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Abstract. In this paper we discuss some problematic aspects of Newman and Girvan’s modularity function
QN . Given a graph G, the modularity of G can be written as QN = Qf −Q0, where Qf is the intracluster
edge fraction of G and Q0 is the expected intracluster edge fraction of the null model, i.e., a randomly
connected graph with same expected degree distribution as G. It follows that the maximization of QN

must accomodate two factors pulling in opposite directions: Qf favors a small number of clusters and Q0

favors many balanced (i.e., with approximately equal degrees) clusters. In certain cases the Q0 term can
cause overestimation of the true cluster number; this is the opposite of the well-known underestimation
effect caused by the “resolution limit” of modularity. We illustrate the overestimation effect by constructing
families of graphs with a “natural” community structure which, however, does not maximize modularity.
In fact, we show there exist graphs G with a “natural clustering” V of G and another, balanced clustering
U of G such that (i) the pair (G, U) has higher modularity than (G,V) and (ii) V and U are arbitrarily
different.

1 Introduction

This paper describes some problems which may arise in us-
ing Newman and Girvan’s modularity function QN [1] for
community detection. Modularity is one of the most pop-
ular quality functions in the community detection litera-
ture. It is not only used to evaluate the community struc-
ture of a graph, but also to perform community detection
by modularity maximization. However, it is well-known
that modularity maximization can, in certain cases, yield
the “wrong” community decomposition. Previous work
on this aspect has focused on the modularity resolution
limit [2], which causes underestimation of the true number
of communities. Some researchers have also studied the
opposite effect, namely overestimation of the true commu-
nity number. For example, it is reported in references [3,4]
that sparse graphs tend to cluster into more modules than
predicted by certain statistical mehanics models of com-
munity structure. This property of sparse graphs can lead
modularity maximization to overestimate the number of
communities (see, e.g., [5] where the overestimation effect
is studied in connection to both modularity maximization
and the Infomap framework [6]).

In this paper we focus on the overestimation of the
number of communities by modularity maximization and
provide some precise results in this direction.

More specifically, the paper is organized as follows. In
Section 2, we present our nomenclature and notation; let
us stress from the beginning that we will use “cluster”
as a synonym of “community” and “clustering” to denote
both a partition of the nodes of a graph and the activity
of creating such a partition. In Section 3, we present an in-
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terpretation of QN which, as far as we know, has not been
discussed previously. It is well-known that the modularity
of a graph G can be written in the form QN = Qf − Q0,
where Qf is the intracluster edge fraction of G and Q0 is
the expected intracluster edge fraction of the null model,
i.e., a graph G′ which has the same expected degree distri-
bution as G but randomly distributed edges. As explained
in Section 3.2, maximization of Qf favors clusterings with
a small number of clusters and few edges across clusters.
On the other hand, as explained in Section 3.3, minimiza-
tion of Q0 favors clusterings with a large number of clus-
ters and each cluster having approximately equal degree
(we call these “balanced clusterings”). Cluster number se-
lection is performed by balancing these two opposite ef-
fects in the maximization of QN .

In Section 4.1, we exploit the behavior of Q0 and con-
struct examples in which modularity maximization yields
arbitrarily inaccurate clusterings. More specifically, we
construct a class of graphs GK,N1,N2 (where K, N1, N2 are
parameters of the graph) with the following properties.

1. Each graph GK,N1,N2 has a “natural” clustering
VK,N1,N2 (which, however, does not maximize
modularity).

2. We can find graphs GK,N1,N2 and clusterings
UK,N1,N2,J such that, by appropriate selection of
K, N1, N2 and J , the following hold1:

1 Note that in the following remarks we are talking about
the modularity QN (V, G) of a clustering/graph pair (V, G).
Indeed, as will be seen in Section 3, the computation of
QN (V, G) involves the adjacency matrix of the graph and the
classes assigned by the clustering, i.e., QN (V, G) depends on
both V and G.
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– the pair (GK,N1,N2 ,UK,N1,N2,J) has higher modu-
larity than the pair (GK,N1,N2 ,VK,N1,N2);

– the modularity of (GK,N1,N2 ,UK,N1,N2,J) can be-
come (by appropriate selection of J) arbitrarily
close to one;

– the Jaccard similarity between clusterings
VK,N1,N2 and UK,N1,N2,J can become (by
appropriate selection of J) arbitrarily close to zero
(hence VK,N1,N2 and UK,N1,N2,J are arbitrarily
different in the Jaccard sense).

We prove similar results for another class of graphs in
Section 4.2.

Finally, in Section 5 we discuss the implications of our
results and (previously published) related work by other
authors and propose some future research directions.

2 Preliminaries

1. A graph G is a pair (V, E), where V is the node set (we
will always assume V = {1, 2, . . . , n}; hence the num-
ber of nodes is n = |V |) and E ⊆ {{u, v} : u, v ∈ V }
is the edge set (and m = |E| is the number of edges).
In this paper we will deal with finite graphs without
multiple edges and loops.

2. The adjacency matrix of G is an n× n matrix A with
Au,v = 1 if {u, v} ∈ E and 0 otherwise. There is a
one-to-one correspondence between a graph G and its
adjacency matrix A.

3. A clustering of G = (V, E) is a partition
V= {V1, . . . , VK} of V . The clusters are the node sets
V1, . . . , VK , which satisfy ∪K

k=1Vk = V and ∀k, l :
Vk∩Vl = ∅. The size of the clustering is K, the number
of clusters. Given a graph G = (V, E), we denote by V
the set of all clusterings of V and by VK the set of clus-
terings of size K. Sometimes we call Vk a community;
this is simply a synonym of “cluster”.

4. Given a clustering V= {V1, . . . , VK} of the graph
G = (V, E), we define the following edge sets
(k = 1, . . . , K):

Ek = {{u, v} : u, v ∈ Vk and {u, v} ∈ E} ,

i.e., Ek is the set of edges with both ends being nodes of
Vk. The edges contained in ∪K

k=1Ek are the intracluster
edges; the remaining edges, i.e., the ones contained in
E− ∪K

k=1Ek are the extracluster edges.
5. The degree function deg (·) : V → Z is defined as fol-

lows: for any v ∈ V , deg (v) = |{{v, w} : {v, w} ∈ E}|
is the number of edges incident on v; we also define,
for any U ⊆ V , deg (U) =

∑
v∈U deg (v), i.e., the sum

of degrees of the nodes contained in U .
6. The Jaccard similarity index is defined as follows.

Given any two clusterings W1, W2 define
a11 =“num. of node pairs {u, v} in same cluster

under W1 and same cluster under W2”;
a10 =“num. of node pairs {u, v} in same cluster

under W1 and different cluster under W2”;
a01 =“num. of node pairs {u, v} in different cluster

under W1 and same cluster under W2”.

Then the Jaccard similarity index S (W1,W2) is de-
fined by:

S (W1,W2) =
a11

a10 + a01 + a11
.

S (W1,W2) takes values in [0, 1]; values close to 1
show that W1,W2 are very similar; values close to 0
that they are very different.

3 An intepretation of modularity

3.1 Modularity

Given a graph G = (V, E) with adjacency matrix A, we
denote the modularity of a clustering V by QN (V, G)
and, following [1], we define it by:

QN (V, G) =
1

2m

∑

i,j∈V

(

Aij − deg (i) deg (j)
2m

)

Δ (i, j),

(1)
where Δ (i, j) equals one if i and j belong to the same
cluster and zero otherwise. Our notation emphasizes that
QN (V, G) is a function of both the graph and the clus-
tering (cmp. to footnote 1). In other words, the value
QN (V, G) characterizes the pair (V, G), not just the
graph G.

The motivation for introducing modularity originates
in the fact that QN (V, G) measures the fraction of intr-
acluster edges in G minus the expected value of the same
quantity in a graph G′ with the same clusters but ran-
dom connections between the nodes; G′ is often called
the null model2. QN (V, G) can be either positive or neg-
ative, with positive values indicating the possible pres-
ence of community structure. Thus, one can search for
community structure by looking for the partitions of a
graph that have positive, and preferably large, values of
the modularity. This is the justification of graph clustering
by modularity maximization, as presented in reference [7],
from which we have paraphrased most of the above re-
marks. The way we understand Newman’s argument is
that, by definition, V is a better clustering of G than V′
iff QN (V, G) > QN (V′, G) and the overall best cluster-
ing of G is V∗ = arg maxV QN (V, G). Furthermore, ac-
cording to the above reasoning, a large value QN (V∗, G)
should indicate both (i) that V∗ is a good clustering of G
and (ii) G has strong community structure. Hence modu-
larity is a clustering quality function (CQF) in the sense
of reference [8].

There are reasons to doubt the above conclusions. For
example, it is not clear exactly what is a “large QN (V, G)
value”. While it is known [9] that − 1

2 ≤ QN (V, G) ≤ 1
for every pair (V, G), examples appear in the commu-
nity detection literature [7] of graphs which have strong
(intuitively perceived) community structure and yet their
maximum modularity is closer to zero than to one. On the

2 Note that the intracluster edge fraction of both G and G′

is computed with respect to V.
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other hand, graphs exist which do not have an intuitively
obvious modular structure and yet can achieve high modu-
larity values. For example, in reference [10] it is shown that
trees and treelike networks can achieve high modularity
values, despite the fact that trees are sparsely connected
and are not generally considered to possess modular struc-
ture. In reference [11] it is shown that graph classes such
as tori and hypercubes (which do not have any obvious
modular structrue) can asymptotically achieve the maxi-
mum possible modularity value, namely one.

An additional shortcoming of modularity maximiza-
tion is its tendency to either underestimate or overesti-
mate the number of clusters in a graph; this fact has been
widely reported in the literature; we will also discuss it in
Section 3.3.

A frequently proposed explanation for the shortcom-
ings of modularity is that the use of the null model is
not well justified [8]. In Section 3.3 we will consider an
alternative, complementary explanation. But first we will
examine another CQF.

3.2 Intracluster edge fraction

A popular characterization of a graph community is that
“there must be more edges ‘inside’ the community than
edges linking vertices of the community with the rest of
the graph” [8, Section III-B.1]. Variations of this principle
have been stated by several authors3.

A prima facie reasonable way to quantify the princi-
ple is through the intracluster edge fraction, denoted by
Qf (V, G) and defined by:

Qf (V, G) =
∑K

k=1 |Ek|
m

. (2)

For every G and V, Qf (V, G) ∈ [0, 1]. A high (i.e., close
to 1) value of Qf (V, G) indicates that the pair (V, G) has
many intracluster and few extracluster edges.

Unfortunately, a high Qf (V, G) value does not guar-
antee either that G has strong community structure or
that V is a good clustering of G. Indeed we can always
achieve the maximum value Qf (V, G) = 1 by taking
V = {V } (i.e., the unique clustering of size one) but this
tells us nothing about the “true” community structure of
G. This observation can be generalized. First define the
following function:

FG (K) = max
V∈VK

Qf (V, G). (3)

In words, for a given graph G, FG (K) is the maximum
intracluster edge fraction achieved by clusterings of size K.
Now we can prove the following.

Theorem 3.1. For any graph G = (V, E), FG (K) is a
nonincreasing function of K.

3 An extreme statement of this idea appears in reference [12]:
“a community network G0 = (V, E0) [is] a graph G0 that is a
disjoint union of complete subgraphs”.

Proof. There exists a single clustering of size one, namely
V(1)= {V }. Denote the set of intracluster edges by E

(1)
1 ;

obviously E
(1)
1 = E (i.e., all edges are intracluster). Hence

FG (1) =

∣
∣
∣E

(1)
1

∣
∣
∣

|E| = 1.

Let V(K)=
{

V
(K)
1 , V

(K)
2 , . . . , V

(K)
K

}
be the optimal clus-

tering of size K; the intracluster edge sets are E
(K)
1 , . . . ,

E
(K)
K . Create a clustering V′ of size K − 1 by merging

V
(K)
K−1 and V

(K)
K . In other words

V′ =
{
V

(K)
1 , V

(K)
2 , . . . , V

(K)
K−2, V

(K)
K−1 ∪ V

(K)
K

}
.

Under V′ the intracluster edges are

E′
1 = E

(K)
1 , . . . , E′

K−2 = E
(K)
K−2, E′

k−1.

We have
E

(K)
K−1 ∪ E

(K)
K ⊆ E′

K−1

and ∣
∣
∣E

(K)
K−1

∣
∣
∣ +

∣
∣
∣E

(K)
K

∣
∣
∣ ≤

∣
∣E′

K−1

∣
∣ .

Hence

FG (K) = Qf

(
V(K), G

)
=

∑K
k=1

∣
∣
∣E

(K)
k

∣
∣
∣

|E|

≤
∑K−2

k=1

∣
∣
∣E

(K)
k

∣
∣
∣

|E| +

∣
∣E′

K−1

∣
∣

|E| = Qf (V′, G).

But

Qf (V′, G) ≤ max
V∈VK−1

Qf (V, G) = FG (K − 1).

It follows that

0 ≤ FG (n) ≤ . . . ≤ FG (2) ≤ FG (1) = 1

and the proof is complete.

Hence, for any G, Qf (V, G) is maximized at K = 1 and
this gives us no information about the actual community
structure of G. In other words, Theorem 3.1 implies that
Qf maximization cannot determine the optimal number
of clusters. On the other hand, if K is given in advance
(as a parameter) then V(K) = arg maxV∈VK Qf (V, G) is
a reasonable candidate for the best clustering of size K.
This has sometimes been phrased as a criticism of com-
munity detection by Qf maximization. For instance, in
reference [8] is stated that “Algorithms for graph parti-
tioning are not good for community detection, because it
is necessary to provide as input the number of groups”.
However, this criticism is valid only to the extent that
other algorithms exist which can obtain the true number
of groups (clusters). For example, an alleged advantage
of modularity is that its maximization yields the correct
number of clusters; let us now discuss this claim.
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3.3 Modularity as augmented intracluster edge
fraction

The claim that modularity maximization can determine
the true number of clusters has been put in doubt by
the discovery of the modularity resolution limit. As ex-
plained in references [2,13] and several other papers, there
exist graphs G for which the clustering obtained by maxi-
mizing modularity has fewer clusters than the “intuitively
correct” clustering of G. In other words, modularity max-
imization can underestimate the number of clusters. In
addition, modularity maximization can overestimate the
number of clusters. Some explanations of this fact have
been presented in the literature (see, e.g., [5]). We will
now present an intuitive and (to the best of our knowl-
edge) new explanation of cluster number overestimation,
which will form the basis of some precise results presented
in Section 4.

It is easy to convert (1) to the following (well-known)
equivalent form:

QN (V, G) =
K∑

k=1

|Ek|
m

−
K∑

k=1

(
deg (Vk)

2m

)2

. (4)

Defining

Q0 (V, G) =
K∑

k=1

(
deg (Vk)

2m

)2

(5)

we can rewrite (4) as:

QN (V, G) = Qf (V, G) − Q0 (V, G) . (6)

Hence Newman and Girvan’s modularity is the difference
of Qf (V, G) and the auxiliary function Q0 (V, G). As al-
ready mentioned, the introduction of Q0 (V, G) is usually
motivated by appeal to the null model [1]; we will now
present an alternative, complementary view.

Suppose momentarily that K is given and we want to
minimize Q0 (V, G) with respect to V = {V1, . . . , VK}.
For simplicity of notation, define pk = deg(Vk)

2m ; then

Q0 (V, G) =
K∑

k=1

(
deg (Vk)

2m

)2

=
K∑

k=1

p2
k

and we also have

K∑

k=1

pk =
K∑

k=1

deg (Vk)
2m

= 1.

Hence we want to solve the following problem: given K,
minimize

∑K
k=1 p2

k subject to:

0 ≤ pk ≤ 1 and
K∑

k=1

pk = 1. (7)

Of course there are additional constraints on the pk’s: each
of them must be obtained by summing the degrees of Vk,
which is a set of nodes of the given graph G. However,

assume for the time being that the pk’s are continuously
valued and must only satisfy the constraints of (7) (these
assumptions will be removed a little later). Under these
assumptions, the solution to (7) is pk = 1

K for all k; the
minimum thus achieved is 1

K .
Next consider the problem: minimize

∑K
k=1 p2

k sub-
ject to:

K ∈ {1, . . . , n} , 0 ≤ pk ≤ 1 and
K∑

k=1

pk = 1. (8)

We can solve (8) by first solving (7) separately for each
K ∈ {1, . . . , n} and then looking for the overall minimum;
we see that this is 1

n and is achieved at K = n and pk = 1
n

for all k.
Going back to the minimization of Q0 (V, G) we note

that, in general, the overall minimum
∑K

k=1 p2
k = 1

n
will only be achieved under very special circumstances.
Namely, if all nodes of G have equal degree, then

min
V∈V

Q0 (V, G) = Q0 (V∗, G) =
1
n

where V∗ = {V1, . . . , Vn} and Vi = {i} for i ∈ {1, . . . , n}.
But even when the nodes of G do not have equal de-
grees, it seems intuitively obvious that small values of
Q0 (V, G) are achieved by clusterings V which have many
clusters (large K) and distribute nodes between clusters
so that pk = deg(Vk)

2m is approximately the same for all
k ∈ {1, . . . , K}. In Section 4, we will see precise examples
which justify this intuition.

Let us now apply the above observations to modu-
larity maximization. Since (i) QN = Qf − Q0, (ii) Qf

achieves its maximum at K = 1 and (iii) we expect Q0

to achieve its minimum at or near K = n, we conclude
that the following factors will influence the outcome of
modularity maximization: the Qf term pulls K towards
small values and the Q0 towards large ones; in addition
the Qf term favors clusterings which correspond to the
“natural” community structure of G (i.e., there exist few
extracluster edges) while the Q0 favors “balanced” clus-
terings (i.e., each cluster has more or less the same de-
gree). The final outcome depends on (among other factors)
the relative magnitudes of Qf and Q0. These observa-
tions agree with previously published remarks, e.g., that
“the existing modularity optimization method does not
perform well in the presence of unbalanced community
structures” [14] and “for modularity’s null model graphs,
the modularity maximum corresponds to an equiparti-
tion of the graph” [8]. In particular, the issue of clus-
ter number underestimation (modularity resolution limit)
has been discussed in, for example, [2,13], while overesti-
mation has been discussed in references [5,15,16]. We will
present our own analysis of cluster number overestimation
in Section 4.

Let us note, in concluding this section, that one
method used to address the modularity resolution limit
is to introduce a modified modularity function. This func-
tion is often written in the form

Q (V, G; γ) = Qf (V, G) − γQ0 (V, G)

http://www.epj.org
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Fig. 1. Graph family GK,N1,N2 .

where γ is a “tuning parameter” (see Refs. [3,17–20] and
also [21,22]). With γ = 1, Q (V, G; 1) = QN (V, G), the
original Newman and Girvan’s modularity. If this under-
estimates (resp. overestimates) the “true” number of clus-
ters, formation of more (resp. fewer) clusters can be en-
couraged by increasing (resp. decreasing) γ and hence the
influence of the Q0 (V, G) term on the maximization prob-
lem. However, it seems that no “universally correct” value
of γ exists; in other words, the resolution limit can occur
for any γ value [19,20].

4 Bad clusterings with high modularity

In this section we construct graphs admitting (i) a “nat-
ural” clustering and (ii) a sequence of “arbitrarily bad”
clusterings which achieve higher modularity than the nat-
ural one. In fact, as we will see, the arbitrarily bad clus-
terings can achieve modularity arbitrarily close to one and
they can be “arbitrarily different ” from the natural clus-
tering (we will presently explain precisely what we mean
by the terms “natural”, “arbitrarily bad” and “arbitrarily
different”). These results indicate that, at least in certain
cases, modularity is not a good CQF.

4.1 First example

To establish the abovementioned results, we will construct
a family of graphs GK,N1,N2 (where K, N1, N2 are param-
eters) such that the graph GK,N1,N2 has an easily recog-
nized “natural” clustering VK,N1,N2 (for every K, N1, N2).

We define GK,N1,N2 as follows. First, for any N1, N2 we
define the disconnected graph GN1,N2 to be the union of a
path of N1 nodes and a path of N2 nodes; second, we let
the disconnected graph GK,N1,N2 be the union of K copies
of GN1,N2 . The construction is illustrated in Figure 1.

We claim that the natural clustering of GK,N1,N2 is
VK,N1,N2 = {VK,N1,N2,1, VK,N1,N2,2, . . ., VK,N1,N2,2K},
where VK,N1,N2,k is the node set of the kth connected
component of G (with k ∈ {1, 2, . . . , 2K}, see Fig. 1).
At the risk of belaboring the obvious, we note that, if
u ∈ VK,N1,N2,i and v ∈ VK,N1,N2,j (with i 
= j) then there
exists no path connecting u and v; hence they should never

be put in the same cluster. So the biggest possible clus-
ters are the VK,N1,N2,i’s. On the other hand, there is no
justification for splitting some VK,N1,N2,i at any particu-
lar edge, since all edges (except the border edges) have
the same connectivity pattern, i.e., the ith edge connects
nodes i and i+1. Hence VK,N1,N2 is the “intuitively best”
(i.e., the “natural”) clustering of GK,N1,N2 .

Lemma 4.1. For every K, N1, N2 ∈ N with N1, N2 ≥ 3
and J ≤ n = K (N1 + N2) we have

QN (VK,N1,N2 , GK,N1,N2) = 1 − (N1 − 1)2 + (N2 − 1)2

K (N1 + N2 − 2)2
.

(9)

Proof. We fix K, N1, N2 and, for brevity, we write G for
GK,N1,N2 and V for VK,N1,N2 . We have

QN (V, G) =
∑2K

k=1 |Ek|
m

−
∑2K

k=1 (deg (Vk))2

(2m)2
.

Under V, G has no extracluster edges hence we have
∑2K

k=1 |Ek|
m

= 1. (10)

We can separate V into two subsets of clusters: V′ =
{V1, V3, . . . , V2K−1} contains the clusters with N1 nodes
and V′′ = {V2, V4, . . . , V2K} contains the clusters with
N2 nodes. Each Vk ∈ V′ has N1 − 2 “inner nodes” of
degree 2 and two “border nodes” of degree 1; similarly,
each Vk ∈ V′′ has N2 − 2 inner nodes and 2 border nodes.
Hence

∀ : Vk ∈ V′ : deg (Vk) = 2 (N1 − 2) + 2 = 2 (N1 − 1)

∀ : Vk ∈ V′′ : deg (Vk) = 2 (N2 − 2) + 2 = 2 (N2 − 1) .

The total number of edges is

m =

∑
Vk∈V deg (Vk)

2

=

∑
Vk∈V′ deg (Vk) +

∑
Vk∈V′′ deg (Vk)

2
= K (N1 + N2 − 2).

Also,

∑2K
k=1 (deg (Vk))2

(2m)2
=

∑
Vk∈V′ (2 (N1 − 1))2

(2K (N1 + N2 − 2))2

+

∑
Vk∈V′′ (2 (N2 − 1))2

(2K (N1 + N2 − 2))2

=
K (N1 − 1)2 + K (N2 − 1)2

K2 (N1 + N2 − 2)2

=
(N1 − 1)2 + (N2 − 1)2

K (N1 + N2 − 2)2
. (11)

Combining (10) and (11) we get (9).
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Let us now introduce the “bad clusterings”. For every
triple (K, N1, N2), we define a sequence {UK,N1,N2,J}n

J=1

of clusterings of GK,N1,N2 . For a fixed J , let L =
⌊

n
J

⌋
;

writing for brevity UJ in place of UK,N1,N2,J , we let UJ =
{U1, . . . , UJ , UJ+1} consist of the following J + 1 clusters:

U1 = {1, . . . , L} , U2 = {L + 1, . . . , 2L} , . . . ,

UJ = {(J − 1)L + 1, . . . , JL} ,

UJ+1 = {JL + 1, . . . , n} ;

if n = JL then UJ+1 = ∅. In other words, UJ con-
tains J clusters each containing the same number of nodes
(namely L =

⌊
n
J

⌋
) and perhaps an additional cluster (with

fewer than L nodes). Obviously UJ is a “well balanced”
clustering.

Lemma 4.2. For every K, N1, N2, J ∈ N with N1, N2 ≥ 3
we have

QN (UK,N1,N2,J , GK,N1,N2)

≥ 1 − 1
K (N1 + N2 − 2)

J − 2 (N1 + N2)
2

(N1 + N2 − 2)2
J−1. (12)

Proof. We write G for GK,N1,N2 and UJ for UK,N1,N2,J .
We have

QN (UJ , G) =
∑J+1

k=1 |Ek|
m

−
∑J+1

k=1 (deg (Uk))2

(2m)2
.

Consider first
∑ J+1

k=1 |Ek|
m . A little thought shows that UJ

has at most J +1 clusters and J extracluster edges. Hence

∀J :
∑J+1

k=1 |Ek|
m

≥ m − J

m
= 1 − J

m

= 1 − 1
K (N1 + N2 − 2)

J.

(13)

Consider now
∑J+1

k=1(deg(Uk))2

(2m)2
. Each Uk has no more

than n
J = K(N1+N2)

J nodes and each node has degree at
most 2. Hence

∀J :
∑J+1

k=1 (deg (Uk))2

(2m)2
≤

(J + 1)
(
2K(N1+N2)

J

)2

4K2 (N1 + N2 − 2)2

≤ 2 (N1 + N2)
2

(N1 + N2 − 2)2
J−1 (14)

(since ∀J ∈ N : J+1
J ≤ 2). Combining (13) and (14) we

get (12).

To ensure that

QN (UK,N1N2,J , GK,N1N2) > QN (VK,N1N2 , GK,N1N2)

(i.e., that the natural clustering VK,N1N2 has lower mod-
ularity than UK,N1N2,J) it suffices to select K, N1, N2, J

appropriately and use Lemmas 4.1 and 4.2. A sufficient
condition, obtained from (9) and (12), is

1 − 1
K (N1 + N2 − 2)

J − 2 (N1 + N2)
2

(N1 + N2 − 2)2
J−1

> 1 − (N1 − 1)2 + (N2 − 1)2

K (N1 + N2 − 2)2
. (15)

Inspecting (15), we see that one way to satisfy it is by
fixing N1 and letting J be “sufficiently larger” than K
and N2 “sufficiently larger” than J . This is the main idea
used in the proof of the following theorem.

Theorem 4.3. For every K ∈ N and ε ∈ (
0, 1

2K

)
there

exist N1, N2, J ∈ N (depending on ε and K) such that

QN (VK,N1,N2 , GK,N1,N2)

< 1 − 1
2K

< 1 − ε < QN (UK,N1,N2,J , GK,N1,N2) , (16)

S (VK,N1,N2 ,UK,N1,N2,J) < ε. (17)

Proof. Take any K and let N1 = 3, J = xK, N2 = x2K
(with x ∈ N). To prove (16) note that

QN (VK,N1,N2 , GK,N1,N2) = 1 − 4 +
(
x2K − 1

)2

K (1 + x2K)2

and

QN (UK,N1,N2,J , GK,N1,N2)

≥ 1 − x

(1 + x2K)
− 2

(
3 + x2K

)2

(1 + x2K)2 xK
.

Define z = 1
x ; then we have x = 1

z and

QN (VK,N1,N2 , GK,N1,N2) = 1 − 4 +
(
x2K − 1

)2

K (1 + x2K)2

= 1 −
4 +

(
(1/z)2 K − 1

)2

K
(
1 + (1/z)2 K

)2 .

(18)

We can simplify the final QN (VK,N1,N2 , GK,N1,N2) ex-
pression of (18) and write it as the following function:

f1 (z) =
K3 − K2 + 2

(
K + K2

)
z2 + (K − 5) z4

K (z2 + K)2
.

Now, 1 − 4+((1/z)2K−1)2

K(1+(1/z)2K)2 has a removable singularity at

z0 = 0, but for every other z ∈ R it is identical to f1 (z).
We can expand f1 (z) in a Taylor series around z0 = 0
which will also hold for QN (VK,N1,N2 , GK,N1,N2). Hence
around z0 = 0 we have

QN (VK,N1,N2 , GK,N1,N2) = 1 − 1
K

+ r1 (z),
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where r1 (z) = a2z
2+a3z

3+. . . and, from the Taylor series
remainder theorem, there exists a constant A such that,
for z close to zero, we have

|r1 (z)| < Az2.

Then, for large finite x (and, in particular, for x >
√

2KA)
we have

QN (VK,N1,N2 , GK,N1,N2) = 1 − 4 +
(
x2K − 1

)2

K (1 + x2K)2

< 1 − 1
K

+
A

x2
< 1 − 1

2K
.

(19)

Similarly (with z = 1
x ) we have

QN (UK,N1,N2,J , GK,N1,N2)

= 1 − xK

K (1 + x2K)
− 2

(
3 + x2K

)2

(1 + x2K)2 xK

= 1 − (1/z)
(
1 + (1/z)2 K

) −
2

(
3 + (1/z)2 K

)2

(
1 + (1/z)2 K

)2

(1/z)K
.

(20)

Again, we can rewrite the final QN (UK,N1,N2,J , GK,N1,N2)
expression of (20) as:

f2 (z) =
K3 − 3K2z + 2K2z2 − 13Kz3 + Kz4 − 18z5

K (z2 + K)2

and 1 − (1/z)

(1+(1/z)2K) − 2(3+(1/z)2K)2

(1+(1/z)2K)2
(1/z)K

has a remov-

able singularity at z0 = 0, but for every other z ∈ R

it is identical to f2 (z). Hence we can expand f2 (z) in
a Taylor series around z0 = 0, which will also hold for
QN (UK,N1,N2,J , GK,N1,N2). Around z0 = 0 we have

QN (UK,N1,N2,J , GK,N1,N2) = 1 − 3
K

z + r2 (z)

where r2 (z) = b3z
3+b4z

4+ . . . and there exists a constant
B such that, for z close to zero, we have

|r2 (z)| < Bz3 < Bz2;

this in turn implies that

r2 (z) > −Bz2.

Then, for large x (and, in particular, for x > KB) we
have

QN (UK,N1,N2,J , GK,N1,N2)

= 1 − xK

K (1 + x2K)
− 2

(
3 + x2K

)2

(1 + x2K)2 xK

> 1 − 3
Kx

− B

x2
> 1 − 4

Kx
. (21)

For any ε ∈ (
0, 1

2K

)
, choose any x such that

x > max
(

4
Kε

,
√

2KA, KB

)

;

then we have 1
2K > ε > 4

Kx which, combined with (19)
and (21), gives

QN (UK,N1,N2,J , GK,N1,N2)

> 1 − 4
Kx

> 1 − ε > 1 − 1
2K

> QN (VK,N1,N2, GK,N1,N2) .

In short, we can satisfy (16) for every K ∈ N and every
ε ∈ (

0, 1
2K

)
, by taking x “sufficiently large” and N1 = 3,

J = xK, N2 = x2K.
We now turn to (17). Let b (resp. c) be the number

of node pairs in the same cluster under UK,N1,N2,J (resp.
under VK,N1,N2). We obviously have b = a01 + a11 ≥ a11

and a10 + a01 + a11 ≥ a10 + a11 = c > 0. Hence

S (UK,N1,N2,J ,VK,N1,N2) =
a11

a10 + a01 + a11
≤ b

c
.

We first obtain an upper bound for b. Since each Uj

contains no more than L = n
J nodes , the number of

node pairs that can be formed in Uj is no more than
(n

J )(n
J −1)
2 < n2/2

J2 . Also, n = K (N1 + N2) so, for big N2,
n2/2
J2 < (2KN2)

2

J2 . There are at most J + 1 clusters, so we
have

b < (J + 1)
(2KN2)

2

J2

= (xK + 1)

(
2Kx2K

)2

(xK)2
= 4K3x3 + 4K2x2.

Next we compute c. In VK,N1,N2 there exist K clusters
of N1 = 3 nodes and each cluster has N1(N1−1)

2 = 3 node
pairs; there also exist K clusters of N2 nodes and each
cluster has N2(N2−1)

2 node pairs. We have

c = 3K + K
N2 (N2 − 1)

2

= 3K + K
x2K

(
x2K − 1

)

2

=
1
2
K3x4 − 1

2
K2x2 + 3K.

And so we have

0 ≤ S (UK,N1,N2,J ,VK,N1,N2)<
4K3x3+4K2x2

1
2K3x4− 1

2K2x2+3K

⇒ 0 ≤ lim
x→∞S (UK,N1,N2,J ,VK,N1,N2)

≤ lim
x→∞

4K3x3 + 4K2x2

1
2K3x4 − 1

2K2x2 + 3K
= 0.

Hence, for every ε > 0 and x sufficiently large, (17) is
satisfied.
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We see from (16) that we can always find a cluster-
ing UK,N1,N2,J which achieves higher modularity than the
natural clustering VK,N1,N2 and, in fact, greater than 1−ε,
where ε can get arbitrarily small independently of K. On
the other hand, QN (VK,N1,N2 , GK,N1,N2) is no greater
than 1 − 1

2K ; for small K values this can be apprecia-
bly less than one. In other words, we can choose K so
that GK,N1,N2 does not have very high “natural modular-
ity” but its “artificial modularity” (the one achieved by
the pair (UK,N1,N2,J , GK,N1,N2)) can be arbitrarily close
to one.

We see from (17) that, with respect to the Jaccard
similarity criterion, UK,N1,N2,J and VK,N1,N2 are very
different. We could have reached a similar conclusion in
a simpler manner. Recall that the number of clusters of
UK,N1,N2,J is at least J = xK and we can choose x ar-
bitrarily large; on the other hand, VK,N1,N2 has 2K clus-
ters. Intuitively, UK,N1,N2,J must be very different from
VK,N1,N2 , since the ratio of their cluster number is x

2 and
x can become arbitrarily large (of course the Jaccard sim-
ilarity index captures this fact in a more precise manner).

Let V∗ = arg maxV ∈V QN (V,GK,N1,N2). While it is
conceivable that V∗ is more similar (in the Jaccard sense)
to VK,N1,N2 than to some UK,N1,N2,J , this seems unlikely.
In light of the remarks of Section 3.3, it is more likely that
V∗ will have many more clusters than V. In other words,
it appears that, for the graphs GK,N1,N2, modularity max-
imization leads to an overestimation of the number of clus-
ters, i.e., we have a case of modularity “over-resolution”.

The bounds utilized in Lemmas 4.1 and 4.2, and
Theorem 4.3 are quite conservative. In many cases the
inequality

QN (VK,N1,N2 , GK,N1,N2) < QN (UK,N1,N2,J , GK,N1,N2)
(22)

is attained even when the abovementioned bounds are not
satisfied. This can be seen in Table 1, which has been
compiled by taking fixed K = 3, N1 = 3 and using sev-
eral x values (recall that J = xK, N2 = x2K). The first
six entries of each column list the quantities used in the
proof of Theorem 4.3 and, for “sufficiently large” x, should
form an increasing sequence, in accordance to the inequal-
ities (15), (16) and (19)–(21). This is indeed the case for
x = 8 and x = 10; on the other hand, for x = 6 one
inequality is violated (between the third and fourth row)
but (22) still holds.

From rows 2 and 7 we see that QN (VK,N1,N2 ,
GK,N1,N2) is a decreasing and QN (UK,N1,N2,J , GK,N1,N2)
an increasing function of x. From row 8 we see that the
the Jaccard similarity is a decreasing function of x. These
observations verify straightforward conclusions which can
be drawn from the proof of Theorem 4.3.

4.2 Second example

It might be argued that the results of Section 4.1 are only
possible because we have used the disconnected graphs
GK,N1,N2 . This is not the case. In this section we will illus-
trate the same issues using the family of connected graphs

Table 1. Several quantities appearing in the proof of Theo-
rem 4.3. In each column and for rows 2 to 7, for large enough x,
the value of each row must be no less than that of the previous
one.

x 6 8 10
QN (VK,N1,N2 , GK,N1,N2) 0.678 0.673 0.671

1 − (N1−1)2+(N2−1)2

K(N1+N2−2)2
0.678 0.673 0.671

1 − 1
2K

0.833 0.833 0.833

1 − 4
Kx

0.777 0.833 0.866

1 − J
K(N1+N2−2)

− 2(N1+N2)2

J(N1+N2−2)2
0.829 0.873 0.899

QN (UK,N1,N2,J , GK,N1,N2) 0.891 0.917 0.934

S (UK,N1,N2,J ,VK,N1,N2) 0.154 0.119 0.096

Fig. 2. Graph family HK,N1,N2 .

HK,N1,N2 illustrated in Figure 2. We start with connected
HN1,N2 graphs, each of which is a path of N1 +N2 nodes,
with extra edges added between the first N1 (resp. the
second N2) nodes at distance two of each other. Then
we construct the HK,N1,N2 graphs by joining in series K
HN1,N2 subgraphs.

We will use the same clusterings VK,N1,N2 and clus-
tering sequences {UK,N1,N2J}n

J=1 as in Section 4.1. Once
again, for reasons similar to the ones discussed in Sec-
tion 4.1, we claim that VK,N1,N2 is the natural cluster-
ing of HK,N1,N2 . Namely, cluster boundaries should occur
across edges incident on the most weakly connected nodes;
this shows that the VK,N1,N2,k clusters must be preserved;
any partition of VK,N1,N2,k into finer clusters cannot be
justified, since all of its edges have the same connectivity
pattern. Hence VK,N1,N2 is the “intuitively best” (i.e., the
“natural”) clustering of HK,N1,N2 .

Once again, we obtain (in three steps) a result similar
to Theorem 4.3. First we need two lemmas.

Lemma 4.4. For every K, N1, N2 ∈ N with N1, N2 ≥ 5
we have

QN (VK,N1,N2 , HK,N1,N2)

< 1 −
K

(
(4N1 − 8)2 + (4N2 − 8)2

)

(4K (N1 + N2 − 2))2
. (23)
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Proof. We fix K, N1, N2 and, for brevity, we write H for
HK,N1,N2 and V for VK,N1,N2 ; V′ and V′′ have the same
meaning as previously. In VK,N1,N2 there exist 2K − 1
extracluster edges, so we have

∑2K
k=1 |Ek|

m
< 1. (24)

For each Vk ∈ V′, there are two border nodes on the left,
two border nodes on the right and N1 − 4 inner nodes.
Each of the inner nodes has degree 4; each of the border
nodes has degree 3, except for the first and last node of
the graph, which have degree 2. Hence for each Vk ∈ V′
we have the bounds

(N1 − 4) 4 + 4 × 2 = 4N1 − 8 < deg (Vk)

< 4N1 − 4 = (N1 − 4) 4 + 4 × 3.

Similarly, for each Vk ∈ V′′ we have the bounds

(N2 − 4) 4 + 4 × 2 = 4N2 − 8 < deg (Vk)

< 4N2 − 4 = (N2 − 4) 4 + 4 × 3.

The total number of edges is m =
∑ 2K

k=1 deg(Vk)

2 and we
have

K (4N1 − 8 + 4N2 − 8)
2

<

∑2K
k=1 deg (Vk)

2

<
K (4N1 − 4 + 4N2 − 4)

2
⇒ 2K (N1 + N2 − 4) < m < 2K (N1 + N2 − 2) . (25)

In addition we have

K
(
(4N1 − 8)2 + (4N2 − 8)2

)
<

2K∑

k=1

(deg (Vk))2

< K
(
(4N1 − 4)2 + (4N2 − 4)2

)
. (26)

Combining (25) and (26) we get

∑2K
k=1 (deg (Vk))2

(2m)2
>

K
(
(4N1 − 8)2 + (4N2 − 8)2

)

(4K (N1 + N2 − 2))2
.

(27)
Combining (24) and (27) we get the required bound.

Lemma 4.5. For every K, N1, N2, J ∈ N with N1, N2 ≥ 5
and J ≤ n = K (N1 + N2) we have

QN (UK,N1,N2,J , HK,N1,N2)

> 1 − 3
2K (N1 + N2 − 4)

J − 2 (N1 + N2)
2

(N1 + N2 − 4)2
J−1. (28)

Proof. Extracluster edges in UJ can only occur between
successive clusters4 Uk, Uk+1; between any such pair there

4 There is an exception when J = n, but in this case too (29)
holds.

exist at most three such edges; hence UJ cannot have more
than 3J extracluster edges. Consequently
∑J+1

k=1 |Ek|
m

≥ m − 3J

m
= 1− 3J

m
> 1− 3J

2K (N1 + N2 − 4)
.

(29)
Each Uk has at most n

J = K(N1+N2)
J nodes and each node

has degree at most 4. Hence

∑J+1
k=1 (deg (Uk))2

(2m)2
≤

(J + 1)
(
4K(N1+N2)

J

)2

(4K (N1 + N2 − 4))2

≤ 2 (N1 + N2)
2

(N1 + N2 − 4)2
J−1. (30)

Combining (29) and (30) we get the bound (28).

To ensure that

QN (UK,N1N2,J , HK,N1N2) > QN (VK,N1N2 , HK,N1N2)

it suffices to choose appropriate K, N1, N2, J and use Lem-
mas 4.4 and 4.5. A sufficient condition, obtained from (23)
and (28), is

1 − 3
2K (N1 + N2 − 4)

J − 2 (N1 + N2)
2

(N1 + N2 − 4)2
J−1

> 1 −
K

(
(4N1 − 8)2 + (4N2 − 8)2

)

(4K (N1 + N2 − 2))2
. (31)

Now we can prove the following.

Theorem 4.6. For every K ∈ N and ε ∈ (
0, 1

2K

)
there

exist N1, N2, J ∈ N (depending on ε, K) such that

QN (VK,N1,N2 , HK,N1,N2)

< 1 − 1
2K

< 1 − ε < QN (UK,N1,N2,J , HK,N1,N2) (32)

S (VK,N1,N2 ,UK,N1,N2,J) < ε. (33)

Proof. Take any K. Letting N1 = 6, J = xK, N2 = x2K
we have

QN (VK,N1,N2 , HK,N1,N2)

< 1 −
K

(
162 +

(
4x2K − 8

)2
)

(4K (4 + x2K))2
,

QN (UK,N1,N2,J , HK,N1,N2)

> 1 − 3x

2 (2 + x2K)
− 2

(
6 + x2K

)2

xK (2 + x2K)2
.

Defining z = 1
x we have x = 1

z and

1 −
K

(
162 +

(
4x2K − 8

)2
)

(4K (4 + x2K))2

= 1 −
K

(

162 +
(
4 (1/z)2 K − 8

)2
)

(
4K

(
4 + (1/z)2 K

))2 . (34)
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Similarly to the proof of Theorem 4.3, there is a function
f3 (z) which, for every z 
= z0 = 0, is equal to the right
part of (34) and around z0 has the Taylor expansion

f3 (z) = 1 − 1
K

+ r3 (z)

where r3 (z) = c2z
2+c3z

2+ . . . . Furthermore, there exists
a constant C such that, for z close to zero, we have

|r3 (z)| < Cz2.

Then, for large x (and in particular for x >
√

2KC) we
have

QN (VK,N1,N2 , HK,N1,N2) < 1− 1
K

+
C

x2
< 1− 1

2K
. (35)

Similarly, with z = 1/x, we have

QN (UK,N1,N2,J , HK,N1,N2)

> 1 − 3xK

2K (2 + x2K)
− 2

(
6 + x2K

)2

xK (2 + x2K)2

= 1 − 3 (1/z)K

2K
(
2 + (1/z)2 K

) −
2

(
6 + (1/z)2 K

)2

(1/z)K
(
2+(1/z)2 K

)2

= f4 (z). (36)

Once again, there is a function f4 (z) which, for every z 
=
z0 = 0, is equal to the right part of (36) and around z0

has the Taylor expansion

f4 (z) = 1 − 7
2K

z + r4 (z)

where r4 (z) = d3z
3 + d4z

4 + . . . . And there exists a con-
stant D such that, for z close to zero, we have

|r4 (z)| < Dz3 < Dz2, r4 (z) > −Dz2.

Then, for large x (and, in particular, for x > 2KD) we
have

QN (UK,N1,N2,J , HK,N1,N2)

> 1 − 3xK

2K (2 + x2K)
− 2

(
6 + x2K

)2

xK (2 + x2K)2

> 1 − 7
2Kx

− D

x2
> 1 − 4

Kx
. (37)

For any ε ∈ (
0, 1

2K

)
choose any x such that

x > max
(

4
Kε

,
√

2KC, 2KD

)

;

then we have 1
2K > ε > 4

Kx which, combined with (35)
and (37), yields

QN (UK,N1,N2,J , GK,N1,N2) > 1 − 4
Kx

> 1 − ε > 1 − 1
2K

> QN (VK,N1,N2 , GK,N1,N2) .

Table 2. Several quantities appearing in the proof of Theo-
rem 4.6. In each column and for rows 2 to 7, for large enough x,
the value of each row must be no less than that of the previous
one.

x 6 8 10

QN (VK,N1,N2 , GK,N1,N2) 0.687 0.678 0.674

1 − K((4N1−8)2+(4N2−8)2)
(4K(N1+N2−2))2

0.701 0.686 0.679

1 − 1
2K

0.833 0.833 0.833

1 − 4
Kx

0.777 0.833 0.866

1 − 3J
2K(N1+N2−4)

− 2(N1+N2)2

J(N1+N2−4)2
0.798 0.851 0.881

QN (UK,N1,N2,J , GK,N1,N2) 0.874 0.898 0.918

S (UK,N1,N2,J ,VK,N1,N2) 0.169 0.118 0.095

In short, we can satisfy (32) for every K ∈ N and every
ε ∈ (

0, 1
2K

)
, by taking x “sufficiently large” and N1 = 6,

J = xK, N2 = x2K.
Finally, (33) is exactly the same as (17) and has al-

ready been proved.

Similarly to Section 4.1, the bounds utilized in Lem-
mas 4.4 and 4.5 and Theorem 4.6 are conservative and the
inequality

QN (VK,N1,N2 , HK,N1,N2) < QN (UK,N1,N2,J , HK,N1,N2)
(38)

can be satisfied even when the bounds are violated. This
can be seen in Table 2, which is analogous to Table 1 of
Section 4.1. We have used K = 3, N1 = 6 and several x
values. The first six entries of each column list the quanti-
ties used in the proof of Theorem 4.3 and, for “sufficiently
large” x, should form an increasing sequence. This is the
case for x = 8 and x = 10; for x = 6 the sequence is not
increasing but (38) holds.

From rows 2 and 7, we see that QN(VK,N1,N2 ,
GK,N1,N2) is decreasing with x and QN (UK,N1,N2,J ,
GK,N1,N2) is increasing; from row 8 we see that the Jac-
card similarity is decreasing with x.

5 Discussion and related work

Theorems 4.3 and 4.6 cast doubt on the efficacy of
Newman and Girvan’s modularity QN as “an objective
metric for choosing the number of communities” [1]. Our
results are related to those of other authors who have
shown that clusterings which achieve high modularity val-
ues may be found on very regular graphs (such as tori or
hypercubes [11]) or trees and treelike graphs [10], despite
the fact that none of these graphs has a “natural com-
munity structure”. However, in this paper we have shown
that even in graphs which do have a “natural commu-
nity structure”, high modularity values can be achieved by
partitions which do not respect this natural structure. In
this sense, our results are more closely connected to those
of [5], where it is shown that modularity maximization
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Eur. Phys. J. B (2013) 86: 330 Page 11 of 11

can lead to cluster number overestimation when applied
to graphs with a natural community structure (rings of
rings).

The common characteristic of all the abovementioned
graphs (as well as the ones used in the current paper) is
local and relatively sparse connectivity. Perhaps the coun-
terintuitive behavior of modularity maximization in such
graphs is due to the fact that “modularity, while osten-
sibly rewarding densely inter-connected groups, can ac-
tually be optimized solely through the discovery of bot-
tlenecks” [10]. We believe a more complete explanation
requires additional study of the properties of modular-
ity and we pose this as a future research problem. In our
opinion, a useful step in this direction will be an axiomatic
foundation of the properties that a “reasonable” quality
function must possess; we defer the development of such
an axiomatic system to a future publication.

Another direction which we believe warrants further
research is the evaluation of cluster number selection cri-
teria. The Newman-Girvan modularity was initially intro-
duced with exactly this goal in mind (Ref. [1], Section 4)
but we have seen that it can lead to arbitrarily wrong
estimates. Perhaps alternative criteria can be found by
revisiting the “classic” clustering literature, where cluster
number selection has been recognized as “a fundamen-
tal, and largely unsolved, problem in cluster analysis” [23]
and consequently a large number of cluster number selec-
tion criteria have been developed and tested (see for in-
stance [24,25]). The adaptation of such criteria to the com-
munity detection problem will not be a trivial problem.

Finally, we believe that our results can be refined. For
example, perhaps the bounds of Lemmas 4.2 and 4.4 can
be made tighter (or even exact expressions can be ob-
tained) by splitting each component subgraph into a fixed
number of clusters. Or tighter results can be used by ar-
ranging the subgraphs in a cycle (rather than path) con-
figuration, in which case all nodes will have the same de-
grees5. Once again, we defer the study of these questions
to the future.

This research has been co-financed by the European Union
(European Social Fund – ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) – Research Funding Program: THALIS – UOA
(MIS 375891).

5 We are grateful to the anonymous referee who suggested
these improvements.
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