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Abstract. We show that logical paradoxes based on self-reference (of which the
Liar is the best known example) are equivalent to the non-existence of solutions
to a numerical system of equations, the so-called truth-value equations. Further-
more, we show that in many cases a self-referential system which does not posses
a crisp (Boolean) solution can be solved by expanding the solution set to include
fuzzy solutions. Then we formulate the computation of these fuzzy solutions as an
optimization problem and, by numerical experiments, we demonstrate that teams
of Learning Automata (of a type intermediate between finite action and continuous
action automata) can be succesfully used to solve the optimization problem. In this
manner, the combination of fuzzy logic and learning automata resolves a wide class
of paradoxes.
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1. Introduction

In this paper we study self-referential systems, i.e., col-
lections of sentences which talk about each other. The
classical example is the ”Liar Sentence”:

”This sentence is false ”. (1)

Self-reference becomes more obvious if we rewrite (1)
as follows:

A = “A is false”. (2)

Many similar self-referential systems can be con-
structed and it is well known that some of them gener-
ate logical paradoxes. For example, in (2) if A is true,
then what it says must hold, i.e. A must be false. Then
the opposite of A, i.e. “A is true” must be true, but then
what A says is true, i.e. “A is false”. This reasoning
produces an oscillation between two conclusions: first
that A is false, then that it is true. A similar oscillation
would be obtained if the starting assumption were that
A is false. The well-known Liar Paradox is that, by the
above analysis, A can be neither true nor false; in other
words it does not have a (classical) truth value. Another
example of two sentences which talk about each other
is the “Inconsistent Dualist”:
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A1 = “A2 is true”, A2 = “A1 is false”. (3)

Similarly to the Liar sentence, a paradox of non-
existence of truth values arises in connection to the sys-
tem (3).

In this paper we use Learning Automata (LA) opti-
mization to compute consistent fuzzy truth values for a
wide class of self-referential systems, including “para-
doxical” systems of the type mentioned in the previ-
ous paragraph. We show that the use of fuzzy logic and
learning automata offers a resolution of a wide class of
paradoxes.

The current paper is based on previous work by
Zadeh [34], Grim et al. [11,18] and ourselves [15,33]2.
Namely, in [15,33] we have constructed a large fam-
ily of self-referential systems and we have shown that
every such self-referential system generates a system
of logical equations which, in turn, generate a system
of (numerical) truth value equations. Some of the sys-
tems in the aforementioned family generate paradoxes,
which always reduce to the nonexistence of a classical
(crisp) solution to the corresponding truth value equa-
tions. But, as we have shown in [15,33], if the set of
admissible solutions is expanded to include fuzzy truth
values, then a solution is always available and the para-
dox disappears. The paper is organized as follows. In

2Because of space limitations we do not present an extensive lit-
erature review in the current paper. The interested reader will find
many references to the extensive bibliography on the Liar paradox
and self-referential systems in [15,33].



Section 2 we introduce numerical truth value equations
for the resolution of logical paradoxes. In Section 3 we
show how solutions to the truth value equations can be
computed using LA optimization. In Section 4 we vali-
date our approach by numerical experimentation. Con-
cluding remarks and future research directions appear
in Section 5. In Appendix A we speculate on some con-
nections between the current work, Game Theory and
Psychology.

2. Self-referential Systems, Paradoxes and Systems
of Equations

In this section we review our previous results on self-
referential systems and paradoxes. We show that the
previously discussed self-referential systems (the Liar
and the Dualist) can be rewritten as sentences which
talk about their own truth values. These sentences can
be understood as a system of logical equations and
an associated system of numerical equations (the truth
value equations) can be readily obtained. We next show
that this approach can be generalized to a wide class of
self-referential systems and argue that a self-reference
paradox can be resolved by solving the correspond-
ing numerical equation; this is not always possible in
the context of classical, crisp logic but, in the context
of fuzzy logic, every self-referential system (subject to
some mild conditions) possesses at least one solution.

We start with the two examples previously dis-
cussed. Both the Liar and the Inconsistent Dualist can
be expressed in terms of statements about truth values.
In anticipation of later developments, we denote “True”
by 1 and ”False” by 0 (at this point 1 and 0 should
be understood as mere symbols, rather than numbers).
Now consider the following examples.
Example 1: The Liar. The Liar sentence (2) can be
restated as follows: A =“The truth value of A is 0”or,
more compactly,

A = “Tr(A)=0” (4)

where “Tr(A)=a” means “The truth value of A is a”, A
is the Liar sentence and a ∈ {0,1}.
Example 2: The Inconsistent Dualist. Similarly, the
Inconsistent Dualist (3) can be written as follows

A1 = “Tr(A2)=1” A2 = “Tr(A1)=0”. (5)

We can generalize the above examples, i.e. we
can form sentences which are similar to (4) and (5)
but quite more complex. We will show how this can
be done by example; the interested reader can consult
[15,33] for an extended and more rigorous exposition

of our approach. In what follows ∧ stands for “and”, ∨
stands for “or” and ′ stands for “not”.
Example 3: The Consistent Dualist. Consider the pair
of sentences: A1 =“A2 is true”, A2 =“A1 is true”. This
can be written as

A1 = “Tr(A2) = 1”, A2 = “Tr(A1) = 1”. (6)

Example 4. The self-referential system

A1 = “A2 is true and A3 is false ” (7)

A2 = “A1 is true and A3 is false ” (8)

A3 = “A1 is false”. (9)

is written as

A1 = “Tr(A2) = 1”∧ “Tr(A3) = 0” (10)

A2 = “Tr(A1) = 1”∧ “Tr(A3) = 0” (11)

A3 = “Tr(A1) = 0”. (12)

Example 5. Consider

A1 : “A2 has truth value 0.90”

and “A3 has truth value 0.20” (13)

A2 : “A1 has truth value 0.80”

and “A3 has truth value 0.30” (14)

A3 : “A1 has truth value 0.10”. (15)

(13)-(15) can be written as

A1 = “Tr(A2) = 0.90”∧ “Tr(A3) = 0.20” (16)

A2 = “Tr(A1) = 0.80”∧ “Tr(A3) = 0.30” (17)

A3 = “Tr(A1) = 0.10”. (18)

Example 6. We conclude with a more complex exam-
ple:

A1 : (“A1 has truth value 0.75” and “A2 has

truth value 0.35”) or “A4 has truth value 1.00”

A2 : “A1 or A3 has truth value 1.00”

and “A4 has truth value 0.10”

A3 : “A2 has truth value 0.00” and “A3 has truth value 0.35”

A4 : “The opposite of A1 has truth value 0.25”,

which translates to



A1 = (C1∧C2)∨C3 (19)

A2 =C4∧C5 (20)

A3 =C6∧C7 (21)

A4 =C8 (22)

with

C1 : “The truth value of A1 is 0.75”

C2 : “The truth value of A2 is 0.35”

C3 : “The truth value of A4 is 1.00”

C4 : “The truth value of A1∨A3 is 1.00”

C5 : “The truth value of A4 is 0.10”

C6 : “The truth value of A2 is 0.00”

C7 : “The truth value of A3 is 0.35”

C8 : “The truth value of A′1 is 0.25”.

In all of the above examples we have dealt with
systems of logical equations, in which the following
symbols appear: A1,A2, ... to denote the self-referential
sentences, “∨ ”, “∧”, “ ′ ” to denote the usual logical
operators or, and, not, and the expression “Tr(B) = b”
to denote “The truth value of B is b”. Using these sym-
bols as building blocks we can build a wide family of
systems of self-referential sentences of the form

A1 = F1 (A1, ...,AM)

A2 = F2 (A1, ...,AM)

... (23)

AM = FM (A1, ...,AM) .

where F1 (·), F2 (·), ..., FM (·) are logical formulas. For
each logical system of the form (23), a system of nu-
merical equations can be obtained by providing nu-
merical intepretations for the logical connectives ∧,∨,′
and the function “Tr(B) = b”.

Numerical implementations of∧,∨,′ are wel known
in the context of fuzzy logic. If 0, 1 are understood as
numbers (rather than mere symbols) then ∧,∨ can be
understood as numerical functions which satisfy cer-
tain conditions: compatibility with the classical (crisp)
truth tables (of conjunction and disjunction respec-
tively), symmetry, associativity and monotonicity. Such
functions (t-norms and t-conorms) have been exten-
sively studied by fuzzy logicians [16]. Similar things
hold for the negation. Several typical implementations
are presented in Table 1. Each row in the table cor-
responds to a family of logical connectives (the fam-

ilies listed in Table 1 are called: standard, algebraic,
bounded and drastic). When restricted to the classical
truth values 0 and 1, these implementations are iden-
tical to the classical logical operations of conjunction,
disjunction and negation.

x∧ y x∨ y x′

min(x,y) max(x,y) 1− x
xy x+ y− xy 1− x

max(0,x+ y−1) min(1,x+ y) 1− x x when y = 1
y when x = 1
0 else

  x when y = 0
y when x = 0
1 else

 1− x

Table 1

We now turn to “Tr(B) = b”. It is a logical state-
ment which talks about the sentence B (more precisely:
about Tr(B), which is the truth value of B) and the num-
ber b; hence it can be assigned a fuzzy truth value v in
the interval [0,1]. When Tr(B) is equal to b, then v must
achieve the maximum value, v = 1 (since “Tr(B) = b”
is true); in general v must be a decreasing function
of the absolute difference |Tr (B)−b|. These require-
ments can be satisfied by setting

v = Tr(“Tr(B) = b”) = 1−|Tr(B)−b| (24)

which we will use in the sequel; (24) has been used by
other authors as well [11].

Now consider a sentence F (A1, ...,AM) which
talks about the truth values of A1, ...,AM . Replacing Am
with Tr(Am) (for all m ∈ {1,2, ...,M}) and understand-
ing the symbols ∧,∨,′ as numerical functions (accord-
ing to Table 1) we obtain a numerical function

f (Tr(A1) , ...,Tr(AM))

with domain [0,1]M and range [0,1].
Given a self-referential system of the form (23),

for each m ∈ {1,2, ...,M} we perform the above pro-
cedure on Fm (A1, ...,AM); also, for simplicity of nota-
tion we replace Tr(Am) by xm (for m ∈ {1,2, ...,M}).
Then (23) yields a system of M numerical equations in
M unknowns:

x1 = f1 (x1, ...,xM)

x2 = f2 (x1, ...,xM)

... (25)

xM = fM (x1, ...,xM) .

We will refer to (25) as the system of truth value equa-
tions.



To illustrate we continue Examples 1–6.
Example 1 Continued: Tr(A) = 1−|Tr(A)−0|⇒ x=
1−|x−0| ⇒

x = 1− x (26)

(26) is the truth value equation for the Liar. The Liar
paradox consists of the fact that, in the context of classi-
cal logic the set of admissible truth values is {0,1} and
(26) has no solution in this set, i.e. the Liar sentence has
no classical truth value. But in the fuzzy logic context
the solution set is [0,1] and (26) has a unique solution
x = 1/2. The Liar sentence has a fuzzy truth value (it is
half-true) and the Liar paradox has been resolved.
Example 2 Continued: Similarly, for the Inconsistent
Dualist, with xm =Tr(Am) (m = 1,2) we get

x1 = 1−|x2−1| , x2 = 1−|x1−0|

and, since x1,x2 ∈ [0,1], we finally get the truth value
equations

x1 = x2 (27)

x2 = 1− x1. (28)

Obviously, eqs. (27)–(28) have the unique solution x =
(x1,x2) = (1/2,1/2).
Example 3 Continued: In this case the truth value
equations are (cmp. (6) )

x1 = 1−|x2−1| , x2 = 1−|x1−1|

which can be written in simple form as

x1 = x2, x2 = x1. (29)

Any vector of the form x = (u,u) (with u ∈ [0,1]) is
a solution; i.e. there is an infinite number of consis-
tent truth value assignments including complete truth
(Tr(A1) = Tr(A2) = 1) and complete falsity (Tr(A1) =
Tr(A2) = 0);
Example 4 Continued. If we implement ∧ by the min
t-norm, the truth value equations become (cmp. (10)–
(12) )

x1 = min [x2,(1− x3)]

x2 = min [x1,(1− x3)] (30)

x3 = 1− x1

These can be solved analytically to obtain the general
solution

x = (u,u,1−u)

with u ∈ [0,1]. Note that this includes the extremal so-
lutions (1,1,0) and (0,0,1) as well as the “mid-point
solution” (1/2,1/2,1/2). On the other hand, imple-
menting ∧ by the product t-norm we obtain the truth
value equations

x1 = x2 · (1− x3)

x2 = x1 · (1− x3) (31)

x3 = 1− x1

and, solving analytically we obtain the solutions

(0,0,1) , (1,1,0) , (−1,1,0) .

(The last solution is inadmissible as a truth value as-
signment.) We see that the same logical system can lead
to different truth value assignments, depending on the
implementation of ”AND” (and “OR”, as we will see
presently).
Example 5 Continued. If we implement ∧ with the
min operator the truth value equations become (cmp.
(16)–(18) )

x1 = min [1−|x2−0.90| ,1−|x3−0.20|]

x2 = min [1−|x1−0.80| ,1−|x3−0.30|] (32)

x3 = 1−|x1−0.10| .

These equations cannot be further reduced and while
in principle they can be solved analytically by distin-
guishing cases, this is quite tedious. The situation is
similar when we implement ∧ by product, the truth
value equations become

x1 = (1−|x2−0.90|) · (1−|x3−0.20|)

x2 = (1−|x1−0.80|) · (1−|x3−0.30|) (33)

x3 = 1−|x1−0.10| .

Example 6 Continued. The truth value equations un-
der min/max implementation are (cmp. (19)–(22) )

x1=max [min(1−|x1−0.75| ,1−|x2−0.35|) ,1−|x4−1.00|]

x2=min [1−|max(x1,x3)−1.00| ,1−|x4−0.10|]
(34)

x3=min [1−|x2−0.00| ,1−|x3−0.35|]

x4= 1−|1− x1−0.25| .

Under product / sum implementation they are:



x1 = (1−|x1−0.75|) · (1−|x2−0.35|)+(1−|x4−1.00|)

− (1−|x1−0.75|) · (1−|x2−0.35|) · (1−|x4−1.00|)

x2 = (1−|x1+x3−x1x3−1.00|) · (1−|x4−0.10|)
(35)

x3 = (1−|x2−0.00|) · (1−|x3−0.35|)

x4 = 1−|1− x1−0.25| .

The above examples illustrate several points. It is
possible that a system of truth value equations admits
no solution in {0,1}M but has (one or more) solu-
tions in [0,1]M . Hence a self-referential system which
is paradoxical in the context of classical logic, may be
resolved (i.e. become non-paradoxical) in the context
of fuzzy logic. It is also possible that the truth value
equations have more than one solutions (Examples 3
and 4); every such solution of (25) is a consistent truth
value assignment and the self-referential system is in-
determinate; this may be considered as a paradox or
not. Finally, there are cases (Examples 5 and 6) where
it is not clear whether one, many or no solution exists;
however we have proved [15,33] that, under mild con-
ditions, every self-referential system expressed in a lan-
guage L (which is well defined in [15,33]) admits at
least one consistent truth value assignment.

Hence every self-referential paradox of the type
presented in the above examples can be removed in the
context of fuzzy logic, i.e. it possesses at least one con-
sistent fuzzy truth value assignment. To obtain this as-
signment the numerical system (25) must be solved;
when this is not possible analytically, some computa-
tional method must be provided; in the next section we
tackle this problem.

3. Solving the Truth Value Equations by Learning
Automata Minimization

In this section we present a method for actually com-
puting truth values (i.e. solving the truth value equa-
tions) using learning automata (LA) minimization [2,
21,25,26,31].

The general approach for equation solving by er-
ror minimization is well known; here we review it in
connection to the truth value equations (25). We want
values x1, ...,xM such that the left and right sides are
equal in each of the equations (25). Let us define the
partial inconsistency

Jm (x1, ...,xM) = (xm− fm (x1, ...,xM))2 , (36)

for m ∈ {1,2, ...,M}; Jm takes values in [0,1]; it is the
discrepancy between the postulated truth value xm and

the truth value resulting from evaluating fm (x1, ...,xM).
Let us also define the average inconsistency

J (x1, ...,xM) =
∑

M
m=1 (xm− fm (x1, ...,xM))2

M
; (37)

it also takes values in [0,1]. It is clear that

J (x1, ...,xM) =
∑

M
m=1 Jm (x1, ...,xM)

M
. (38)

When J is large, (25) is not satisfied; when J is small,
(25) is almost satisfied; a true solution (x1, ...,xM) of
(25) achieves the global minimum J (x1, ...,xM) = 0.
There may be more than one such (x1, ...,xM); as re-
marked above, the existence of at least one is guaran-
teed. In short, a solution of (25) is a global minimizer
(x1, ...,xM) such that J (x1, ...,xM) = 0. The minimizer
can be achieved by various function minimization algo-
rithms; in this paper we use several algorithms based
on learning automata (LA) .

A learning automaton [20] is a simple agent which
probabilistically chooses an action (from a finite set of
possible actions); the action probabilities are updated
(learned) according to a response which is perceived
as reward or punishment, depending on its effect on the
goal of minimizing J.

LA have often been used to solve optimization
problems. A good exposition appears in the book [21];
see also the review paper [31]; some additional notable
papers are [2,25,26]. For a system of M self-referential
sentences we use a team of M automata, one automaton
per sentence. We use variable structure automata of the
type presented in [20, Chapters 4 and 8]; these evolve
in discrete time t = 0,1,2, ... and are characterized by
the following.

1. A vector of actions [α1 (t) , ...,αM (t)]: αm (t)
is the action taken by the m-th automaton at
time t, with m ∈ {1,2, ...,M} and αm (t) ∈
{1,2, ...,K} (the set of actions is finite).

2. The corresponding, time evolving, action prob-
abilities

[
p1

m (t) , ..., pK
m (t)

]
, where pk

m (t) =
Pr(αm (t) = k) and m ∈ {1,2, ...,M}.

3. A vector of responses [β1 (t) , ...,βM (t)]; i.e.
βm (t) is the response to the action αm (t) (m ∈
{1,2, ...,M}); βm (t) ∈ {0,1}, where 0 means
failure (αm (t) was “bad for minimization”) and
1 means success (am (t) was “good for mini-
mization”).

In the algorithms presented here, we have made the
following choices.



Response. When is the automaton rewarded / pun-
ished? I.e. how is βm (t) selected? We use two possibil-
ities: altruistic and selfish mode3, as follows.

1. In altruistic mode, the m-th automaton per-
ceives success when the total inconsistency

G(t) = J (x1 (t) , ...,xM (t)) (39)

is decreased, i.e.for all m ∈ {1,2, ...,M} we
have

βm (t) =
{

1 if G(t)< G(t−1)
0 if G(t)≥ G(t−1). (40)

Note that in this case, at time t, every element
of [β1 (t) , ...,βM (t)] has the same value, i.e. the
automata are rewarded or punished as a team.

2. In selfish mode, the m-th automaton attempts
to minimize the partial inconsistency Jm associ-
ated with its own m-th sentence. Define

Gm (t) = Jm (x1 (t) , ...,xM (t)) . (41)

Then a selfish automaton is succesful when
partial inconsistency is decreased, i.e.

βm (t) =
{

1 if Gm (t)< Gm(t−1)
0 if Gm (t)≥ Gm(t−1). (42)

Action. The actions performed by the m-th automa-
ton relate to the choice of the truth value xm. Note
that xm can take values in the uncountably infinite set
[0,1], while the VS LA accomodates a finite set of ac-
tions. This problem can be resolved in several ways.
One simple-minded approach is to discretize the set
[0,1] into a finite set

{ 0
K−1 ,

1
K−1 , ...,

K−1
K−1

}
; some more

sophisticated approaches appear in [2,21,25,31]. How-
ever we choose a different approach, where each au-
tomaton is endowed with three (K = 3) possible ac-
tions: decrease xm by ∆x, leave it unchanged, or in-
crease it by ∆x. The next question is: what should the
increment ∆x be? We have experimented with fixed
∆x, but we have obtained better results with a variable
∆x, equal to G(t); in this way smaller steps are taken
close to the global minimum 0; we have empirically ob-
served that this improves convergence to the minimizer
(x1, ...,xM). Hence the actions available to the m-th au-
tomaton at time t are

xm (t) = xm (t−1)−G(t−1) w.p. p1
m (t−1)

xm (t) = xm (t−1) w.p. p2
m (t−1)

xm (t) = xm (t−1)+G(t−1) w.p. p3
m (t−1)

. (43)

3The rationale for the selection of these terms, with their anthro-
pomorphic connotations, is explained in Appendix A.

To run (43) we also need to initialize x1 (0) , ...,xM (0);
these are always chosen randomly from a uniform dis-
tribution in [0,1].4

Update Mode. We use two variations regarding the se-
quence with which the automata choose and evaluate
actions and update probabilities.

1. Parallel update: at time step t apply (43) (and
(40) or (42)) to all m simultaneously.

2. Serial update: at time step t an m (the m-th au-
tomaton) is selected randomly and (43) is ap-
plied for this m only.

For action probability update we use the classical
scheme presented in [20]. Namely, with reward rate ar
and punishment rate ap and for m ∈ {1,2, ...,M}, we
apply a reward update

pi
m (t) = (1−ar) · pi

m (t−1)+ar for i = k
pi

m (t) = (1−ar) · pi
m (t−1) for i 6= k (44)

when αm (t) = k and βm (t) = 1, and a punishment up-
date

pi
m (t) = (1−ap) · pi

m (t−1) for i = k
pi

m (t) = (1−ap) · pi
m (t−1)+ ap

K−1 for i 6= k (45)

when αm (t) = k and βm (t) = 0. We always initialize
this algorithm with

[
p1

m (0) , p2
m (0) , p3

m (0)
]
=
[ 1

3 ,
1
3 ,

1
3

]
.

4. Experimental Validation

In this section we use numerical experiments to eval-
uate the four LA algorithms listed in Table 2. The
names in the first column denote the style of operation,
namely: PA means Parallel/Altruistic, PS means Par-
allel/Selfish, SA means Serial/Altruistic and SS means
Serial/Selfish.

Name Algorithm Details
PA Use (43), (39), (40), (45) / parallel update;
PS Use (43), (41), (42), (45) / parallel update;
SA Use (43), (39), (40), (45) /serial update;
SS Use (43), (41), (42), (45) / serial update.

Table 2

4It is worth remarking that our selection of action set makes our
LA an intermediate between finite action learning automata (FALA)
and continuous action learning automata (CALA). Strictly speaking,
the automaton may take an infinite number of actions, i.e. it may
select any x-value from the infinite set [0,1], and this corresponds
to a CALA. However, the automaton only maintains a lit of three
action probabilities (decrease, stay, increase) and hence for practical,
computational purposes it is better understood as a FALA.



For the evaluation we use the nine problems listed
in Section 2. For each problem we run each of the four
algorithms for 100 repetitions; in each repetition the al-
gorithm runs for a maximum of 10000 time steps, but a
termination criterion is also applied to stop at an earlier
time, if the average inconsistency falls below ε = 10−5

(which practically amounts to finding a consistent truth
value assignment). For a complete specification of the
algorithms, we must also choose values for the reward
and punishment rates ar, ap. We have chosen (by trial
and error) ar = ap = 0.5 which works well over the
entire set of problems examined here. We have found
(also by trial and error) that values close to 0.5 give
similar results; in other words our algorithms are fairly
robust with respect to the ar, ap values.

We evaluate the algorithms using two basic quanti-
ties. First, the percentage of repetitions (out of the total
one hundred) in which a consistent truth value assign-
ment was found is denoted by c and plotted in Figure
1. Second, the average execution time, measured by the
logarithm (with base 10) of the number of time steps
until termination is denoted by T and plotted in Figure
2 (so in Figure 2 a T value of 2 indicates 100 update
steps until termination, 4 indicates the maximum pos-
sible number of 10000 steps and so on).
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Figure 1. Average (over 100 repetitions) accuracy for each experi-
ment. Note that label 4 identifies two experiments, corresponding to
eqs.(30) and (31); similarly for labels 5 and 6.

The following remarks can be made.
1. Selfish automata (both parallel and serial) have
excellent performance, locating a c value practically
equal to 100% in every experiment. Serial altruistic au-
tomata also have a c near 100% in almost every exper-
iment, but perform very poorly in experiment 5.1; par-
allel altruistic automata also perform poorly in experi-
ment 6. Hence selfish automata perform, on the whole,
better than altruistic ones.
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Figure 2. Logarithm of the average (over 100 repetitions) number of
steps until termination for each experiment. Note that label 4 iden-
tifies two experiments, corresponding to eqs.(30) and (31); similarly
for labels 5 and 6.

2. In every case where a high c value is achieved, the
corresponding truth value assignments are also very
close to true solutions of the truth value equations (i.e.
the algorithm not only achieves a low J value, but also
a good approximation of an actual solution of the truth
value equations).
3. Regarding speed of execution, we see that the LA
find good truth value assignments relatively quickly
(between 100 and 1000 steps) except for the case of the
hard problems 5 and 6.
4. Problem 5, eq.(32), appears to be a hard problem.
Using the approximate solutions found by the LA algo-
rithm we have been able to postulate and check that an
exact solution is x= [0.95,0.85,0.15]; we are not aware
of any other solution and we do not have a way to find
one, if it exists. Problem 5, eq.(33) (the same logical
system but now implemented with product t-norm and
algebraic sum t-conorm) admits at least three distinct
solutions, namely

[0.9027,0.8051,0.1973] ,

[0.2384,0.5440,0.3981] ,

[0.0473,0.0872,0.9473] ;

each of these solutions has been located by at least
some of the repeated runs of our LA algorithms.
5. Problem 6, eq.(34) has the exact solution

x = [0.875,0.225,0.675,0.8750]

(again discovered through the approximate solutions
obtained by the LA algorithms); we are not aware of
another exact solution. Problem 6, eq.(35) has the solu-
tion



x = [0.9505,0.2922,0.5595,0.7995]

It is somewhat surprising that selfishly behaving
automata can jointly achieve the result which is best for
the entire system, i.e. the minimization of the total in-
consistency. It is tempting to draw analogies between
this observation and the game-theoretic literature on the
emergence of cooperation between selfish agents. This
is a topic which has been studied to great extent in the
game theory literature (as a small sample we mention
the books by Hofstadter [12, Chapters 29-31], Gauthier
[10] and Binmore [3] and also the papers [24,32]). In-
deed, from the mathematical point of view, a non-zero-
sum game is simply a problem of decentralized opti-
mization of (one or more) target functions, all of which
depend on the same set of variables, each variable being
controlled by a selfish agent. The reader will recognize
that this description applies equally well to the prob-
lem we have studied in this paper; this point of view
is also well presented in the LA literature; see [20,26].
Hence there is an implicit connection between the cur-
rent work and game theory. We discuss this connection
further in Appendix A.

5. Conclusion

In this paper we have introduced a theoretical frame-
work, based on fuzzy logic, to reduce logical self-
reference and paradox to the problem of solving sys-
tems of numerical equations. Then we have presented
an LA-based computational approach to solve the nu-
merical problem, which amounts to resolving a wide
class of self-referential paradoxes (the Liar paradox is
the most celebrated member of the class).

We plan to further research the following related
issues. First, we want to compare our approach to the
use of “standard” variable structure LA with a finite
number of actions (this case can be applied to fuzzy
logics with a finite number of truth values and in con-
junction with discretization of the continuous set [0,1]).
Second, we intend to analyze theoretically the LA algo-
rithms presented in the current paper, with special em-
phasis on expediency, ε-optimality, convergence rate
etc. Third, we want to adapt our approach to the the-
ory of explanatory coherence [28,29] which, as far as
we know, has not been applied to self-referential sen-
tences. The connection is natural: since self-referential
sentences make claims about each other’s truth values,
it is rather straightforward to setup a network with one
node per sentence and with connections which can be
either reinforcing or inhbiting (depending on what sen-
tences say about each other).

A. Appendix: Learning Automata, Game Theory
and Informal Reasoning

In Section 4 we have mentioned that (from the mathe-
matical point of view) a non-zero-sum game is simply
a problem of decentralized optimization. This point of
view illuminates the connection between the resolution
of self-referential systems and a team of learning au-
tomata playing a game. Of course this is an “anthropo-
morphic” view.

What entity is represented by each automaton par-
ticipating in this “reasoning game”? In this Appendix
we offer a possible answer which has motivated us
to use learning automata for the resolution of self-
referential systems.

We introduce the following hypothesis: when a
reasoner is presented with a self-referential system, the
self-referential sentences compete for acceptance by
the reasoner. This hypothesis is a variation of an idea
presented by R. Dawkins [7] and popularized by D.
Hofstadter [12]. Dawkins defines a meme to be

a unit of cultural transmission, or a unit of imita-
tion ... Examples of memes are tunes, ideas, catch-
phrases, clothes fashions, ways of making pots or build-
ing arches. Just as genes propagate in the gene pool via
a process which, in the broad sense can be called imita-
tion ... if the idea catches on, it can be said to propagate
itself, spreading from brain to brain. [7]

Dawkins and Hofstadter suggest that meme com-
petition evolves over many thinkers and many genera-
tions of thinkers, resulting in a process of evolutionary
selection. In the current paper, however, we consider
a single thinker reasoning about the validity of sev-
eral self-referential propositions. Each proposition “at-
tempts” to ascertain itself in the thinker’s mind by ad-
justing its truth value to minimize the inconsistency be-
tween its assigned truth value and the truth value com-
puted as a function of the truth values of the remaining
propositions; the “best policy” for a sentence is to adopt
the truth value which minimizes its inconsistency. We
repeat that this is a highly anthropomorphic interpre-
tation of the situation; under this interpretation the al-
gorithms of Section 3 can be seen as models of human
reasoning as a truth value adjustment process, with one
automaton corresponding to each sentence/meme.

The above interpretation can be used as a metaphor
to motivate our use of LA, but is it a psychologi-
cally plausible model of human reasoning about self-
referential propositions? It certainly does not model
reasoning by the rules of formal logic; but in the psy-
chology literature it has often been reported that hu-
mans do not always reason by the rules of formal logic
[6,14,22,23]. It has also been argued that belief change
consists in “propositional update”; for example, [8] re-



ports that, when a human is faced with a collection
of contradictory propositions, she will reject some of
these propositions (i.e. assign to them truth value equal
to zero)5. If fuzzy logic and the use of continuous truth
values are acceptable, partially believing a proposition
(i.e. assigning to it a truth value in the interior of [0,1])
is an alternative to outright rejection.

Is it plausible that human reasoning is imple-
mented by a dynamical system of the form (45)? Gen-
erally humans do not consciously reason by updating
truth values6. On the the other hand, the hypothesis that
reasoning at the subcognitive level corresponds to the
evolution of a dynamical system is one of the funda-
mental ideas of connectionism [19] and has also been
used in other contexts [13]. And the idea that “practi-
cal” reasoning involves constraint satisfaction has been
expressed eloquently by P. Thagard and his collabo-
rators [29] in the form of coherence theory [28,30] .
Hence the operation of a learning algorithm similar to
(45) at the subcognitive level is not implausible.

Given the above considerations, a game theoretic
approach to the problem of (human) reasoning is not
out of place. It is implicit in the LA literature and has
also been expressed in several other contexts, most no-
tably in the literature of market-driven artificial intelli-
gence [9,27], but also in [1], [5] etc.

We repeat that in this Appendix we have pre-
sented a hypothetical interpretation of the mathemati-
cal methodology presented in the main body of the pa-
per. The success of our methodology in computing con-
sistent truth values, is a fact, not a matter of interpre-
tation; on the other hand, its plausibility as a realistic
model of human reasoning is an open question.
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