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a b s t r a c t

We examine a version of the cops and robbers (CR) game in which the robber is invisible,
i.e., the cops do not know his location until they capture him. Apparently this game (CiR)
has received little attention in the CR literature. We examine two variants: in the first,
the robber is adversarial (he actively tries to avoid capture); in the second, he is drunk (he
performs a randomwalk). Our goal in this paper is to study the invisible cost of drunkenness
(iCOD), which is defined as the ratio cti(G)/dcti(G), with cti(G) and dcti(G) being the
expected capture times in the adversarial and drunk CiR variants, respectively. We show
that these capture times are well defined, using game theory for the adversarial case and
partially observableMarkov decision processes (POMDPs) for the drunk case.We give exact
asymptotic values of the iCOD for several special graph families such as d-regular trees, give
some bounds for grids, and provide general upper and lower bounds for general classes of
graphs. We also give an infinite family of graphs showing that the iCOD can be arbitrarily
close to any value in [2, ∞). Finally, we briefly examine onemore CiR variant, in which the
robber is invisible and ‘‘infinitely fast ’’; we argue that this variant is significantly different
from the graph search game, despite several similarities between the two games.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cops and robbers (CR) is a game introduced by Nowakowski and Winkler [42] and (independently) by Quilliot [51]. CR is
played on a fixed, undirected, simple and finite graph G, where K cops pursue a single robber. Both the cops and the robber
are located in the vertices of G, and everybody has full information about everybody else’s current location. In every turn of
the game, first the cops and then the robber can move to their new locations along the edges of the G. The cops win if they
capture the robber, i.e., if at least one cop is in the same vertex as the robber; the robber’s goal is to avoid capture. This is the
“classical”, extensively studied version of the CR game. Many other versions have been proposed and studied; for a review
of the literature see [2,8,22] and the book [6].

We call the robber of the classical CR game adversarial: he wants to avoid capture for as long as possible and plays
optimally towards this end. In a recent paper [29], we have studied a CR variant where the robber is drunk, i.e., he performs
a randomwalk on G (he does not attempt to avoid capture; essentially he is oblivious of the cops). This is really a one-player
game. In [29], we have compared the adversarial and drunk CR variants, and have especially studied the cost of drunkenness
(COD), i.e., the ratio of “adversarial” capture time to “drunk” expected capture times.

In this paper, we are concerned with the much less studied version of the CR game, in which the robber is invisible to the
cops (unless they are located in the same vertex). All the other rules remain the same as in the classical CR game, and we
examine both the adversarial and the drunk variants. We will call this game cops and invisible robber (CiR). Our main goal
is (as in [29]) to study the “invisible COD” (iCOD).
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CiR and, more generally, invisible robber versions of CR have so far received little attention in the graph theory literature.
To the best of our knowledge, the first paper that deals with the invisible robber is [59]. More recent work in which the cops
have either zero, incomplete or intermittent information about the robber’s location include [14,15,28,58]. In addition, some
works [13,16–18] examine the case in which the cops’ incomplete observations are augmented by the use of traps, alarms,
radars, and so on. The variant of an intermittently observed robber is related to another variant, where the robber moves
with greater speed than the cops; this is studied in [9]. All these works share a common approach, according to which cops
use a predetermined move sequence by which capture is guaranteed. Because the cops will only see the robber when they
capture him, this sequence does not depend on actual robber moves; hence it can be computed before the CiR game starts.
Furthermore, the robber can also compute the same sequence, so he is omniscient in the sense that he knows all cop moves
before the game starts. This approach is also used in graph search (GS) games in which the robber is additionally endowed
with infinite speed. However, we will argue in Section 7 that GS is a different game from CiR (the seminal paper for graph
search is [46]; good recent reviews are [2,8,22]).

In this paper, we are interested in a different approach, which improves the cops’ fortunes. Since the cops will never see
the robber, they must predetermine their strategy; but this can be randomized, so the actual cop moves do not need to be
predetermined at the beginning of the game. Hence, in CiR, at every time step the robber will know previous cop moves
but not the future ones. As we will show in later sections, the use of randomized strategies can, in some cases, reduce the
number of cops necessary to capture the robber, provided that our goal is to obtain a finite expected capture time, and so
the cops win the game after a finite number of steps with probability 1.

Randomized strategies have not receivedmuch attention in the graph-theoretic CR literature. From the few paperswhich
explore this approach, we mention [1,26,27] (note that in [1] both the cops and the robber are invisible to each other until
they occupy the same vertex). Brief mentions of randomized strategies also appear in [13,58]. However, the problem of
determining the (original) cop number for random graphs has received a lot of attention recently [5,35,7,48]. In particular,
it has been shown that Meyniel’s conjecture holds for random graphs as well as for random d-regular graphs [49,50].

On the other hand, there is a large robotics literature which deals with the (more general) pursuit/evasion problem; while
roboticists do not often use the term “cops and robbers”, they have studied pursuit/evasion on graphs using formulations
quite similar to CiR, especially for the case of the drunk robber; see, for example, [10,11,24,25,31,32,43,60,62] and the
review [12]. As expected, this research is more application oriented. Also, the operations research community has studied
what is essentially the search for an invisible drunk robber in a graph; we only cite here three representative works:
[32,56,57].

Most of theworks cited in the previous paragraph handle the invisible drunk robberwith tools from the theory of partially
observable Markov decision processes (POMDPs; see [33,39,55]), and this is the approach we will use in this paper. For the
invisible adversarial robber, we believe the “natural” treatment is through game-theoreticmethods; in fact, what is required
is the generalization of POMDPs to stochastic orMarkovian games. The subjectwas introduced in [53]; someof the subsequent
results can be found in [3,19,20,30,37,38,40,41,44,45,52,61]; a paper we have found especially useful is [23].

The rest of the paper is organized as follows. In Section 2, we introduce preliminary notation and results. In Section 3, we
give an extended example which illustrates the basic aspects of the CiR game and, perhaps more importantly, establishes
that the iCOD can become arbitrarily large. In Section 4 we prove that the value of the CiR game always exists (for both the
adversarial and drunk variant). In Section 5, we provide general upper and lower bounds, which are then used and tightened
in Section 6 to obtain (almost) exact values for special graph classes, among them d-regular trees and grids;we also introduce
the family of broom graphs and use it to show that the iCOD can be arbitrarily close to any value in [2, ∞). In Section 7, we
briefly study CiR (and compare it to GS) when the robber has “infinite” speed. In Section 8, we summarize and discuss our
conclusions.

2. Preliminaries

Let G = (V , E) be a fixed undirected, simple, connected, and finite graph. We begin by listing definitions, notation,
assumptions, and a useful theorem.

(1) N = {1, 2, 3, . . .}, N0 = {0, 1, 2, . . .}, and we will denote {1, 2, . . . , K} by [K ].
(2) We will always use n to denote the number of vertices of G (i.e., |V (G)| = n).
(3) N(v) denotes the neighborhood of vertex v and does not include v.
(4) We assume that the cops and robbers games (both the CR and CiR versions) are played by two players, denoted by C (the

cop player) and R (the robber player).
(5) C controlsK cops (K ∈ N).Xk

t ∈ V denotes the position of the kth cop at time t (k ∈ [K ], t ∈ N0);Xt = (X1
t , X2

t , . . . , XK
t ) ∈

V K denotes the vector of all cop positions at time t .
(6) In the adversarial variant of the game, R controls a single robber, whose position at time t ∈ N0 is denoted by Yt ∈ V . The

moving sequence is as follows. At t = 0, first C chooses initial positions X0 ∈ V K , then R chooses Y0 ∈ V . For t ∈ N, first
C chooses Xt ∈ V K and then R chooses Yt ∈ V . Each player can either stay in the same vertex or move to a new vertex
along an edge of the graph G. In other words, for k ∈ [K ] and t ∈ N0, either {Xk

t , X
k
t+1} ∈ E or Xk

t = Xk
t+1. Similarly, for

t ∈ N0, either {Yt , Yt+1} ∈ E or Yt = Yt+1.
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(7) In the drunk variant, the robber performs a randomwalk on G (i.e., he is controlled by chance) according to the following
rules:

∀u ∈ V , Pr (Y0 = u) =
1
n

(1)

∀u ∈ V , Pr (Yt+1 = u | Yt = v) =

 1
|N(v)|

if u ∈ N(v)

0 otherwise.
(2)

(This is the ‘‘standard’’ random walk, in which the robber never stays in the same node. An alternative would be to use
the ‘‘lazy’’ random walk, in which the robber can also stay in place. This is not pursued in the current paper, because of
space limitations, but is briefly discussed in Section 8.) The moving sequence is the same as in the adversarial variant,
except that Y0, Y1, Y2, . . . are chosen by chance, according to Eqs. (1)–(2).

(8) Once the robber is caught (which, in the adversarial version, can happen only after the cops’ move; in the drunk version,
it might also happen after the robber’s move) he cannot move anymore. Given the complete sequences of cops and
robbers moves, the capture time is denoted by T , and is defined as follows:

T = min{t ≥ 0 : ∃k ∈ [K ] such that Xk
t = Yt};

i.e., it is the first time a cop is located at the same vertex as the robber. If capture never takes place, then T = ∞. As will
be seen in what follows, the capture time will in general be a random variable, dependent on the strategies used by the
cop and the robber (and also on K ).

In what follows, unless stated otherwise, it will be assumed that (a) C’s goal is to capture the robber as quickly as possible
and (b) C plays optimally with respect to this goal; we will summarize these assumptions by saying that C is adversarial. R
can be in one of two modes: adversarial (he plays optimally to avoid capture for as long as possible) or drunk (he simply
performs a random walk on G). The cops’ locations are always known to the adversarial R (specifically, at time t he knows
X0, X1, . . . , Xt , but not the futuremoves). The robber can be visible (his location is known to the cops) or invisible (his location
is unknown).

When the robber is visible and adversarial, T is deterministic [29]. The cop number of G is denoted by c(G), and is defined
to be the minimum K for which T < ∞ (there is always such a K , less than or equal to |V |). We define ct(G) to be the
“optimal capture time given that K = c (G) and C and R play optimally” (this definition requires some care; see [29]). When
the robber is visible and drunk, he performs a randomwalk on G as indicated by (1)–(2). In [29], we show that the following
quantity is well defined:

dct (G) = E (T | when K = c (G) , C plays optimally, R is drunk) .

Hence the cost of (visible) drunkenness is also well defined by

F(G) =
ct(G)

dct(G)
,

and we obviously have F(G) ≥ 1 (capturing the adversarial robber is at least as hard as capturing the drunk one, since the
former can always choose to behave as if he were drunk).

Let us now turn to the invisible robber. In [29], we proved the following.

Theorem 2.1. Suppose that c(G) cops perform a randomwalk on a connected graph G, starting from any initial position, and that
the robber is adversarial. Then E (T ) < ∞.

It follows that c(G) adversarial cops suffice to capture the invisible adversarial robber. On the other hand, capturing the
invisible robber is at least as hard as capturing the visible one; hence c(G) is also the minimum required number of cops.
In short, the cop number of a graph is the same for the visible and invisible CR versions (however, the expected capture time T
will generally be bigger in the invisible variant, compared to the capture time in the visible one). In the rest of the paper we
will assume that K = c(G), unless stated otherwise.

For the invisible variant of the game, we will define

cti (G) = E (T | K = c (G) , C and R play optimally) , (3)
dcti (G) = E (T | K = c (G) , C plays optimally, R is drunk) , (4)

Fi(G) =
cti(G)

dcti(G)
≥ 1. (5)

Fi (G) is the “invisible cost of drunkenness” (iCOD). Note that we will always assume that n ≥ 2, and so cti(G) ≥ dcti(G) > 0.
The existence of the quantities defined in (3)–(5) and the meaning of “optimal play” require careful study, which will be
deferred to Section 4; we will first present an extended example in Section 3.
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Fig. 1. The N-star SN .

3. The invisible cost of drunkenness can be arbitrarily large

To clarify some of the key CiR concepts, we now present an extended example which involves the N-star graphs SN ,
illustrated in Fig. 1 and defined as follows (note that, for all N , we have n = |V | = N + 1). For N ∈ N, SN has the vertex set
V = {0, 1, . . . ,N} and the edge set E = {(0, 1), (0, 2), . . . , (0,N)}. Obviously a single cop can catch the visible robber in
SN . So we will study CiR with a single cop, as well.

A robber strategy generates a robber’s move for every time t , based on the information available to R at time t; this
information is the cop moves X0, X1, . . . , Xt and the robber moves Y0, Y1, . . . , Yt−1. As will become clear, R may gain an
advantage by randomizing his strategies. Hence a robber strategy σR is an infinite sequence of probability distributions
conditioned under previous moves/positions of both the cops and the robber:

σR = {Pr (Yt | X0 = x0, . . . , Xt = xt , Y0 = y0, . . . , Yt−1 = yt−1)}
∞

t=0 . (6)

The strategies must also be feasible, i.e., positive probabilities are assigned only to staying in the same vertex or moving
along edges. Similarly, a cop strategy σC is an infinite sequence of probability distributions conditioned under previous
moves/positions of only the cops (and an initial probability, for t = 0):

σC = {Pr (Xt | X0 = x0, . . . , Xt−1 = xt−1)}
∞

t=1 ∪ {Pr (X0)} . (7)

The conditionals must satisfy the feasibility requirement. Note that conditioning is on cop moves only, since the robber is
invisible to the cops. However, let us stress that the sequence of previous moves of the cops affects their strategy for the
future, since the fact that the robber was not seen at these vertices before contains important information. In the adversarial
variant, the expected capture time depends on both σR and σC ; hence we will write E (T | σR, σC ). In the drunk variant we
will write E (T | σC ) instead.

Now let us consider optimal cop and robber strategies for SN . We will first deal with the adversarial variant. Let us fix
some N ≥ 2 (so SN is a tree with N leaves) and let C use the following strategy: he chooses a permutation u1u2 . . . uN of the
set [N] with uniform probability (Pr (u1u2 . . . uN) =

1
N!
) and the cop moves as follows:

X0 = u1, X1 = 0, X2 = u2, X3 = 0, X4 = u3, . . . , X2N−2 = uN .

In other words, the cop starts at a random leaf and visits every other leaf in a random order (without repetitions). Therefore
there exists a cop strategyσC of the form (7) which produces this sequence.

Now, R sees X0 = u1 before placing the robber, and he knows that the cop has no incentive to stay in place, so he infers
that X1 = 0. Hence R knows that Y0 must belong to {u2, u3, . . . , uN} but he has no incentive to prefer one of these (since he
is unaware of the order by which they will be visited by the cop), and thus he will place the robber equiprobably in one of
{u2, u3, . . . , uN}. After the initial placement, R will never move the robber because the only possible move is into 0, and this
would result in a capture (either the robber runs into the cop during an odd turn, or vice versa during an even turn). Hence
the robber will use the strategyσR which sets Y0 = v ∈ {u2, u3, . . . , uN} with probability 1

N−1 , and Yt = Y0 for t = N. For
every initial cop placement, we can compute

E (T | σR,σC , X0 = u1) =
1

N − 1
· 2 +

1
N − 1

· 4 + · · · +
1

N − 1
· (2N − 2) =

2
N − 1

·
(N − 1) · N

2
= N

and, since there are N equiprobable choices for u1, we also have

E (T | σR,σC ) = N.

As we have already argued, σR gives to R the best possible result (longest expected capture time) given that C uses σC . In
other words,

max
σR

E (T | σR,σC ) = E (T | σR,σC ) = N,
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from which follows

min
σC

max
σR

E (T | σR, σC ) ≤ E (T | σR,σC ) = N. (8)

By the same argument, if the cop decided to start at the root and visit the leaves in a randomly chosen order, the expected
capture time of the best robber (choosing uniformly at random any leaf) would also be N . On the other hand, suppose that
R usesσR irrespective of C’s strategy. Clearly C must use a strategy which visits every vertex and, since he has no reason to
prefer a particular order of visitation, he will do just as well by usingσC (he gains no advantage by visiting the same vertex
twice). Hence we have

N = E (T | σR,σC ) = min
σC

E (T | σR, σC ) ⇒

N = E (T | σR,σC ) ≤ max
σR

min
σC

E (T | σR, σC ) . (9)

Finally, we know that

max
σR

min
σC

E (T | σR, σC ) ≤ min
σC

max
σR

E (T | σR, σC ) . (10)

From (8)–(10), we see that

max
σR

min
σC

E (T | σR, σC ) = E (T | σR,σC ) = min
σC

max
σR

E (T | σR, σC ) = N.

In other words, σR and σC are optimal strategies for R and C, respectively, and the optimal expected capture time in the
adversarial variant is

cti (SN) = N = n − 1, (11)

for all N ≥ 2; it is easy to see that (11) also holds for N = 1.
Let us now turn to the drunk variant. In this case, only C has to choose a strategy, and the optimal σC is obvious: he

places the cop at u = 0 and just waits there. For any N ≥ 1, the robber will start at 0 with probability 1
N+1 or at some

u ∈ {1, 2, . . . ,N} with the remaining probability N
N+1 . In the former case, T = 0; in the latter case, the robber will move

into 0 at t = 1, yielding T = 1. Hence

dcti (SN) = E (T | σC ) =
N

N + 1
=

n − 1
n

. (12)

From (11) and (12), we get Fi (SN) = N + 1 = n. It follows that the cost of drunkenness Fi(SN) can attain any integer in N.
Our results are summarized in the following.

Theorem 3.1. For every N ≥ 1, we have

cti(SN) = N = n − 1, dcti(SN) =
N

N + 1
=

n − 1
n

, Fi (SN) =
cti(SN)

dcti(SN)
= N + 1 = n.

4. The cost of drunkenness is well defined

In the previous section, we proved that Fi (G) can take arbitrarily large values. Our proof involved only a particular family
of graphs, the N-stars. In this section we will show that iCOD is well defined for every graph G. The issue, of course, is
whether cti(G) and dcti(G) are well defined. Settling this question requires the use of game-theoretic concepts for cti(G) and
POMDP concepts for dcti(G). For simplicity, we will consider the case of a single cop (K = 1); the generalization to K > 1
is straightforward. Hence we pick a graph G with c (G) = 1 and keep it fixed for the rest of the section (but Lemma 4.1 and
Theorems 4.2 and 4.4 remain true for any G).

4.1. Adversarial robber

Here, we show that cti(G) is well defined. Our notation and analysis follow [23] very closely. The adversarial variant of
CiR is a two-player game, which we will call Γ , played on G. Note that Γ can last an infinite number of turns (the robber is
never captured). Wewill also make use of auxiliary truncated games: Γm is the same game as Γ but is played for a maximum
ofm turns.

C moves the cop according to a strategy σC . For a rigorous definition of strategy, we need the following.

(1) AC = V is the set of possible C actions (possible placement of the cop on G).
(2) H(m)

C ⊆ Vm is the set of feasible m long sequences of cop configurations.
(3) HC =


∞

m=0 H
(m)
C is the set of all finite-length feasible cop histories.

(4) P (AC ) is the set of all probability functions on C actions.



A. Kehagias et al. / Theoretical Computer Science 481 (2013) 100–120 105

Hence a cop strategy is a function σC : HC → P (AC ), i.e., a function which maps to every finite-length history
x0, x1, . . . , xt−1 a probability (conditional on x0, x1, . . . , xt−1 when t ≥ 0) on the next Cmove Xt .We are interested in feasible
strategies, i.e., those which assign positive probabilities only to feasible next-step cop configurations; wewill denote the set
of all feasible C strategies by SC .

The situation is almost identical for R. A strategy σR specifies the next robber move at time t , depending on information
available to R at t; this information is the realizations x0, x1, . . . , xt and y0, y1, . . . , yt−1. We define the following.

(1) AR = V is the set of possible R actions (possible robber positions).
(2) H(m)

R ⊆ Vm
× Vm−1 is the set of feasible m long sequences of cop/robber configurations.

(3) HR =


∞

m=0 H
(m)
R is the set of all finite-length feasible cop/robber histories.

Hence a robber strategy is a function σR : HR → P (AR), i.e., a function which maps to every finite-length history a
probability on the next R move; again, we are interested in feasible strategies, i.e., those which assign positive probabilities
only to feasible next-step cop configurations. We will denote the set of all feasible R strategies by SR.

A specific strategy pair (σR, σC ), specifies the probabilities p (x0, x1, . . . , xt , y0, y1, . . . yt | σR, σC ) for all cylindrical sets
(X0 = x0, X1 = x1, . . . , Xt = xt , Y0 = y0, Y1 = y1, . . . , Yt = yt). Hence, letting HR = VN×N denote the set of all infinitely
long feasible cop/robber histories, (σR, σC ) induces a probability measure on the associated σ -algebra. In short, at the start
of the game Γ , C chooses σC and R chooses σR, resulting in a well-defined expected capture time, conditioned on σR and σC ;
this quantity is denoted by E (T | σR, σC , Γ ).

The strategies σR and σC can be used in any truncated gameΓm aswell: C and Rwill use them to generatemoves only until
turnm. Hence the corresponding expected capture time for Γm is also well defined; it will be denoted by E (T | σR, σC , Γm).
Clearly Γ and every Γm are two-person, zero-sum games.

It is worth emphasizing that C and R choose their strategies simultaneously, before the game starts. Even though the game
rules stipulate that (in every turn) C plays before R, this is unimportant because (the probabilities of) both players’ moves
are specified by their strategies, which have been selected before the game starts. (It is a well-known fact [4] that, if either
player chooses his optimal strategy then he has no incentive to change it, no matter what strategy the other player uses.) In
fact, the rules can be modified so that the players play simultaneously: at the initial turn (t = 0) R plays a ‘‘null’’ move and
C plays X0; at all subsequent turns (t ∈ N), R plays Yt−1 and C plays Xt . The game remains the same under these modified
rules.

In Γ , if R uses σR and C uses σC , then C pays R E (T | σR, σC , Γ ) per game (on average). The situation is similar in Γm (for
everym ∈ N0) except that the game lasts at mostm steps, and, if the robber has not been caught by the end of themth step,
he receives a payoff of m; the average payoff in Γm is E (T | σR, σC , Γm). In either case (full or truncated game) R tries to
maximize the payoff while C tries to minimize it.

Consider for a moment pure strategies available to C in the finite-length game Γm. Each such strategy, call it sC , will be a
collection of deterministic functions mapping finite length cop histories x0, x1, . . . , xt−1 to feasible moves:

Xt = f (x0, x1, . . . , xt−1) .

Since t ≤ m and |V | is finite, there is a finite number of cop histories and a finite number of pure strategies that C can use.
Similarly, R has a finite number of pure strategies. Hence Γm is a finite game and has a value [4], which however is generally
achieved bymixed strategiesσ (m)

R andσ (m)
C :

max
σR∈Sm

R

min
σC∈Sm

C

E (T | σR, σC , Γm) = E

T | σ (m)

R ,σ (m)
C , Γm


= min

σC∈Sm
C

max
σR∈Sm

R

E (T | σR, σC , Γm) . (13)

(In fact, Γm can be summarized by a finite payoff matrix Q (m), where Q (m)
sr ,sC = E (T | sR, sC , Γm) and sR, sC are understood

as classes of pure strategies which are identical up to the mth turn.) We will sometimes denote E

T | σ (m)

R ,σ (m)
C , Γm


by

val (Γm), for brevity.
In the infinite-length gameΓ there is an infinite number of pure strategies; hence the existence of a value and optimizing

strategies is not guaranteed. Let us define

val (Γ ) = sup
σR∈SR

inf
σC∈SC

E (T | σR, σC , Γ )

val (Γ ) = inf
σC∈SC

sup
σR∈SR

E (T | σR, σC , Γ ) .

Hence R, playing optimally, is guaranteed to receive no less than (arbitrarily close to) val (Γ ); C, playing optimally, is
guaranteed to pay no more than (arbitrarily close to) val (Γ ); we have val (Γ ) ≤ val (Γ ). What we want is to show that
val (Γ ) = val (Γ ); if equality holds, then we will denote the common value by val (Γ ), the value of the game Γ .

Existence of val (Γ ) follows almost immediately from a theorem proved by Gurevich [23]. A couple of modifications of
his proof are required. First, we need the following lemma.
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Lemma 4.1. Given any graph G, let σ C be the strategy according to which the cop performs a random walk on G. Define
v = supσR∈SR

E (T | σR, σ C , Γ ). Then

lim
m→∞

val (Γm) ≤ val (Γ ) ≤ v < ∞.

Proof. From Theorem 2.1, we know that, when the copwalks randomly in G, he can catch the robber in finite expected time.
Hence

sup
σR∈SR

E (T | σR, σ C , Γ ) = v < ∞. (14)

Then we have

val (Γ ) = sup
σR∈SR

inf
σC∈SC

E (T | σR, σC , Γ ) ≤ sup
σR∈SR

E (T | σR, σ C , Γ ) = v < ∞.

If we extend the truncated game Γm by one move, we get the game Γm+1, and R’s payoff cannot decrease. Hence val (Γm) ≤

val (Γm+1), i.e. the sequence {val (Γm)}∞m=0 is nondecreasing. It is also bounded, because, in the full game Γ , R can do
at least as well as in any truncated game Γm. Hence val (Γm) ≤ val (Γm+1) ≤ val (Γ ), from which it follows that
v = limm→∞ val (Γm) ≤ val (Γ ). �

Using Lemma 4.1, we can now prove the following.

Theorem 4.2. Given any graph G and the corresponding CiR game Γ played with c (G) cops, val (Γ ) exists and satisfies

val (Γ ) = lim
m→∞

val (Γm) .

Furthermore, there exists a strategyσC such that

sup
σR∈SR

E (T | σR,σC , Γ ) = val (Γ ) (15)

and, for every ε > 0, there exists an mε and a strategyσ ε
R such that

∀m ≥ mε : val (Γ ) − ε ≤ inf
σC∈SC

E

T | σ ε

R , σC , Γm

. (16)

Proof. The theorem is a rephrasing of Gurevich’s Theorem1 [23], andhis proof can also be usedhere, except for the following
two points.

(1) Gurevich assumes that E (T | σR, σC , Γ ) is bounded:

∃M : ∀ (σR, σC ) : |E (T | σR, σC , Γ )| ≤ M.

This is not necessarily true for CiR. But, as he points out [23, p.372], this assumption can be removed, provided the
sequence {val (Γm)}∞m=0 is bounded; in the CiR game this is true because of Theorem 2.1 (as discussed in the proof of
Lemma 4.1).

(2) Gurevich studies games in which the two players move simultaneously. In CiR this is not the case but, since C never
sees R’s move, we can (as already mentioned) rearrange the order of moves and have the moves (Yt−1, Xt) take place
simultaneously.

Other than these two points, Gurevich’s proof applies exactly to the current theorem. �

Remark. From (15) we see that C has an optimal strategy. From (16) we see that, for every ε > 0, R has an “ε-optimal”
strategy, which is uniformly good (i.e., for all m ≥ mε).

We now can replace Eq. (3) with a rigorous definition of cti (G).

Definition 4.3. Given a graph G, we define the invisible capture time of G to be

cti (G) = val (Γ ) ,

where the game Γ is played on Gwith c (G) cops.

Hence cti (G) is not necessarily an achieved expected capture time, but it can be approximated within any ε > 0 by using
strategiesσ ε

R andσC .

4.2. Drunk robber

We now turn to the drunk variant of CiR. Our goal is to rigorously define dcti (G) by proving the existence of an optimal
cop strategy. We present a simple and short proof, based on the reduction of Gurevich’s argument [23] to the one-player
case. Our proof is useful to illustrate the issues involved, andmay also have some independent interest. Since a single player
is involved, the situation is simpler than in the adversarial variant. In fact, as we will now explain, the drunk variant of CiR
is a partially observed Markov decision process (POMDP) [33,39,55].
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The robber process Yt is a Markov chain on V , with transition probability matrix P . As explained in [29], the joint process
(Xt , Yt) is also a Markov process on the extended state space (V × V )∪{λ}, where λ is the capture state. (Xt , Yt) is governed
by the controlled transition probability matrix P (Ut), where Ut = Xt is the control variable (selected by C) which changes
the transition probabilities [29]. In particular, P (Ut) assigns probability 1 to transitions from “diagonal” states (Xt , Xt) to the
capture state λ. C’s goal is to select the sequence U0,U1, . . . so as to minimize the expected capture time. The state (Xt , Yt)
is partially observable by C, since he never knows Yt .

We will use the notation of Section 4.1 denoting, however, the full one-player game by Γ and the truncated one-player
game by Γ m. We also need the following facts.
(1) SC , the space of cop strategies, is compact. This is so by Tychonoff’s theorem, since SC is a product of probability spaces

and the probabilities are on finite event sets.
(2) For everym ∈ N0, E


T | σC , Γ m


is a continuous function ofσC (with domainSC ). This is the case because E


T | σC , Γ m


depends continuously on a finite number of variables.

C must select a strategy σC which minimizes

E

T | σC , Γ


= E


∞
t=0

1 (Xt ≠ Yt) | σC , Γ


;

here 1 (Xt ≠ Yt) is the indicator function of the event Xt ≠ Yt ; this is a typical infinite-horizon undiscounted POMDP problem.
Such problems have been studied by several authors [47,54], who prove the existence of a minimizing strategy for a quite
general setup using rather involved proofs.

Note that, similarly to the adversarial variant, Pr

T | σC , Γ m


is well defined (for every σC ) and can be extended to

Pr

T | σC , Γ


. Hence E


T | σC , Γ m


, E

T | σC , Γ


are well defined for every σC ∈ SC . Let us define

val

Γ m


= inf
σC∈SC

E

T | σC , Γ m


,

val

Γ


= inf
σC∈SC

E

T | σC , Γ


.

We then have the following.
Theorem 4.4. Given any graph G and the corresponding CiR game Γ , we have

val

Γ


= lim
m→∞

val

Γ m

.

Furthermore, there exists a strategyσC such that
E

T | σC , Γ


= val


Γ

.

Proof. We have
inf

σC∈SC
E

T | σC , Γ m


≤ inf

σC∈SC
E

T | σC , Γ m+1


≤ inf

σC∈SC
E

T | σC , Γ


.

Hence
val


Γ m


≤ val

Γ m+1


≤ val


Γ


≤ E

T | σ C , Γ


< ∞,

where σ C is the random-walking strategy, which guarantees that the robber is captured in finite expected time. As a result,
v = limm→∞ val


Γ m

exists and v ≤ val


Γ

.

Now, in val

Γ m


= infσC E

T | σC , Γ m


, the infimum is achieved by someσ (m)

C (since E

T | σC , Γ m


is a continuous

function of the σC probabilities, which take values in a compact set). Define
Km =


σC : E


T | σC , Γ m


≤ v


.

Since E

T | σ (m)

C , Γ m


≤ v, every Km is nonempty. Also, val


Γ m


≤ val

Γ m+1


≤ v implies that Km+1 ⊆ Km. As

mentioned, E

T | σC , Γ m


is a continuous function on SC and SC is compact. For everym, Km is the preimage of the compact

set [0, v]; hence Km is compact. It follows that

K∞ =

∞
m=0

Km

is nonempty. So let us take someσC ∈ K∞. Then

E

T | σC , Γ


= lim

m→∞

m
t=0

t · Pr

T = t | σC , Γ


= lim

m→∞

m
t=0

t · Pr

T = t | σC , Γ m


= lim

m→∞
E

T | σC , Γ m


≤ v.

In other words, we have val

Γ


≤ v. Hence val

Γ


= v and is achieved byσC . �
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We now provide a formal definition of dcti (G) (to replace Eq. (4)).
Definition 4.5. Given a graph G, we define the invisible drunk capture time of G to be

dcti (G) = val

Γ

,

where the game Γ is played on G.

4.3. Discussion

The results of Section 4.2 show that for every graph G there is an optimal average capture time dcti(G) and the cop
player can catch the drunk robber in dcti(G) turns of the game (on average) if he plays the optimal strategyσC . The actual
computation of dcti(G) and σC is the subject of ongoing research in the POMDP community. While the problem is well
understood in principle (an optimality equationmust be solved, similar to the one presented in [29] for the CR problem) and
despite much effort, currently available POMDP algorithms are not computationally viable, even for moderate-size graphs
(the interested reader is referred to [34,39] for an extensive discussion of the issues involved).

The results of Section 4.1 yield similar conclusions for the adversarial robber, with one difference. Namely, while an
optimal strategy σC is available to C, the best R can do is to approximate cti(G) within ε (for any ε > 0) by using an ε-
optimal strategy σ ε

R . In the computational direction, even less progress has been achieved than in the drunk robber case
(see [52]).

We consider the development of efficient CiR algorithms important, especially from the applications point of view.
Further, since exact algorithms quickly become intractable (even for relatively small graphs), we believe that the solution
will be obtained by algorithms which are approximate but have performance guarantees. Such algorithms will probably
make use of domain-specific heuristics.

5. Some bounds for general graphs

In this section, we provide a lower bound on dcti(G) and an upper bound on cti(G); both bounds hold for any G. These
results have independent interest and will also be used in Section 6 to obtain dcti(G) and cti(G) for special graph families.
As already stated, we assume that K , the number of cops, equals c(G), the minimum number of cops needed to capture the
robber in the traditional visible case.

5.1. General lower bound of dcti(G)

Let G = (V , E) be any graph and (Xt)t∈N0 any searching schedule for K ∈ N cops (the kth cop, k ∈ [K ], moves from Xk
t−1

to Xk
t at time t ∈ N). For t ∈ N0, let Zt =


k∈[K ]

{Xk
t } be the set of vertices occupied by the cops at the end of turn t .

We now define certain conditional probabilities which will be used to obtain the lower bound on dcti(G).

p̄t(v) : Pr(‘‘at tth turn, after the cop move, robber is at v’’ | ‘‘robber has not been captured’’),
p̂t(v) : Pr(‘‘at tth turn, after the robber move, robber is at v’’ | ‘‘before a possible capture’’),
pt(v) : Pr(‘‘at the completion of tth turn, robber is at v’’ | ‘‘robber has not been captured’’).

The following remarks should make the meaning of the probabilities above clearer. Effectively, we break each turn of the
game into three phases.
(1) In the first phase, the cops move and they may capture the robber or not. The probability that the robber is at v, given

that he has not been captured, is p̄t(v).
(2) In the second phase, the robber moves but a possible capture (i.e., if he entered a vertex occupied by a cop) is not yet

effected. Hence p̂t(v) is the probability that the robber is at v (even if v contains a cop).
(3) In the final phase, possible captures (i.e., if the robber ran into a cop) are effected and pt(v) is the probability that the

robber is in v given that no capture took place.

So finally, the probability that the robber is caught at time t ∈ N is

ct =


u∈Zt


pt−1(u) + p̂t(u)


.

Wewill now write the equations which govern the evolution of p̄t(v), p̂t(v), pt(v). It is easy to see that, for every v ∈ V ,
p̄0(v) = 0 (the robber has not entered the graph yet). Note that p̄0 is not a probability distribution; one can think of it as a
useful function to get the desired recursion started. It is easy to see that p̂0(v) = 1/n. Regarding p0(v), we have p0(v) = 0
for v ∈ Z0, and

p0(v) =
p̂0(v)

1 −


u∈Z0
p̂0(u)

=
1/n

1 − |Z0|/n
=

1
n − |Z0|

for v ∈ V \ Z0.



A. Kehagias et al. / Theoretical Computer Science 481 (2013) 100–120 109

Suppose now that, at a given time t ∈ N, the game is still on; that is, the robber is still hiding somewhere on the graph
G. Suppose that we know the distribution of the position of the drunk robber, pt−1 : V → [0, 1], at the end of the previous
turn (let us repeat that this probability is conditional on the robber not having been captured). The cops move from Xt−1 to Xt ,
and so they capture the robber with probability


u∈Zt pt−1(u). Conditioning on the fact that the robber is still not captured,

let p̄t(v) be the probability that the robber is at vertex v after this cop move. We have p̄t(v) = 0 for v ∈ Zt , and

p̄t(v) =
pt−1(v)

1 −


u∈Zt pt−1(u)
(17)

for v ∈ V \ Zt .
Now, the robber performs a step of his random walk. Let p̂t(v) be the probability that he is at vertex v after this move;

that is,

p̂t(v) =


u∈N(v)

p̄t(u)
deg(u)

. (18)

The probability of the robber being captured at the completion of his move is


u∈Zt p̂t(u). Assuming, as before, that the
robber is still lucky at the end of turn t , we get the formula for the distribution of the robber’s position at the end of turn t
(once again, conditioned on the robber not having been captured). For v ∈ Zt , pt(v) = 0; for v ∈ V \ Zt ,

pt(v) =
p̂t(v)

1 −


u∈Zt p̂t(u)
. (19)

Eqs. (17)–(19), along with the initial conditions for t = 0, describe the evolution of p̄t(v), p̂t(v), and pt(v) for a given
strategy of the cops. Now, we are ready to state a lower bound for dcti(G) for a general graph G.

Lemma 5.1. Let G be any graph on n vertices with maximum degree ∆ = ∆(G) and minimum degree δ = δ(G), and suppose
that c(G) is such that ∆c(G)

δ(n−c(G))
≤ 1/24. Then,

dcti(G) ≥
δ · (n − c(G))

7e∆ · c(G)
.

Proof. We will use the notation introduced earlier in this subsection. Let G = (V , E) be any graph, and suppose that
K = c(G) cops try to catch the drunk robber on this graph. We may assume that n > K ; the statement is trivially true
otherwise. Let us define the following deterministic function:M0 =

∆/δ

n−K , and, for t ∈ N,

Mt =
Mt−1

1 − 2KMt−1
.

We will show that, for any t ∈ N0 and any vertex v ∈ V , we have

max

p̄t(v), p̂t(v), pt(v)


≤ Mt

deg(v)

∆
. (20)

We prove the claim by induction. Since for each v ∈ V we have

max

p̄0(v), p̂0(v), p0(v)


≤

1
n − K

= M0
δ

∆
≤ M0

deg(v)

∆
,

the base case (t = 0) holds. Suppose now that (20) holds for t−1 ∈ N0. It follows immediately from (17) that, for any v ∈ V ,

p̄t(v) ≤
pt−1(v)

1 −


u∈Zt pt−1(u)
≤

Mt−1
deg(v)

∆

1 − KMt−1
≤ Mt

deg(v)

∆
.

From (18), we get that

p̂t(v) =


u∈N(v)

p̄t(u)
deg(u)

≤


u∈N(v)

Mt−1
deg(u)

∆

deg(u)(1 − KMt−1)

=


u∈N(v)

Mt−1

∆(1 − KMt−1)
=

Mt−1
deg(v)

∆

1 − KMt−1
≤ Mt

deg(v)

∆

for any v ∈ V , so the very same bound holds for p̂t(v). Finally, from (19), we get that

pt(v) ≤
p̂t(v)

1 −


u∈Zt p̂t(u)
≤

Mt−1
deg(v)

∆

1 − KMt−1


1 −

KMt−1

1 − KMt−1

−1

=
Mt−1

deg(v)

∆

1 − 2KMt−1
= Mt

deg(v)

∆
,

and the proof of the claim is complete.
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Suppose thatMt−1 < 3∆
δ(n−K)

(which implies thatMs < 3∆
δ(n−K)

for 0 ≤ s < t , sinceMs is increasing with s). Then,

Mt ≤ Mt−1


1 −

6∆K
δ(n − K)

−1

≤ · · · ≤ M0


1 −

6∆K
δ(n − K)

−t

≤
∆

δ(n − K)
exp


7∆Kt

δ · (n − K)


,

where the last inequality follows since 1
1−x ≤ e7x/6 for x ≤ 1/4 and ∆K

δ(n−K)
≤ 1/24. Therefore, it takes at least τ =

δ(n−K)

7∆K

steps forMt to reach 3∆
δ(n−K)

. During this time period, the probability that we catch the robber at a given time t ≤ τ is

ct =


u∈Zt


pt−1(u) + p̂t(u)


≤ 2KMt ≤

6K∆

δ(n − K)
.

Hence, the probability that the robber is still not caught at time τ is at least
1 −

6K∆

δ(n − K)

τ

≥ e−1.

Finally, we get that the expected capture time is at least τ/e, and the proof is finished. �

Remark. Although the proof of Lemma 5.1 is applied with K = c(G), it can be easily modified for any K cops. If K cops chase
the drunk robber, the expected capture time is at least δ·(n−K)

7e∆·K as long as ∆K
δ(n−K)

≤ 1/24. Moreover, let us mention that the
constants in the statement of the proof are not best possible.

5.2. General upper bound of cti(G)

In this subsection, we investigate the adversarial robber case providing a universal upper bound for the capture time.

Lemma 5.2. Let G be any graph of n vertices with maximum degree ∆ = ∆(G), cop number c(G), and diameter D = D(G).
LetT denote the maximum number of steps it takes for c(G) cops to catch the visible robber, when they use an optimal strategy
(independently of the position of the robber). Then,

cti(G) ≤ (T + D) · (∆ + 1)T · n. (21)

Proof. We will introduce a cop strategy by which the adversarial robber will be captured in at most (T + D) · (∆ + 1)T · n
time steps (even if he knows the strategy in advance and plays optimally against it).

The cop strategy is executed in rounds, each round consisting of one or more turns of the game. In each round, the cops
firstmove to those vertices fromwhich they can capture the visible robber (independently of his position) in atmostT steps.
(Such aT < ∞ exists for every G, since c(G) cops suffice to capture the visible robber in finite time.) Note that in the first
round the cops start immediately from the aforementioned vertices. At any rate, once the cops are there, they uniformly
at random guess the current position of the robber, and then at each of the nextT steps they uniformly at random guess
the behavior of the robber and apply their optimal move for this guessed behavior. The round is overT steps after the cops
arrived at their optimal starting position. If the robber has not been captured by then, the cops start the next round, following
the same strategy.

In each round, it takes at most D steps for the cops to go back to the optimal starting position; after that they moveT
additional steps in which the robber might be caught. In order to catch the robber during one round, it suffices that the
cops guess correctly the position of the robber at the start of the round (which happens with probability 1

n ) and also guess
correctly the move of the robber in each of the followingT steps. Since the robber at each vertex has at most ∆ + 1 choices
(he can move to any of the at most ∆ neighbors, or he can stand still), in each step the probability of the cops making the
right choice is 1

∆+1 . Thus, capture in a round happens with probability at least 1
n·(∆+1)T . Since the bounds on the number of

a round hold independently of the starting point, consecutive rounds are independent, and the expected number of rounds
until the robber is caught is at most n · (∆ + 1)T . Hence, cti ≤ (T + D) · (∆ + 1)T · n, and the proof is complete. �

Remark. The bound of (21) does not mean that cti(G) is O(n). Both ∆ andT depend on G and hence on n, the number of
vertices.

6. The cost of drunkenness for special graph families

We will now show that, by restricting ourselves to some particular graph families, we can obtain non-trivial bounds on
the iCOD. Paths and cycles were considered in [29], so we state the results only (Section 6.1), and we also give in the same
subsection a proof for cliques. The complete d-ary tree of depth L is studied next (Section 6.2), and then we study the grid
(Section 6.3). Finally, in Section 6.4, we give an example of a family of graphs (brooms) showing that Fi(G) can be arbitrarily
close to any value in [2, ∞).
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6.1. Paths, cycles and cliques

Recall that for a path Pn and a clique Kn on n ≥ 1 vertices we have c(G) = 1, whereas for a cycle Cn on n ≥ 4 vertices we
have c(G) = 2. The following two theorems were proved in [29].

Theorem 6.1. Let Pn be the path of n vertices. Then cti (Pn) = n − 1 and

n
2


1 − O


log n
n


≤ dcti(Pn) ≤

n − 1
2

.

In particular, dcti(Pn) = (1 + o(1)) ·
n
2 , and the cost of drunkenness is

Fi(Pn) =
cti(Pn)
dcti(Pn)

= 2 + o(1).

Theorem 6.2. Let Cn be the cycle of n vertices. Then cti (Cn) =
n−1
2 and

n
4


1 − O


log n
n


≤ dcti(Cn) ≤

n − 1
4

.

In particular, dcti(Cn) = (1 + o(1)) n
4 , and the cost of drunkenness is

Fi(Cn) =
cti(Cn)

dcti(Cn)
= 2 + o(1).

Now, we will investigate another simple family of graphs for which the cost of drunkenness is tending to 2.

Theorem 6.3. Let Kn be the clique of n vertices. Then cti (Kn) = n−1 and dcti(Kn) = (1+o(1)) n
2 , and so the cost of drunkenness

is

Fi(Kn) =
cti(Kn)

dcti(Kn)
= 2 + o(1).

Proof. In order to deal with the drunk version, we use the notation introduced in Section 5.1. Regardless of the strategy
used by the cop, it follows from (18) that, for every v ∈ V and t ∈ N,

p̂t(v) =


u∈N(v)

p̄t(u)
deg(u)

≤
1

n − 1
= (1 + o(1))/n;

and in particular (since p̄t(X1
t ) = 0) we have

p̂t(X1
t ) = 1/(n − 1) = (1 + o(1))/n. (22)

Moreover, from (19), for every v ∈ V and t ∈ N, we have

pt(v) ≤
p̂t(v)

1 −

u∈Zt

p̂t(u)
=

p̂t(v)

1 − O(n−1)
= (1 + o(1))p̂t(v) ≤ (1 + o(1))/n. (23)

On the other hand, by an averaging argument, it is always possible for the cop to select a vertex X1
t so that

pt−1(X1
t ) ≥ 1/n. (24)

Recalling the definitions of pt(v) and p̂t(v), the probability that the robber is caught at time t ∈ N (provided that he was
alive at time t − 1 and both players play as best as possible) is ct = pt−1(X1

t ) + p̂t(X1
t ). Using (22)–(24), we get

(2 + o(1))/n ≤ ct = pt−1(X1
t ) + p̂t(X1

t ) ≤ (2 + o(1))/n,

i.e., ct = (2 + o(1))/n, and so dcti(Kn) = (1/2 + o(1))n.
For the adversarial version, we note that the cop performing a random walk catches the robber at any time t with

probability 1/(n − 1) (again, conditioning on the fact that the robber is not caught yet). We have cti(Kn) ≤ n − 1. To
obtain a lower bound for cti(Kn), suppose that the robber is not caught and occupies vertex r; the cop occupies vertex c ≠ r .
The robber can use the following strategy: stay at r or go to any vertex v ∈ V \ {r, c} with uniform probability (that is, each
event holds with probability 1/(n − 1)). This strategy guarantees that, regardless of what the cop is doing, the probability
of being caught in the next round is at most 1/(n − 1). We have cti(Kn) ≥ n − 1, and the proof is finished. �
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6.2. Trees

We restrict ourselves to Td,L, the complete d-ary tree of depth L, for d ≥ 2. This tree has n =
dL+1

−1
d−1 vertices and M = dL

leaves. We know that one cop suffices to capture the robber on any tree, so let us consider a game played by a single cop
and a robber. In this subsection, we will show the following results.

Theorem 6.4. Let G = Td,L be the complete d-ary tree of depth L with n =
dL+1

−1
d−1 vertices. Then,

2LdL−1
· (1 − o(1))

d − 1
d

≤ cti(G) ≤ 2LdL−1
· (1 − o(1)).

In particular, cti(G) = Θ(n log n).

Theorem 6.5. Let G = Td,L be the complete d-ary tree of depth L with n =
dL+1

−1
d−1 vertices. Then,

dcti(G) = Θ(n).

The following corollary is an immediate implication of these two theorems.

Corollary 6.6. Let G = Td,L be the complete d-ary tree of depth L with n =
dL+1

−1
d−1 vertices. The cost of drunkenness of G is

Fi(G) =
cti(G)

dcti(G)
= Θ(log n).

Proof of Theorem 6.4. Since c(G) = 1, the (invisible) robber is chased by a single cop. To simplify the notation, we use
Xt = X1

t for the position of the cop at time t (this time the vector Xt has one coordinate).
In order to give an upper bound on cti(G), we provide a strategy for the cop and show that, independently of the robber’s

behavior, in expectation, the cop will catch the robber after at most a certain number of steps. Denote by a preleaf a vertex
at distance 1 from any leaf. Consider the following strategy of the cop.

(1) Start at the root.
(2) Choose uniformly at random a preleaf v and go there.
(3) Choose a random permutation of the leaves below v and visit them in this order, always returning to the preleaf v.
(4) Return to the root.
(5) Repeat from step 2 down.

Similarly to Lemma 5.2, a round is a sequence of steps starting at the root, visiting a preleaf and all its leaves and going back
to the root. Note that each round consists of 2L + 2(d − 1) steps. Observe that the cop’s strategy in step (2) is equivalent
to choosing at each layer 0 ≤ i ≤ L − 2 a random vertex among all neighbors at layer i + 1 with probability 1

d . Note that,
independently of the robber’s strategy, he is caught in each round with probability 1

dL−1 . Indeed, provided that the robber is
in the subtree below the cop (at some step 0 ≤ i ≤ L − 2), the probability that this is also true at the next round is 1/d. If
this property is preserved from the beginning of the round until step L−2, the robber has no chance to survive and is caught
after visiting all leaves.

Since all rounds are independent, the expected number of rounds needed to capture the robber using this strategy is
dL−1, and thus

cti ≤ dL−1(2L + 2(d − 1)) − L − (d − 1), (25)

since in the last round the cop does not have to return to the root (and so he saves L moves), and he has to visit only half of
the leaves (in expectation) before catching the robber (and so he saves another 2(d−1)−2 d

2 = d−1moves, in expectation).
For the lower bound, we provide a strategy for the robber against which any cop will need at least a certain number of

rounds, in expectation. The robber strategy depends on the cop’s moves and can be briefly described as follows: the robber
always tries to be (after his move) at distance 2 from the cop. As a result, the distance between players is never larger than
3. Moreover, the robber is trying to stay at the layer above the cop, if it is possible. Let us now describe the robber’s strategy
in more detail.

(1) For t = 0. After the cop decides to start at X0, the robber selects a vertex Y0 at distance 2 from the cop.
(a) If X0 is located at layer i ≥ 2, then Y0 is the unique vertex at the layer i − 2.
(b) If X0 is at the first layer, then the robber chooses (uniformly at random) a vertex that is also at the first layer but is

different from X0.
(c) Finally, if X0 is the root of Td,L, then the robber chooses (uniformly at random) any vertex at the second layer.

(2) For t ≥ 1. The cop moves from Xt−1 to Xt , the robber is at Yt−1, and is about to move. There are a number of possibilities
to deal with.
(a) dist(Xt , Yt−1) = 0: the game ends.
(b) dist(Xt , Yt−1) = 1 and no neighbor of Yt−1 is at distance 2 from Xt (the robber is at a leaf): the robber stays at the

same vertex; that is, Yt = Yt−1.
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(c) dist(Xt , Yt−1) = 1 and there is a neighbor of Yt−1 at distance 2 from Xt : the robber chooses (uniformly at random) a
vertex at distance 2 from Xt that is as close to the root as possible.

(d) dist(Xt , Yt−1) = 2: the robber does nothing; that is, Yt = Yt−1.
(e) dist(Xt , Yt−1) = 3: there is a unique neighbor of Yt−1 at distance 2 from Xt ; the robber goes there.

It is easy to check that, under this strategy, the distance between the cop and the robber never becomes greater than 3.
Assume that the robber uses the randomized strategy described above; we will show that, even if the cop is aware of

this, the capture time will be Ω(n log n), and so cti(G) will be of at least the same order. Observe that the robber will only be
caught in a leaf. Moreover, any optimal cop strategy must start either at the root or at a neighbor of the root, as otherwise
the robber chooses a vertex above the cop and the cop is forced to move towards the root. If the cop starts at the root, then
he catches the robber on a leaf if, when in layers 0 ≤ i ≤ L − 2, he chooses always the subtree of the robber. The advantage
of starting at a neighbor of the root is this: since the cop knows the strategy used by the robber, he infers that the robber is
in one of the d−1 other subtrees (not d, as before). This is a much bigger advantage comparing to the additional step back to
the root. Hence, this strategy is slightly better, and we will consider only this one. (Of course, this applies to the first round
of moves only, so starting from the root has exactly the same asymptotic expected capture time.) Note that the probability
of choosing the right subtree after going back to the root is 1

d−1 · ( 1
d )

L−2, since at consecutive layers there is no possibility
to obtain partial information about the position of the robber except by checking leaves. The cop does not necessarily have
to check all leaves (although this is clearly the best strategy), and thus in order to get a lower bound we will not count the
time it takes to check these leaves (we count only the time it takes him to check one leaf). Also, after having exploited all
leaves of a preleaf (we can assume the cop did this, since we do not count these extra steps), the cop has to turn back to the
root to continue exploiting other subtrees, as otherwise the robber will never be caught.

By the same argument, avoiding the subtree the cop comes from, the probability that in the next sequence of steps from
the root to a leaf the cop catches the robber is again 1

d−1 (
1
d )

L−2. Since one way to any leaf and back takes at least 2L steps,
the expected capture time for any cop strategy is at least

cti(G) ≥ 2L · (d − 1) · dL−2
− L, (26)

since in the last round the cop does not have to get back to the root. Thus, combining (25) and (26), we see that cti(G) =

Θ(LdL) = Θ(n log n). �

Proof of Theorem 6.5. We consider the drunken robber performing a random walk on G = Td,L, starting from a vertex
chosen uniformly at random. The lower bound follows from Lemma 5.1, since ∆(G) = d + 1, δ(G) = 1, and c(G) = 1. We
have

dcti(G) ≥
n − 1

7e · (d + 1)
= Ω(n). (27)

For an upper bound on dcti(G), we analyze the expected capture time of a cop standing still at the root vertex. Denote by
ej the expected capture time if the robber starts at level j (the root is considered to be at level 0). By definition, e0 = 0,
eL = 1 + eL−1, and

ej = 1 +
1

d + 1
ej−1 +

d
d + 1

ej+1

for 1 ≤ j ≤ L−1. Since eL−1 = 1+
d

d+1 (1+eL−1)+
1

d+1 eL−2, we have eL−1 = 2d+1+eL−2. Similarly, eL−2 = 2d2+2d+1+eL−3,
and, in general,

ej = 2
L−j
k=0

dk − 1 + ej−1

for 1 ≤ j ≤ L − 1. Thus,

e1 = 2
L−1
k=0

dk − 1,

e2 = 2
L−2
k=0

dk − 1 + 2
L−1
k=0

dk − 1,

eL−1 = 2
L−1
r=1

r
k=0

dk − (L − 1) = 2
L−1
r=1

dr+1
− 1

d − 1
− L + 1,
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and

eL = 2
L−1
r=1

dr+1
− 1

d − 1
− L + 2 =

2
d − 1

L
r=2

dr −
2L − 2
d − 1

− L + 2

=
2dL+1

− 2
(d − 1)2

−
2 + 2d
d − 1

−
2L − 2
d − 1

− L + 2

=
2dL+1

− 2
(d − 1)2

−
2d + 2L
d − 1

− L + 2.

Since ei ≥ ei−1 for all 1 ≤ i ≤ L,

dcti(G) ≤ eL = O(n). (28)

Combining (27) with (28), we obtain dcti(G) = Θ(n), and the proof is complete. �

6.3. Grids

In this subsection, we investigate the square grid PN�PN . The result can be easily generalized to rectangle grids. The
adversarial robber case seems to be non-trivial. Our upper bound follows from the general upper bound provided in
Lemma 5.2. We have no good lower bound, so determining the order of cti(PN�PN) for a grid remains an open problem.
We do better in the drunk robber case, but this can also be improved.

Theorem 6.7. Let PN�PN be the square N × N-grid with n = N2 vertices. Then

cti(PN�PN) = O(n3/25
√
n).

Proof. Since D = 2N ,T = N − 1, ∆ = 4, it follows from Lemma 5.2 that

cti(PN�PN) ≤ (3N − 1)n5N−1
= O(n3/25

√
n),

and the result holds. �

Theorem 6.8. Let PN�PN be the square N × N-grid with n = N2 vertices. Then

Ω(n) = dcti(PN�PN) = O(n log n).

Proof. Since c(PN�PN) = 2, ∆ = 4, and δ = 2, it follows from Lemma 5.1 that dcti(PN�PN) ≥
n

28e = Ω(n), and thus the
lower bound follows.

The upper bound will be obtained by the following cop strategy σ0: both cops start at the lower left corner of the grid
and stay there for the duration of the game. Capture will take place when the drunk robber reaches the corner. Take any
two vertices x, y ∈ V . Without loss of generality, we can assume that the grid is a subgrid of the integer lattice, each edge
being of unit length. For a random walk on this subgrid, the expected time to go from x to y and back to x is the commute
time between x and y; we will denote it by φx,y. By Corollary 2.21 of [36], the commute time for any vertices x, y is

φx,y = γ R(x, y), (29)

where γ = 2|E| and R(x, y) is the effective resistance from x to y, i.e., the resistance of the grid when it is considered as an
electrical network with input vertex x, output vertex y, and each edge having resistance of 1 ohm. Each vertex of the grid
has degree at most 4; hence

γ ≤ 4N2
= 4n. (30)

Moreover, by Proposition 2.15 of [36], we have the following result: there exists a positive constant c such that, for any
vertices x, y of the integer grid which are at distance k, we have

1
c
log k ≤ R(x, y) ≤ c log k. (31)

Hence, for an
√
n ×

√
n grid, φx,y ≤ c ′n log n for some constant c ′ > 0. In particular, if we denote by u the lower left corner,

for any vertex z corresponding to the starting position of the robber, φu,z = O(n log n). Since the commute time is an upper
bound for the expected capture time having both cops standing still at u, the upper bound follows. �



A. Kehagias et al. / Theoretical Computer Science 481 (2013) 100–120 115

Fig. 2. The broom graph B(c, n).

Remark. Wehave shown an upper bound ofO(n log n), but we conjecture that, in fact, the lower bound is the right one; that
is, dcti(PN�PN) = Θ(n). The cop’s strategy of standing still is not good enough to achieve it, but running on a grid (in a smart
way) should do the job. Suppose that both cops start at the right-upper corner. By an averaging argument, there is a row in
the grid such that the probability that the robber is there (provided that he is not caught yet) is at least 1/

√
n. Both cops go

down the grid, through this row, and down to the left-bottom corner. The fact that the robber is not caught yet decreases
the probability that he is close to the cops. However, the propagation of that information has the same speed as the cops, so
it should be true that they catch the bad guy with probability Ω(1/

√
n) before they reach the opposite corner. If the robber

is not caught, then they select another row (again, the one which maximizes the probability of having the robber there) and
run through this row back to the original corner. They repeat this until the robber is finally caught. Since the length of each
phase is 2

√
n, we should get that the expected capture time is O(n). Unfortunately, we do not know how to overcome some

technical problems with this argument, so we leave it as a conjecture.

6.4. Brooms

In this section, we consider a family of graphs which we call brooms. The broom graph B(c, n), with n vertices and a
parameter c (0 < c ≤ 1), is illustrated in Fig. 2. It consists of a path with cn vertices, joined at one endpoint (the center of
the broom) with a star of (1 − c)n vertices. The end of the broom is the other endpoint of the path.

Bounding cti(B(c, n)) and dcti(B(c, n)) is interesting as an illustration of the game-theoretic approach. Perhaps more
importantly, Corollary 6.11 shows that, for large n and appropriately selected c , Fi(B(c, n)) can be arbitrarily close to any
value in [2, ∞). Note that Corollary 6.11 holds for every (sufficiently large) n, i.e., it is a property of the entire broom family.

Theorem 6.9. dcti(B(c, n)) = (1 + o(1)) c2n
2 .

Theorem 6.10. cti(B(c, n)) = (1 + o(1))n.

Corollary 6.11. For any 0 < c ≤ 1,

Fi(B(c, n)) =
cti(B(c, n))
dcti(B(c, n))

= (1 + o(1))
2
c2

.

Hence, for every a ∈ [2, ∞) there exists c ∈ (0, 1] such that Fi(B(c, n)) = (1 + o(1))a.

Proof of Theorem 6.9. One possible strategy for the cop is the following: start at the center of the broom, wait there for one
step, and then go to the end of the broom. Since the robber’s position is distributed uniformly at random, and the robber has
to move in every step, we have the following cases.

(1) With probability 1 − c , the robber starts on a leaf of the star and is caught in O(1) steps.
(2) With probability c , the robber starts on any vertex of the path and (starting at t ≥ 2) the cop starts moving towards the

end. In this case, the problem is reduced to catching a drunk robber on a path of cn vertices and this, by Theorem 6.1,
takes (1 + o(1)) cn

2 steps, in expectation.

Hence

dcti(B(c, n)) ≤ (1 − c) · O(1) + c · (1 + o(1))
cn
2

= (1 + o(1))
c2n
2

.

On the other hand, this is clearly the best strategy: with probability c , the robber is on one of the vertices of the path and,
since the vertices of the star do not help, in this case, again by Theorem 6.1, the expected time to be caught is (1+o(1))cn/2.
Hence, dcti(B(c, n)) = (1 + o(1)) c2n

2 . �
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Table 1
The possible ways in which the robber can be captured.

R starts at C moves towards Prob. Distance traveled

End End bp bn
A leaf End (1 − b) p (b + c + (1 − c)) n
End Center b (1 − p) ((c − b) + 2x(1 − c) + c)n
A leaf Center (1 − b) (1 − p) x ((c − b) + x(1 − c)) n
A leaf Center (1 − b) (1 − p) (1 − x) ((c − b) + (2x(1 − c) + 2c + (1 − c)))) n

Proof of Theorem 6.10. For an upper bound we assign the following strategy for the cop. He starts at the end of the broom,
moves to the center and, once there, he checks all leaves in random order without repetitions. The robber’s best response is
to start at a randomly selected leaf and stay there until caught (actually he could move into a different leaf or even outside
of the star as long as the cop is ‘‘sufficiently distant’’, but this will not change expected capture time). The expected capture
time under these strategies is the sum of two terms:
(1) the cop needs cn steps to go from the end to the center;
(2) once there, the cop will on the average need to check (1 − c) n/2 leaves before he captures the robber, and every such

check requires two steps (one from the center to the leaf and one back), except the very last move, which requires only
one step.

Hence
cti (B (c, n)) ≤ cn + 2 (1 − c) n/2 = n.

A lower bound for cti(B(c, n)) can be established by describing a robber strategy and proving that it is optimal. Before
we describe such a strategy we need some additional notation. Let us assign the ‘‘coordinate’’ 0 to the end of the broom
and the ‘‘coordinate’’ cn to the center. The cop’s initial position X0 can then be written as bn, where b ∈ [0, c] (actually this
excludes the possibility that X0 is a leaf but, as we will soon see, we need not concern ourselves with this case). Note that b
is a parameter of the cop’s strategy; also, the robber will observe b before he makes his first move.

Before the game starts, the robber announces that he will use the following strategy: he will go to the end of the broom
with probability q = q(b) = b, and to a randomly chosen leaf with probability 1 − q. The cop is aware of this, and his only
reasonable responses (after having started at bn) are the following.
(1) With probability p, the cop can go towards the end of the broom, and then back to the center to sweep all leaves.
(2) With probability 1 − p, he can go to the center, sweep a randomly chosen x-fraction of the leaves (for some x ∈ [0, 1]),

then move to the end of the broom, and then go back to the center, sweeping all leaves (of course, for x = 1, he will
have captured the robber by the time he reaches the end, at the latest; so he will not need to revisit the center).

We do not consider the possibility that the cop starts at a leaf, because this does not influence the asymptotic behavior of
the expected capture time; this justifies our previous claim that the cop’s initial position can be parameterized by bn.

It is easily seen that the above family of strategies (parameterized by (b, p, x)) guarantees capture (of course capturemay
take place before the full schedule is executed). Note that, if c is exactly 1, we have a path, and cti(B(c, n)) = (1 + o(1))n.
Also, if b is exactly 0, the cop starts at the end of the broom, and the robber’s only reasonable strategy is to hide at a randomly
chosen leaf. In this case, the expected capture time is also (1 + o(1))n. Excluding these cases from the following analysis,
we can break down the expected capture time into the following cases.

The case in which the robber hides in the leaves and the cop starts by moving towards the center is broken down to two
subcases (and hence requires two rows in the above table).
(1) In the first subcase, the cop checks an x-fraction of the leaves and captures the robber, before visiting the end of the

broom. This happens with probability x, and the average number of leaves checked is x · (1 − c) · n/2.
(2) In the second subcase, the cop checks x-fraction of the leaves, fails to capture the robber, visits the end of the broom,

and then returns to check all the leaves (and so capture the robber with certainty). This happens with probability 1− x,
and the number of leaves checked is x · (1 − c) · n during the first visit and (1 − c) · n/2 (on the average) during the
second visit.

The expected capture time for a given value of c is E(T ) = (1 + o(1))fc(p, b, x) · n, and fc(p, b, x) · n is obtained by
multiplying the entries of the last two columns of Table 1, adding, and performing some algebra. We finally get

fc (b, p, x) = (−1 + b + c + p − bc − bp − cp + bcp) x2

+ (1 + b − 3c − p + bc − bp + 3cp − bcp) x + (2c − 2b + 2bp − 2cp + 1) .

Hence fc(b, p, x) is a quadratic function in x, and (after some factorizations) is can be rewritten as follows: fc(b, p, x) =

a2x2 + a1x + a0, with

a2 = −(1 − p)(1 − b)(1 − c)
a1 = (1 − p)(1 − 3c + bc + b)
a0 = 2(1 − p)(c − b) + 1.
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Since a2 is negative (unless p = 1, where the whole function is zero), the parabola is downward concave, and thus it
achieves its minimum either at x = 0 or at x = 1. If x = 0, fc(b, p, x) = a0 = 1 + 2(1 − p)(c − b) ≥ 1. If x = 1,
fc(b, p, x) = a2 + a1 + a0 = 1, and thus the minimum is achieved there. Thus, cti(B(c, n)) ≥ (1− o(1))n; this, together with
the upper bound, shows that the robber strategy is optimal and that cti(B(c, n)) = (1 + o(1))n. �

Remark. The broom B(c, n) is a combination of the path Pn and the star SN : high c values make B(c, n) more like a path and
low values make it more like a star. Accordingly, high c values bring Fi(B(c, n)) closer to Fi(Pn) = 2 and low values increase
Fi(B(c, n)) unboundedly, which is similar to the behavior of Fi(SN) for large N .

7. The ‘‘infinite-speed’’ robber

In this section, we change the rules of the game slightly. Suppose that the robber is still invisible but now is endowed
with “infinite speed”. We remark that in the classic game of cops and (visible) robber the cop number can have unbounded
increase, if the robber is given additional (finite) speed: in [21] it is proved that for an n×n-grid the cop number isΩ(

√
log n)

(and, of course, O(n)) if the robber has speed s = 2.
Here we are interested in the iCOD for an ‘‘infinite-speed robber’’, where we use the term “infinite speed” for brevity.

What we actually assume is that the robber has speed s ∈ N, i.e., during his turn he can traverse at most s edges (as long
as he does not go through a vertex containing a cop), and we examine what happens in the limit when s tends to infinity.
Let us note that the adversarial robber can choose to traverse fewer edges or even stay in place. As for the drunk robber, he
simply performs s steps of a random walk on G; if during one of these steps he runs into a cop, he is captured. Finally, the
cops will still have unit speed.

Let us denote by c(G, s) the minimum number of unit-speed cops required to capture on G (G is still assumed to be
connected) the visible adversarial robber moving at speed s. By the argument used in the proof of Theorem 2.1, c(G, s) is
also the minimum required number of cops for the invisible robber. Let us use cti (G, s) to denote the expected capture
time given that c(G, s) unit-speed cops chase an invisible adversarial robber of speed s; dcti (G, s) and Fi (G, s) are defined
similarly. Obviously we have c (G, 1) = c (G), cti (G, 1) = cti (G), dcti (G, 1) = dcti (G), Fi (G, 1) = Fi (G). We are interested
in the limits

lim
s→∞

cti (G, s) , lim
s→∞

dcti (G, s) , lim
s→∞

Fi (G, s) .

In the case of a drunk robber, it is actually quite easy to find lims→∞ dcti (G, s). Suppose that C has c(G, s) cops, and he keeps
them stationary at some vertices u1, u2, . . . , uc(G,s). As s becomes large, the robber essentially performs a random walk on
Gwith ui (i ∈ [c(G, s)]) being absorbing vertices. Since a random walker visits every vertex of G in finite expected time, the
probability that the robber will hit an absorbing state during the first turn (conditional on not starting at absorbing state)
approaches 1 as s → ∞. Hence lims→∞ dcti (G, s) =

n−c(G,n)
n .

Next let us note that, for an adversarial robber, s does not need to increase all the way to infinity. With s = |V | = n, the
robber can in one turn reach any vertex in G. In other words, lims→∞ cti (G, s) = cti (G, n). In short,

lim
s→∞

Fi (G, s) =

lim
s→∞

cti (G, s)

lim
s→∞

dcti (G, s)
=

cti (G, n)
n−c(G,n)

n

=
n

n − c(G, n)
cti (G, n) .

Hencewe nowmust study cti (G, n). Let us first establish that cti (G, n) exists. The game-theoretic analysis of Section 4 holds
for any value of s; a feasible robber strategy now specifies (probabilities on) moves which traverse at most s edges without
crossing a cop-occupied vertex. Hence cti (G, n) is well defined.

It is easy to see that lims→∞ Fi (G, s) can take any value in N. For example, for the path Pn, we see immediately that
lims→∞ Fi (Pn, s) = lims→∞

n
n−1 cti (Pn, s) = n. As an additional example, let us consider lims→∞ Fi (SN , s) on the star SN .

When CiR is played on SN , the adversarial infinite-speed robber can move to any leaf in his turn; hence he has more options
than the unit-speed robber, who must remain in his original vertex for the entire game. However, let C control a single cop,
who starts at vertex 0, searches a randomly selected leaf (with repetitions) at odd times, and returns to 0 at even times. It is
easy to see that this strategy is optimal, and its expected capture time (i.e., cti (G, s)) is (for any s ≥ 2)

cti (G, s) =


∞
t=1


N − 1
N

t−1 1
N

(2t − 1)


− 1 = 2N − 1.

(One time step is subtracted because after capture the cop does not need to return to vertex 0.) For a drunk robber, we will
have (for all s) dcti (G, s) =

N
N+1 . Hence, recalling that n = N + 1,

lim
s→∞

Fi (SN , s) =
(2N − 1) · (N + 1)

N
= Θ(n).

The example of an infinite-speed robber on SN illustrates an additional interesting point. Recall the graph search (GS)
game [46]. Similarly to CiR, GS involves a team of searchers (cops) and a fugitive (robber) who is invisible, adversarial, and
infinitely fast [22]. GS and CiR differ in one respect: in GS the fugitive is assumed to reside in the edges, not the vertices of
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G. But there are GS versions of node search and mixed search. Furthermore, in “classical” GS the cops are not restricted to
move along edges; but there is a variant of GS, called internal search, in which this restriction is imposed. Let us simply state,
without giving details, that the capture mechanism of CiR is equivalent to that of internal mixed GS (the interested reader
can check this fact using [22] and the references therein).

We denote by c∞

i (G) theminimumnumber of cops required to capture an invisible, adversarial, and infinitely fast robber
on G; we denote by s (G) theminimumnumber of searchers required to guarantee capture of the fugitive in G, using internal
mixed search. One would assume that these two games are equivalent and that s (G) = c∞

i (G). However, this is not the
case: in the SN example we have c∞

i (SN) = 1 < 2 = s (SN). Hence, at least for some graphs, we can have c∞

i (G) < s (G).
The reason for this is that in GS the fugitive is assumed to know in advance the entire itinerary of the searchers (i.e., he
is omniscient), while in CiR the robber only knows the past cop moves (and it suffices that the cops have a strategy that
guarantees capture in finite time with probability 1, not to have a strategy that catches the robber in a finite number of
steps.)

8. Conclusion

We have examined CiR, the invisible-robber version of the CR game. Our main interest was in the cost of drunkenness
Fi (G) which, as we have shown, exists for every graph G and can get arbitrarily close to any value in [2, ∞). To establish
these results, we have used concepts from game theory and the theory of partially observable Markov decision processes.
For several families of graphs including stars, d-regular trees and grids we found (almost) exact bounds, and moreover we
gave general upper and lower bounds. Finally, we have briefly examined the CiR variant in which the robber is infinitely
fast and we have found, somewhat surprisingly, that the corresponding cop number ci (G) can be smaller than the (internal
mixed) search number s (G).

Our work can be extended in several ways. We first state some open problems.

(1) For a general graph G, prove that |V (G)| ≥ 2 ⇒ Fi(G) ≥ 2. We would like to knowwhether this is true, because we have
not found any graph Gwith both |V (G)| ≥ 2 and Fi(G) < 2.

(2) We want to characterize graphs by their c(G) and Fi(G) values. For instance: given n ∈ N and a, b ∈ R, characterize the
set

{G : c (G) = n and Fi (G) ∈ [a, b]} .

This can be seen as a refinement of the well-known characterization of graphs with c(G) = 1.
(3) For a square grid, find asymptotically exact values of cti(PN�PN) and dcti(PN�PN). We have obtained a subexponential

upper bound on cti(PN�PN) but we have not been able to find a non-trivial lower bound. For dcti(PN�PN), we showed
the upper bound of O(n log n), but we conjecture that, in fact, dcti(PN�PN) = Θ(n), as discussed in the remark right
after the proof of Theorem 6.8.

(4) Characterize the set

{a : ∃G such that Fi(G) = a}.

Asmentioned, Fi (G) can get arbitrarily close to any value in [2, ∞). On the other hand, there are values in [2, ∞)which
cannot be actually achieved by Fi(G) (for example, Fi(G) cannot equal an irrational number).

(5) Find necessary and sufficient conditions for c (G) = c∞

i (G). The equality holds for paths, stars and cliques; for what other
types of graph does it hold?

(6) Find necessary and sufficient conditions for c∞

i (G) = s (G), where s(G) is the internal mixed search number of G.

Finally, we list several future research directions.

(1) We have obtained tight bounds on Fi(G) for paths, cycles, cliques, trees, and grids. Can similar bounds be obtained for
additional graph families (e.g., planar, bipartite, series–parallel, chordal, high girth, geometric)? What about random
graphs?

(2) The use of algorithms becomes necessary for graphs which cannot be treated analytically. We want to develop tractable
algorithms for the computation of cti (G), dcti (G), Fi (G), and also of optimal search strategies. It is well established in the
literature that exact algorithms are computationally intractable; hence, we intend to develop approximate algorithms,
along with performance guarantees.

(3) In the drunk case, even a single immovable cop is enough to catch the robber on any graph. Using either analytical
methods or the algorithms mentioned in the previous item, it will be interesting to compare cti(G) to the time needed
by one cop to catch the drunk robber on G, for various families of G.

(4) We have studied the cost of drunkenness under the ‘‘standard’’ random walk assumption which (in our opinion) is a
good description of ‘‘drunk’’ and unpredictable behavior. An alternative is the ‘‘lazy’’ randomwalk (the robber canmove
to any neighboring vertex or stay in his current vertex, all with equal probability). We expect that the results under this
assumptionwill generally be similar to the oneswe have obtained for the standard randomwalk; however, we have also
noticed certain differences which require careful and, perhaps, lengthy analysis. Hence we defer this study to a future
paper.
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(5) Another assumption which we have used is that the drunk robber’s initial position is uniformly distributed on the
graph vertices. This assumption models the situation where the cops and the robber enter the graph at the same time.
Alternatively, one can assume that the robber has been walking at random in the graph a long time before the cops
entered; hence, his initial position follows the equilibrium distribution. Once again, we believe that (a) this assumption
will not change the nature of the problem radically, but (b) the required analysis is sufficiently different to merit further
research.

(6) Finally, while we have studied the cost of drunkenness, our results can also be used to initiate a study (for both the
adversarial and drunk variants) of the cost of invisibility. This can be expressed by the ratios cti(G)

ct(G)
, dcti(G)

dct(G)
, the behavior of

which we will study in the future.
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