# Selfish cops and passive robber: Qualitative games 

Ath. Kehagias*, G. Konstantinidis

## A R T I C L E I N F O

## Article history:

Received 21 November 2016
Received in revised form 7 April 2017
Accepted 10 April 2017
Available online 24 April 2017
Communicated by J. van den Herik

## Keywords:

Cops and robbers
Pursuit evasion
Game theory


#### Abstract

Several variants of the cops and robbers (CR) game have been studied in the literature. In this paper we examine a novel variant, which is played between two cops, each one independently trying to catch a "passive robber". We call this the Selfish Cops and Passive Robber (SCPR) game. In short, SCPR is a stochastic two-player, zero-sum game where the opponents are the two cop players. We study sequential and concurrent versions of the SCPR game. For both cases we prove the existence of value and optimal strategies and present algorithms for the computation of these.


© 2017 Elsevier B.V. All rights reserved.

## 1. Introduction

Several variants of the cops and robbers (CR) game have been studied in the past. In this paper we examine a novel variant, which is played between two cops, each one independently trying to catch a "passive robber". We call this the Selfish Cops and Passive Robber (SCPR) game. Here is a brief and informal description of the game (a more detailed description will be provided in Section 2).

1. The game is played on an undirected, finite, simple and connected graph.
2. The game is played by two cop players $C_{1}$ and $C_{2}$, each controlling a cop token (the tokens will also be referred to as $C_{1}$ and $C_{2}$ ).
3. A robber token $R$ is also used, which is moved according to a (deterministic or random) law known to both cop players.
4. At every turn of the game the tokens are moved from vertex to vertex, along the edges of the graph.
5. The winner is the first player whose token lies at the same vertex as the robber token (that is, the player who "captures the robber").

We emphasize that SCPR is a game played between two cop players; the robber is not associated to a player and does not attempt to evade capture. As far as we know this CR variant has not been previously studied.

As an example, consider two cops located at opposite ends of a path with $N$ vertices and one robber located at some intermediate vertex. A cop wins if he reaches the robber before the other cop. We repeat that the robber is not actively trying to evade; his every move is governed by a probability law conditioned on the current positions of himself and the cops. This law is known to the cops. For each cop, what is the optimal strategy and what is the corresponding win probability?

[^0]http://dx.doi.org/10.1016/j.tcs.2017.04.004
0304-3975/© 2017 Elsevier B.V. All rights reserved.

1. The simplest case is when the robber is stationary. In this case, the cop closest to him wins with probability one; each cop's optimal strategy is to always move towards the robber.
2. A slightly harder case is that of the "drunk robber" $[16-18,20]$ who performs a random walk on the graph. The optimal cop strategies are the same as in the stationary robber case, but the computation of the win probabilities is not trivial (in Section 4 we provide an algorithm to compute them).
3. Examples can also be constructed in which the optimal cop strategy is not to always move towards the robber (one such example is given in Section 4.2).

The above examples should give a clearer idea of the problem which we study in the current paper. Of course our results are not limited to paths, but hold for general graphs.

The study of Cops and Robbers was initiated by Quilliot [27] and Nowakowski and Winkler [24] and an extensive graph theoretic literature exists on the problem (we will provide some references a little later). However, we study SCPR from a somewhat different angle, using the theory of stochastic games as presented in the book by Filar and Vrieze [13] (a stochastic game consists of a sequence of one-shot games where the game played at any time depends probabilistically on the previous game played and the actions of the agents in that game). In the current paper we study qualitative SCPR games, in which the payoff is the winning probability; in a forthcoming paper we will discuss quantitative SCPR games, in which the payoff is the expected capture time. The concepts of qualitative and quantitative pursuit games (a special category of which are CR games) have been introduced in [15] under the names "game of kind" and "game of degree". Informally, in a qualitative game a late capture is as good as a fast one; in a quantitative game the pursuer wants to capture the evader as soon as possible.

For the graph theoretic point of the view the reader can consult the recent book [25] which contains a good overview of the extensive literature. As already mentioned, this literature is mainly oriented to graph theoretic and combinatorial considerations. Indeed $C R$ can be seen as a combinatorial game, as pointed out in [7,8]. On the topic of combinatorial games the reader can consult the introductory text [1] as well as the classic book (in four volumes) [5] by Berlekamp and Conway.

We believe that game theory offers a natural (but not often used in the "mainstream" CR literature) framework for the analysis of CR games. In particular, as already mentioned, we consider SCPR as a stochastic game. Stochastic games were introduced by Shapley [28]. A classic book on the subject is [13], which also contains a rich bibliography; see also [23].

Several game theoretic models can be applied to the study of CR games. For instance, as will be seen in Section 2, SCPR is a recursive game [12]: as soon as a non-zero-payoff is received the play moves to an absorbing state. This point of view can be applied to classical CR games as well.

Let us also mention a construction which has been used in several "classic" CR papers [7,8,14]. Suppose that a "classic" CR game is played between one cop and one robber on the undirected graph $G=(V, E)$. We now construct the game digraph $D=(S, A)$, where the vertex set is $S=V \times V \times\{1,2\}$ (with $i \in\{1,2\}$ denoting the player who has the next move) and the arc set $A$ encodes possible vertex-to-vertex transitions. Then a play of the CR game can be understood as a walk on $D$; the cop wins if he can force the walk to pass through a vertex of the form ( $x, x, i$ ). Hence $C R$ can be seen as a game in which the two players push a token along the arcs of the digraph. As pointed out in [7,8] many CR variants and several other pursuit games on graphs (including their concurrent versions) can be formulated in a similar manner. It turns out that such "digraph games" have been studied by several researchers and the related literature is spread among many communities. The earliest such works of which we are aware are [4,22]. Related examples appear in [3,11,29]. But probably the most widespread application of this point of view appears in the literature of reachability games [6] and, more generally, $\omega$-regular games [21]. In a reachability game two players take turns moving a token along the arcs of a digraph; player 1 wants to place the token on one of the nodes of a subset of the digraph vertices while player 2 wants to avoid this event. In addition to "classic" sequential reachability games, many other variants have been studied, for example, stochastic [9], concurrent [2], n-player [10] etc.

All of the above approaches find immediate application to both classical CR games and selfish cops variants, such as the one presented in the current paper.

The paper is organized as follows. In Section 2 we present definitions and notation which will be used in the rest of the paper. In Section 3 we study the sequential version of the SCPR game and in Section 4 the concurrent version. In both sections we obtain analogous results; namely both the sequential and concurrent SCPR game have a value, Cop 1 has an $\varepsilon$-optimal deterministic stationary Markovian strategy and Cop 2 has an optimal deterministic stationary Markovian strategy; furthermore we give algorithms which compute values and strategies efficiently; the algorithm for concurrent SCPR is somewhat more complicated but it can be simplified in case robber movement is governed by an "oblivious deterministic" law. Finally, in Section 5 we present concluding remarks and discuss future research directions.

## 2. Preliminaries

The SCPR game is played on an undirected, finite, simple and connected graph $G=(V, E)$, where $V$ is the vertex set and $E$ is the edge set. Unless otherwise stated, we will assume that the cop number $c(G)$ of the graph equals one (recall that $c(G)$ is the minimum number of cops required to guarantee capture of the robber on $G$ ).

The game proceeds in turns numbered by $t \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$ and, as already mentioned, involves three tokens: $C_{1}, C_{2}$ and $R$. These will also be referred to as the first, second and third token, respectively, and their locations at the end of
the $t$-th turn are indicated by $X_{t}^{1}, X_{t}^{2}, X_{t}^{3}$. The starting position at the 0 -th turn is given: for $i \in\{1,2,3\}, X_{0}^{i}=x_{0}^{i} \in V$. In subsequent turns, the positions are changed according to the rules of the particular variant (sequential or concurrent) and subject to the constraint that movement always follows the graph edges: $X_{t+1}^{i} \in N\left[X_{t}^{i}\right]$ (the closed neighborhood of $X_{t}^{i}$ ). As will be seen in the sequel, in the general case token moves are governed by probabilistic strategies; hence $X_{t}^{1}, X_{t}^{2}, X_{t}^{3}$ are random variables.

### 2.1. Sequential SCPR

In the sequential version of SCPR players take turns in moving their tokens. More specifically, on odd-numbered turns $C_{1}$ is moved by the first cop player; on even-numbered turns first $C_{2}$ is moved by the second cop player and then $R$ is moved according to a (deterministic or random) law known to both cop players. Consequently, for $t=2 l+1$ we have $X_{t}^{2}=X_{t-1}^{2}$ and $X_{t}^{3}=X_{t-1}^{3}$; for $t=2 l$ we have $X_{t}^{1}=X_{t-1}^{1}$. An additional sequence of variables $U_{0}, U_{1}, U_{2}, U_{3}, \ldots$ indicates the player to move in the next turn; in other words, $U_{0}=U_{2}=\ldots=1, U_{1}=U_{3}=\ldots=2$. We also define the vector $S_{t}=\left(X_{t}^{1}, X_{t}^{2}, X_{t}^{3}, U_{t}\right)$.

A game position or state is a vector $s=\left(x^{1}, x^{2}, x^{3}, u\right)$ where $x^{1}, x^{2}, x^{3}$ are the positions of the three tokens and $u$ indicates which cop is about to play. For instance, $s=(2,3,5,1)$ denotes the situation in which $C_{1}, C_{2}, R$ are located at vertices 2,3 and 5 , respectively, and $C_{1}$ will move in the next turn. We define the following sets of states

$$
\text { for all } i \in\{1,2\}: \mathbf{S}_{i}=V \times V \times V \times\{i\}
$$

In other words, $\mathbf{S}_{1}$ (resp. $\mathbf{S}_{2}$ ) is the set of states "belonging" to the first (resp. second) player. A $C_{1}$-capture state is an $s=\left(x^{1}, x^{2}, x^{3}, u\right)$ such that $x^{1}=x^{3}$. A $C_{2}$-capture state is an $s=\left(x^{1}, x^{2}, x^{3}, u\right)$ such that $x^{2}=x^{3}$ and $x^{1} \neq x^{3}$. We see that $C_{1}$ is slightly favored, since an $(x, x, x, u)$ state is considered a $C_{1}$ capture; however, because of symmetry, reversing the definitions of $C_{i}$-captures would yield essentially the same results. We will also use a terminal state, denoted by $\tau$; the behavior of the terminal state will be described in detail a little later. At any rate, the full state space of the sequential SCPR game is

$$
\mathbf{S}=\mathbf{S}_{1} \cup \mathbf{S}_{2} \cup\{\tau\}
$$

The random variable $A_{t}^{i}$ denotes the move (or action) of the $i$-th token at time $t$. When the game state is $s$, the set of moves available to the $i$-th token is denoted by $\mathbf{A}_{i}(s)$. For instance, when $s=\left(x^{1}, x^{2}, x^{3}, 1\right)$ we have $\mathbf{A}_{1}(s)=N\left[x^{1}\right]$ (the closed neighborhood of $x^{1}$ ) and $\mathbf{A}_{2}(s)=\left\{x^{2}\right\}$. Similar things hold for states $s=\left(x^{1}, x^{2}, x^{3}, 2\right)$. For $s=\tau$ we have $\mathbf{A}_{i}(s)=\{\lambda\}$, where $\lambda$ is the null move. Legal moves result to "normal" state transitions; for example, suppose the current state is $s=$ $(2,3,5,1)$ and the next moves are $a^{1}=3, a^{2}=3, a^{3}=5$; then, assuming $3 \in N[2]$, the next state is $s^{\prime}=(3,3,5,2)$. However, the terminal state $\tau$ raises the following exceptions.

1. If the current state $s$ is a $C_{i}$-capture state $(i \in\{1,2\})$, then the next state is $s^{\prime}=\tau$, irrespective of the token moves. In other words, a capture state always transits to the terminal state.
2. If the current state $s$ is the terminal (that is, $s=\tau$ ), then the next state is $s^{\prime}=\tau$ irrespective of the token moves. In other words, the terminal always transits to itself.

A play or infinite history of the SCPR game is an infinite sequence $s_{0} s_{1} s_{2} \ldots s_{n} \ldots$ of game states. The set of all infinite histories is denoted by

$$
H^{\infty}=\left\{s_{0} s_{1} s_{2} \ldots s_{t} \ldots: s_{t} \in S \text { for } t \in \mathbb{N}_{0}\right\}
$$

A finite history is a sequence $s_{0} s_{1} s_{2} \ldots s_{n}$ of game states; the set of all histories of length $n$ is denoted by

$$
H_{n}=\left\{s_{0} s_{1} s_{2} \ldots s_{n-1}: s_{t} \in S \text { for } t \in\{0,1, \ldots, n-1\}\right\}
$$

the set of all finite histories is $H=\bigcup_{n=0}^{\infty} H_{n}$.
We have already mentioned that each cop player moves his respective token. Rather than specifying each move separately, we assume (as is usual in Game Theory) that before the game starts, each cop player selects a strategy which controls all subsequent moves. Despite the fact that there is no robber player, we will assume that robber movement is also controlled by a "strategy", which has been fixed before the game starts and is known to the cop players. Hence the $i$-th token ( $i \in\{1,2,3\}$ ) is controlled by the strategy (conditional probability function):

$$
\sigma_{i}\left(a \mid s_{0} s_{1} \ldots s_{t}\right)=\operatorname{Pr}\left(A_{t+1}^{i}=a \mid\left(X_{0}^{1}, X_{0}^{2}, X_{0}^{3}, U_{0}\right)=s_{0}, \ldots,\left(X_{t}^{1}, X_{t}^{2}, X_{t}^{3}, U_{t}\right)=s_{t}\right)
$$

The above definition is sufficiently general to describe every possible manner of move selection. We will only consider strategies which assign zero probability to illegal moves. The following classes of strategies are of particular interest.

1. A strategy $\sigma_{i}$ is called stationary Markovian (or positional) if and only if $\sigma_{i}\left(a \mid s_{0} s_{1} \ldots s_{t}\right)=\sigma_{i}\left(a \mid s_{t}\right)$; that is, the probability of the next move depends only on the current state of the game.
2. A strategy $\sigma_{i}$ is called oblivious if and only if it is stationary Markovian and $\sigma_{i}\left(a \mid\left(y^{1}, y^{2}, y^{3}, u\right)\right)=\sigma_{i}\left(a \mid y^{i}, u\right)$; that is, the probability of the next move of the token depends only on (i) the current location of the token and (ii) the active player.
3. A strategy $\sigma_{i}$ is called deterministic if and only if, for every $s_{0} s_{1} \ldots s_{t} \in H, \sigma_{i}\left(x \mid s_{0} s_{1} \ldots s_{t}\right) \in\{0,1\}$; hence for every history, the $i$-th token moves to its next location deterministically.

To simplify presentation, we will often use the following notation for deterministic strategies. We define the deterministic strategy to be a function $\bar{\sigma}_{i}: H \rightarrow V$, defined as follows: for every finite history $s_{0} s_{1} \ldots s_{t}, \bar{\sigma}_{i}\left(s_{0} s_{1} \ldots s_{t}\right)=a$, where $a$ is the unique vertex such that $\sigma_{i}\left(a \mid s_{0} s_{1} \ldots s_{t}\right)=1$. If $\sigma_{i}$ is stationary Markovian then we write $\bar{\sigma}_{i}\left(s_{t}\right)=a$.

In all subsequent notation, the dependence on the fixed and known $\sigma_{3}$ is suppressed.
Suppose the game is in state $s$. Now $C_{1}$ plays $a^{1}, C_{2}$ plays $a^{2}$ and $R$ 's move $a^{3}$ is selected according to the (fixed) strategy $\sigma_{3}$; hence the game will move into some new state $s^{\prime}$ with a certain probability depending on $a_{1}, a_{2}$ and $\sigma_{3}$. We denote this probability by $\operatorname{Pr}\left(s^{\prime} \mid s, a_{1}, a_{2}\right)$. Note that, when a cop reaches the vertex occupied by the robber we have a capture with probability one, irrespective of the robber's move.

Payoff is defined as follows. In each turn of the game, $C_{1}$ receives an immediate payoff equal to

$$
q(s)= \begin{cases}1 & \text { if and only if } s \text { is a } C_{1} \text {-capture state }  \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

$C_{2}$ receives $-q(s)$. Hence, a play $s_{0} s_{1} \ldots$ results in (total) payoff

$$
\begin{equation*}
Q\left(s_{0} s_{1} \ldots .\right)=\sum_{t=0}^{\infty} q\left(s_{t}\right) \tag{2}
\end{equation*}
$$

for $C_{1}$ and $-Q\left(s_{0} s_{1} \ldots\right)$ for $C_{2}$. Note that both players have an incentive to capture $R$.

1. If $C_{1}$ captures the robber, he receives a total payoff of one (comprising of immediate payoff of one for the capture turn and zero for all other turns); otherwise his total payoff is zero.
2. $C_{2}$ never receives positive payoff (even if he captures the robber). However, we have assumed $c(G)=1$ and this implies that a single cop can always catch the robber. Hence, if $C_{2}$ does not capture $R$, then $C_{1}$ will and thus $C_{2}$ will receive a negative payoff; this provides the incentive for $C_{2}$ to capture $R$.

Sequential SCPR is a stochastic zero sum game [13]. Each player will try to maximize his expected payoff. Suppose the game starts at position $s_{0}, C_{i}$ moves according to strategy $\sigma_{i}$ (for $i \in\{1,2\}$ ) and $R$ moves according to a fixed and known strategy $\sigma_{3}$. Every triple ( $\sigma_{1}, \sigma_{2}, \sigma_{3}$ ) induces a probability measure on $H^{\infty}$, the set of all infinite game histories. Hence the expected payoff to $C_{1}$ is

$$
\begin{equation*}
J\left(\sigma_{1}, \sigma_{2} \mid s_{0}\right)=\mathbb{E}\left(\sum_{t=0}^{\infty} q\left(s_{t}\right) \mid\left(X_{0}^{1}, X_{0}^{2}, X_{0}^{3}, U_{0}\right)=s_{0}\right) \tag{3}
\end{equation*}
$$

and is well defined; $-J\left(\sigma_{1}, \sigma_{2} \mid s_{0}\right)$ is the expected payoff to $C_{2}$. It is easily seen that

$$
J\left(\sigma_{1}, \sigma_{2} \mid s_{0}\right)=\operatorname{Pr}\left(\text { " } C_{1} \text { wins"|"the game starts at } s_{0} \text { and, for } i \in\{1,2\}, C_{i} \text { uses } \sigma_{i} "\right)
$$

We always have

$$
\begin{equation*}
\sup _{\sigma_{1}} \inf _{\sigma_{2}} J\left(\sigma_{1}, \sigma_{2} \mid s_{0}\right) \leq \inf _{\sigma_{2}} \sup _{\sigma_{1}} J\left(\sigma_{1}, \sigma_{2} \mid s_{0}\right) \tag{4}
\end{equation*}
$$

if the two sides of (4) are equal, then we define the value of the game (when started at $s_{0}$ ) to be

$$
\begin{equation*}
v\left(s_{0}\right)=\sup _{\sigma_{1}} \inf _{\sigma_{2}} J\left(\sigma_{1}, \sigma_{2} \mid s_{0}\right)=\inf _{\sigma_{2}} \sup _{\sigma_{1}} J\left(\sigma_{1}, \sigma_{2} \mid s_{0}\right) \tag{5}
\end{equation*}
$$

We will denote the vector of values for all starting states by $\mathbf{v}$; in other words, $\mathbf{v}=(v(s))_{s \in \mathbf{s}}$. Given some $\varepsilon \geq 0$, we say that:

1. a strategy $\sigma_{1}^{\#}$ is $\varepsilon$-optimal (for $C_{1}$ ) if and only if $\forall s_{0}: v\left(s_{0}\right)-\inf _{\sigma_{2}} J\left(\sigma_{1}^{\#}, \sigma_{2} \mid s_{0}\right) \leq \varepsilon$;
2. a strategy $\sigma_{2}^{\#}$ is $\varepsilon$-optimal (for $C_{2}$ ) if and only if $\forall s_{0}: v\left(s_{0}\right)-\sup _{\sigma_{1}} J\left(\sigma_{1}, \sigma_{2}^{\#} \mid s_{0}\right) \geq-\varepsilon$.

A 0 -optimal strategy is also simply called optimal.
Finally, let $\Gamma$ be a matrix game: a (one-shot) two-player, zero-sum game with finite action set $\mathbf{A}_{i}$ for the $i$-th player and the payoff to the first player being $\Gamma\left(a^{1}, a^{2}\right)$ when $i$-th player plays $a^{i} \in \mathbf{A}_{i}$ (with $i \in\{1,2\}$ ). As is well known [26], such a game always has a value, which we will denote by $\operatorname{Val}\left[\Gamma\left(a^{1}, a^{2}\right)\right]$.

### 2.2. Concurrent SCPR

Most of the CR literature studies sequential versions of the CR game. However, we have recently introduced a concurrent version of the classic CR [19]. Now we extend concurrency to the SCPR game.

The concurrent SCPR game differs from the sequential game in a basic aspect: in every turn the $C_{1}, C_{2}, R$ tokens are moved simultaneously (hence, when making his move, each player does not know the other player's move; note that both of them know the probability of each possible $R$ next move, since $\sigma_{3}$ is known in advance). Once again we will assume, unless otherwise indicated, that $\widehat{c}(G)=1$ (note that a graph $G$ has concurrent cop number $\widehat{c}(G)=k$ if and only if it has sequential (in other words "classic") cop number $c(G)=k$ [19]).

In addition, in concurrent SCPR we can have "en-passant capture", in which a cop and the robber start at opposite ends of the same edge and move in opposite directions; in this case the robber is "swept" by the cop and moved into the cop's destination; in such a case the capture is credited to the sweeping cop (there is one exception: if the sweeping move results in a $C_{1}$-capture position ( $x, x, x$ ), then the capture is credited to $C_{1}$ even when the sweeping cop is $C_{2}$ ).

With concurrent movement, game states are vectors ( $x^{1}, x^{2}, x^{3}$ ) where $x^{i} \in V$ indicates (as previously) the position of the $i$-th token; the $u$ variable is no longer necessary, since all tokens are moved in every turn. Capture states now have the form $\left(x^{1}, x^{2}, x^{3}\right)$ with either $x^{1}=x^{3}$ or $x^{2}=x^{3}$ (or both) and the definition and behavior of the terminal state $\tau$ are the same as previously. For the state space, we define

$$
\widehat{\mathbf{S}}_{a}=V \times V \times V, \quad \widehat{\mathbf{S}}=\widehat{\mathbf{S}}_{a} \cup\{\tau\}
$$

and $\widehat{\mathbf{S}}$ is the full state space of the of concurrent SCPR game.
Regarding $\mathbf{A}_{i}(s)$ (the actions available to the $i$-th player when in game state $s$ ) we always have $\mathbf{A}_{i}\left(\left(x^{1}, x^{2}, x^{3}\right)\right) \in N\left[x^{i}\right]$. The definitions of (finite and infinite) histories and strategies are the same as in the sequential case, except that we now use the state space $\widehat{\mathbf{S}}$. The meaning of the sets $\widehat{H}_{n}, \widehat{H}, \widehat{H}^{\infty}$ is analogous to that of $H_{n}, H, H^{\infty}$. The strategies $\sigma_{i}(i \in\{1,2,3\})$ are defined in the same manner as in the sequential case (again, for deterministic moves we introduce the deterministic strategy functions $\bar{\sigma}_{i}$ ).

Payoff of the concurrent SCPR game is defined in exactly the same manner as in the sequential case. Again, concurrent SCPR is a stochastic zero sum game and each player will try to maximize his expected payoff.

## 3. Results for the sequential SCPR

In this section we establish that sequential SCPR has a value which can be computed by value iteration.
Theorem 3.1. Given some graph $G=(V, E)$. For every $s \in \mathbf{S}_{1} \cup \mathbf{S}_{2}$, the sequential SCPR game starting at shas a value $v(s)$. The vector of values $\mathbf{v}=(v(s))_{s \in \mathbf{S}}$ is the smallest (componentwise) solution of the following optimality equations:

$$
\begin{align*}
& \qquad v(\tau)=0  \tag{6}\\
& \text { for all } s=\left(x^{1}, x^{2}, x^{3}, 1\right) \in \mathbf{S}_{1}: \quad v(s)=\max _{a^{1}}\left[q(s)+\sum_{s^{\prime} \in \mathbf{S}} \operatorname{Pr}\left(s^{\prime} \mid s, a^{1}, x^{2}\right) v\left(s^{\prime}\right)\right]  \tag{7}\\
& \text { for all } s=\left(x^{1}, x^{2}, x^{3}, 2\right) \in \mathbf{S}_{2}: \quad v(s)=\min _{a^{2}}\left[q(s)+\sum_{s^{\prime} \in \mathbf{S}} \operatorname{Pr}\left(s^{\prime} \mid s, x^{1}, a^{2}\right) v\left(s^{\prime}\right)\right] . \tag{8}
\end{align*}
$$

Furthermore $C_{2}$ has a deterministic stationary Markovian optimal strategy and, for every $\varepsilon>0, C_{1}$ has a deterministic stationary Markovian $\varepsilon$-optimal strategy.

Proof. It is easily checked that, for every graph $G$ and every starting position $s$, the sequential SCPR game is a positive zero sum stochastic game. Hence (by [13, Theorem 4.4.1]) it possesses a value which (by [13, Theorem 4.4.3]) is the smallest componentwise solution to the following system of optimality equations:

$$
\begin{equation*}
v(\tau)=0 ; \quad \text { for all } s \in \mathbf{S}_{1} \cup \mathbf{S}_{2}: v(s)=\mathbf{V a l}\left[q(s)+\sum_{s^{\prime} \in S} \operatorname{Pr}\left(s^{\prime} \mid s, a^{1}, a^{2}\right) v\left(s^{\prime}\right)\right] \tag{9}
\end{equation*}
$$

However, in each turn of the sequential SCPR game, one of the players has a single available action. For instance, when the state is $s=\left(x^{1}, x^{2}, x^{3}, 1\right), C_{2}$ 's action set is $\left\{x^{2}\right\}$. Hence in (9) we are taking the value of an one-shot game with the game matrix consisting of a single column. It follows that

$$
\text { for all } s=\left(x^{1}, x^{2}, x^{3}, 1\right): \mathbf{V a l}\left[q(s)+\sum_{s^{\prime} \in \mathbf{S}} \operatorname{Pr}\left(s^{\prime} \mid s, a^{1}, a^{2}\right) v\left(s^{\prime}\right)\right]=\max _{a^{1}}\left[q(s)+\sum_{s^{\prime} \in \mathbf{S}} \operatorname{Pr}\left(s^{\prime} \mid s, a^{1}, x^{2}\right) v\left(s^{\prime}\right)\right]
$$

which proves (7); (8) can be proved similarly.

The existence of stationary Markovian optimal strategy for $C_{2}$ follows from [13, Corollary 4.4.2]. It is a deterministic strategy because for each state $s \in \mathbf{S}_{2}$ the corresponding optimal $C_{2}$ move is the one minimizing (8). Similarly, the existence of a stationary Markovian $\varepsilon$-optimal strategy for $C_{1}$ follows from [13, Problem 4.16]; the strategy is deterministic, because for each state $s \in \mathbf{S}_{1}$ the corresponding optimal $C_{1}$ move is the one maximizing (7).

For the computation of the solution to (7)-(8) we have the following.

Proposition 3.2. Given some graph $G=(V, E)$. Define $\mathbf{v}^{(0)}$ by

$$
v^{(0)}(\tau)=0 ; \quad \text { for all } s \in \mathbf{S}_{1} \cup \mathbf{S}_{2}: v^{(0)}(s)=q(s)
$$

and $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots$ by the following recursion:

$$
\begin{gather*}
v^{(i)}(\tau)=0  \tag{10}\\
\text { for all } s=\left(x^{1}, x^{2}, x^{3}, 1\right) \in \mathbf{S}_{1}: \quad v^{(i)}(s)=\max _{a^{1}}\left[q(s)+\sum_{s^{\prime} \in \mathbf{S}} \operatorname{Pr}\left(s^{\prime} \mid s, a^{1}, x^{2}\right) v^{(i-1)}\left(s^{\prime}\right)\right]  \tag{11}\\
\text { for all } s=\left(x^{1}, x^{2}, x^{3}, 2\right) \in \mathbf{S}_{2}: \quad v^{(i)}(s)=\min _{a^{2}}\left[q(s)+\sum_{s^{\prime} \in \mathbf{S}} \operatorname{Pr}\left(s^{\prime} \mid s, x^{1}, a^{2}\right) v^{(i-1)}\left(s^{\prime}\right)\right] . \tag{12}
\end{gather*}
$$

Then, for every $s \in \mathbf{S}_{1} \cup \mathbf{S}_{2}, \lim _{i \rightarrow \infty} v^{(i)}(s)$ exists and equals $v(s)$, the value of the sequential SCPR game played on $G$, starting from $s$.

Proof. Obviously, for all $s \in \mathbf{S}, v(s) \in[0,1]$. Hence $\mathbf{v}$ is a (componentwise) finite vector. Then from [13, Theorem 4.4.4] we know that, defining $\mathbf{v}^{(0)}$ by

$$
v^{(0)}(\tau)=0 ; \quad \text { for all } s \in \mathbf{S}_{1} \cup \mathbf{S}_{2}: v^{(0)}(s)=q(s)
$$

and $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots$ by the recursion

$$
\begin{equation*}
v^{(i)}(\tau)=0, \quad \text { for all } s \in \mathbf{S}_{1} \cup \mathbf{S}_{2}: \quad v^{(i)}(s)=\mathbf{V a l}\left[q(s)+\sum_{s^{\prime} \in S} \operatorname{Pr}\left(s^{\prime} \mid s, a_{1}, a_{2}\right) v^{(i-1)}\left(s^{\prime}\right)\right], \tag{13}
\end{equation*}
$$

we get $\lim _{i \rightarrow \infty} \mathbf{v}^{(i)}=\mathbf{v}$ (the value vector of Theorem 3.1). The equivalence of (13) to (10)-(12) is established by the argument used in the proof of Theorem 3.1.

Remark 3.3. The significance of Theorem 3.1 is the following. Since SCPR is a positive zero sum stochastic game, it will certainly have a value, which satisfies the optimality equations (9); each equation of the system (9) involves the value of a one-shot game. However, the optimality equations can be expressed in the simpler form (7)-(8) which shows that the values of the one-shot games can be computed by simple max and min operations.

Remark 3.4. Similar remarks can be made about Proposition 3.2, where the iteration (10)-(12) is computationally simpler (involves only max and min operations) than (13). Note the similarity of (10)-(12) to the algorithm of [14] for determining the winner of a classic $C R$ game. The similarity becomes stronger in the case of deterministic $\sigma_{3}$. In this case, $\operatorname{Pr}\left(s^{\prime} \mid s, a^{1}, x^{2}\right)$ equals 1 for a single $s^{\prime}=\mathbf{T}\left(s, a^{1}, x^{2}\right)$ and $\operatorname{Pr}\left(s^{\prime} \mid s, x^{1}, a^{2}\right)$ equals 1 for a single $s^{\prime}=\mathbf{T}\left(s, x^{1}, a^{2}\right)$; where $\mathbf{T}\left(s, a^{1}, a^{2}\right)$ is the transition function which yields the next state when, from $s, C_{1}$ plays $a^{1}$ and $C_{2}$ plays $a^{2}$; there is also a suppressed dependence on the move of $R$, which is $\bar{\sigma}_{3}(s)$. Using this notation, (10)-(12) simplify to

$$
\begin{align*}
& \text { for all } s=\left(x^{1}, x^{2}, x^{3}, 1\right) \in \mathbf{S}_{1}: v^{(i)}(s)=\max _{a^{1}}\left[q(s)+v^{(i-1)}\left(\mathbf{T}\left(s, a^{1}, x^{2}\right)\right)\right],  \tag{14}\\
& \text { for all } s=\left(x^{1}, x^{2}, x^{3}, 2\right) \in \mathbf{S}_{2}: v^{(i)}(s)=\min _{a^{2}}\left[q(s)+v^{(i-1)}\left(\mathbf{T}\left(s, x^{1}, a^{2}\right)\right)\right] \tag{15}
\end{align*}
$$

these parallel closely the algorithm of [14, p. 2494].

Remark 3.5. Finally, note that Theorem 3.1 and Proposition 3.2 hold even when $c(G)>1$; the reason for which we have previously required $c(G)=1$ has to do with the appropriateness of the payoff function introduced in Section 2. In particular, when $c(G)>1$ our argument about $C_{2}$ 's incentive to capture $R$ does not hold necessarily (hence, depending on $\sigma_{3}, C_{2}$ may ensure payoff of 0 without ever capturing $R$ ).

## 4. Results for the concurrent SCPR

In this section we establish that concurrent SCPR has a value which can be computed by value iteration. We first consider the case in which $R$ is controlled by a general probability function $\sigma_{3}$ ("random robber") and then examine in greater detail the case in which $\sigma_{3}$ is oblivious deterministic ("oblivious deterministic robber").

### 4.1. Random robber

The two main results on concurrent SCPR are immediate consequences of the more general results of [13].
Theorem 4.1. Given some graph $G=(V, E)$. For every $s=\left(x^{1}, x^{2}, x^{3}\right) \in \widehat{\mathbf{S}}_{a}$, the concurrent SCPR game starting at shas a value $v(s)$. The vector of values $\mathbf{v}=(v(s))_{s \in \mathbf{S}}$ is the smallest (componentwise) solution of the following optimality equations

$$
\begin{equation*}
v(\tau)=0 ; \quad \text { for all } s \in \widehat{\mathbf{S}}_{a}: v(s)=\mathbf{V a l}\left[q(s)+\sum_{s^{\prime} \in S} \operatorname{Pr}\left(s^{\prime} \mid s, a_{1}, a_{2}\right) v\left(s^{\prime}\right)\right] \tag{16}
\end{equation*}
$$

Furthermore, $C_{2}$ has a stationary Markovian optimal strategy and, for every $\varepsilon>0, C_{1}$ has a stationary Markovian $\varepsilon$-optimal strategy.
Proof. For every graph $G$ (and every starting position $s$ ) SCPR is a positive stochastic game. Hence (by [13, Theorem 4.4.1]) it possesses a value which (by [13, Theorem 4.4.3]) satisfies the optimality equation (16). Furthermore $C_{2}$ has a stationary Markovian optimal strategy by [13, Corollary 4.4.2] and, for every $\varepsilon>0, C_{1}$ has a stationary Markovian $\varepsilon$-optimal strategy by [13, Problem 4.16].

Proposition 4.2. Given some graph $G=(V, E)$, let $s=\left(x^{1}, x^{2}, x^{3}\right) \in \widehat{\mathbf{S}}_{a}$. Define $\mathbf{v}^{(0)}$ by

$$
v^{(0)}(\tau)=0 ; \quad \text { for all } s \in \widehat{\mathbf{S}}_{a}: v^{(0)}(s)=q(s)
$$

and $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots$ by the following recursion

$$
\begin{equation*}
v^{(i)}(\tau)=0 ; \quad \text { for all } s \in \widehat{\mathbf{S}}_{a}: v^{(i)}(s)=\text { Val }\left[q(s)+\sum_{s^{\prime} \in \mathbf{S}} \operatorname{Pr}\left(s^{\prime} \mid s, a_{1}, a_{2}\right) v^{(i-1)}\left(s^{\prime}\right)\right] \tag{17}
\end{equation*}
$$

Then, for every $s \in \widehat{\mathbf{S}}_{a}, \lim _{i \rightarrow \infty} v^{(i)}(s)$ exists and equals $v(s)$, the value of the concurrent SCPR game played on $G$, starting from $s$.
Proof. This follows immediately from [13, Theorem 4.4.4].

### 4.2. Oblivious deterministic robber

Theorem 3.1 and Proposition 3.2 are "simpler" than Theorem 4.1 and Proposition 4.2, in the sense that the former do not involve the computation of matrix game values. We will now show that, when $\sigma_{3}$ is oblivious deterministic, we can obtain a similar simplification of Theorem 4.1. Before presenting these results in rigorous form, let us describe them informally.

1. Suppose first that a game is played between a single cop and an oblivious deterministic robber. We will prove that there exists a stationary Markovian deterministic cop strategy $\bar{\sigma}^{*}$ by which the cop can capture the robber in minimum time.
2. Next consider two cops and an oblivious deterministic robber. We will prove that the extension of $\bar{\sigma}^{*}$ to SCPR is optimal for both cops. More specifically, neither cop loses anything by using it; and one of the two will capture the robber with probability one.

Let us now formalize the above ideas. We pick any graph $G=(V, E)$ and any oblivious deterministic robber strategy $\bar{\sigma}_{3}$ and keep these fixed for the remainder of the discussion. Further, let $\mathcal{S}$ denote the set of all functions $\bar{\sigma}: V \times V \rightarrow V$ with the restriction that for all $\left(x^{1}, x^{3}\right) \in V \times V: \bar{\sigma}\left(x^{1}, x^{3}\right) \in N\left[x^{1}\right]$. In other words, $\mathcal{S}$ is the set of legal stationary Markovian deterministic cop strategies for the "classic" CR game of one cop and one robber.

Now pick some $\bar{\sigma} \in \mathcal{S}$ and play the game with starting positions $X_{0}^{1}=x_{0}^{1} \in V$ (for the cop) and $X_{0}^{3}=x_{0}^{3} \in V$ (for the robber). The following sequence (dependent on $\bar{\sigma}, x_{0}^{1}, x_{0}^{3}$ ) of cop and robber positions will be produced:

$$
X_{0}^{1}=x_{0}^{1}, X_{0}^{3}=x_{0}^{3}, X_{1}^{1}=\bar{\sigma}\left(x_{0}^{1}, x_{0}^{3}\right), X_{1}^{3}=\bar{\sigma}_{3}\left(x_{0}^{3}\right), \ldots
$$

let $T_{\bar{\sigma}}\left(x_{0}^{1}, x_{0}^{3}\right)$ be the capture time, in other words, the smallest $t$ such that $X_{t}^{1}=X_{t}^{3}$, for the sequence produced by $\bar{\sigma}, x_{0}^{1}, x_{0}^{3}$ (and $\bar{\sigma}_{3}$ ). Also define

$$
\overline{V \times V}=\left\{\left(x^{1}, x^{3}\right): x^{1} \in V, x^{3} \in V, x^{1} \neq x^{3}\right\}
$$

Then we have the following.
Lemma 4.3. Given a graph $G=(V, E)$ and an oblivious deterministic robber strategy $\bar{\sigma}_{3}$. Let

$$
\text { for all } x^{1} \in V: T^{(0)}\left(x^{1}, x^{1}\right)=0, \quad \text { for all }\left(x^{1}, x^{3}\right) \in \overline{V \times V}: T^{(0)}\left(x^{1}, x^{3}\right)=\infty
$$

Now perform the following iteration for $i=1,2, \ldots$ :

$$
\begin{equation*}
\text { for all } x^{1} \in V: T^{(i)}\left(x^{1}, x^{1}\right)=0 ; \quad \text { for all }\left(x^{1}, x^{3}\right) \in \overline{V \times V}: T^{(i)}\left(x^{1}, x^{3}\right)=\min _{x^{\prime} \in N\left[x^{1}\right]}\left[1+T^{(i-1)}\left(x^{\prime}, \sigma_{3}\left(x^{3}\right)\right)\right] ; \tag{18}
\end{equation*}
$$

for all $x^{1} \in V: T^{(i)}\left(x^{1}, x^{1}\right)=0 ; \quad$ for all $\left(x^{1}, x^{3}\right) \in \overline{V \times V}: \bar{\sigma}^{(i)}\left(x^{1}, x^{3}\right)=\arg \min _{x^{\prime} \in N\left[x^{1}\right]}\left[1+T^{(i-1)}\left(x^{\prime}, \sigma_{3}\left(x^{3}\right)\right)\right]$.

Then the limits

$$
\lim _{i \rightarrow \infty} \bar{\sigma}^{(i)}\left(x^{1}, x^{3}\right), \quad \lim _{i \rightarrow \infty} T^{(i)}\left(x^{1}, x^{3}\right)
$$

exist for all $\left(x^{1}, x^{3}\right) \in V \times V$. Furthermore, letting $\bar{\sigma}^{*}\left(x^{1}, x^{3}\right)=\lim _{i \rightarrow \infty} \bar{\sigma}^{(i)}\left(x^{1}, x^{3}\right)$ and $T^{*}\left(x^{1}, x^{3}\right)=\min _{\bar{\sigma} \in \mathcal{S}} T_{\bar{\sigma}}\left(x^{1}, x^{3}\right)$, we have

$$
\begin{equation*}
\text { for all }\left(x^{1}, x^{3}\right) \in V \times V: \lim _{i \rightarrow \infty} T^{(i)}\left(x^{1}, x^{3}\right)=T_{\bar{\sigma}^{*}}\left(x^{1}, x^{3}\right)=T^{*}\left(x^{1}, x^{3}\right) . \tag{20}
\end{equation*}
$$

Proof. The proof is based on a standard dynamic programming argument. First note that, for every $\left(x^{1}, x^{3}\right) \in V \times V$, $T^{*}\left(x^{1}, x^{3}\right)<|V|$. This is true because $C_{1}$ can reach any vertex of $V$ in at most $|V|-1$ moves; so $C_{1}$ can simply go to $X_{|V|}^{3}$ (the known location of $R$ at time $t=|V|$ ) and wait for the robber there.

Next we prove by induction that

$$
\begin{equation*}
T^{*}\left(x^{1}, x^{3}\right)=n \Rightarrow\left(\forall i \geq n: T^{*}\left(x^{1}, x^{3}\right)=T^{(i)}\left(x^{1}, x^{3}\right)\right) \tag{21}
\end{equation*}
$$

For $n=0, T^{*}\left(x^{1}, x^{3}\right)=0$ implies $x^{1}=x^{3}$ and, from the algorithm, $T^{*}\left(x^{1}, x^{1}\right)=0=T^{(i)}\left(x^{1}, x^{1}\right)$ for all $i \in \mathbb{N}_{0}$. Now suppose that (21) holds for $n=1,2, \ldots, k$ and consider the case $n=k+1$, in which $T^{*}\left(x^{1}, x^{3}\right)=k+1$ is the smallest number of steps in which $C_{1}$ can reach $R$. This also means that (i) there exists some $x^{\prime} \in N\left[x^{1}\right]$ from which $C_{1}$ can reach $R$ (who now starts at $\bar{\sigma}_{3}\left(x^{3}\right)$ ) in $k$ steps and (ii) there does not exist any $x^{\prime \prime} \in N\left[x^{1}\right]$ from which $C_{1}$ can reach $R$ in $m<k$ steps (because then $C_{1}$ starting at $x^{1}$ could reach $R$ in $m+1<k+1$ steps). In other words

$$
T^{*}\left(x^{1}, x^{3}\right)=k+1 \Rightarrow T^{*}\left(x^{1}, x^{3}\right)=\min _{x^{\prime} \in N\left[x^{1}\right]}\left[1+T^{(k)}\left(x^{\prime}, \bar{\sigma}_{3}\left(x^{3}\right)\right)\right]=T^{(k+1)}\left(x^{1}, x^{3}\right) .
$$

It is also easy to check that:

$$
T^{(k+1)}\left(x^{1}, x^{3}\right)=k+1 \Rightarrow\left(\forall i>k+1: T^{(i)}\left(x^{1}, x^{3}\right)=k+1\right)
$$

Hence the induction has been completed.
Given (21), we see immediately that

$$
\text { for all }\left(x^{1}, x^{3}\right) \in V \times V, i \geq|V|: T^{(i)}\left(x^{1}, x^{3}\right)=T^{*}\left(x^{1}, x^{3}\right)
$$

which implies that both $\lim _{i \rightarrow \infty} T^{(i)}\left(x^{1}, x^{3}\right)=T^{*}\left(x^{1}, x^{3}\right)$ and $\lim _{i \rightarrow \infty} \sigma^{(i)}\left(x^{1}, x^{3}\right)$ exist. Taking the limit (as $i$ tends to $\infty$ ) in (18)-(19) we get the optimality equations

$$
\begin{aligned}
T^{*}\left(x^{1}, x^{3}\right) & =\min _{x^{\prime} \in N\left[x^{1}\right]}\left[1+T^{*}\left(x^{\prime}, \bar{\sigma}_{3}\left(x^{3}\right)\right)\right], \\
\bar{\sigma}^{*}\left(x^{1}, x^{3}\right) & =\arg \min _{x^{\prime} \in N\left[x^{1}\right]}\left[1+T^{*}\left(x^{\prime}, \bar{\sigma}_{3}\left(x^{3}\right)\right)\right] .
\end{aligned}
$$

Hence, it is clear from the iteration (18)-(19) that $T_{\bar{\sigma}^{*}}\left(x^{1}, x^{3}\right)=T^{*}\left(x^{1}, x^{3}\right)$, for all $\left(x^{1}, x^{3}\right) \in V \times V$.

Now let us use $\bar{\sigma}^{*}$ of Lemma 4.3 to define strategies $\bar{\sigma}_{i}^{*}$ for $C_{i}(i \in\{1,2\})$ as follows:

$$
\begin{aligned}
& \text { for all }\left(x^{1}, x^{2}, x^{3}\right) \in \widehat{\mathbf{S}}_{a}: \bar{\sigma}_{1}^{*}\left(x^{1}, x^{2}, x^{3}\right)=\bar{\sigma}^{*}\left(x^{1}, x^{3}\right) \\
& \text { for all }\left(x^{1}, x^{2}, x^{3}\right) \in \widehat{\mathbf{S}}_{a}: \bar{\sigma}_{2}^{*}\left(x^{1}, x^{2}, x^{3}\right)=\bar{\sigma}^{*}\left(x^{2}, x^{3}\right) .
\end{aligned}
$$

Then the following holds.
Theorem 4.4. Given some graph $G=(V, E)$, suppose SCPR is played on $G$ and the robber is controlled by an oblivious deterministic strategy $\bar{\sigma}_{3}$. Then $\bar{\sigma}_{i}^{*}$ is an optimal strategy for $C_{i}(i \in\{1,2\})$, for every starting position $s=\left(x^{1}, x^{2}, x^{3}\right) \in \widehat{\mathbf{S}}_{a}$. Furthermore

$$
\text { for all } s=\left(x^{1}, x^{2}, x^{3}\right) \in \widehat{\mathbf{S}}_{a}: \begin{aligned}
& T_{\bar{\sigma}_{1}^{*}}\left(x^{1}, x^{3}\right) \leq T_{\bar{\sigma}_{2}^{*}}\left(x^{2}, x^{3}\right) \\
& T_{\bar{\sigma}_{1}^{*}}\left(x^{1}, x^{3}\right)>T_{\bar{\sigma}_{2}^{*}}\left(x^{2}, x^{3}\right) \Rightarrow v(s)=1, \\
& \Rightarrow v(s)=0 .
\end{aligned}
$$

Proof. The key fact is this: when $\bar{\sigma}_{3}$ is oblivious deterministic, the players $C_{1}$ and $C_{2}$ interact only at the last phase of the game, when $R$ is captured. In effect each cop plays a "decoupled" classic CR game, in which $\bar{\sigma}^{*}$ of Lemma 4.3 guarantees capture in minimum time. Of course in the full SCPR game there is always the possibility that the other cop can capture $R$ at an earlier time. Hence the best $C_{i}$ can do is to attempt to capture $R$ at the earliest possible time and an optimal strategy to this end is $\bar{\sigma}_{i}^{*}$; he has no incentive to deviate from $\bar{\sigma}_{i}^{*}$ (by using another deterministic or probabilistic strategy) because this can never reduce his projected capture time. Hence $\bar{\sigma}_{i}^{*}$ is optimal for $C_{i}$. Since $\bar{\sigma}_{1}^{*}, \bar{\sigma}_{2}^{*}$ and $\bar{\sigma}_{3}$ are deterministic, the outcome of the game is also deterministic. In particular, when $T_{\bar{\sigma}_{1}^{*}}\left(x^{1}, x^{3}\right) \leq T_{\bar{\sigma}_{2}^{*}}\left(x^{2}, x^{3}\right)$, with probability $1 C_{1}$ reaches $R$ before or at the same time as $C_{2}$; hence $v(s)=1$; when $T_{\bar{\sigma}_{1}^{*}}\left(x^{1}, x^{3}\right)>T_{\bar{\sigma}_{2}^{*}}\left(x^{2}, x^{3}\right), C_{2}$ reaches $R$ before $C_{1}$ with probability 1 ; hence $v(s)=0$.

The next theorem gives an additional characterization of the value $v(s)$. In the statement of the theorem we will use the following notation: suppose the game is in the state $s, C_{1}$ plays $a^{1}, C_{2}$ plays $a^{2}$ and $R$ plays the (predetermined) move $\bar{\sigma}_{3}(s)$; then we denote the next game state by $\widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)$. We have the following.

Theorem 4.5. Given some graph $G=(V, E)$, suppose $S C P R$ is played on $G$ and the robber is controlled by an oblivious deterministic strategy $\bar{\sigma}_{3}$. Then, for all $s \in \widehat{\mathbf{S}}_{a}$, we have

$$
\begin{equation*}
v(s)=\max _{a^{1}} \min _{a^{2}}\left[q(s)+v\left(\widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)\right]=\min _{a^{2}} \max _{a^{1}}\left[q(s)+v\left(\widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)\right] . \tag{22}
\end{equation*}
$$

Proof. Since $\bar{\sigma}_{3}$ is deterministic, $\operatorname{Pr}\left(\widehat{T}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right) \mid s, a^{1}, a^{2}\right)=1$. Hence, by [13, Theorem 4.4.3]:

$$
v(s)=\operatorname{Val}\left[q(s)+\sum_{s^{\prime} \in S} \operatorname{Pr}\left(s^{\prime} \mid s, a_{1}, a_{2}\right) v\left(s^{\prime}\right)\right]=\mathbf{V a l}\left[q(s)+v\left(\widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)\right] .
$$

Since $\bar{\sigma}_{1}^{*}$ and $\bar{\sigma}_{2}^{*}$ are also deterministic, at every turn of the game they produce an action with probability one. Hence there exist actions $\bar{a}^{1}=\bar{\sigma}_{1}^{*}(s), \bar{a}^{2}=\bar{\sigma}_{2}^{*}(s)$ such that

$$
v(s)=q(s)+v\left(\widehat{\mathbf{T}}\left(s,\left(\bar{a}^{1}, \bar{a}^{2}, \bar{\sigma}_{3}(s)\right)\right)\right) .
$$

From Theorem 4.4, $v(s) \in\{0,1\}$, hence we consider two cases.

1. Suppose $v(s)=1$. This means, that starting at $s, C_{1}$ will certainly capture $R$.
(a) If $s$ is a $C_{1}$-capture state, then $q(s)=1$ and, for any actions $\bar{a}^{1}, \bar{a}^{2}, \widehat{\mathbf{T}}\left(s,\left(\bar{a}^{1}, \bar{a}^{2}, \bar{\sigma}_{3}(s)\right)\right)=\tau$, in which case

$$
v\left(\widehat{\mathbf{T}}\left(s,\left(\bar{a}^{1}, \bar{a}^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)=v(\tau)=0
$$

Hence $v(s)=\max _{a^{1}} \min _{a^{2}}\left[q(s)+v\left(\widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)\right]=1$.
(b) If $s$ is not a $C_{1}$-capture state, then $q(s)=0$ and $v\left(\widehat{\mathbf{T}}\left(s,\left(\bar{a}^{1}, \bar{a}^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)=1$. Suppose there existed some $\widehat{a}^{2}$ such that $v\left(\widehat{\mathbf{T}}\left(s,\left(\bar{a}^{1}, \widehat{a}^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)=0$. This would mean that, starting at $\widehat{\mathbf{T}}\left(s,\left(\bar{a}^{1}, \widehat{a}^{2}, \bar{\sigma}_{3}(s)\right)\right), C_{2}$ would certainly capture $R$ before $C_{1}$ and, since $\bar{a}^{1}$ is the optimal (fastest capturing) move for $C_{1}$, we would also have

$$
\text { for all } a^{1} \in \mathbf{A}_{1}(s): q(s)+v\left(\widehat{\mathbf{T}}\left(s,\left(a^{1}, \widehat{a}^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)=0
$$

But then $v(s)=\operatorname{Val}\left[q(s)+v\left(\widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)\right]=0$, contrary to the assumption. So we must instead have


Fig. 1. An example where deterministic robber strategy results in probabilistic optimal cop strategies.

Table 1
A part of the robber strategy $\sigma_{3}$.

| $\left(x_{t}^{1}, x_{t}^{2}, x_{t}^{3}\right)$ | $x_{t+1}^{3}=\bar{\sigma}_{3}\left(x_{t}^{1}, x_{t}^{2}, x_{t}^{3}\right)$ |
| :--- | :--- |
| $(2,6,1)$ | 4 |
| $(2,6,4)$ | 3 |
| $(2,5,4)$ | 5 |
| $(3,6,4)$ | 5 |
| $(3,5,4)$ | 3 |

Table 2
Possible states at the end of the first turn.

| $s_{0}=(2,6,1)$ | $a_{1}^{1}=2$ | $a_{1}^{2}=6$ | $a_{1}^{3}=\bar{\sigma}_{3}(2,6,1)=4$ | $s_{1}=(2,6,4)$ |
| :--- | :--- | :--- | :--- | :--- |
| $s_{0}=(2,6,1)$ | $a_{1}^{1}=2$ | $a_{1}^{2}=5$ | $a_{1}^{3}=\bar{\sigma}_{3}(2,6,1)=4$ | $s_{1}=(2,5,4)$ |
| $s_{0}=(2,6,1)$ | $a_{1}^{1}=3$ | $a_{1}^{2}=6$ | $a_{1}^{3}=\bar{\sigma}_{3}(2,6,1)=4$ | $s_{1}=(3,6,4)$ |
| $s_{0}=(2,6,1)$ | $a_{1}^{1}=3$ | $a_{1}^{2}=5$ | $a_{1}^{3}=\bar{\sigma}_{3}(2,6,1)=4$ | $s_{1}=(3,5,4)$ |

$$
\text { for all } a^{2} \in \mathbf{A}_{2}(s): q(s)+v\left(\widehat{\mathbf{T}}\left(s,\left(\bar{a}^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)=1
$$

which implies $\left.v(s)=\max _{a^{1}} \min _{a^{2}}\left[q(s)+v \widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)\right]=1$.
2. Now suppose $v(s)=0$. Then $s$ is not a $C_{1}$-capture state, hence $q(s)=0$. Now, we will show that

$$
\begin{equation*}
\text { for all } a^{1} \in \mathbf{A}_{1}(s): \text { there exists } a^{2} \in \mathbf{A}_{2}(s): v\left(\widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)=0 \tag{23}
\end{equation*}
$$

If this is not the case, then

$$
\text { there exists } \widetilde{a}^{1} \in \mathbf{A}_{1}(s): \text { for all } a^{2} \in \mathbf{A}_{2}(s): v\left(\widehat{\mathbf{T}}\left(s,\left(\widetilde{a}^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)=1
$$

Then $C_{1}$ will certainly capture $R$ (before $C_{2}$ ) starting from the game position $\mathbf{T}\left(s,\left(\widetilde{a}^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)$ and this will be true for any $a^{2} \in \mathbf{A}_{2}(s)$. But this means that $C_{1}$, starting from game position $s$ and playing $\tilde{a}^{1}$, will certainly capture $R$ before $C_{2}$; which in turn means $v(s)=1$, contrary to the hypothesis. Hence (23) holds and this implies that

$$
\text { for all } \begin{aligned}
a^{1} & \in \mathbf{A}_{1}(s): \min _{a^{2}} v\left(\widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)=0 \\
& \Rightarrow \max _{a^{1}} \min _{a^{2}} v\left(\widehat{\mathbf{T}}\left(s,\left(a^{1}, a^{2}, \bar{\sigma}_{3}(s)\right)\right)\right)=0 .
\end{aligned}
$$

Hence we have proved the first part of (22). The proof of the second part is similar and omitted.
Remark 4.6. It must be emphasized that Theorems 4.4 and 4.5 do not hold for deterministic non-oblivious strategies $\bar{\sigma}_{3}$. This can be seen by the following counterexample. Suppose that concurrent SCPR is played on the graph of Fig. 1, starting from the state $(2,6,1)$.

Furthermore, the robber is controlled by the $\bar{\sigma}_{3}$ which is (partially) described in Table 1.
For every game state not listed above the robber stays in place, in other words, $x_{t+1}^{3}=\bar{\sigma}_{3}\left(x_{t}^{1}, x_{t}^{2}, x_{t}^{3}\right)=x_{t}^{3}$. Now consider what the first moves of $C_{1}$ and $C_{2}$ should be. They know that $R$ will move into vertex $4 ; C_{1}$ can either stay at 2 or move into $3 ; C_{2}$ can either stay at 6 or move into 5 . After the first move is completed, the possible game states are in Table 2.

It is easy to check (from the respective $\bar{\sigma}_{3}$ values) that for $s_{1}=(2,6,4)$ and $s_{1}=(3,5,4)$ the capturing cop is $C_{1}$, while for $s_{1}=(2,5,4)$ and $s_{1}=(3,6,4)$ the capturing cop is $C_{2}$. Hence the game can be written out as the following (one-shot) matrix game (Table 3).

It is easy to compute, using standard methods, the optimal strategies for this game. $C_{1}$ must use $\operatorname{Pr}\left(a^{1}=2\right)=$ $\operatorname{Pr}\left(a^{1}=3\right)=\frac{1}{2}$ and $C_{2}$ must use $\operatorname{Pr}\left(a^{2}=6\right)=\operatorname{Pr}\left(a^{2}=5\right)=\frac{1}{2}$. This implies that the optimal strategies $\bar{\sigma}_{1}^{*}$ and $\bar{\sigma}_{2}^{*}$ are probabilistic, despite the fact that $\bar{\sigma}_{3}$ is deterministic (but not oblivious). We can also see that in this case the optimal cop strategy is not to always move towards the robber. Many similar examples can be constructed. The important point is this: when $\bar{\sigma}_{3}$ is not oblivious, $C_{1}$ (resp. $C_{2}$ ) moves can influence future $R$ moves and (since moves are performed simultaneously) this influence cannot be predicted by $C_{2}$ (resp. $C_{1}$ ).

Table 3
The one-shot matrix game equivalent to the original stochastic game.

|  | $a^{2}=6$ | $a^{2}=5$ |
| :--- | :--- | :--- |
| $a^{1}=2$ | 1 | 0 |
| $a^{1}=3$ | 0 | 1 |

## 5. Conclusion

We have introduced the game of selfish cops and passive robber (SCPR game) and established its basic properties, namely the existence of value and optimal strategies for both the sequential and concurrent variants. We have also provided algorithms for the computation of the aforementioned quantities. In the current paper we have examined qualitative variants of the game, in which the goal of each cop is to maximize his probability of capturing the robber. In a forthcoming paper we will examine quantitative variants, in which the goal is to capture the robber in the shortest possible time.

Several additional issues merit further study and will be the subject of our future research. We have formulated SCPR as a zero-sum game; but reasonable formulations as a non-zero-sum game are also possible and we conjecture that these may lead to qualitatively different results. In addition, if we remove the assumption that the robber is passive and deal instead with the situation of two selfish cops and a robber actively trying to avoid capture, then we are left with a three-player game, which we intend to study in the future.

Settling the above mentioned questions (and additional ones which may arise in the process) will hopefully result in a comprehensive game theoretic framework encompassing the numerous CR variants which have appeared in the literature (and so far have been studied mainly from a combinatorial point of view).

## References

[1] M.H. Albert, R. Nowakowski, D. Wolfe, Lessons in Play: An Introduction to Combinatorial Game Theory, 2007.
[2] L. de Alfaro, T.A. Henzinger, O. Kupferman, Concurrent reachability games, Theoret. Comput. Sci. 386 (2007) 188-217.
[3] V.J. Baston, F.A. Bostock, Infinite deterministic graphical games, SIAM J. Control Optim. 31 (1993) 1623-1629.
[4] A. Berarducci, B. Intrigila, On the cop number of a graph, Adv. in Appl. Math. 14 (1993) 389-403.
[5] E. Berlekamp, J.H. Conway, R. Guy, Winning Ways for Your Mathematical Plays, 1982.
[6] D. Berwanger, Graph games with perfect information, preprint, 2012.
[7] A. Bonato, G. MacGillivray, A general framework for discrete-time pursuit games, preprint, 2015.
[8] A. Bonato, G. MacGillivray, Characterizations and algorithms for generalized Cops and Robbers games, Contrib. Discrete Math. (2017), submitted for publication.
[9] K. Chatterjee, T.A. Henzinger, A survey of stochastic $\omega$-regular games, J. Comput. System Sci. 78 (2012) 394-413.
[10] K. Chatterjee, M. Jurdziński, On Nash Equilibria in Stochastic Games, International Workshop on Computer Science Logic, Springer, Berlin-Heidelberg, 2004.
[11] A. Ehrenfeucht, J. Mycielski, Positional strategies for mean payoff games, Internat. J. Game Theory 8 (1979) 109-113.
[12] H. Everett, Recursive games, in: Contributions to the Theory of Games, vol. 3, 1957, pp. 47-78.
[13] J. Filar, K. Vrieze, Competitive Markov Decision Processes, Springer Science \& Business Media, 1997.
[14] G. Hahn, G. MacGillivray, A note on $k$-cop, $l$-robber games on graphs, Discrete Math. 306 (2006) 2492-2497.
[15] R. Isaacs, Differential Games, John Wiley and Sons, 1965.
[16] Ath. Kehagias, P. Prałat, Some remarks on cops and drunk robbers, Theoret. Comput. Sci. 463 (2012) 133-147.
[17] Ath. Kehagias, D. Mitsche, P. Prałat, Cops and invisible robbers: the cost of drunkenness, Theoret. Comput. Sci. 481 (2013) 100-120.
[18] Ath. Kehagias, D. Mitsche, P. Prałat, The role of visibility in pursuit/evasion games, Robotics 3 (2014) 371-399.
[19] Ath. Kehagias, G. Konstantinidis, Simultaneously moving cops and robbers, Theoret. Comput. Sci. 645 (2016) 48-59.
[20] N. Komarov, P. Winkler, Capturing the drunk robber on a graph, arXiv preprint, arXiv:1305.4559, 2013.
[21] R. Mazala, Infinite games, in: Automata Logics, and Infinite Games, 2002, pp. 23-38.
[22] R. McNaughton, Infinite games played on finite graphs, Ann. Pure Appl. Logic 65 (1993) 149-184.
[23] J.F. Mertens, Stochastic games, in: Handbook of Game Theory with Economic Applications, vol. 3, 2002, pp. 1809-1832.
[24] R. Nowakowski, P. Winkler, Vertex to vertex pursuit in a graph, Discrete Math. 43 (1983) 230-239.
[25] R. Nowakowski, A. Bonato, The Game of Cops and Robbers on Graphs, AMS, 2011.
[26] M.J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, 1994.
[27] A. Quilliot, Jeux et pointes fixes sur les graphes, Ph.D. Dissertation, Universite de Paris VI, 1978.
[28] L.S. Shapley, Stochastic games, Proc. Natl. Acad. Sci. USA 39 (1953) 1095-1100.
[29] A. Washburn, Deterministic graphical games, J. Math. Anal. Appl. 153 (1990) 84-96.


[^0]:    * Corresponding author.

    E-mail address: kehagiat@gmail.com (A. Kehagias).

