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In this paper we study the concurrent cops and robber (CCCR) game. CCCR follows the 
same rules as the classical, turn-based game, except for the fact that the players move 
simultaneously. The cops’ goal is to capture the robber and the concurrent cop number of a 
graph is defined as the minimum number of cops which guarantees capture. For the variant 
in which it is required to capture the robber in the shortest possible time, we let time to 
capture be the payoff function of CCCR; the (game theoretic) value of CCCR is the optimal 
capture time and (cop and robber) time optimal strategies are the ones which achieve the 
value of the game. In this paper we prove the following.

1. For every graph G , the concurrent cop number is equal to the “classical” cop number.
2. For every graph G , CCCR has a value, the cops have an optimal strategy and, for every 

ε > 0, the robber has an ε-optimal strategy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the concurrent cops and robber game. In the classical CR game [15,16] each player observes the 
other player’s move before he performs his own. On the other hand, in concurrent CR the players move simultaneously. In all 
other aspects, the concurrent game (henceforth CCCR) follows the same rules as the classical, turn-based game (henceforth 
TBCR).

The CCCR game (similarly to TBCR) can be considered as either a game of kind (the cops’ goal is to capture the robber) or 
a game of degree (the cops’ goal is to capture the robber in the shortest possible time).1

This paper is organized as follows. In Section 2 we define preliminary concepts and notation and use these to define 
the CCCR game rigorously. In Section 3 we concentrate on the “game of kind” aspect: we define the concurrent cop number
c̃ (G) and prove that, for every graph G , it is equal to the “classical” cop number c (G). In Section 4 we concentrate on the 
“game of degree” aspect: we equip CCCR with a payoff function (namely the time required to capture the robber) and prove 
that (a) CCCR has a game theoretic value, (b) the cops have an optimal strategy and (c) for every ε > 0 the robber has an 
ε-optimal strategy; in addition we provide an algorithm for the computation of the value and the optimal strategies. In 
Section 5 we discuss related work. Finally, in Section 6 we present our conclusions and future research directions.
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1 This terminology is due to Isaacs [8].
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2. Preliminaries

In this section, as well as in the rest of the paper, we will mainly concern ourselves with the case of a single cop; this 
is reflected in the following definitions and notation. In case K > 1 cops are considered, this will be stated explicitly; the 
extension of definitions and notation is straightforward.

2.1. Definition of the CCCR game

Both CCCR and TBCR are played on an undirected, simple and connected graph G = (V , E) by two players called C and R . 
Player C , controlling K cops (with K ≥ 1) pursues a single robber controlled by player R (we will sometimes call both the 
cops and robber tokens). We assume the reader is familiar with the rules of TBCR and proceed to present the rules of CCCR 
for the case of K = 1 (a single cop).

1. The game starts from given initial positions: the cop is located at x0 ∈ V and the robber at y0 ∈ V .
2. At the t-th round (t ∈N) C moves the cop to xt ∈ N [xt−1] and simultaneously R moves the robber to yt ∈ N [yt−1].2

3. At every round both players know the current cop and robber location (and remember all past locations).
4. A capture occurs at the smallest t ∈N for which either of the following conditions holds:

(a) The cop is located at xt , the robber is located at yt , and xt = yt . This capture condition is the same as in TBCR.
(b) The cop is located at xt−1 and moves to yt−1, while the robber is located at yt−1 and moves to xt−1. We will call 

this “en passant” capture; it does not have an analog in TBCR.
5. C wins if capture takes place for some t ∈ N. Otherwise, R wins. The game analysis becomes easier if we assume that 

the game always lasts an infinite number of rounds; if a capture occurs at tc , then we will have xt = yt = xtc for all 
t ≥ tc .

We will denote the above defined game, played on graph G = (V , E) and starting from initial position (x, y) ∈ V 2

by �G
(x,y) . In case the game is played with K cops, it will be denoted by �G,K

(x,y) (in this case x ∈ V K ).

2.2. Nomenclature and notation

The following quantities will be used in the subsequent analysis (once again, we present definitions for the case of 
K = 1). Some of them require two separate definitions: one for TBCR and another for CCCR.

Definition 2.1. A position in TBCR is a triple (x, y, P ) where x ∈ V is the cop location, y ∈ V is the robber location and 
P ∈ {C, R} is the player whose turn it is to move. We also have |V | + 1 additional positions:

1. the position (∅,∅, C) corresponds to the beginning of the game, before either player has placed his token;
2. the positions (x,∅, R), x ∈ V , correspond to the phase of the game in which C has placed the cop but R has not placed 

the robber.

The set of all TBCR positions is denoted by S = V × V × {C, R}.

Definition 2.2. A position in CCCR is a pair (̃x, ỹ) where ̃x ∈ V is the cop location and ỹ ∈ V is the robber location. The set 
of all CCCR positions is denoted by S̃ = V × V .

Definition 2.3. A history is a position sequence of finite or infinite length. The set of all game histories of any finite length 
is denoted by S∗ for TBCR and S̃∗ for CCCR. The set of all infinite game histories is denoted by S∞ for TBCR and S̃∞ for 
CCCR.

In both TBCR and CCCR, the players’ moves are graph nodes, e.g., x, y ∈ V . Given the current position and the next move 
(in TBCR) or moves (in CCCR), the next game position is determined by the transition function, which encodes the rules of 
the respective game.

Definition 2.4. In TBCR, the transition function Q : S × V → S is defined as follows:

when x = y : Q
(
(x, y, C) , x′) = (x, x, R)

when x 	= y and x′ ∈ N [x] : Q
(
(x, y, C) , x′) = (

x′, y, R
)

2 N [u] denotes the closed neighborhood of node u, i.e., the set containing u itself and all nodes connected to u by an edge.
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when x 	= y and x′ /∈ N [x] : Q
(
(x, y, C) , x′) = (x, y, R)

when x = y : Q
(
(x, y, R) , y′) = (x, x, C)

when x 	= y and y′ ∈ N [y] : Q
(
(x, y, R) , y′) = (

x, y′, C
)

when x 	= y and y′ /∈ N [y] : Q
(
(x, y, R) , y′) = (x, y, C) .

Definition 2.5. In CCCR, the transition function Q̃ : S̃ × V × V → S̃ is defined as follows:

when x = y : Q̃
(
(x, y) , x′, y′) = (x, x)

when x 	= y and x′ ∈ N [x] and y′ ∈ N [y]

if x′ = y and y′ = x : Q̃
(
(x, y) , x′, y′) = (

x′, x′)
otherwise : Q̃

(
(x, y) , x′, y′) = (

x′, y′)
when x 	= y and x′ /∈ N [x] and y′ ∈ N [y] : Q̃

(
(x, y) , x′, y′) = (

x, y′)
when x 	= y and x′ ∈ N [x] and y′ /∈ N [y] : Q̃

(
(x, y) , x′, y′) = (

x′, y
)

when x 	= y and x′ /∈ N [x] and y′ /∈ N [y] : Q̃
(
(x, y) , x′, y′) = (x, y) .

The above rules have the following consequences (which will facilitate our subsequent analysis).

1. The CR game continues for an infinite number of rounds; but if a capture occurs at some time tc , the cop and robber 
locations remain fixed for all subsequent times.

2. The transition function accepts “illegal” moves (e.g., x′ /∈ N [x]) as input but “ignores” them, in the sense that they have 
no influence on the location of tokens.

Roughly speaking, a strategy is a rule which, given a finite game history, prescribes a player’s next move. In CCCR the 
players gain an advantage by using randomized or mixed strategies.

Definition 2.6. A randomized or mixed strategy is a function π̃ : S̃∗ × V → [0,1], which satisfies

∀ ((̃x0, ỹ0) , (̃x1, ỹ1) , . . . , (̃xt, ỹt)) ∈ S̃∗ :
∑
z̃∈V

π̃ (̃z| (̃x0, ỹ0) , (̃x1, ỹ1) , . . . , (̃xt, ỹt)) = 1

and gives the probability that at time t the player moves into node z̃, given that the game has started at position (̃x0, ỹ0)

and progressed through positions (̃x1, ỹ1) , . . . , (̃xt , ỹt).

Two classes of strategies will be of special interest to us.

Definition 2.7. A strategy π̃ is called memoryless iff

∀ ((̃x0, ỹ0) , . . . , (̃xt, ỹt)) ∈ S̃∗, ∀̃z ∈ V : π̃ (̃z| (̃x0, ỹ0) , . . . , (̃xt, ỹt)) = π̃ (̃z| (̃xt, ỹt)) ,

i.e., the player’s move depends only on the current game position.

Definition 2.8. A strategy π̃ is called deterministic iff

∀ ((̃x0, ỹ0) , . . . , (̃xt, ỹt)) ∈ S̃ : ∃̃z : π̃ (̃z| (̃x0, ỹ0) , . . . , (̃xt, ỹt)) = 1,

i.e., for every game history (̃x0, ỹ0) , . . . , (̃xt , ỹt), there is a position ̃z to which the player will move with certainty.

If π̃ is deterministic, it can be equivalently described by a function σ̃ : S̃∗ → V which is determined by π̃ as follows:

σ̃ ((̃x0, ỹ0) , . . . , (̃xt, ỹt)) = z̃ iff π̃ (̃z| (̃x0, ỹ0) , . . . , (̃xt, ỹt)) = 1.

Similarly, if π̃ is memoryless and deterministic, it can be equivalently described by a function σ̃ : S̃ → V which is deter-
mined by π̃ as follows:

σ̃ (̃xt, ỹt) = z̃ iff π̃ (̃z| (̃xt, ỹt)) = 1.

The above definitions and remarks concern CCCR strategies. Regarding TBCR strategies, it is well known [7] that both 
players lose nothing by restricting themselves to memoryless deterministic strategies of the form σ : S → V . In other words, 
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if player P uses the strategy σ and the current game position is (x, y, P ) (which means that it is P ’s turn to move) P moves 
his token into node σ (x, y, P ). Obviously P will only use σ when it is his turn to move; hence we can use the notation 
σC (x, y) when talking about cop strategies and σR (x, y) when talking about robber strategies. Note that a cop strategy is 
also defined for the initial position (∅,∅, C) and a robber strategy is also defined for the initial positions (x,∅, R) (for every 
x ∈ V ).

3. Cop numbers

In the “classical” TBCR game we have the following.

Definition 3.1. The cop number c (G) of a graph G is the minimum number of cops sufficient to capture the robber when 
TBCR is played (optimally by both players) on G .

Note that in the above definition optimal play includes optimal initial placement (in the 0-th round) of the cops and 
robber on G . On the other hand, in the CCCR game �G,K

(x0,y0) the initial cops and robber positions are given (rather than 
chosen by the players). A reasonable definition of cop number should account for all possible initial positions. Hence we 
have the following.

Definition 3.2. The concurrent cop number ̃c (G) of graph G is the minimum number of cops sufficient to ensure capture 
with probability one for every initial position (̃x0, ỹ0), when CCCR is played (optimally by both players) on G .

Note also the expression “capture with probability one” in Definition 3.2. This is different from “certain capture” in the 
sense that there may exist infinite game histories in which capture does not occur, but the probability of any such infinite 
history materializing is zero.3

In what follows, whenever we mention an arbitrary robber (or cop) move sequence y0, y1, y2, . . . we assume that it is a 
legal move sequence, i.e., for all t we have yt+1 ∈ N [yt ]. Also, if capture occurs at time tc , the robber’s (and cop’s) location 
remains fixed at yt = ytc , irrespective of the moves ytc+1, ytc+2, . . . .

Lemma 3.3. c (G) = 1 ⇒ c̃ (G) = 1.

Proof. We select an arbitrary graph G with c (G) = 1 and fix it for the rest of the proof. Both TBCR and CCCR will be played 
on this G . We let n = |V |, i.e., n is the number of nodes of G .

We will prove the proposition by constructing a (deterministic and memoryless) cop strategy π̃#
C which guarantees, for 

every starting position, CCCR capture with probability 1.
An essential component of π̃#

C is a deterministic cop strategy σ̃ ∗
C , constructed from another deterministic, memoryless 

cop strategy σ ∗
C which guarantees capture in the TBCR game. Since c (G) = 1 we know [7] that such a σ ∗

C exists and 
guarantees capture in at most T rounds, where T depends only on G . Furthermore recall that we have defined TBCR so that 
after capture takes place both C and R stay in place. The rest of the proof will be divided in two parts.

Part 1. Consider the CCCR game and assume that, for every time t , C knows R ’s next move (this assumption will be 
removed in Part 2). Take an arbitrary starting position s̃0 = (̃x0, ỹ0) and suppose that at time t , when the position is 
(̃xt , ỹt), C (knowing that R ’s next move will be ̃yt+1) plays ̃xt+1 = σ̃ ∗

C (̃xt , ỹt+1) = σ ∗
C (̃xt , ỹt+1).4 Then, for any robber moves 

ỹ1, ̃y2, . . . in rounds t = 1, 2, . . . the sequence of game positions will be:

(̃x0, ỹ0) ,
(̃
x1 = σ ∗

C (̃x0, ỹ1) , ỹ1
)
,
(̃
x2 = σ ∗

C (̃x1, ỹ2) , ỹ2
)
, . . . ,

(̃
xt = σ ∗

C (̃xt−1, ỹt) , ỹt
)
, . . . .

We will prove that ̃xT = ỹT , i.e., capture results in at most T rounds and this will be true with certainty for any starting 
position ̃s0 = (̃x0, ỹ0) and robber moves ỹ1, ̃y2, . . . thereafter.

To show this, consider a TBCR game in which, at the end of the initial round (t = 0) the position is (x0, y0, C) =
(̃x0, ỹ1, C). Further suppose that C uses σ ∗

C and R plays the moves y1, y2, . . . with yt = ỹt+1 (for t = 0, 1, . . .). Note that, 
given y0 = ỹ1, and also that ỹ1, ̃y2, . . . are legal robber moves in CCCR, the resulting robber moves y1, y2, . . . in TBCR are 
also legal. Moreover recall that, for any given starting position (x0, y0), when the robber moves are y1, y2, . . . and C uses 
σ ∗

C , we get a sequence of cop and robber locations of the following form:

x0, y0, x1 = σ ∗
C (x0, y0) , y1, x2 = σ ∗

C (x1, y1) , y2, . . . , xt = σ ∗
C (xt−1, yt−1) , yt, . . . .

3 This point is further discussed in Section 6.
4 Note that ̃σ ∗

C is deterministic and only uses two inputs: one is ̃xt (from the previous round) and the other is ̃yt+1 (from the current round). Hence ̃σ ∗
C

is memoryless in the sense that it only requires knowledge of the immediate past position, but it is also prescient in the sense that it requires knowledge 
of the current robber move.
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Given yt = ỹt+1 for t = 0, 1, . . . , x0 = x̃0 and that C uses σ ∗
C , we get x1 = σ ∗

C (x0, y0) = σ ∗
C (̃x0, ỹ1) = x̃1, x2 = σ ∗

C (x1, y1) =
σ ∗

C (̃x1, ỹ2) = x̃2, . . . , xt = σ ∗
C (xt−1, yt−1) = σ ∗

C (̃xt−1, ỹt) = x̃t , . . .. Thus the resulting sequence of cop and robber locations in 
TBCR is:

x̃0, ỹ1, x̃1, ỹ2, x̃2, ỹ3, . . . , x̃t, ỹt+1, . . . . (1)

Since σ ∗
C guarantees capture by time T in TBCR, we have xT = yT , irrespective of the moves y1, y2, . . . . In fact we will have 

xT = yT −1, i.e., at most in the first (i.e. cop) phase of round T , C captures R , or else (i.e., if xT 	= yT −1) R can stay put in 
this round and then xT 	= yT , which is a contradiction. Since xT = x̃T and yT −1 = ỹT from xT = yT −1 we have ̃xT = ỹT .

We conclude that also in the CCCR game, for any starting position ̃s0 = (̃x0, ̃y0) and subsequent robber moves ̃y1, ̃y2, . . . ,
capture takes place by the T -th round at the latest. We repeat that this holds under the assumption that: in each round t , 
C knows R ’s next move ỹt+1.

Part 2. In the actual CCCR game C will not know R ’s next move ỹt+1; however he can always guess ỹt+1 to be v . Suppose 
that, when R is at ̃yt , C guesses with uniform probability 1

|N [̃yt ]| that R will move to v ∈ N [̃yt ]. Let ̃yt+1 be R ’s actual move 
at t + 1 and ŷt+1 be C ’s guess of that move. We have

Pr (̂yt+1 = v |̃yt+1 = v) = 1

|N [̃yt]| ≥ 1

n

and

Pr (C guesses R ’s move correctly)

= Pr (̂yt+1 = ỹt+1) =
∑

v∈N [̃yt ]

Pr (̂yt+1 = v |̃yt+1 = v)Pr (̃yt+1 = v) ≥ 1

n

∑
v∈N [̃yt ]

Pr (̃yt+1 = v) = 1

n
.

In other words, C guesses correctly R ’s next move with probability at least 1
n . It follows that C guesses correctly R ’s next T

moves (and captures R) with probability at least 
(

1
n

)T
.

Now we define the following set of CCCR infinite game histories:

∀k ∈N : Ak = {
s : s ∈ S̃∞ and R is still free after the first k · T rounds

}
,

A = lim sup Ak = ∩∞
m=1 ∪∞

k=m Ak.

Since Ak+1 ⊆ Ak (for all k ∈ N) we have

A = ∩∞
m=1 ∪∞

k=m Ak = ∩∞
m=1 Am = {

s : s ∈ S̃∞ and ∀m ∈N : R is still free after the first m · T rounds
}
.

In other words, A is the set of all CCCR infinite game histories in which R is never captured. Since

∞∑
k=1

Pr (Ak) ≤
∞∑

k=1

(
1 −

(
1

n

)T
)k

< ∞

we have (from the first Borel–Cantelli lemma [3]) that Pr (A) = 0.
To sum up: using the deterministic memoryless strategy σ ∗

C in conjunction with uniform guessing, we obtain a ran-
domized memoryless strategy π̃#

C which guarantees capture with probability one in the CCCR game; thus c̃ (G) = 1 as 
claimed. �
Remark 3.4. Another winning strategy for the cop is to always play with uniform probability in his closed neighborhood.

In case of a graph G with c(G) = K , it is straightforward to extend the previous argument using K cops. Note however 
that, at the end of the proof we will know that: if K cops are required to capture the robber in TBCR, then K cops suffice to 
capture (with probability one) the robber in CCCR. Hence we have the following.

Lemma 3.5. c (G) = K ⇒ c̃ (G) ≤ K .

Next we show the “reverse” of Lemma 3.3.

Lemma 3.6. ̃c (G) = 1 ⇒ c (G) = 1.
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Proof. We select an arbitrary graph G with ̃c (G) = 1 and fix it for the rest of the proof. Both TBCR and CCCR will be played 
on this G . The Lemma can be stated equivalently as:

c (G) > 1 ⇒ c̃ (G) > 1

and this is what we will prove.
If c (G) > 1 then there exists a (memoryless and deterministic) winning robber strategy σ ∗

R for TBCR with one cop on G . 
More specifically, σ ∗

R guarantees that, for every cop starting position x0, the robber will never be captured.
Choose any ̃x0 ∈ V and let ̃y0 = σ ∗

R (̃x0,∅). Using σ ∗
R , we will construct a CCCR robber strategy σ̃ ∗

R such that: when CCCR 
(played on G with a single cop) starts from position (̃x0, ỹ0) and R uses σ̃ ∗

R , the capture probability is zero. This, clearly, 
implies that ̃c (G) > 1.

It suffices to define σ̃ ∗
R only for the case when CCCR starts from (̃x0, ỹ0), as follows.

1. In round t = 1: ỹ1 = ỹ0 (R stays put);
2. In rounds t = 2, 3, . . . , R plays according to σ ∗

R . In other words, if ̃xt−1 = u and ̃yt−1 = v , then ̃yt = σ̃ ∗
R (u, v) = σ ∗

R (u, v).

Clearly, σ̃ ∗
R is not strictly memoryless. The move ̃y1 = ỹ0 depends not only on the game position (̃x0, ỹ0) but also on the 

fact that this is the first round. However, the part of σ̃ ∗
R used in rounds t ≥ 2 is memoryless.

Suppose that in CCCR (starting from (̃x0, ỹ0)) R plays the strategy σ̃ ∗
R while C plays any move sequence ̃x1, ̃x2, . . . . To 

prove that capture will never occur, consider a TBCR in which R plays the strategy σ ∗
R and C plays the same move sequence 

x̃0, ̃x1, . . . as in CCCR. Since σ ∗
R is winning, capture will never take place in TBCR; as will be shown, this implies capture will 

never occur in CCCR either and, since this holds for any x̃1, ̃x2, . . . , we will conclude that ̃c (G) > 1.
Let y0, y1, y2 . . . be the robber moves occurring in TBCR, given that R plays σ ∗

R and C plays ̃x0, ̃x1, . . . . Let us use d (u, v)

to denote the distance of nodes u, v in G , i.e., the length of shortest path between u and v . Obviously we have

∀t ≥ 0 : d (̃xt+1, yt) ≥ 1 (2)

(if we had d (̃xt+1, yt) = 0 then σ ∗
R would not be a winning strategy). Furthermore

∀t ≥ 0 : ỹt+1 = yt . (3)

Indeed, ỹ1 = y0 by construction and if, for some n, we have ỹn = yn−1, then

ỹn+1 = σ̃ ∗
R (̃xn, ỹn) = σ ∗

R (̃xn, yn−1) = yn.

From (2) and (3) follows that

∀t : 1 ≤ d (̃xt, ỹt) . (4)

This almost completes the proof that capture never occurs in CCCR. However, we must also consider the possibility of an 
“en passant” capture, i.e., the case ̃xt+1 = ỹt and ỹt+1 = x̃t . But this would mean

d (̃xt, yt) = d (̃xt, ỹt+1) = d (̃xt, x̃t) = 0;
in other words, we would have capture in TBCR which contradicts the assumption that σ ∗

R is a winning robber strategy. 
Hence “en passant” capture is also impossible in CCCR. The proof is complete. �

It is straightforward to extend the above for the case of ̃c (G) = K and obtain the following.

Lemma 3.7. ̃c(G) = K ⇒ c(G) ≤ K .

Now we can prove our main result.

Theorem 3.8. c (G) = K ⇔ c̃ (G) = K .

Proof. Assume that c (G) = K . By Lemma 3.5 we have c (G) = K ⇒ c̃ (G) ≤ K ; if ̃c (G) = K ′ < K , then by Lemma 3.7 we have 
c(G) ≤ K ′ < K = c (G), which is a contradiction. Thus c (G) = K ⇒ c̃ (G) = K .

Conversely, assume that ̃c(G) = K . By Lemma 3.7 we have ̃c(G) = K ⇒ c(G) ≤ K ; if c(G) = K ′ < K , then by Lemma 3.5
we have ̃c(G) = K ′ < K = c̃ (G), which is a contradiction. Thus ̃c(G) = K ⇒ c(G) = K . �
4. Time optimality

Recall that �G
(x0,y0) denotes the CCCR game played on graph G by a single cop starting at location x0 and a single robber 

starting at location y0. In this section we will only consider �G
(x0,y0); our results can be easily generalized to any game 

�
G,K (i.e., using K ≥ 1 cops).
(x0,y0)
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4.1. Existence of value and optimal strategies

To equip �G
(x0,y0) with a payoff function, we first define the auxiliary function

∀ (x, y) ∈ V 2 : r (x, y) =
{

1 iff x 	= y

0 iff x = y

where x and y are cop and robber locations, respectively. Suppose that for every round of �G
(x0,y0) in which the robber 

remains uncaptured, C pays R one unit of utility and denote by vG
(x0,y0) (π̃C , π̃R) the expected total amount collected by R 

(obviously it depends on the strategies π̃C , ̃πR ). Then the expected robber payoff in the game �G
(x0,y0) is

vG
(x0,y0) (π̃C , π̃R) = E

( ∞∑
t=0

r (xt, yt)

)
where E (·) denotes expected value and, for notational brevity, the dependence of xt , yt on π̃C , ̃πR has been suppressed. 
The expected payoff to C is −vG

(x0,y0) (π̃C , π̃R).
Following the terminology of [5], we recognize that CCCR equipped with the above payoff is a positive stochastic game, 

R is Player 1 or the Maximizer and C is Player 2 or the Minimizer. These terms reflect the fact that R (resp. C) chooses π̃R

(resp. π̃C ) to maximize (resp. to minimize) vG
(x,y) (π̃C , π̃R). We always have

sup
π̃R

inf
π̃C

vG
(x,y) (π̃C , π̃R) ≤ inf

π̃C

sup
π̃R

vG
(x,y) (π̃C , π̃R) . (5)

The following is standard game theoretic terminology [5].

Definition 4.1. If we have

sup
π̃R

inf
π̃C

vG
(x,y) (π̃C , π̃R) = inf

π̃C

sup
π̃R

vG
(x,y) (π̃C , π̃R) (6)

then we denote the common quantity of (6) by v̂G
(x,y) and call it the value of �G

(x,y) .

Definition 4.2. We denote the capture time of G by C T (G) and define it by

C T (G) = max
(x,y)∈V 2

v̂G
(x,y).

What is the connection between the games �G
(x,y) and the values5 v̂G

(x,y) for various (x, y) ∈ V 2? It is natural to assume 
that: if at some stage of �G

(x,y) we reach the position 
(
x′, y′) then we can play the remaining portion of �G

(x,y) as if we are 
just starting the game �G

(x′,y′) . This plausible assumption can be proved rigorously (see [18] and [5, pp. 89–91]) and has the 
important consequence that, for a given G and a given position (x, y), v̂G

(x,y) exists and is the same for every game �G
(x′,y′) (and 

hence it is correct to omit mention of a specific game in the notation v̂G
(x,y)). An additional important consequence is the 

existence of memoryless optimal strategies which are the same for all �G
(x,y) games, as will be seen in Theorem 4.4. Before stating 

and proving this theorem we need some additional definitions.

Definition 4.3. Given ε ≥ 0, we say that the cop strategy π̃ ε
C is ε-optimal (for the game �G

(x,y)) iff∣∣∣∣∣̂vG
(x,y) − sup

π̃R

vG
(x,y)

(
π̃ ε

C , π̃R
)∣∣∣∣∣ ≤ ε.

Similarly, we say that the robber strategy π̃ ε
R is ε-optimal (for the game �G

(x,y)) iff∣∣∣∣̂vG
(x,y) − inf

π̃C

vG
(x,y)

(
π̃C , π̃ ε

R

)∣∣∣∣ ≤ ε.

A 0-optimal (cop or robber) strategy is simply called optimal.

5 If they exist.
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If both π̃∗
C and π̃∗

R are optimal, then we have ̂vG
(x,y) = vG

(x,y)

(
π̃∗

C , π̃∗
R

)
. The main facts about the �G

(x,y) games are summa-
rized in the following.

Theorem 4.4. For every graph G = (V , E) the following hold.

1. For every (x, y) ∈ V 2 , the game �G
(x,y) has the value ̂vG

(x,y) .

2. V 2 can be partitioned into the sets V 1 and V 2 defined by

V 1 =
{
(x, y) : v̂G

(x,y) < ∞
}

, V 2 =
{
(x, y) : v̂G

(x,y) = ∞
}

.

If ̃c (G) = 1, then V 1 = V 2 , i.e., ̂vG
(x,y) < ∞ for every (x, y) ∈ V 2 .

3. There exists a memoryless cop strategy ̃π∗
C which is optimal for every game �G

(x,y) .

4. If ̃c (G) = 1, then for every ε > 0, there exists a memoryless robber strategy ̃πε
R which is ε-optimal for every game �G

(x,y) .

Proof. Part 1 follows immediately from Theorems 1 and 2 of [13].
In Part 2, the partition of V 2 into V 1 and V 2, is just a definition. Now suppose that ̃c (G) = 1. To complete the proof of 

Part 2, it suffices to show the existence of a cop strategy π̃#
C and a constant MG such that

∀π̃R , x, y : vG
(x,y)

(
π̃#

C , π̃R

)
≤ MG < ∞; (7)

in other words, π̃#
C guarantees finite (not necessarily optimal) capture time for every robber strategy and every starting 

position. The required π̃#
C is the strategy used in the proof of Lemma 3.3. Indeed, recall that

Ak = {
s : s ∈ S̃∞ and R is still free after the first k · T rounds

}
and when C uses π̃#

C and R uses any π̃R we have

∞∑
k=1

Pr (Ak) ≤
∞∑

k=1

(
1 −

(
1

n

)T
)k

.

It follows that

∀π̃R : vG
x0,y0

(
π̃#

C , π̃R

)
= E

( ∞∑
t=0

r (xt, yt)

)

≤
∞∑

k=1

k · T · Pr (Ak) ≤
∞∑

k=1

k · T ·
(

1 −
(

1

n

)T
)k

= M̃G,x,y < ∞.

Letting MG = max(x,y)∈V 2 M̃G,x,y < ∞, where MG depends only on G , we see that π̃#
C satisfies (7). Hence we also have:

∀x, y : v̂G
(x,y) ≤ sup

π̃R

vG
(x,y)

(
π̃#

C , π̃R

)
≤ MG < ∞; (8)

which shows that V 1 = V 2.
Part 3 follows from Theorem 2 of [13].
For Part 4, we have seen that ̃c (G) = 1 implies that v̂G

(x,y) < ∞ for every (x, y); hence the required result follows from 
Theorem 3.(i) of [13]. �
Remark 4.5. The theorem can be extended to the game �G,K

(x,y) for any graph G (with any ̃c (G)), any number of cops K and 
any initial position (x, y) (we will now have x ∈ V K ). If K ≥ c̃ (G), then V 1 = V K+1. Note that the set V 1 will never be 
empty; for example, when K = 1, (x, x) belongs to V 1 for any ̃c (G) ∈N (since vG

(x,x) (π̃C , π̃R) = 0 for any G, x, ̃πC , ̃πR ).

Remark 4.6. Parts 1, 2 and 3 of the theorem can also be proved immediately using the results of either [5] or [13].

4.2. Computation of value and optimal strategies

The value and optimal strategies of �G
(x,y) can be computed by value iteration, as shown by Theorem 4.7. Before presenting 

the theorem and its proof let us give its intuitive justification.



56 G. Konstantinidis, Ath. Kehagias / Theoretical Computer Science 645 (2016) 48–59
Suppose at time t the game position is (x, y). As already mentioned, we can assume that the “remainder game” is �G
(x,y) , 

i.e., it can be played as a new CCCR game starting at (x, y); the remainder game has value v̂G
(x,y) . Suppose further that C

uses the move u and R uses the move v . The new game position is(
x′, y′) = Q̃

((
x′, y′) , u, v

)
,

R receives

r
(
x′, y′) = r

(
Q̃ ((x, y) , u, v)

)
units from C and, invoking memorylessness again, the remainder-game is �G

(x′,y′) = �G
Q̃ ((x,y),u,v)

and has value v̂G
(x′,y′) =

v̂G
Q̃ ((x,y),u,v)

. To describe the relationship between v̂G
(x,y) and v̂G

Q̃ ((x,y),u,v)
we need some new notation.

Recall that a finite two-person zero-sum game in normal form can be specified by a single M × N matrix A [17]. The game 
is played in a single round as follows: simultaneously the maximizing Player 1 chooses the row index m and the minimizing 
Player 2 chooses the column index n; then Player 2 pays to Player 1 the amount Amn . It is well known that every such game 
has a value and many algorithms are available to compute it. We denote the game matrix A by the notation {Amn}n=1,...,N

m=1,...,M

and its value by Val
[
{Amn}n=1,...,N

m=1,...,M

]
.

It seems reasonable (and can be rigorously justified) that �G
(x,y) can be considered as a single-round finite two-person 

zero-sum game as follows: when C chooses move u and R chooses move v the expected payoff to R is

r
(

Q̃ ((x, y) , u, v)
) + v̂G

Q̃ ((x,y),u,v)
. (9)

In other words, R receives r
(

Q̃ ((x, y) , u, v)
)

units as the payoff of the current round and v̂G
Q̃ ((x,y),u,v)

units as the value of 
the “remainder-game” �G

Q̃ ((x,y),u,v)
(which is assumed to be played optimally by both players). Hence the game matrix of 

�G
(x,y) is 

{
r
(

Q̃ ((x, y) , u, v)
) + v̂G

Q̃ ((x,y),u,v)

}v∈V

u∈V
and has value

v̂G
(x,y) = Val

[{
r
(

Q̃ ((x, y) , u, v)
) + v̂G

Q̃ ((x,y),u,v)

}v∈V

u∈V

]
. (10)

Note that (10) implies especially for x = y that v̂G
(x,y) = 0.

The above is an informal argument for the connection between the values v̂G
(x,y) . The following theorem shows that the 

argument can be made rigorous; furthermore, the theorem provides a method for computing the values, as well as the 
optimal strategies.

Theorem 4.7. For every graph G = (V , E) with ̃c (G) = 1 and for every (x, y) ∈ V 2 the values 
{̂

vG
(x,y)

}
(x,y)∈V 2

are the smallest 

(componentwise) positive solution of the system of optimality equations:

v̂G
(x,y) = Val

[{
r
(

Q̃ ((x, y) , u, v)
) + v̂G

Q̃ ((x,y),u,v)

}v∈V

u∈V

]
when x 	= y, (11)

v̂G
(x,y) = 0 when x = y. (12)

Furthermore, for n = 0, 1, 2, . . . , define the initial conditions

v̂G
(x,y) (0) ≥ 0 when x 	= y and v̂G

(x,y) (0) = 0 when x = y

and, for n ∈N, the recursion (value iteration)

vG
(x,y) (n + 1) = Val

[{
r
(

Q̃ ((x, y) , u, v)
) + vG

Q̃ ((x,y),u,v)
(n)

}v∈V

u∈V

]
when x 	= y, (13)

vG
(x,y) (n + 1) = 0 when x = y. (14)

Then

∀ (x, y) ∈ V 2 : lim
n→∞ vG

(x,y) (n) = v̂G
(x,y).

Proof. This is essentially the combination of Theorems 4.4.3 and 4.4.4 from [5], but the following modifications are re-
quired.



G. Konstantinidis, Ath. Kehagias / Theoretical Computer Science 645 (2016) 48–59 57
Fig. 1. A five node path.

Fig. 2. A tree.

In [5] the optimality equations (11)–(12) and the recursion (13)–(14) are given in terms of transition probabilities which 
in our notation would be written as P

((
x′, y′) | (x, y) , u, v

)
; this is the probability that the new position is 

(
x′, y′) given the 

old position is (x, y) and the player moves are u and v . However, in CCCR transitions are deterministic, i.e.,

P
((

x′, y′) | (x, y) , u, v
) =

{
1 when

(
x′, y′) = Q̃ ((x, y) , u, v)

0 otherwise.

Furthermore, once the game reaches a capture position (x, x), it will always stay in this position, which has value ̂vG
(x,x) = 0.

Taking the above in account, the optimality equations and the recursion of [5] reduce to (11)–(14). �
Remark 4.8. The modification of the theorem for the game �G,K

(x,y) , with K > 1, is obvious.

We conclude this section with some examples. We apply the value iteration (13)–(14) to several graphs and discuss the 
results.

Example 4.9. In the first example G is a path of five nodes, as illustrated in Fig. 1. Let the (x, y) element of matrix V̂ G be 
equal to v̂G

(x,y) , the value of �G
(x,y) when the cop is at node x and the robber at node y. Value iteration yields

V̂ G =

⎡⎢⎢⎢⎣
0 4 4 4 4
1 0 3 3 3
2 2 0 2 2
3 3 3 0 1
4 4 4 4 0

⎤⎥⎥⎥⎦ .

Cop and robber optimal strategies can be described quite easily: the cop should always move towards the robber and the 
robber should always move away from the robber.6 Clearly in this graph the CCCR time-optimal strategies are the same as 
those for the TBCR game.

Example 4.10. Not surprisingly, for the tree G illustrated in Fig. 2, the optimal cop and robber strategies are again the same 
for the CCCR and TBCR games.

The value-iteration algorithm yields

V̂ G =

⎡⎢⎢⎢⎣
0 1 2 2 2
3 0 3 3 3
2 2 0 1 1
3 3 3 0 2
3 3 3 2 0

⎤⎥⎥⎥⎦ .

Example 4.11. The next example involves the clique of three nodes, as illustrated in Fig. 3.

After eight iterations, the algorithm yields V
G

which is (componentwise) within 10−2 of the true solution

V̂ G =
⎡⎣ 0 2 2

2 0 2
2 2 0

⎤⎦ .

6 Actually the robber has several other optimal strategies; he can also stay in place if the cop is at a distance greater than one. These are pure (i.e., 
deterministic) strategies; the robber also has mixed optimal strategies.
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Fig. 3. A three node clique.

Fig. 4. A Gavenciak graph.

The algorithm also yields the optimal strategies, which are symmetrical with respect to the cop and robber positions 
(x0, y0). For example, when (x0, y0) = (3,1) we have

π∗
C =

[
1

2
,

1

2
,0

]
and π∗

R =
[

0,
1

2
,

1

2

]
.

In other words, under these strategies, both cop and robber always move with equal probability to one of the two nodes they 
don’t currently occupy. It can be verified analytically that these strategies yield the previously displayed value matrix V̂ G . 
Because of symmetry, many other optimal strategies exist for both cop and robber.

Example 4.12. The final example involves a Gavenciak graph [6], as illustrated in Fig. 4.
From the results of [6] we know that the TBCR capture time of this graph is 7 (this is the minimax of the capture time 

over all initial positions). The cop is able to achieve this capture time by first maneuvering himself to node 7 and forcing the 
robber into the path subgraph, and then chasing the robber all the way to node 10. In the CCCR game the results are similar 
but they require the use of randomized strategies. We do not present the entire V̂ G (because of space limitations) but let 
us give some indicative results. For example, when the initial positions are (x0, y0) = (2,1), the cop cannot be certain of 
capturing the robber in one move (since the moves are simultaneous). It turns out that, by the application of randomized 
strategies, the optimal expected capture time is v̂G

2,1
∼= 18.82 . . . . However, the part of the strategies which concerns the 

path subgraph is, as in TBCR, deterministic. For instance once the cop reaches node 8 (with the robber in either node 9
or 10) he should deterministically perform the transitions 8 → 9 → 10. Let us also note that for this ten-nodes graph, the 
value iteration algorithm required 90 iterations to get (componentwise) within 10−2 of the true solution.

5. Related work

While the assumption of simultaneous moves is a natural one (and is better than turn-based movement as a model of 
real world pursuit / evasion problems) it appears that CCCR has not been studied in the cops and robber literature. How-
ever, our analysis of time optimal CCCR strategies follows closely the corresponding study of time optimal TBCR strategies 
presented in [7] (and expanded in [4]). Both Hahn’s algorithm in [7] and the recursion (13) of Theorem 4.7 are value it-
eration algorithms. The main difference between the two is this: while in Hahn’s algorithm updating the value in every 
iteration only requires taking a minimum or a maximum, every value iteration of (13) requires solving a one-round, zero-sum 
game (this is indicated by the Val [·] operator in (13)). Consequently, (13) is computationally more intensive than Hahn’s 
algorithm.

As already mentioned, simultaneous moves have not been explored in the CR literature. On the other hand, an interesting 
analog can be found in the literature of reachability games [2,14]. As we have pointed out in [11,12], TBCR is a special case 
of a “classical” (i.e., turn-based) reachability game. Similarly, CCCR is a special case of a concurrent reachability game.7 The 
literature on concurrent reachability games [1] can furnish useful insights for the analysis of CCCR.

All the above problems can be considered as special cases of the general stochastic game. The book [5] is an excellent, 
comprehensive and relatively recent study of the topic; it also contains many references to important earlier work.

6. Concluding remarks

We conclude this paper by presenting questions which, in our opinion, merit further study.

7 This is the source of our term “concurrent CR game”.
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One group of questions concern the definition of cop number, which in turn depends on the definition of the properties 
of the capture event. To understand the issue, we must turn back to concurrent reachability games. Let A be the set of all 
infinite histories of a reachability game and B ⊆ A the set of all infinite histories in which the target state is reached (in 
CCCR, B would be the set of all infinite histories {(xt , yt)}∞t=0 for which there is some tc such that xtc = ytc ). As pointed out 
in [1], the target state can be reached in at least three different senses (and each of these implies the next one in the list).

1. Sure reachability: B = A.
2. Almost sure reachability: Pr (B) = 1.
3. Limit sure reachability: For every real ε, player 1 has a strategy such that for all strategies of player 2, the target state is 

reached with probability greater than 1 − ε.

The above carry over to CCCR and can be used to define corresponding cop numbers: csure (G), calmostsure (G) and climitsure (G). 
In this paper we have worked exclusively with ̃c (G) = calmostsure (G). Obviously

csure (G) ≥ calmostsure (G) ≥ climitsure (G)

but several additional questions can be asked. For example can the ratios csure(G)
calmostsure(G)

and csure(G)
climit-sure(G)

be bounded by a con-
stant? By a number depending on the size of G? How about the differences csure (G) − calmostsure (G) and calmostsure (G) −
climitsure (G)?

Another group of questions concerns the CCCR variants obtained by modifying the cop’s and/or the robber’s behavior.

1. For example, what is the cost of drunkenness? In other words, what is the ratio of expected capture times for the 
previously described CCCR game and a variant in which the robber performs a random walk on the nodes of the graph? 
The same question has been studied for the TBCR case in [9,10].

2. Similarly, what is the cost of visibility? In this case we study the ratio of expected capture times for the previously 
described CCCR game and a variant in which the robber is invisible to the cop. For the TBCR case, this has been studied 
in [10,11].
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