇒ max
a1

min
a2

v
(̂

T
(

s,
(

a1,a2, σ 3 (s)
)))

= 0.

Hence we have proved the first part of (22). The proof of the second part is similar and omitted. �
Remark 4.6. It must be emphasized that Theorems 4.4 and 4.5 do not hold for deterministic non-oblivious strategies σ 3. 
This can be seen by the following counterexample. Suppose that concurrent SCPR is played on the graph of Fig. 1, starting 
from the state (2,6,1).

Furthermore, the robber is controlled by the σ 3 which is (partially) described in Table 1.
For every game state not listed above the robber stays in place, in other words, x3

t+1 = σ 3
(
x1

t , x2
t , x3

t

) = x3
t . Now consider 

what the first moves of C1 and C2 should be. They know that R will move into vertex 4; C1 can either stay at 2 or move 
into 3; C2 can either stay at 6 or move into 5. After the first move is completed, the possible game states are in Table 2.

It is easy to check (from the respective σ 3 values) that for s1 = (2,6,4) and s1 = (3,5,4) the capturing cop is C1, while 
for s1 = (2,5,4) and s1 = (3,6,4) the capturing cop is C2. Hence the game can be written out as the following (one-shot) 
matrix game (Table 3).

It is easy to compute, using standard methods, the optimal strategies for this game. C1 must use Pr
(
a1 = 2

) =
Pr

(
a1 = 3

) = 1
2 and C2 must use Pr

(
a2 = 6

) = Pr
(
a2 = 5

) = 1
2 . This implies that the optimal strategies σ ∗

1 and σ ∗
2 are 

probabilistic, despite the fact that σ 3 is deterministic (but not oblivious). We can also see that in this case the optimal 
cop strategy is not to always move towards the robber. Many similar examples can be constructed. The important point 
is this: when σ 3 is not oblivious, C1 (resp. C2) moves can influence future R moves and (since moves are performed 
simultaneously) this influence cannot be predicted by C2 (resp. C1).
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Table 3
The one-shot matrix game equivalent to the 
original stochastic game.

a2 = 6 a2 = 5

a1 = 2 1 0
a1 = 3 0 1

5. Conclusion

We have introduced the game of selfish cops and passive robber (SCPR game) and established its basic properties, 
namely the existence of value and optimal strategies for both the sequential and concurrent variants. We have also provided 
algorithms for the computation of the aforementioned quantities. In the current paper we have examined qualitative variants 
of the game, in which the goal of each cop is to maximize his probability of capturing the robber. In a forthcoming paper 
we will examine quantitative variants, in which the goal is to capture the robber in the shortest possible time.

Several additional issues merit further study and will be the subject of our future research. We have formulated SCPR as 
a zero-sum game; but reasonable formulations as a non-zero-sum game are also possible and we conjecture that these may 
lead to qualitatively different results. In addition, if we remove the assumption that the robber is passive and deal instead 
with the situation of two selfish cops and a robber actively trying to avoid capture, then we are left with a three-player game, 
which we intend to study in the future.

Settling the above mentioned questions (and additional ones which may arise in the process) will hopefully result in a 
comprehensive game theoretic framework encompassing the numerous CR variants which have appeared in the literature 
(and so far have been studied mainly from a combinatorial point of view).
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