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Abstract—A fuzzy inference system (FIS) typically implements
a function f : RN → T, where the domain set R denotes the to-
tally ordered set of real numbers, whereas the range set T may be
either T = RM (i.e., FIS regressor) or T may be a set of labels
(i.e., FIS classifier), etc. This study considers the complete lattice
(F , �) of Type-1 Intervals’ Numbers (INs), where an IN F can be
interpreted as either a possibility distribution or a probability dis-
tribution. In particular, this study concerns the matching degree
(or satisfaction degree, or firing degree) part of an FIS. Based on an
inclusion measure function σ : F × F → [0, 1] we extend the tra-
ditional FIS design toward implementing a function f : FN → T

with the following advantages: 1) accommodation of granular in-
puts; 2) employment of sparse rules; and 3) introduction of tunable
(global, rather than solely local) nonlinearities as explained in the
manuscript. New theorems establish that an inclusion measure
σ is widely (though implicitly) used by traditional FISs typically
with trivial (i.e., point) input vectors. A preliminary industrial ap-
plication demonstrates the advantages of our proposed schemes.
Far-reaching extensions of FISs are also discussed.

Index Terms—Fuzzy inference system (FIS), fuzzy interval,
fuzzy lattice reasoning (FLR), granular computing, inclusion
measure, industrial dispensing, intervals’ number (IN), lattice
computing (LC).

I. INTRODUCTION

FUZZY inference systems (FIS) are a long-established tech-
nology [24], [53], [72]. An FIS can be interpreted as a

fuzzy-logic-based device that implements a function f : RN →
T, where the domain set R denotes the totally ordered set of
real numbers, whereas the range set T may be either T = RM

(i.e., FIS regressor) or T may be a set of labels (i.e., FIS classi-
fier), etc. [34]. The inherent restrictions of a typical FIS include
1) crisp vector inputs that cannot accommodate vagueness, 2)
a sparse rule base that may not be activated for some system
inputs, and 3) local (instead of global, as explained below) rule
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activation that may result in a costly rule proliferation, especially
when the number of input/output variables increases.

A number of different schemes have been proposed, in various
contexts, to overcome the aforementioned FIS restrictions. For
instance, Zadeh’s compositional rule of inference (CRI) [82],
applicable to a Mamdani type FIS [53], can deal with fuzzy
data. Moreover, granular computing schemes [59] have been
proposed for processing noncrisp data as well as for dealing with
uncertainty in modeling applications [5], [16]. Type-2 fuzzy
sets have been proposed for accommodating vagueness in FISs
[54], [77]. Other schemes, such as interpolative reasoning [26],
[48], [49] have been proposed for dealing with sparse rule bases.
Furthermore, evolving as well as interpretable rule structures
have been proposed to encounter rule proliferation [9].

This study concerns the matching degree (or satisfaction de-
gree, or firing degree) part of an FIS. In particular, this study
proposes a single instrument, namely an inclusion measure func-
tion σ(., .), toward overcoming all the aforementioned “inherent
restrictions” of FISs by extending the applicability domain of a
typical FIS to the space of Intervals’ Numbers (INs) as explained
below. Recall that previous work has employed the term Fuzzy
Interval Number (FIN) instead of the term IN because it stressed
a fuzzy interpretation [58]. Moreover, the work in [58] explains
that an IN is a mathematical object, which may be interpreted
as either a probability/possibility distribution or an interval or a
real number.

Regarding the fuzzy set theory in particular, note that even
though a fuzzy membership function can be defined on any
universe of discourse, it is fuzzy numbers (i.e., convex normal
fuzzy sets defined on the real numbers R universe of discourse)
that are of special interest due to the widespread use of real
numbers [34]. Furthermore, the “resolution identity theorem”
[83] has shown that a fuzzy set can, equivalently, be represented
either by its membership function or by its α-cuts [47], [57];
obviously, a fuzzy number’s α-cut is an interval. This study
builds explicitly on the α-cuts representation of fuzzy numbers.

In our previous work, we have studied the notion of general-
ized intervals (and generalized INs); these are mathematical ob-
jects [a, b] with a, b ∈ Rwhere it is not necessary that a ≤ b. The
interested reader can consult [31] and the references included
therein. Recently, we have turned to “classical intervals” (on
which the restriction a ≤ b is enforced) and INs.1 In particular,
we have shown that the set F of INs is a metric lattice [30], [45]
with cardinality ℵ1 [33], [34], where “ℵ1” is the cardinality of
the set R of real numbers; moreover, the space F is a cone in a
linear space [36], [58].

1INs, on the one hand, are better suited to certain applications but, on the
other hand, require somewhat different methods of analysis.
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In a previous publication, INs have been proposed for ex-
tending FISs that are based on a metric (distance) function [34].
More specifically, a fuzzy membership function was defined
in [34] as a function of a metric between INs with the objective
of alleviating the curse of dimensionality problem. The same ob-
jective can be pursued here by the employment of an inclusion
measure function. However, only an inclusion measure function
extends, in a “principled way” as explained below, the semantics
of established FIS practices. In addition, an inclusion measure
can extend the applicability of FISs to nonnumeric data domains
as discussed next.

Since inclusion measures are central to our approach, let us
present some related bibliographic remarks. The literature on in-
clusion measures is extensive. Hence, we only give a very brief
introduction (because of space limitations); the interested reader
can use our references as a starting point for further study. Fuzzy
set inclusion was first defined by Zadeh [81] as a crisp relation: a
fuzzy set A is either included or not included in another fuzzy set
B. Kosko reacted to this by defining set inclusion as a fuzzy rela-
tion [50]. This was further enhanced by the axiomatic approach;
for example Sinha and Dougherty [66] list nine properties that a
“reasonable” inclusion measure should have and then derive in-
clusion measures which have these properties. Other authors [1]
obtain inclusion measures from fuzzy implication operators.
These two approaches (axiomatization and use of fuzzy impli-
cations) are combined in several papers [6], [11], [15], [80];
e.g., Burillo et al. [6] introduce a family of implication opera-
tors, obtain inclusion measures from these and show that these
satisfy Sinha and Dougherty’s axioms. A short but very enlight-
ening discussion of the various ways in which “classical subset-
hood” can be generalized in the fuzzy context appears in [10,
pp. 347 and 351–353] where various generalizations of fuzzy
subsethood/inclusion measures are categorized into two sepa-
rate tracks “one logic-based, the other frequency-based”. In [7]
and [46], lattice-valued inclusion measures are introduced, i.e.,
inclusion grades are partially ordered. A more common gen-
eralization involves real-valued inclusion measures, which can
be applied to L-fuzzy sets [18]; specific examples involve intu-
itionistic fuzzy sets [10], [23], [84], [85], interval-valued fuzzy
sets [84], and Type-2 fuzzy sets [27], [54]. A quite general class
of inclusion measures appropriate for L-fuzzy sets has been re-
cently introduced in [71]. A detailed discussion on the relation
between INs and Type-2 fuzzy sets is presented in [42]. The rela-
tionship between interval-valued fuzzy sets, intuitionistic fuzzy
sets, and other extensions of fuzzy sets is discussed in [12]
and [13]. For some applications of set inclusion see [14], [44],
and [56] (and the references included therein) as well as the
papers discussed in the next paragraph.

In our own early work [29], concentrating on hyperboxes, we
have started with a fuzzy measure σ(A,B) of the inclusion of a
crisp set (hyperbox) A into another crisp set (hyperbox) B and
developed a methodology which uses their inclusion measure
for clustering and classification applications [37]–[39], [60]. Af-
ter realizing that the set of hyperboxes in RN is lattice ordered,
we extended the hyperbox approach to a general lattice data do-
main as described in [31]. In particular, we have used inclusion
measures to fuzzify the crisp inclusion relation for (fuzzy) INs.

It turns out that in the lattice of (fuzzy) INs some technical diffi-
culties arise in the definition of inclusion measures; we address
these difficulties in Section III. Let us note in passing that the
term “inclusion measure” is probably not general enough; our
σ (x, y) functions can be better understood as fuzzy orders; that
is, σ (x, y) expresses the truth value of the statement “x ≤ y”
(where x, y are elements of a lattice). However, we stick to the
term “inclusion measure” for historical reasons.

The current paper as well as our aforementioned work falls
within the general framework of lattice computing (LC), which
has been defined as “the collection of computational intelligence
tools and techniques that either make use of lattice operators inf
and sup for the construction of the computational algorithms or
exploit the lattice theory for language representation and rea-
soning” [21]. This work adheres to an extended definition of
LC that denotes “an evolving collection of tools and mathemati-
cal modeling methodologies with the capacity to process lattice
ordered data per se including logic values, numbers, sets, sym-
bols, graphs, etc.” [43], [75]. A recent brief review of selected
LC methodologies appears in [20]. The several applications
of lattice-theory-based schemes with emphasis on fuzzy control
are presented in [28]. An excellent reference on accommodating
vagueness and uncertainty in the context of LC is [55]. Specific
examples of the LC approach include the connections between
granular computing and lattice theory [52], [67] (since informa-
tion granules are partially/lattice ordered), lattice-valued (propo-
sitional) logics [78], [79], the use of lattice theory to study fuzzy
relations [2] and knowledge representations [17] and to extend
the notion of a belief function [19]. Also, note that mathemati-
cal morphology (MM), generally conducted in complete lattices
or inf-semilattices, is firmly rooted in the lattice theory [25],
[62], [63]. Hence, morphological neural networks (MNN) in-
cluding both morphological perceptrons and morphological as-
sociative memories (MAMs) [61], [67], [68], [69], [76] should
also be classified as LC models. In particular, a fuzzy MAM
can be used to implement an FIS that is based on the complete
lattice structure of the class of fuzzy sets [70], [73], [74]. Trends
in LC appear in [22], [32], and [40].

This paper is organized as follows. Section II presents mathe-
matical preliminaries regarding INs. Section III details inclusion
measure functions with emphasis on INs. Section IV illustrates
FIS extensions. Section V presents a preliminary industrial dis-
pensing application. Section VI concludes by summarizing our
contribution in perspective. The Appendixes include proofs of
theorems and lemmas.

II. MATHEMATICAL PRELIMINARIES

In this section, we present useful definitions, theorems,
and notation. Since most theorems presented here are “clas-
sical,”their proofs are omitted.

We use the following set-theoretic notation. The empty set
is denoted by ∅. Both A ⊆ B and B ⊇ A indicate that A is a
subset of B; both A ⊂ B and B ⊃ A indicate that A is a proper
subset of B, i.e., there is at least one x such that x /∈ A and
x ∈ B; both A � B and B � A indicate that A is not a subset
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of B. Finally, A\B denotes the set of all elements of A which
are not contained in B (set difference).

A binary relation ≤ on a set P is a partial order iff it satisfies
three conditions: x ≤ x (reflexivity), x ≤ y and y ≤ x ⇒ x = y
(antisymmetry), and x ≤ y and y ≤ z ⇒ x ≤ z (transitivity).
In this case, (P,≤) is called a partially ordered set or poset.
Similarly to the set theoretic notation, y ≥ x, x < y, y > x,
x 
≤ y, y 
≥ x are interpreted in the “obvious” way.

A lattice is a poset (X,≤) with the additional property that
any two elements x, y ∈ X have both an infimum (i.e., greatest
lower bound) denoted by x ∧ y and a supremum (i.e., a least
upper bound) denoted by x ∨ y. It may be the case that for two
elements x, y ∈ X neither x ≤ y nor x > y holds; in this case
we say that x and y are incomparable and write x‖y. If in a
lattice (X,≤) every (x, y) pair satisfies either x ≤ y or x > y,
then we say that lattice (X,≤) is totally ordered.

Example 2.1: Given any set X , denote by 2X the set of all
subsets of X; then

(
2X ,⊆

)
is a (not totally ordered) lattice, with

set intersection ∩ being the infimum operation and set union ∪
being the supremum operation.

A lattice (X,≤) is called complete iff each of its subsets Y
has both a greatest lower bound and a least upper bound in X
(hence, taking Y = X, we see that a complete lattice has both a
least element and a greatest element).

In this paper, we will use a reference set L ⊆ R, where
R = R∪{−∞,∞} is the set of extended real numbers. We
will choose L so that (L,≤) is a complete and totally ordered
lattice (here ≤ is the “usual” order relation of real numbers).
For example, L can be R itself, or an interval [a, b] ⊂ R, or
a finite set {x1 , x2 , . . . , xN } ⊂ R. In every case, L includes a
least element that is denoted by o, and a greatest element that is
denoted by i (hence, L = [o, i]); the inf and sup operations are
denoted by ∧ and ∨.

Given a1 , a2 ∈ L, with a1 ≤ a2 , the (Type-1) interval A =
[a1 , a2 ] is defined by

[a1 , a2 ] = {x : x ∈ L and a1 ≤ x ≤ a2}.
The empty set is also considered an interval, the so-called emp-
tyinterval.2 We denote the collection of Type-1 intervals of L
(including the empty interval) by I (L), or simply by I.

The structure (I,⊆) is an ordered set. In fact, it is well known
that the structure (I,⊆) is a complete lattice with respect to the
⊆ order (i.e., set theoretic inclusion). The least element of I is
∅, which will also be denoted by O; the greatest element of I
is L = [o, i], which will also be denoted by I . Given nonempty
intervals A = [a1 , a2 ] ∈ I, B = [b1 , b2 ] ∈ I, their infimum and
supremum inside I are given by

A ∩ B = [a1 ∨ b1 , a2 ∧ b2 ] and A∪̇B = [a1 ∧ b1 , a2 ∨ b2 ].

A fuzzy subset F of L is essentially identical to its member-
ship function mF : L → [0, 1]; intuitively, the number mF (x)
denotes the degree to which x belongs to F . A partial order can
be defined for fuzzy subsets as follows:

F ≤ G ⇔ (∀x : mF (x) ≤ mG (x)) . (1)

2The empty interval can also be denoted as [a1 , a2 ] with any a1 , a2 such that
a1 > a2 .

(We use, without danger of confusion, the same symbol ≤ for
the order on real numbers and the one on fuzzy sets). It is easy
to check that the infimum (respectively supremum) of two fuzzy
sets F , G is a fuzzy set denoted by F ∧ G (respectively F ∨ G)
and defined for every x ∈ L by

mF ∧G (x) = mF (x) ∧ mG (x)

mF ∨G (x) = mF (x) ∨ mG (x) . (2)

Given a fuzzy subset F with membership function mF , the
h-cut3 of F is the set

F (h) = {x : mF (x) ≥ h}.

It is well known that a fuzzy subset is fully determined by the
family of its h-cuts, i.e., {F (h)}h∈[0,1] . More specifically, as
shown in [57], given a fuzzy set F with membership function
mF , we have:

(∀h : F (h) = G (h)) ⇔ (∀x : mF (x) = mG (x)) .

Fuzzy intervals have been studied extensively (for example,
see [47] and [57] and the references therein). Recall that a fuzzy
interval is defined as a fuzzy subset F whose every h-cut is
an interval: (∀h : F (h) ∈ I). We denote the set of all fuzzy
intervals by F ′.

In [45], it is proved that the set F ′ of fuzzy intervals, which
are equipped with the usual fuzzy sets order ≤, is a complete
lattice; i.e., (F ′,≤) is a complete lattice. The infimum operation
is ∧ as defined in (2). The supremum operation is denoted by ∨̇
and is defined in terms of membership functions, as follows:

mF ∨̇G = inf {mH : H ∈ F ′, F ≤ H,G ≤ H} .

In words, F ∨̇G is the smallest fuzzy interval which is greater
than both F and G.

We now introduce Type-1 INs.
Definition 2.2: A Type-1 IN is a function F : [0, 1] → I which

satisfies

F (0) = I

h1 ≥ h2 ⇒ F (h1) ⊆ F (h2)

∀P ⊆ [0, 1] : ∩h∈P F (h) = F
(∨

P
)

.

We denote the class of all (Type-1) INs by F .
Consider the following result, which has been proved in nu-

merous papers and books [3], [47] as well as holds in the more
general context of L-fuzzy sets [57], [64], [65].

Given an IN E ∈ F , define mẼ , the membership function of

a fuzzy set Ẽ, as follows:

∀x : mẼ (x) = sup {h : x ∈ E (h)} .

The h-cuts of mẼ are denoted by Ẽ (h) and, by definition,

satisfy: ∀h ∈ [0, 1] : Ẽ (h) = {x : mẼ (x) ≥ h}. Then, it turns

out that for all h ∈[0, 1], we have Ẽ (h) = E (h). Hence, Ẽ (the

3We use the term “h-cut” instead of the (equivalent) term “α-cut” used in the
literature for fuzzy sets. The rationale for introducing the new term stems from
two different interpretations for an IN as explained in [58].
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(a)

(b)

Fig. 1. Two equivalent representations for an IN E include (a) the
interval-representation E(h), h ∈ [0, 1] and (b) the membership-function-
representation mE (x), x ∈ R. Samples of the former representation are shown
here for L = 32 different levels spaced evenly over the interval [0, 1] on the
vertical axis.

(a)

(b)

Fig. 2. (a) Height hE of IN E equals hE = 1. (b) Height hG of IN G equals
hG = 0.7.

unique fuzzy set with membership function mẼ ) is a fuzzy inter-
val. In other words, the h-cuts are the intervals of the original IN
and we have a 1-to-1 correspondence between fuzzy intervals
and INs. There follow two equivalent representations for an IN,
namely the interval representation and the membership function
representation (see Fig. 1). An advantage of the interval repre-
sentation is that it enables useful algebraic operations, whereas
an advantage of the membership function representation is that
it enables convenient fuzzy logic interpretations.

The height of an IN E, symbolically hE , is defined as
the supremum of the associated membership function mE :
[−∞,∞] → [0, 1] values; i.e., hE =

∨
x∈[−∞,∞]mE (x). For

example, the height hE of IN E in Fig. 2(a) equals hE = 1,

whereas the height hG of IN G in Fig. 2(b) equals hG = 0.7; in
particular, note that it is G(h) = O = ∅ for h ∈ (0.7, 1].

Just like fuzzy intervals are equipped with a partial order ≤,
similarly INs can be equipped with a partial order� by defining,
for every pair F,G ∈ F , the relationship � as follows:

F � G ⇔ (∀h ∈ [0, 1] : F (h) ⊆ G(h)).

The isomorphism of (F ′,≤) and (F ,�) is a consequence of
the following theorem (the proof of which appears in Appendix
A).

Theorem 2.3: For all F,G ∈ F we have

F � G ⇔ (∀h ∈ [0, 1] : F (h) ⊆ G(h)) ⇔
⇔ (∀x ∈ L : mF (x) ≤ mG (x)) .

Theorem 2.3 has the following corollaries.
Corollary 2.4: For all F,G ∈ F the following equivalence

holds.

F ≺ G ⇔
( ∀h : F (h) ⊆ G(h)

∃h0 : F (h0) ⊂ G(h0)

)
⇔

⇔
( ∀x : mF (x) ≤ mG (x)

∃x0 : mF (x0) < mG (x0)

)
.

Corollary 2.5: The relationship � is a partial order on F and
(F ,�) is a complete lattice (the lattice of INs). If we denote
the infimum operation by � and the supremum operation by �̇,
then

∀h ∈ [0, 1] : (F � G)(h) = F (h) ∩ G(h) and

(F �̇G)(h) = F (h)∪̇G(h).

Corollary 2.6: The lattice of fuzzy intervals (F ′,≤) and the
lattice of INs (F ,�) are isomorphic.

III. INCLUSION MEASURE FUNCTIONS

As already mentioned in the Introduction, an inclusion mea-
sure quantifies (by a real number in [0, 1]) the degree to which a
(crisp or fuzzy) set is included in another one. At a higher level
of generality, an inclusion measure σ (x, y) quantifies the degree
to which the order x � y is true, where x and y are elements
of a lattice with order � (the crisp interval inclusion ⊆ and the
fuzzy interval inclusion � are special cases of �). Let us now
give a precise definition.

Definition 3.1: Let (X,�) be a lattice with inf operation �
and sup operation �. A function σ : X×X → [0, 1] is called an
inclusion measure on X if the following properties hold for all
x, y, z ∈ X.

C1. σ (x, x) = 1.
C2. x 
� y ⇒ σ (x, y) < 1.
C3. y � z ⇒ σ (x, y) ≤ σ (x, z).

In short, an inclusion measure function σ (x, y) quantifies the
degree of inclusion of a general lattice element x to another one
y, in a “principled way” (in the sense of satisfying properties
C1–C3). Another way to look at the matter is this: C1–C3 imply
that σ is “compatible” with the order relation �; in fact yet
another formulation is that σ (x, y) is a fuzzy order relation.
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This can also be seen by the following theorem (the proofs of
theorems and lemmas are presented in the Appendixes).

Theorem 3.2: For all x, y ∈ X we have: (a) x � y ⇔
σ (x, y) = 1 and (b) x � y � x ⇔ σ (x, y) < 1.

We remark that Definition 3.1 is more general than a previous
definition for an inclusion measure [31], [38], [41]; the latter
(definition) included the property “C0 σ(x,O) = 0, for x � O”
regarding, in particular, a complete lattice (X,�) with least
element O. However, C0 is overly restrictive because, for x �
O, it follows (O � y and x � y � x) ⇒ σ(x,O) ≤ σ(x, y) <
1; in other words, for x � O, in a complete lattice, Definition
3.1 only implies σ(x,O) < 1 instead of the overly restrictive
σ(x,O) = 0.

An inclusion measure function σ : X×X → [0, 1] gives rise
to a parametric (fuzzy) membership function σ(., y), where
y represents a parameter. Moreover, recall that an inclusion
measure function σ supports two different modes of reasoning,
namely Generalized Modus Ponens and Reasoning by Anal-
ogy [41]. Recall also that an employment of inclusion measure
function σ(., .) for decision making is called fuzzy lattice rea-
soning, or FLR for short [35].

In the rest of this section, we will construct inclusion measures
specifically for (crisp or fuzzy) intervals. In other words, we will
construct inclusion measures on the lattices (I,⊆) and (F ,�).
To this end, we will use the following two functions, which will
be considered fixed for the rest of the section.
A1: A strictly increasing function v : L → [0,∞) which sat-

isfies both v (o) = 0 and v (i) < ∞.
A2: A strictly decreasing function θ : L → L.

A. Inclusion Measures on I

First, we will introduce inclusion measures for crisp intervals.
To this end, using functions v and θ, which satisfy A1–A2, we
introduce length functions next.

Definition 3.3: A length function V : I → [0,∞) has the fol-
lowing form:

V (A) =
{

0, iff A = O

v (θ (a1)) + v (a2) , iff A = [a1 , a2 ] 
= O.

The following Lemmas describe some properties of length
functions, which hold for every v and θ satisfying A1–A2.

Lemma 3.4: Every length function V is a strictly increasing
function, i.e.,

A ⊂ B ⇒ V (A) < V (B)

and, for all A ∈ I\ {O}, V (A) > 0.
Lemma 3.5: For every length function V and for all A =

[a1 , a2 ], B = [b1 , b2 ], C = [c1 , c2 ] ∈ I we have:

O ⊂ B ⊆ C ⇒ V (A ∪̇ C) − V (C) ≤ V (A ∪̇ B) − V (B) .
(3)

Now, we are ready to introduce functions σV
∩ and σV

∪̇ which
are inclusion measures for every pair (v, θ) which satisfies A1–
A2 (hence, we actually define two families of inclusion mea-
sures, with members of each family determined by the choice
of v and θ).

Definition 3.6: The functions σV
∩ : I × I → [0, 1] and σV

∪̇ :
I × I → [0, 1] are defined as follows:

σV
∩ (A,B) =

⎧
⎨

⎩

1, iff A = O

V (A ∩ B)
V (A)

, iff A 
= O

σV
∪̇ (A,B) =

⎧
⎨

⎩

1, iff A ∪̇ B = O

V (B)
V (A ∪̇ B)

, iff A ∪̇ B 
= O
(4)

where V : I → [0,∞) is a length function.
Theorem 3.7: The functions σV

∩ and σV
∪̇ are inclusion mea-

sures on I.
Remark 3.8: In previous work [37], we have used an approach

similar to the current one to introduce inclusion measures in
the lattice of generalized intervals (i.e., mathematical objects
[a1 , a2 ] where we allow a1 > a2) as follows. Starting with a
positive valuation v on the lattice of real numbers, we extended
it to a positive valuation V on the lattice of generalized inter-
vals by V ([a1 , a2 ]) = v (θ (a1)) + v (a2). Then, V can be used
to define an inclusion measure on the lattice of generalized in-
tervals. The similarity to our current approach is obvious, but
there is a technical difficulty. More specifically, even when v is
a valuation (on the real numbers) and θ is a decreasing function,
V ([a1 , a2 ]) = v (θ (a1)) + v (a2) is not necessarily a valuation
in the lattice of crisp intervals. Nevertheless, the significance
of Theorem 3.7, is that V can still be used to define inclusion
measures, as long as it is a length function.

Example 3.9: In this example, we take L = [0,M ], v(x) = x,
and θ(x) = M − x (which, obviously, satisfy A1–A2). Take
intervals A = [a1 , a2 ] and B = [b1 , b2 ] (in case A = O = ∅, we
write A = [M, 0] and similarly for B). Then,

V (A) = V ([a1 , a2 ]) = M + a2 − a1 .

The functions

σV
∩ (A,B) =

⎧
⎨

⎩

1, iff A = O
V ([a1 ∨ b1 , a2 ∧ b2 ])

V ([a1 , a2 ])
, otherwise

and

(5)

σV
∪̇ (A,B) =

⎧
⎨

⎩

1, iff A = B = O
V ([b1 , b2 ])

V ([a1 ∧ b1 , a2 ∨ b2 ])
, otherwise

are inclusion measures on the lattice (I ([0,M ]) ,⊆).
Example 3.10: In this example, we take L = [−∞,∞] and

v(x) =
1

1 + e−λ·(x−μ) and θ(x) = 2μ − x

(where λ ∈ R+ , μ ∈ R) which, obviously, satisfy A1–A2. Take
intervals A = [a1 , a2 ] and B = [b1 , b2 ] (in case A = O = ∅, we
write A = [∞,−∞] and similarly for B). Then,

V (A) =
1

1 + eλ·(a1 −μ) +
1

1 + e−λ·(a2 −μ) (6)

and the functions of (5) (with V now given by (6)) are inclusion
measures on the lattice (I ([−∞,∞]) ,⊆).

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on December 17,2021 at 10:29:10 UTC from IEEE Xplore.  Restrictions apply. 



536 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 22, NO. 3, JUNE 2014

B. Inclusion Measures on F

We now introduce (families of) inclusion measures for INs.
Definition 3.11: Let σV

∩ and σV
∪̇ be the inclusion measure

functions of Theorem 3.7 (these definitions depend on the choice
of the length function V and, ultimately, on both functions v and
θ). Now, we define the functions sigma-meet σV

� : F × F →
[0, 1] and sigma-join σV

�̇ : F × F → [0, 1] as follows:

σV
�(F,G) =

∫ 1

0
σV
∩ (F (h), G(h))dh

and

σV
�̇(F,G) =

∫ 1

0
σV
∪̇ (F (h), G(h))dh.

Theorem 3.12: The functions σV
� and σV

�̇ are inclusion mea-
sures on (F ,�).

We remark that both inclusion measures σV
� and σV

�̇ have been
presented elsewhere [30], [31], [35], [42] based on a positive
valuation function V in the lattice of generalized intervals rather
than based on the (different) length function V in the lattice I
of intervals as shown in this study.

We will argue in Section IV that an inclusion measure σ is
widely (though implicitly) used by traditional FISs. The basis
for our claim is provided by the following two theorems.

Theorem 3.13: Take any F ∈ F and X0 ∈ F such that
X0(h) = [x0 , x0 ] for all h ∈ [0, 1]. Then, for any length func-
tion V , we have σV

�(X0 , F ) = mF̃ (x0) (where F̃ is the fuzzy
interval corresponding to IN F ).

Remark 3.14: Theorem 3.13 couples an IN’s two different rep-
resentations, namely the interval representation and the mem-
bership function representation (see in Fig. 1). Note that the
proof of Theorem 3.13 justifies our requirement V (O) = 0 for
a length function V .

Remark 3.15: Theorem 3.13 can be used to show an interest-
ing connection between inclusion-measure-based inference and
the compositional rule of inference (CRI) [82]; the latter (CRI)
has the form

mG (y) = sup
x

(mF (x) ∧ R (x, y)) (7)

where mF , mG are membership functions and R (x, y) is a
fuzzy relationship connecting x and y. Now suppose G,F ∈ F ;
in particular, let F be a trivial IN, i.e., F (h) = [x0 , x0 ] for all
h ∈ [0, 1] (and a fixed x0). Furthermore, suppose that for all
y, R (x, y) is a fuzzy interval; the latter corresponds to IN Ry .
Now, inferences regarding F can be performed using either the
inclusion measure σV

�(., .) or CRI. On the one hand, if we use the
inclusion measure then by Theorem 3.13 the matching degree
is given by

σV
�(F,Ry ) = R (x0 , y) .

On the other hand, if we use the CRI, then by (7) the matching
degree is

mG (y) = sup
x

(mF (x) ∧ R (x, y)) = R (x0 , y) (8)

since mF (x) = 0 for all x 
= x0 and mF (x0) = 1. Therefore,
we see that inclusion-measure-based inference and CRI produce

the same result when both F is a trivial IN and R (x, y) is a
fuzzy interval with respect to its first argument. However, for
a nontrivial IN F , the CRI and σV

�(F,Ry ) produce different
results as demonstrated in the industrial dispensing application
example in Section V.

Given N lattices (Xi ,�i), i ∈ {1, . . . , N}, with the corre-
sponding inf and sup operations that are denoted by �i and �i ,
we can define the product lattice as follows [4]. The reference
set is X = X1 × · · · ×XN ; for any N -tuples x = (x1 , . . . , xN )
∈ X and y = (y1 , . . . , yN )∈ X, the order � is defined by:
x � y ⇔ (∀i ∈ {1, . . . , N} : xi �i yi). Then (X,�) is a lat-
tice with inf � and sup � operations defined as follows:

x � y = (x1 �1 y1 , . . . , xN �N yN ) and

x � y = (x1�1y1 , . . . , xN �N yN ) .

The following definition and theorem show how to introduce
inclusion measures to “product” or, equivalently, “aggregate”
lattices.

Definition 3.16: Let lattice (X,�) be the product of N lattices
(Xi ,�i) (i ∈ {1, . . . , N}) and suppose σi is an inclusion mea-
sure on (Xi ,�i) (for i ∈ {1, 2, . . . , N}). We define functions
σ∧ : X× X → [0, 1] and σΠ : X× X → [0, 1] as follows

σ∧(x,y) = min
i∈{1,...,N }

σi(xi, yi) and

σΠ(x,y) =
N∏

i=1

σi(xi, yi).

Theorem 3.17: The functions σ∧(x,y) and σΠ(x,y) are in-
clusion measures on the product lattice (X,�).

Remark 3.18: Any one of the lattices (Xi ,�i) implicit in
Theorem 3.17 can be a lattice of crisp intervals or INs (or, in
fact, any other lattice) and the inclusion measures σi can be any
of the previously defined σV

∩ , σV
∪̇ , σV

� , σV
�̇ (for various choices of

functions vi, θi). We can use these “component lattices” to build
an “aggregate lattice”; then, Theorem 3.17 tells us how to obtain
an inclusion measure for this aggregate lattice. Furthermore,
we point out that Theorem 3.13 applies, in particular, to the
lattice (F ,�) of INs, whereas Theorem 3.17 applies to a general
product lattice (X,�).

C. Some Remarks on the Construction of the Inclusion
Measures

We now present some remarks about our methodology of
constructing inclusion measures in (F ,�). This methodology
consists of two steps: in the first step, we construct σV

∩ and σV
∪̇ ,

inclusion measures for crisp intervals; in the second step, we
construct σV

� and σV
�̇ , inclusion measures for INs.

Regarding σV
∩ and σV

∪̇ , note that these are determined by
the length function V ([a1 , a2 ]) = v (θ (a1)) + v (a2) and so
ultimately by the strictly increasing function v : L → [0,∞)
and the strictly decreasing function θ : L → L. For instance, as
shown in Example 3.9, given v(x) = x as well as θ(x) = M −
x it follows V ([a, b]) = M + b − a. In practice, a parametric
family of functions v(.) and/or θ(.) is proposed by the user. Note
that different authors have already proposed linear /hyperbolic
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tangent /arctan /sigmoid positive valuation functions v(.) [36],
[37], [41], [51], [52]; whereas, the corresponding function θ(.)
is an affine. Then, typically, optimal parameter estimates are
induced from “training data” using stochastic search techniques
(e.g., genetic algorithms) as demonstrated in numerous pattern
classification and regression applications [36], [42], [58].

Function V ([a1 , a2 ]) is meant (as its name indicates) as a
generalization of the length of the interval [a1 , a2 ]. In this light,
for example, the inclusion of interval A = [a1 , a2 ] in inter-
val B = [b1 , b2 ] is a ratio of lengths (σV

∩ (A,B) = V (A∩B )
V (A) ),

namely the length of the common part of A and B divided by
the total length of A. This approach to inclusion measure, not
just for crisp intervals but for general fuzzy sets, has been in-
troduced in [50]; see [80] for many interesting generalizations.
We can also understand V (.) as a probability measure, in which
case V (A∩B )

V (A) will be understood as a conditional probability.

Now, recall that a probability is a special case of a set-measure4

which, in turn, is a generalization of length. Similar (though not
identical) remarks can be made about σV

∪̇ (A,B) = V (B )
V (A ∪̇B ) .

In short, we obtain our inclusion measures by generalizing the
concept of length.

It remains to explain why V ([a1 , a2 ]) = v (θ (a1)) + v (a2)
is indeed a generalization of length. Recall that we work with
crisp intervals; these are a restricted (but very useful) type of
sets which are characterized by two numbers: their endpoints.
Hence, V ([a1 , a2 ]) need only depend on the endpoints a1 , a2 ;
and if it is meant to generalize length, then V ([a1 , a2 ]) must
be increasing with a2 and decreasing with a1 ; an easy way to
achieve this is by setting V ([a1 , a2 ]) = v (θ (a1)) + v (a2) .

We now turn to σV
� and σV

�̇ . These are inclusion measures
for INs (or, equivalently, for fuzzy intervals) and they work by
aggregating the degrees of inclusion for an infinite family of
crisp intervals, namely the cuts A (h) and B (h) for every h
value. A natural way to achieve this aggregation is by using the
integral operator; this is the motivation behind Definition 3.11.

Let us conclude by remarking that the length function can
be generalized in other ways. Perhaps the simplest one is to let
V ([a1 , a2 ]) be a true set measure. For example, one could try
to obtain a family of inclusion measures by using

V ([a1 , a2 ]) =
∫ a2

a1

w (x) dx (9)

where w (x) is a strictly positive bounded function [33], [34].
However, (9) yields V ([a1 , a1 ]) = 0, which contradicts the
requirement V (A) = 0 ⇒ A = O. More generally, an inclu-
sion measure cannot be obtained from a set-measure V under
which exist nonempty sets of measure zero. This technical diffi-
culty can be resolved on discrete spaces, in which set-measures
can be used to construct inclusion measures. For example, let
L = {x1 , . . . , xN } be a subset of the real numbers (equipped
with the “usual” order ≤) and define (for n = 1, . . . , N ) the
“weights” v (xn ) = wn > 0; then the function

V ([a1 , a2 ]) =
∑

a1 ≤xn ≤a2

v (xn )

4As in “Lebesgure measure.”

can be used to construct an inclusion measure in a manner simi-
lar to that of Section III-A. Further generalizations are possible;
we will pursue this direction in a future publication.

IV. FUZZY INFERENCE SYSTEM EXTENSIONS

Even though an explicit connection was shown between math-
ematical lattices and fuzzy sets since the introduction of the
fuzzy set theory [81], it is remarkable, as explained in [34], that
no tools have been established for FIS analysis and design based
on the lattice theory. In this connection, we have presented two
theoretical contributions, that is, Theorem 3.13 and Theorem
3.17, which substantiate that inclusion measures σ are widely
(though implicitly) used by traditional FISs as detailed in this
section.

Here, is an interesting consequence of Theorem 3.13. Take a
fuzzy interval F ∈ F and its corresponding membership func-
tion mF : [−∞,∞] → [0, 1]. Then mF may, equivalently, be
represented by the inclusion measure function σV

�(X,F ) =
mF (x) for trivial INs X = X (h) = [x, x], where h ∈ [0, 1]
and x ∈ [−∞,∞]. Parameter “F ” of the fuzzy set σV

�(X,F ) is
called here kernel (of the fuzzy set σV

�(X,F )). In terms of the
fuzzy set theory, the kernel F constitutes the core of the fuzzy
set σV

�(X,F ).
An inclusion measure σ(X,F ) has a significant potential in

FIS applications due to several advantages. First, for any mem-
bership function mF : [−∞,∞] → [0, 1] both inclusion mea-
sures σV

�(X,F ) and σV
�̇(X,F ) can accommodate vagueness in

X in a “principled way,”in the sense of satisfying the proper-
ties C1–C3 of Definition 3.1. A second advantage, in particular
for inclusion measure σV

�̇(X,F ), is its applicability beyond the
support of the fuzzy set F . A third advantage for both inclusion
measures σV

�(X,F ) and σV
�̇(X,F ) is their (parametric) tun-

ability since both σV
�(X,F ) and σV

�̇(X,F ) are defined based
on parametric functions θ : L → L and v : L → [0,∞).

Furthermore, it is known that a traditional FIS typically uses
either the “min” operator or the “product” operator to calcu-
late the degree of truth of a fuzzy rule (involving N simple
propositions as antecedents) from the degrees of truth of the
aforementioned N propositions. Theorem 3.17 establishes that
a traditional FIS implicitly employs inclusion measure functions
σ∧(x,y) and σΠ(x,y) for the “min” operator and the “prod-
uct” operator, respectively. Therefore, an explicit employment
of an inclusion measure is expected to result in the three afore-
mentioned advantages as demonstrated below. We point out
explicitly that this work is not concerned with the consequents
of rules; instead, our interest here focuses on rule antecedents as
explained in the following examples, where all the definite inte-
grals were calculated by numerical integration using a standard
commercial software package (MATLAB).

Example 4.1: Fig. 3 displays the antecedent of a typ-
ical FIS rule, say R. In the interest of simplicity, with-
out loss of generality, we show only two INs E1 and E2
with parabolic membership functions mE1 (x) = −x2 + 6x −
8 and mE2 (x) = −0.25x2 + 3.5x − 11.25, respectively. Let
an input (x1,0 , x2,0) = (3.5, 5.5) be presented to the rule
R as shown in Fig. 4(a). Using traditional FIS techniques,
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Fig. 3. Antecedent of a typical FIS rule R including the conjunction of two
propositions, namely “variable V1 is E1 ” and “variable V2 is E2 ”. The mem-
bership functions of INs E1 and E2 are the parabolas mE 1 (x1 ) and mE 2 (x2 ),
respectively.

(a)

(b)

Fig. 4. Consider the antecedent of rule R from Fig. 3. (a) Rule R is acti-
vated by a trivial INs vector X0 = (X1 ,0 , X2 ,0 ). Using either a traditional
FIS or inclusion measure σ�(.) the degree of truth of proposition “variable
V1 = X1 ,0 is E1 ” equals 0.75; furthermore, the degree of truth of proposi-
tion “variable V2 = X2 ,0 is E2 ” equals 0.4375. (b) Rule R is activated by
a nontrivial INs vector X = (X1 , X2 ) such that each one of INs X1 and
X2 has an isosceles (triangular) membership function of width 2 · 0.2 = 0.4.
Only inclusion measure σ�(.) can calculate, as explained in the text, the de-
grees of truth of the propositions “variable V1 = X1 is E1 ” and “variable
V2 = X2 is E2 ”; in particular, it was computed σ�(X1 � E1 ) ≈ 0.7898 and
σ�(X2 � E2 ) ≈ 0.5072, respectively.

the activation mR (x1,0 , x2,0) of rule R is a function of
both numbers mE1 (x1,0) = 0.75 and mE2 (x2,0) = 0.4375;
the latter (numbers) are the degrees of membership of
the inputs x1,0 and x2,0 to the INs E1 and E2 , re-
spectively. Popular functions mR (., .) in the literature
include mR1(x1,0 , x2,0) = min{mE1 (x1,0),mE2 (x2,0)} and
mR2(x1,0 , x2,0) = mE1 (x1,0) · mE2 (x2,0). Recall that the ad-
vantage of the former function mR1(., .) is that it is com-
puted quickly, whereas the advantage of the latter function
mR2(., .) is that it results in a “smooth” output (without
abrupt changes). Identical results were obtained using in-
clusion measure σV

�(., .) with σ∧(X0 ,E) and σΠ(X0 ,E),
respectively, where E = (E1 , E2) and X0 = (X1,0 ,X2,0)
with X1,0 = X1,0(h) = (x1,0 , x1,0) = (3.5, 3.5) and X2,0 =
X2,0(h) = (x2,0 , x2,0) = (5.5, 5.5), for all h ∈ [0, 1]. In con-
clusion, the results by σV

�(., .) do not differ from the results by
traditional FIS techniques. In addition, our proposed technology
can overcome the abovementioned inherent FIS restrictions as
follows.

Example 4.2: An inclusion measure can accommodate gran-
ular input INs toward representing vagueness in practice. For
instance, consider the granular input INs X1 and X2 shown in
Fig. 4(b) each with an isosceles (triangular) membership func-
tion of width 2 · 0.2 = 0.4 centered at x1 = 3.5 and x2 = 5.5,
respectively. Given functions v(x) = x and θ = 10 − x over the
domain [0,10], it follows σV

�(X1 , E1) =
∫ 0.6825

0 1dh +
∫ 0.7902

0.6825
48.5−h+5

√
1−h

52−2h dh +
∫ 1

0.7902 0dh ≈ 0.7898 and σV
�(X2 , E2) =

∫ 0.3331
0 1dh +

∫ 0.5088
0.3331

43.5−h+10
√

1−h
52−2h dh+

∫ 1
0.50880dh≈0.5072.

Note that the upper integral ends 0.7902 and 0.5088 are upper

(a)

(b)

Fig. 5. Consider the antecedent of rule R from Fig. 3. (a) Trivial INs input
vector X0 = (X0 , X0 ) is presented. (b) Nontrivial INs input vector X =
(X, X ) is presented such that IN X has an isosceles (triangular) membership
function of width 2 · 0.2 = 0.4. Neither a traditional FIS nor inclusion measure
σ�(.) can activate rule R because input IN X (as well as input IN X0 ) is outside
the support of both IN E1 and IN E2 . Nevertheless, inclusion measure σ�̇(.)
can activate rule R. In particular, it was computed σ�̇(X0 � E1 ) ≈ 0.9311 and
σ�̇(X0 � E2 ) ≈ 0.9144; moreover, σ�̇(X � E1 ) ≈ 0.9235 and σ�̇(X �
E2 ) ≈ 0.9078.

bounds for Zadeh’s CRI [82], only for a Mamdani type FIS
as explained next. For a traditional FIS rule “if A then B,”
symbolically A ⇒ B, represented by a fuzzy relation R,
the (fuzzy) output B′ to a fuzzy input A′ can be computed
using Zadeh’s CRI: B′ = A′ ◦ (A ⇒ B) = A′ ◦ R, where the
max–min product “A′ and R” in [82] was later generalized
by the “sup T ” compositional operator. On the one hand,
restrictions of Zadeh’s CRI include, first, the aforementioned
fuzzy sets A and A′ need to overlap, otherwise a zero fuzzy
output B′ results in; second, a fuzzy relation R can be defined
for a Mamdani type FIS [53] but not for a Sugeno type
FIS [72]—Recall that a Mamdani type FIS has been described
as a function m : FN → FM , whereas a Sugeno type FIS has
been described as a function s : FN → Pp , where Pp is a
family of models with p parameters [34]. On the other hand,
since an inclusion measure involves only rule antecedents, an
inclusion measure is applicable on either Mamdani- or Sugeno-
type FISs. In particular, inclusion measure σ�̇(., .) may involve
nonoverlapping INs as demonstrated next.

Example 4.3: Fig. 5(a) shows a trivial INs input vector
X0 = (X0 ,X0) beyond rule support, where X0 = X0(h) =
(4.5, 4.5), h ∈ [0, 1]. Given functions v(x) = x and θ = 10 − x,
it follows that σV

�̇(X0 , E1) =
∫ 1

0
10+2

√
1−h

11.5+
√

1−h
dh ≈ 0.9311 and

σV
�̇(X0 , E2) =

∫ 1
0

10+4
√

1−h
12.5+2

√
1−h

dh ≈ 0.9144. Fig. 5(b) shows a
nontrivial INs input vector X = (X,X), also beyond rule
support, where IN X has an isosceles (triangular) mem-
bership function of width 2 · 0.2 = 0.4 centered at 4.5. It
follows that σV

�̇(X,E1) =
∫ 1

0
50+10

√
1−h

58.5−h+5
√

1−h
dh ≈ 0.9235, and

σV
�̇(X,E2) =

∫ 1
0

50+20
√

1−h
63.5−h+10

√
1−h

dh ≈ 0.9078. We remark that
computing a rule activation beyond rule support is important
for decision making in a sparse rule base. Next, we discuss
how traditional FISs typically handle a sparse rule base. Infer-
ence in sparse rule bases is typically carried out by fuzzy rule
interpolation (FRI) [48], [49] motivated toward reducing a fuzzy
model’s rule complexity by inducing fuzzy rules from other ones
according to the following scheme [8]:

Rule 1:
IF (X1 is A11) and . . . and (Xm is A1m ), THEN Y is B1

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on December 17,2021 at 10:29:10 UTC from IEEE Xplore.  Restrictions apply. 



KABURLASOS AND KEHAGIAS: FUZZY INFERENCE SYSTEM (FIS) EXTENSIONS BASED ON THE LATTICE THEORY 539

TABLE I
INCLUSION MEASURE VALUES REGARDING FIG. 6

The strictly decreasing function θ(x) = 2µ − x was employed.

...
Rule n:
IF (X1 is An1) and . . . and (Xm is Anm ), THEN Y is Bn

Observation:
(X1 is A∗

1) and . . . and (Xm is A∗
m )

————————————————————————
Conclusion: Y is B∗,

where Xj is an antecedent variable (or, equivalently, system in-
put variable), Y is the consequent variable (or, equivalently, sys-
tem output variable), Aij is a fuzzy number value for variable Xj

and Bi is a fuzzy number value for variable Y , i ∈ {1, . . . , n},
j ∈ {1, . . . , m}.

A number of FRI schemes have been introduced in the liter-
ature [8], [26], [48], [49]. In general, the FRI techniques that
are proposed in the literature are restricted to Mamdani type
FISs, where nonlinearities are introduced by ad hoc function
f : FN → F FIS techniques (for details the reader may refer
to [34]) without, usually, a capacity for “fine tuning”. Even
though (non)linear rule interpolation/extrapolation is feasible in
the cone F of INs [36], [58], this study deals with sparse rules
differently, with significant advantages. More specifically, we
treat a fuzzy number A (with an arbitrary membership func-
tion shape) in a sparse rule base, as the kernel of the fuzzy
set σV

�̇(X,A), where V is a length function with tunable pa-
rameters. That is, instead of inserting new fuzzy rules by in-
terpolation/extrapolation, we extend the support of the existing
(sparse) rules. Since this study focuses on the matching degree
(or satisfaction degree, or firing degree) part of an FIS, our
techniques here unify the treatment of Mamdani type FISs and
Sugeno type FISs. The number of the “closest,” in an inclusion
measure sense, rules to “fire” is user-defined. How exactly to
use an inclusion measure, e.g., toward computing multiple “fir-
ing rules” and/or resolving any inconsistencies, depends on a
specific application and it is a topic for future work.

Example 4.4: An inclusion measure can employ alternative
functions than functions v(x) = x and θ(x) = 10 − x em-
ployed previously. More specifically, in Fig. 6, we considered
the INs E1 , E2 ,X0 , and X from Fig. 5. Moreover, we
considered both the (sigmoid) strictly increasing function
vs(x; λ, μ) = 1

1+e−λ(x −μ ) , x ∈ R, where λ ∈ R+ , μ ∈ R, and
the strictly decreasing function θ(x;μ) = 2μ − x. Several in-
clusion measure values were computed and the corresponding
results are displayed in Table I for various values of λ and
μ. Next, we computed all aforementioned inclusion measure
values using the same (sigmoid) strictly increasing function
vs(x; λ, μ), nevertheless we used the strictly decreasing func-
tion θ(x) = −x instead; the corresponding results are displayed

(a)

(b)

(c)

Fig. 6. Parabolic INs E1 and E2 (in dotted lines) are displayed as well as
both trivial IN X0 and triangular IN X from Fig. 5. Inclusion measure σ�̇(.)
values were computed using the displayed sigmoid strictly increasing functions
vs (x; λ, μ) = 1/(1 + e−λ(x−μ ) ) for different values of the parameters λ and
μ including: (a) λ = 1, μ = 4.5; (b) λ = 3, μ = 4.5; (c) λ = 3, μ = −4. The
corresponding σ�̇(.) values for the strictly decreasing functions θ(x) = 2μ − x
and θ(x) = −x are displayed in Tables I and II, respectively.

TABLE II
INCLUSION MEASURE VALUES REGARDING FIG. 6.

The strictly decreasing function θ(x) = −x was employed.

in Table II. Tables I and II demonstrate that different functions
v(.) and θ(.) may result in different fuzzy sets σ�̇(X,M)
with the same kernel M . Most interesting is that inequality
σV

�̇(X0 , E1) > σV
�̇(X0 , E2) in Table I is reversed in Table II.

That is, Tables I and II demonstrate that (parametric) functions
v(.) and θ(.) can be used as instruments for tunable decision
making. Note that conventional FISs carry out solely local rule
activation in the sense that a rule is activated if and only if an
input falls inside its (rule) support, whereas an FIS that is based
on inclusion measure σV

�̇(., .) can carry out global rule activa-
tion in the sense that a rule can be activated for any input either
inside or outside its (rule) support. In conclusion, conventional
FISs can introduce only local nonlinearities typically by tuning
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the shape and/or the location of fuzzy sets involved in the
computations, whereas the proposed FISs, based on an inclusion
measure, can, in addition, introduce global nonlinearities via
the tunable (parametric) functions v(.) and θ(.).

V. INDUSTRIAL DISPENSING APPLICATION

This section demonstrates an employment of our proposed
techniques in a preliminary industrial application regarding liq-
uid dispensing. The industrial problem as well as a software
application platform, namely XtraSP.v1, and algorithm CAL-
CIN have been detailed elsewhere [35].

A. Feedback Control Based on Fuzzy Lattice Reasoning

Effective control in the food industry calls for sensible deci-
sion making rather than for ultimate precision. Therefore, we
estimated the volume of a liquid being dispensed to a mixing
tank by both flowmeter measurements and ultrasonic level meter
(U.L.M.) measurements accommodating vagueness as follows.

Even though the flowmeter device supplies one precise mea-
surement, there is uncertainty regarding the dispensed volume
due to both time delays and the (exact) storage capacity of the
pipes/devices used to drive a liquid to the mixing tank. The latter
uncertainty has been modeled by two adjacent uniform proba-
bility density functions (pdfs), respectively, one above and the
other below a flowmeter measurement [35]. Hence, in our com-
puter simulation experiments below, five numbers were drawn
randomly (uniformly) for each one of the aforementioned two
pdfs. In addition, in a short sequence, we considered randomly
(uniformly) ten successive measurements of the liquid level in
the mixing tank using the U.L.M. device. In conclusion, we kept
inducing an IN V from a population of twenty measurements us-
ing algorithm CALCIN [35], [42]. In our experiments, for any
population of twenty measurements, we assumed an average
measurements population range of 6 [lt] with an insignificant
standard deviation.

The following simple decision-making rule was assumed for
dispensing a liquid to the mixing tank.

Rule R0 : IF the volume V (of the liquid being dispensed)

is Vref , THEN stop dispensing

We remark that Vref (h) = [V0 − ΔV, V0 + ΔV ], h ∈ [0, 1],
where “V0” is the desired (crisp) volume and “ΔV ” is an ac-
ceptable tolerance regarding the desired liquid volume V0 .

Fig. 7 shows the feedback control scheme we employed to-
ward automating industrial liquid dispensing. We assumed that
the degree of fulfilment of rule R0 equals the degree of truth
of its antecedent. The latter degree of truth equals the degree
of membership of IN V to the fuzzy inclusion measure func-
tion σ(V, Vref ) with kernel Vref = Vref (h) = [V0 − ΔV, V0 +
ΔV ], h ∈ [0, 1]. We stop dispensing when the degree of truth
of the antecedent statement “the volume V (of the liquid be-
ing dispensed) is Vref ” is larger-than or equal-to a user-defined
threshold T ∈ [0, 1]. An advantage of the proposed scheme is its
capacity to deal in a “principled way,” in the sense of satisfying
properties C1–C3 of Definition 3.1, with vagueness in both the
system output and reference signals represented by INs V and
Vref , respectively.

Fig. 7. Feedback control based on FLR. The system output (volume) v ∈ R
is sampled by sensor(s); the produced population of measurements is repre-
sented by IN V . The latter (V ) is fed back for comparison to the reference
volume IN Vref = Vref (h) = [1496.4, 1503.6], h ∈ [0, 1]. An inclusion mea-
sure σ(V, Vref ) drives the controller who generates a binary (ON/OFF) control
signal u ≡ {σ(V, Vref ) ≥ T }, where T ∈ [0, 1] is a user-defined threshold.

B. Application of our Techniques

Inclusion measure sigma-meet σ�(V, Vref ) was computed as
follows:

σV
�(V, Vref ) =

∫ 1

0
σV
∩ ([ah , bh ], [V0 − ΔV, V0 + ΔV ])dh

=
∫ mV (V0 −ΔV )∨mV (V0 +ΔV )

0

× vs(θ(ah ∨ (V0 − ΔV ))) + vs(bh ∧ (V0 + ΔV ))
vs(θ(ah)) + vs(bh)

dh

where the symbol mV (.), previously mentioned, denotes the
membership function of IN V = V (h) = [ah , bh ], h ∈ [0, 1].

Inclusion measure sigma-join σ�̇(V, Vref ) was computed as
follows:

σV
�̇(V, Vref ) =

∫ 1

0
σV
∪̇ ([ah , bh ], [V0 − ΔV, V0 + ΔV ])dh

=
∫ 1

0

vs(θ(V0 − ΔV )) + vs(V0 + ΔV )
vs(θ(ah ∧ (V0 − ΔV ))) + vs(bh ∨ (V0 + ΔV ))

dh.

We sought an optimal estimation of the parameters λ and μ
for both the sigmoid strictly increasing function vs(x; λ, μ) =
1/(1 + e−λ(x−μ)) and the strictly decreasing function θ(x;μ) =
2μ − x according to the following rationale. Given the dynam-
ics of our dispensing system in practice it is required an “early
warning” signal at v = 1486 [lt]. It is already known that an
IN induced from a uniform distribution has an isosceles trian-
gular shape [35]. Therefore, in line with our assumptions pre-
viously, a population of measurements with an average equal
to L was repesented by an isosceles triangular IN V = V (h) =
[ah , bh ], h ∈ [0, 1] with support [L − 3, L + 3]. There follows
ah = 3h + (L − 3) as well as bh = (L + 3) − 3h for h ∈ [0, 1].
In conclusion, inclusion measure σ�̇(V, Vref ) equals

σV
�̇ (V, Vref ) =

∫ 1

0

vs (θ(1496.4)) + vs (1503.6)
vs (θ((3h + 1483) ∧ 1496.4)) + vs ((1489 − 3h) ∨ 1503.6)

dh

= σ�̇(λ, μ).

Fig. 8 displays the degree of membership σV
�̇(V, Vref ) re-

garding an isosceles triangular IN V with support [1483,1489]
located at L = 1486, as a function of the sigmoid function
vs(v; λ, μ) parameters λ and μ. It is preferable to select a
pair (λ, μ) of parameter values that results in a small value of
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Fig. 8. Two-dimensional curve above shows the degree of membership
σV

�̇ (V, Vref ), regarding an isosceles triangular IN V with support [1486 −
3, 1486 + 3] and Vref = Vref (h) = [1496.4, 1503.6] for h ∈ [0, 1], as a func-
tion of the sigmoid function vs (v; λ, μ) parameters λ and μ.

σV
�̇(V, Vref ) so as to secure an easily detectable “early warning”

signal. Fig. 8 indicates that smaller values of function σV
�̇(λ, μ)

are attained for both μ " 1492 and large values of λ. In fact,
it can be (easily) shown analytically that limλ→+∞σV

�̇(λ, μ =
1492) = 0.5. We decided to use λ = 1 so as to retain the typical
sigmoid function shape. Furthermore, using a steepest descent
method we computed μ = 1492.270 resulting in an acceptable
optimal (minimum) value σV

�̇(λ = 1, μ = 1492.270) = 0.516.
We point out that, in previous works, the optimal parameter
estimation “of scale” has been pursued using stochastic search
techniques such as genetic algorithms [36], [42], [58].

Fig. 9 displays INs V1 , V2 , and V3 that are induced by
algorithm CALCIN from the measurements of a liquid be-
ing dispensed into the mixing tank, whereas IN Vref (h) =
[V0 − ΔV, V0 + ΔV ], h ∈ [0, 1] is the reference volume with
V0 = 1500 [lt] and ΔV = 3.6 [lt]. IN V1 was induced first, fol-
lowed by IN V2 , the latter in turn was followed by IN V3 . In
general, not only the peak of an IN but also its shape changes
with time because a different distribution of samples is ob-
tained at a different time. Fig. 9 also displays the strictly in-
creasing (sigmoid) function vs(v; λ, μ) = 1

1+e−λ( v −μ ) employed
here with the optimally estimated parameter values λ = 1 and
μ = 1492.270. In all cases, the strictly decreasing function
θ(v;μ) = 2μ − v = 2984.54 − v was employed.

Fig. 10(a) and (b) display inclusion measure σV
�(V, Vref )

and σV
�̇(V, Vref ), respectively, furthermore Fig. 10(c) displays

the result of applying Zadeh’s CRI v = V ◦ (Vref ⇒ “stop
dispensing”) versus the dispensed liquid volume v over the
range [1480, 1520]. Fig. 10 demonstrates that either function
σV

�(V, Vref ) or the CRI signify more “crisply” than function
σV

�̇(V, Vref ) the order relation “V � Vref ” in the sense that ei-
ther σV

�(V, Vref ) or the result by CRI rises from 0 all the way to
1, whereas σV

�̇(V, Vref ) rises only from (slightly over) 0.5 to 1.
Nevertheless, only the inclusion measure function σV

�̇(V, Vref )
can warn as early as at around v = 1486 that we approach the ref-
erence volume Vref . Hence, the inclusion measure σV

�̇(V, Vref )
appears to be a better decision-making instrument in practice

(a)

(b)

(c)

Fig. 9. (a) IN V1 was induced first, followed by (b) IN V2 , followed by
(c) IN V3 . The reference volume IN Vref is displayed in all figures as
well as the optimally estimated, as explained in the text, sigmoid function
vs (v; 1, 1492.270) = 1/(1 + e−(v−1492 .270) ). In (c) the average μV of a
population of measurements regarding a liquid volume equals μV = 1496.4.

than either inclusion measure σV
�(V, Vref ) or the CRI toward

stop dispensing within specifications.

C. Comparative Experimental Results

A standard practice in the industry for dealing with a popu-
lation of measurements is to replace it with its first-order data
statistic, namely the population average. Therefore, we consid-
ered the following alternative decision-making rule for dispens-
ing a liquid to the mixing tank:

Rule R1 : IF|μV − V0 | ≤ ΔV, THEN stop dispensing

where μV is the average of a population of measurements re-
garding the volume of a liquid being dispensed, whereas both
V0 and ΔV have been defined previously.

Fig. 9(c) illustrates how rule R1 can be activated while,
at the same time, the previous rule R0 remains inactive for
T = 1. The practical problem in this case is that liquid dis-
pensing stops while the actual volume of the dispensed liquid
might be less than |V0 − ΔV | = |1500 - 3.6| = 1496.4; hence,
the final industrial product might be outside specifications. The
aforementioned problem is dubbed here “false triggering” and
it can be resolved in Fig. 9(c) using rule R0 with either σ�(., .)
or σ�̇(., .) and T = 1.

It might be thought that, under the (numerical) assumptions of
Fig. 9(c), “false triggering” can be avoided using the following
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(a)

(b)

(c)

Fig. 10. Using the optimal parameter estimated functions vs (v; λ = 1, μ =
1492.270), and θ(v; μ = 1492.270), we computed (a) inclusion measure
σV� (V, Vref ) and (b) inclusion measure σV

�̇ (V, Vref ), all versus the dispensed
liquid volume v ∈ [1480, 1520]. Alternatively, (c) presents the corresponding
result by Zadeh’s CRI versus the dispensed liquid volume v ∈ [1480, 1520].

alternative rule:

Rule R2 : IFμV = V0 , THEN stop dispensing.

However, rule R2 might not be able to deal with another prob-
lem; the latter occurs when the support “2 · ΔV ” of IN Vref is
smaller than the support of IN V ; furthermore, the problem ex-
acerbates when IN V is skewed thus deteriorating performance
as detailed in [35].

In a series of computational experiments, using rule R0 with
either inclusion measure σV

�(., .) or σV
�̇(., .) and a user-defined

threshold T = 0.93, it turns out that rule R0 clearly maximizes
the probability of stop dispensing a liquid within specifications.
The latter probability corresponded to the portion of IN V over
the interval [V0 − ΔV, V0 + ΔV ] at the very moment liquid dis-
pensing stops due to the activation of the rule in use. Our expla-
nation for the superior performance of an inclusion measure (in
rule R0) is that σV

�(., .) as well as σV
�̇(., .) engage all-order data

statistics, whereas an alternative rule typically engages fewer
(user-defined) data statistics such as the corresponding average
and standard deviation, i.e., first- and second-order data statis-
tics, respectively.

This preliminary industrial dispensing application was meant
to demonstrate the practical applicability of our proposed tech-
niques rather than to analyze their efficiency. A comparative

study regarding the efficiency of our proposed techniques in-
cluding potential improvements is a topic for future research.

VI. DISCUSSION AND CONCLUSION

The thrust of this paper has been the introduction of novel
perspectives as well as sound mathematical results, including
theorems 3.13 and 3.17, toward a “principled” (in the sense of
satisfying the properties C1–C3 of Definition 3.1) extension of
an FIS involving arbitrary (fuzzy number) membership function
shapes. In particular, this study has introduced a number of FIS
extensions regarding the matching degree (or satisfaction de-
gree, or firing degree) part of an FIS. This has been achieved by
studying the lattice (I,⊆) of conventional intervals on the line
of real numbers followed by a constructive study of the lattice
(F ,�) of INs. Lattice (F ,�) was shown to be isomorphic to
the lattice (F ′,≤) of fuzzy intervals. Two inclusion measures
σV
∩ (., .) and σV

∪̇ (., .) were introduced on (I,⊆) giving rise
to inclusion measures σV

�(., .) and σV
�̇(., .), respectively, on

(F ,�).
Based on theorems 3.13 and 3.17, we showed that inclusion

measures are widely (though implicitly) used by traditional FISs.
Examples 4.1–4.4 indicated that an explicit employment of an
inclusion measure (σ) may result in substantial benefits includ-
ing: 1) accommodation of granular FIS inputs; 2) employment
of sparse FIS fuzzy rule bases; and 3) introduction of tunable
nonlinearities globally, rather than locally, via parametric length
functions, while retaining traditional FIS semantics.

APPENDIX A
PROOF OF THEOREM 2.3

F � G ⇔ (∀h ∈ [0, 1] : F (h) ⊆ G(h)) by definition.
Suppose (∀h ∈ [0, 1] : F (h) ⊆ G(h)) holds. Take any x ∈ L

and let h = mF (x). Then x ∈ F (h) ⊆ G(h) ⇒ x ∈ G(h) ⇒
mG (x) ≥ h = mF (x).

Suppose that (∀x ∈ L : mF (x) ≤ mG (x)) holds. Take any
h ∈ [0, 1]. If F (h) is empty, then F (h) ⊆ G(h). If F (h) is
not empty, take any x ∈ F (h). Then h ≤ mF (x) ≤ mG (x) and
therefore x ∈ G(h). Hence, F (h) ⊆ G(h). �

APPENDIX B
PROOF OF THEOREM 3.2

(i) We first prove: σ (x, y) = 1 ⇒ x � y. This is simply the
contrapositive of C2.

(ii) Next we prove: x � y ⇒ σ (x, y) = 1. To do this, re-
place in C3 y with x and z with y, to get x � y ⇒ σ (x, x) ≤
σ (x, y); but σ (x, x) = 1 (from C1) and σ (x, y) ≤ 1 (since
σ : X×X → [0, 1]), hence x � y ⇒ σ (x, y) = 1.

(iii) Now, we prove x � y � x ⇒ σ (x, y) < 1. As already
proved, σ (x, y) = 1 ⇒ x � y ⇒ x � y = x. Using the contra-
positive of this, we have x � y 
= x ⇒ x 
� y ⇒ σ (x, y) < 1.

(iv) Finally, we prove σ (x, y) < 1 ⇒ x � y � x. Choose
x and y such that σ (x, y) < 1 and assume x � y 
� x; then
clearly x � y = x and therefore x � y. But then, from (ii)
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we get σ (x, y) = 1 which contradicts σ (x, y) < 1. Hence,
σ (x, y) < 1 ⇒ x � y � x. �

APPENDIX C
PROOF OF LEMMA 3.4

Suppose first that ∅ = O = A ⊂ B = [b1 , b2 ]; then V (A) =
0 < v (θ (b1)) + v (b2) = V (B). If, on the other hand, O ⊂
A = [a1 , a2 ] ⊂ B = [b1 , b2 ], then

either b1 ≤ a1 ≤ a2 < b2 or b1 < a1 ≤ a2 ≤ b2

or b1 < a1 ≤ a2 < b2 .

We will only consider the first case (the others are treated simi-
larly). If b1 ≤ a1 ≤ a2 < b2 , we have θ (a1) ≤ θ (b1) and there-
fore v (θ (a1)) ≤ v (θ (b1)); also v (a2) < v (b2). And therefore

V (A) = v (θ (a1)) + v (a2) < v (θ (b1)) + v (b2) = V (B) .

�

APPENDIX D
PROOF OF LEMMA 3.5

To prove (3), let us distinguish two cases.
i. If A ⊆ C, then we have

C = A ∪̇ C ⇒ V (A ∪̇ C) − V (C) = 0

B ⊆ A ∪̇ B ⇒ V (A ∪̇ B) − V (B) ≥ 0

which proves (3).
ii. If A � C, then also A = [a1 , a2 ] ⊃ O. Either a1 < c1 ≤
b1 or b2 ≤ c2 < a2 (or both). We examine the two subcases
separately.
ii.1. If a1 < c1 ≤ b1 we have

A ∪̇ C = [a1 , a2 ∨ c2 ] , C = [c1 , c2 ]

V (A ∪̇ C) − V (C)

= v (θ (a1)) + v (a2 ∨ c2) − v (θ (c1)) − v (c2)

and

A ∪̇ B = [a1 , a2 ∨ b2 ] , B = [b1 , b2 ]

V (A ∪̇ B) − V (B)

= v (θ (a1)) + v (a2 ∨ b2) − v (θ (b1)) − v (b2) .

Therefore, to test the validity of (3), we must compare

v (a2 ∨ c2) − v (θ (c1)) − v (c2)

and

v (a2 ∨ b2) − v (θ (b1)) − v (b2) .

Now,

c1 ≤ b1 ⇒ θ (b1) ≤ θ (c1) ⇒ v (θ (b1)) ≤ v (θ (c1))

⇒ −v (θ (c1)) ≤ −v (θ (b1)) .

Also, for the relative position of a2 , b2 , c2 , we have three
possibilities

ii.1.1 If a2 ≤ b2 ≤ c2 , then

v (a2 ∨ c2) − v (c2) = v (c2) − v (c2) = v (b2) − v (b2)

= v (a2 ∨ b2) − v (b2) .

ii.1.2 If b2 ≤ a2 ≤ c2 , then

v (a2 ∨ c2) − v (c2) = v (c2) − v (c2) ≤ v (a2) − v (b2)

= v (a2 ∨ b2) − v (b2) .

ii.1.3 If b2 ≤ c2 ≤ a2 , then

v (a2 ∨ c2) − v (c2) = v (a2) − v (c2) ≤ v (a2) − v (b2)

= v (a2 ∨ b2) − v (b2) .

Hence, (3) holds in this case.
ii.2. The treatment of the case b2 ≤ c2 < a2 is similar to that
of ii.1 and hence is omitted. It turns out that (3) holds in this
case too.
Hence, (3) holds in every case and the proof of the Lemma is

complete. �

APPENDIX E
PROOF OF THEOREM 3.7

First, let us verify that Properties C1–C3 hold for σV
∩ .

i. If A = O, then σV
∩ (A,A) = 1. If A ⊃ O, then

σV
∩ (A,A) = V (A∩A)

V (A) = 1 and C1 holds.

ii. Assume A � B. Then O ⊂ A, A ∩ B ⊂ A and

V (A ∩ B) < V (A). Hence, σV
∩ (A,B) = V (A∩B )

V (A) < 1 and
C2 holds.
iii. Assume B ⊆ C; then we also have A ∩ B ⊆ A ∩ C and
V (A ∩ B) ≤ V (A ∩ C). Now consider two cases.
iii.1. First, suppose A = O. Then σV

∩ (A,B) = 1 =
σV
∩ (A,C).

iii.2. Second, suppose A ⊃ O. Then, σV
∩ (A,B) =

V (A∩B )
V (A) ≤ V (A∩C )

V (A) = σV
∩ (A,C).

Hence, C3 holds.
Next, let us verify Properties C1–C3 for σV

∪̇ .
i. If A = O, then σV

∪̇ (A,A) = 1. If A ⊃ O, then

σV
∪̇ (A,A) = V (A)

V (A ∪̇A) = 1 and C1 holds.

ii. Assume A � B. Then, O ⊂ A ⊂ A ∪̇ B and A ∩ B ⊂ A.
Also, either B ⊂ A or both A ∩ B ⊂ A ⊂ A ∪̇ B and
A ∩ B ⊂ B ⊂ A ∪̇ B.
ii.1. If B ⊂ A, then also A = A ∪̇ B, 0 < V (A ∪̇ B)
and V (B) < V (A) = V (A ∪̇ B), hence σV

∪̇ (A,B) =
V (B )

V (A ∪̇ B ) < 1.

ii.2. If A ∩ B ⊂ A ⊂ A ∪̇B and A ∩ B ⊂ B ⊂ A ∪̇B, then
also V (B) < V (A ∪̇B), hence σV

∪̇ (A,B) = V (B )
V (A ∪̇ B ) < 1.

In both cases C2 holds.
iii. Assume B ⊆ C.
iii.1. If B = O, we distinguish two subcases.
iii.1.1. If also A = O, σV

∪̇ (A,B) = 1. But also C = A ∪̇ C
and hence (for both C = O and C ⊃ O): σV

∪̇ (A,C) = 1 =
σV
∪̇ (A,B).

iii.1.2. If A ⊃ O, then V (A) > 0. Also O ⊂ A ∪̇ B ⊆
A ∪̇ C ⇒ 0 < V (A ∪̇ B) ≤ V (A ∪̇ C). Hence

σV
∪̇ (A,B) =

V (B)
V (A ∪̇ B)

= 0 ≤ V (C)
V (A ∪̇ C)

= σV
∪̇ (A,C)
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iii.2. If B ⊃ O, then V (A ∪̇ B) > 0 and, using Lemma 3.5

V (A ∪̇ C) − V (C) ≤ V (A ∪̇ B) − V (B)

⇒ V (A ∪̇ C) ≤ V (C) − V (B) + V (A ∪̇ B)

⇒ V (B)·V (A ∪̇ C) ≤ V (B) · (V (C) − V (B)

+ V (A ∪̇ B))

⇒ V (B) · V (A ∪̇ C) ≤ V (B) · (V (C) − V (B))

+ V (B) · V (A ∪̇ B)

⇒ V (B) · V (A ∪̇ C) ≤ V (A ∪̇ B) · (V (C) − V (B))

+ V (B) · V (A ∪̇ B)

⇒ V (B) · V (A ∪̇ C) ≤ V (A ∪̇ B) · V (C)

⇒ V (B)
V (A ∪̇ B)

≤ V (C)
V (A ∪̇ C)

⇒ σV
∪̇ (A,B) ≤ σV

∪̇ (A,C) .

In both cases C3 holds. �

APPENDIX F
PROOF OF THEOREM 3.12

We will only verify Properties C1–C3 for σV
� (the case of σV

�̇
can be proved similarly).

C1. We want to prove: for any F ∈ F , we have σV
�(F, F ) =

1. We partition [0, 1] into two sets A and B, where
A = {h : F (h) = O}, B = {h : F (h) ⊃ O}. Then, as al-
ready seen, σV

∩ (F (h), F (h)) = 1 for all h ∈ A; as well as
σV
∩ (F (h), F (h)) = V (F (h)∩F (h))

V (F (h)) = 1 for all h ∈ B. And
therefore

σV
� (F, F ) =

∫ 1

0
σV
∩ (F (h), F (h))dh

=
∫

A
σV
∩ (F (h), F (h))dh+

∫

B
σV
∩ (F (h), F (h))dh

=
∫

A
1dh+

∫

B
1dh =

∫ 1

0
1dh = 1.

C2. We want to prove: for any F,G ∈ F such that
F 
� G we have σV

�(F,G) < 1. Note that F 
� G ⇒
F � G ≺ F . Then, according to Corollary 2.4 we
have (a) ∀x : mF �G (x) = mF (x) ∧ mG (x) ≤ mF (x)
and (b) ∃x0 : mF �G (x0) = mF (x0) ∧ mG (x0) = h1 <
h2 = mF (x0). Then, we have

∀h ∈ (h1 , h2 ] : mF (x0) ∧ mG (x0) = h1 < h ≤ h2

= mF (x0) ⇒
∀h ∈ (h1 , h2 ] : x0 /∈ (F � G)(h) and x0 ∈ F (h) ⇒

∀h ∈ (h1 , h2 ] : (F � G)(h) ⊂ F (h) ⇒
∀h ∈ (h1 , h2 ] : σV

∩ (F (h), G(h)) < 1.

Hence,

σV
�(F,G) =

∫ 1

0
σV
∩ (F (h), G(h))dh

=
∫

(h1 ,h2 ]
σV
∩ (F (h), G(h))dh

+
∫

[0,1]\(h1 ,h2 ]
σV
∩ (F (h), G(h))dh <

< (h2 − h1) + (1 − (h2 − h1)) = 1.

C3. We want to prove: for any F,G,A ∈ F with F � G,
we have σV

�(A,F ) ≤ σV
�(A,G). Indeed, for all h ∈ [0, 1]

we have F (h) ⊆ G(h) and therefore σV
∩ (A(h), F (h)) ≤

σV
∩ (A(h), G(h)) which means

σV
�(A,F ) =

∫ 1

0
σV
∩ (A(h), F (h))dh

≤
∫ 1

0
σV
∩ (A(h), G(h))dh = σV

�(A,G).

APPENDIX G
PROOF OF THEOREM 3.13

Take any h ∈ [0, 1]. We have x0 ∈ F (h) ⇔ mF̃ (x0) ≥ h or,
equivalently, x0 /∈ F (h) ⇔ mF̃ (x0) < h. Now

x0 ∈ F (h) ⇒ σV
∩ ([x0 , x0 ], F (h)) =

V ([x0 , x0 ] ∩ F (h))
V ([x0 , x0 ])

=
V ([x0 , x0 ])
V ([x0 , x0 ])

= 1,

x0 /∈ F (h) ⇒ σV
∩ ([x0 , x0 ], F (h)) =

V ([x0 , x0 ] ∩ F (h))
V ([x0 , x0 ])

=
V (O)

V ([x0 , x0 ])
= 0.

Define the sets

A = {h : x0 ∈ F (h)} = {h : h ≤ mF̃ (x0)} = [0,mẼ (x0)]

B = {h : x0 /∈ F (h)} = {h : h > mF̃ (x0)} = (mẼ (x0), 1].

Then,

σV
�(X0 , F ) =

∫ 1

0
σV
∩ (X0 , F (h))dh

=
∫ m

F̃
(x0 )

0
1dh+

∫ 1

m
F̃

(x0 )
0dh =mF̃ (x0).

and the proof is complete. �

APPENDIX H
PROOF OF THEOREM 3.17

We just check that C1–C3 of Definition 3.1 are satisfied.
C1. For any x ∈ X, σ∧(x,x) = mini∈{1,...,N }σi(xi, xi) = 1

and σΠ(x,x) =
∏N

i=1σi(xi, xi) = 1.
C2. Take any x,y ∈ X such that x 
� y. Then also

x � y � x ⇒ (∃n ∈ {1, . . . , N} : xn �n yn �n xn ) ⇒
⇒ σn (xn , yn ) < 1.
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Hence, σ∧(x,y) = mini∈{1,...,N }σi(xi, yi) < 1 and

σΠ(x,y) =
∏N

i=1σi(xi, yi) < 1.
C3. Take anyu,w ∈ X such that u � w. More specifically, let

(u1 , . . . , uN ) = u � w = (w1 , . . . , wN ). Now, take any
x = (x1 , . . . , xN ) ∈ X. We have

(∀i ∈ {1, . . . , N} : ui �i wi) ⇒ (∀i ∈ {1, . . . , N}
: σi(xi, ui) ≤ σi(xi, wi)).

Hence,

min
i∈{1,...,N }

σi(xi, ui) ≤ min
i∈{1,...,N }

σi(xi, wi) ⇒

⇒ σ∧(x,u) ≤ σ∧(x,w)

and
N∏

i=1

σi(xi, ui) ≤
N∏

i=1

σi(xi, wi) ⇒

⇒ σΠ(x,u) ≤ σΠ(x,w).

The proof is complete. �
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