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In this paper we study the connections between three related concepts which have
appeared in the fuzzy literature: fuzzy intervals, fuzzy numbers and fuzzy interval numbers
(FIN’s). We show that these three concepts are very closely related. We propose a new def-
inition which encompasses the three previous ones and proceeds to study the properties
ensuing from this definition. Given a reference lattice (X,v), we define fuzzy intervals to
be the fuzzy sets such that their p-cuts are closed intervals of (X,v). We show that, given
a complete lattice (X,v), the collection of its fuzzy intervals is a complete lattice. Further-
more we show that, if (X,v) is completely distributive, then the lattice of its fuzzy intervals
is distributive. Finally we introduce a new inclusion measure, which can be used to quantify
the degree in which a fuzzy interval is contained in another, an approach which is partic-
ularly valuable in engineering applications.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this paper we study the connections between three related concepts which have appeared in the fuzzy literature: fuzzy
intervals, fuzzy numbers and fuzzy interval numbers (FIN’s). We show that these three concepts are very closely related, we
propose a new definition which encompasses the three previous ones and proceed to study the properties ensuing from this
definition.

While fuzzy intervals [30, p.58] and fuzzy numbers [29, p.97] are well established concepts in the fuzzy literature, FIN’s
have been introduced relatively recently by Kaburlasos [21–23,31] as a new computational intelligence tool. From the appli-
cations point of view, the usefulness of FIN’s has been demonstrated in several engineering problems [22–27,32,33]. Some
theoretical work on FIN’s has also been done, especially the introduction of inclusion measures and metrics [22,23,33]. But,
in our opinion, much more remains to be done regarding the theoretical foundation of FIN’s and the current paper takes a
step in this direction.

In this paper we study positive FIN’s in the context of fuzzy lattices. In other words, we show that, under a suitable def-
inition, a positive FIN is a fuzzy interval. Here by ‘‘fuzzy interval” we mean a fuzzy set M satisfying the following require-
ments: (i) M has underlying reference set X. (ii) M takes membership values in a complete lattice (L,6) with minimum
and maximum elements (0 and 1).1 (iii) The cuts of M are closed intervals of a reference lattice (X,v). It appears that fuzzy
intervals have previously been studied mainly in the case that the underlying X is the set of real numbers R; Kaburlasos,
on the other hand, has used FIN’s in the context of more general X (he has used X to represent, among other possibilities,
vectors, Boolean statements and graphs – for details see [22,24,25,27,33]). To achieve compatibility with Kaburlasos’ general
point of view we will study FIN’s (and fuzzy intervals and fuzzy numbers) on a general reference lattice (X,v) (the only
requirement being that (X,v) is complete).
. All rights reserved.
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Our treatment is algebraic and is connected to previous work on fuzzy algebras. Rosenfeld wrote the first paper on fuzzy
groups [34]; fuzzy rings and fuzzy ideals of rings are studied in [5,18,46,47]. Seselja, Tepavcevska and others have presented a
far reaching framework of L-fuzzy and P-fuzzy algebras [35–37]. Additional important work on fuzzy algebras appears in,
among other places, [17,40,45,4]. Fuzzy lattices are a particular type of fuzzy algebras. A fuzzy lattice is a fuzzy set such that
its cuts are sublattices of a ‘‘reference lattice” (X,v). Relatively little has been published on fuzzy lattices; Yuan and Wu intro-
duced the concept [42] and Ajmal has studied it in greater detail [1–3]; Swamy and Raju [39] and, more recently, Tep-
avcevska and Trajkovski [41] have studied L-fuzzy lattices. Also fuzzy hyperalgebras have been studied in the past [10–
12,14,15], especially fuzzy hypergroups [13,16,48,49], fuzzy hyperrings [47] etc.

The paper is organized as follows. Preliminary concepts are presented in Section 2; the connections between FIN’s,
fuzzy intervals and fuzzy numbers are discussed and then the lattice of fuzzy intervals is constructed in Section 3; its dis-
tributivity is proved in Section 4; inclusion measures in the FIN lattice are studied in Section 5; concluding remarks appear in
Section 6.

2. Preliminaries

In the rest of the paper we will consider fuzzy subsets of a reference set X. We will assume that X is endowed with an order
v and the structure (X,v,t,u) is a complete lattice (the ‘‘reference lattice”) with t, u denoting the join and meet operations
respectively. In applications, X could be R;RN (with N P 2 and an appropriate order) or more general (e.g., Boolean valued)
sets; examples of the application of lattice theoretic concepts to real-world problems can be found in [22–27,32,33] and
elsewhere.

Since (X,v,t,u) is complete, for every Y # X the elements uY,tY exist; in particular, there exist uX (the minimum element
of X) and t X (the maximum element of X), hence we can write X = [uX,tX].

We will also need a target lattice (L,6,_,^), the lattice in which fuzzy subsets of X take membership values. Initially we
will only assume that (L,6,_,^) is a complete lattice with a minimum element (denoted by 0) and a maximum element (de-
noted by 1).2 Given a set P # L,_P (resp. ^P) denotes the supremum (resp. the infimum) of P (these always exist, since
(L,6,_,^) is assumed to be complete).

2.1. Intervals of a lattice

Closed intervals of (X,v,t,u) will be of special interest to us.

Definition 2.1. Given x1, x2 2 X, with x1 v x2, the closed interval [x1,x2] is defined by [x1,x2] ¼: {z:x1 v z v x2}.

We consider the empty set ; to be a closed interval, the so called empty interval. This can also be denoted as [x1,x2] with
any x1, x2 such that x2 v x1. We will denote by I(X) (or simply by I) the collection of closed intervals of X (including the empty
interval). The structure (I, # ) is an ordered set. In fact it is a lattice, as the following propositions show (proofs are omitted
for brevity; they follow from the fact that being a closed interval is a closure property on (I, # ) [6]).

Proposition 2.2. Given any nonempty interval A = [a1,a2] # X, we have a1 = uA, a2 = tA.
Proposition 2.3. Given any family of closed intervals J # I the set \½a1 ;a2 �2J½a1; a2� is a closed interval; more specifically,
we have
2 In S

Please
j.ins.2
\½a1 ;a2 �2J½a1; a2� ¼ ½t½a1 ;a2 �2Ja1;u½a1 ;a2 �2Ja2�
and this is the largest closed interval contained by every member of J.
Definition 2.4. Given A, B 2 I, define S(A,B) ¼: {C: C 2 I, A # C, B # C}. Then we define the operation _[ as follows
A _[B¼: \C2SðA;BÞC:
Proposition 2.5. The structure ðI; # ; _[;\Þ is a lattice with respect to the # order (i.e. set theoretic inclusion). Given any intervals
A ¼ ½a1; a2� 2 I; B ¼ ½b1; b2� 2 I; supðA;BÞ ¼ A _[B ¼ ½a1 u b1; a2 t b2�; infðA;BÞ ¼ A \ B ¼ ½a1 t b1; a2 u b2�.
Remark. In other words, given any intervals A = [a1,a2], B = [b1,b2] we have: (i) [a1 u b1,a2 t b2] is the smallest closed inter-
val which contains both A and B and (ii) [a1 t b1,a2 u b2] is the largest closed interval contained by both A and B.
ection 4 we will introduce additional assumptions on the structure of (L,6,_,^).
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2.2. Fuzzy sets

By ‘‘fuzzy set” we simply mean a function M: X ? L. We repeat that X is the reference set and L the set of membership
values.

Definition 2.6. A fuzzy set is a function M: X ? L. The collection of all fuzzy sets (from X to L) will be denoted by F(X,L) or
simply by F.

In a standard manner, we introduce an order on F using the ‘‘pointwise” order of (L,6,_,^). The symbols 6,_,^ will be
used between elements of F (as well as between elements of L) without danger of confusion.

Definition 2.7. For M, N 2 F we write M 6 N iff for all x 2 X we have: M(x) 6 N(x).

Remark. The above definition has the following interpretation: a fuzzy set M is smaller than a fuzzy set N if every element
x 2 X belongs to N at least as much as it does to M (in other words: M(x) 6 N(x)). Note that ‘‘6” is a straight generalization of
the inclusion relationship ‘‘ # ” of classical sets. To understand this consider that (a) the ‘‘membership function” of a classical
set M is its indicator function 1M(x), defined to be 1M(x) = 1 iff x 2M and 0 otherwise and (b) M is a subset of classical set N iff
1M(x) 6 1N(x), i.e. whenever 1M(x) = 1 (i.e., x 2M) then 1N(x) = 1 (i.e., x 2 N) as well. Hence the order relationship of Definition
2.7 is a generalization of fuzzy set inclusion. However alternative, fuzzy valued extensions of fuzzy set inclusion are possible
and, indeed, desirable; for a discussion see Section 5 and [28].
Definition 2.8. For M, N 2 F: we define the fuzzy set M _ N by: (M _ N)(x) ¼: M(x) _ N(x); we define the fuzzy set M ^ N by:
(M ^ N)(x) ¼: M(x) ^ N(x).

It is well known [30] that 6 is an order on F and that (F,6,_,^) is a complete lattice with sup (M,N) = M _ N, inf
(M,N) = M ^ N. Also, given any set A # F, the infimum of A, denoted by A, is a fuzzy set defined for every x 2 X by
Please
j.ins.2
AðxÞ ¼ ^fAðxÞ : A 2 Ag
and the supremum of A, denoted by A, is a fuzzy set defined for every x 2 X by
AðxÞ ¼ _fAðxÞ : A 2 Ag
(these always exist, since it has been assumed that (L, 6,_,^) is complete).

Definition 2.9. Given a fuzzy set M: X ? L, the p-cut of M is denoted by Mp and defined by Mp ¼
: {x: M(x) P p}.

We will need some properties of p-cuts, summarized in the following propositions. Their proofs can be found in [30].

Proposition 2.10. Take any M 2 F with p-cuts {Mp}p2L and N 2 F with p-cuts {Np}p2L. Then M = N iff for all p 2 L we have
Mp = Np.
Proposition 2.11. Take any M 2 F with p-cuts {Mp}p2L. Then we have the following.

(i) For all p, q 2 L we have: p 6 q)Mq # Mp.
(ii) For all P # L we have: \p2PMp = M_P.

(iii) M0 = X.
Proposition 2.12. Consider a family of sets f eMpgp2L which satisfy the following.

(i) For all p, q 2 L we have: p 6 q) eMq # eMp.
(ii) For all P # L we have: \p2P

eMp ¼ eM_P.
(iii) eM0 ¼ X.

Define the fuzzy set MðxÞ ¼ _fp : x 2 eMpg. Then for all p 2 L we have Mp ¼ eMp.
Proposition 2.13. For all M;N 2 F : M 6 N () ð8p 2 L : Mp # NpÞ.
Proposition 2.14. For all M, N 2 F, p 2 L: (i) (M _ N)p = Mp [ Np, (ii) (M ^ N)p = Mp \ Np.
2.3. Fuzzy lattices

The concept of fuzzy sublattice was introduced by Yuan and Wu [42] and the concept of fuzzy convex sublattice was intro-
duced by Ajmal and Thomas [1]. These concepts were studied in [43,50] and, especially, by Ajmal and Thomas in [1–3].
cite this article in press as: A. Kehagias, Some remarks on the lattice of fuzzy intervals, Inform. Sci. (2010), doi:10.1016/
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We now define ‘‘fuzzy sublattice” and ‘‘fuzzy convex sublattice” in a manner different from (but equivalent to) the stan-
dard one used in [1].

Definition 2.15. We say M: it X ? L is a fuzzy sublattice of (X,v) iff "p 2 L the set Mp is a sublattice of (X,v).
Definition 2.16. We say M: X ? L is a fuzzy convex sublattice of (X,v) iff "p 2 L the set Mp is a convex sublattice of (X,v); (i.e.
"p 2 L,"x,y 2Mp we have [x u y,x t y] # Mp).

The next proposition shows that our Definition 2.15 of fuzzy sublattice is equivalent to the one used in [1].

Proposition 2.17. M: X ? L is a fuzzy sublattice of (X,v) iff
3 L-fu

Please
j.ins.2
8x; y 2 X : Mðx u yÞ ^Mðx t yÞP MðxÞ ^MðyÞ:
Proof. See [41]. h
Proposition 2.18. Let M: X ? L be a fuzzy sublattice of (X,v). It is a fuzzy convex sublattice of (X,v) iff
8x; y 2 X;8z 2 ½x u y; x t y� : MðzÞP Mðx u yÞ ^Mðx t yÞ ¼ MðxÞ ^MðyÞ: ð1Þ
Proof

(i) Assume M is a fuzzy convex sublattice. Choose any x, y 2 X. Set p1 = M(x u y), p2 = M(x t y); then x u y; x t y 2 Mp1^p2
.

Take any z 2 [x u y,x t y]. Since M is a fuzzy convex sublattice: z 2 Mp1^p2 ) MðzÞP p1 ^ p2 ¼ Mðx u yÞ ^Mðx t yÞ.
Since x, y 2 [x u y,x t y] we have M(x) P M(x u y) ^M(x t y), M(y) P M(x u y) ^M(x t y); and so M(x) ^M(y) P
M(x u y) ^M(x t y). On the other hand, since M is a fuzzy sublattice, from Proposition 2.17 we have
M(x u y) ^M(x t y) P M(x) ^M(y). Hence M(x u y) ^M(x t y) = M(x) ^M(y).

(ii) Conversely, assume (1) holds. Take any p 2 L. If Mp is empty, then it is a convex sublattice. If Mp is not empty, take any
x, y 2Mp. Set p1 = M(x), p2 = M(y). We have x 2Mp) p1 = M(x) P p, y 2Mp) p2 = M(y) P p. From (1) we have
M(x u y) P M(x) ^M(y) = p1 ^ p2 P p) x u y 2Mp. Similarly x t y 2Mp and so Mp is a sublattice. Set q1 = M(x u y),
q2 = M(x t y). Now take any z 2 [x u y,x t y]. From (1) we have M(z) P q1 ^ q2 = p1 ^ p2 P p) z 2 Mp. Hence Mp is a
convex sublattice for all p 2 L, i.e. M is a fuzzy convex sublattice. h

3. The fuzzy intervals lattice

The concepts of fuzzy number and fuzzy interval have appeared in the literature.3 For example, Klir and Yuan [29] define a
fuzzy number to be a fuzzy set M which

1. is normal (i.e., $x: M(x) = 1);
2. has finite support (i.e., $x1, x2: "x R [ x1,x2]: M(x) = 0);
3. for all p 2 R;Mp is a closed interval.

On the other hand, Nguyen and Walker [30] define a fuzzy interval to be a fuzzy set M which

1. is normal;
2. has finite support;
3. for all p 2 R;Mp is a closed interval.

It is clear that ‘‘fuzzy number” as defined by Klir and Yuan and ‘‘fuzzy interval” as defined by Nguyen and Walker are iden-
tical. On the other hand, Kaburlasos, [33] gives the following more general definition, which combines aspects of both fuzzy
interval and fuzzy number.

Definition 3.1. A positive fuzzy interval number (positive FIN) is a function M: (0,1] ? I(X) which satisfies
p1 6 p2 ) Mðp2Þ# Mðp1Þ: ð2Þ
We see that Kaburlasos drops the requirements of normality and finite support; but we consider these differences not
very significant. We also recognize that the basic requirement for both fuzzy interval and fuzzy number appears to be that
the sets Mp (or M(p) in Kaburlasos’ notation) are closed intervals. Kaburlasos does not explicitly state that the M(p)’s are the
p-cuts of a fuzzy set, but in [33] and elsewhere corresponds FIN’s to fuzzy sets (as one possible interpretation of FIN’s). In-
zzy numbers have also been studied; for example, see [20].

cite this article in press as: A. Kehagias, Some remarks on the lattice of fuzzy intervals, Inform. Sci. (2010), doi:10.1016/
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deed the requirement (2) makes it quite obvious that M(p) can be interpeted as a p-cut of a fuzzy set.4 Kaburlasos’ main con-
tribution is that he allows the Mp’s to be closed intervals of a general lattice X (note the use of I(X) in Definition 3.1) rather than
intervals of R. This allows the use of fuzzy intervals (or FIN’s) in a much wider variety of applications. In our opinion, Kaburlasos’
FIN’s are the natural generalization of fuzzy intervals (and fuzzy numbers) which many fuzzy researchers have previously used
in the context of the real number system.

Based on Kaburlasos’ generalization, we will now proceed to define fuzzy intervals in a rigorous manner and derive some
of their properties. We emphasize that all the results derived in the remainder of the paper, although phrased in terms of
fuzzy intervals, can be equally well applied to FIN’s. The following (new) definition of fuzzy intervals is the one that will
be used in the rest of the paper.

Definition 3.2. We say M: X ? L is a fuzzy interval of (X,v) iff
4 The

Please
j.ins.2
8p 2 L : Mp is a closed interval ofðX;6Þ:
The collection all fuzzy intervals will be denoted by eIðX; LÞ or simply by eI.
The following proposition will be often used in the sequel. It states that an arbitrary intersection of fuzzy intervals yields a

fuzzy interval.

Proposition 3.3. For all eJ #eI we have: ^
M2eJ M 2 eI

Proof. Choose any eJ #eI # F. The fuzzy set ^
M2eJ M is well defined, in view of the fact that (F,6,_,^) is a complete lattice.

Choose any p 2 L. It is easy to show that ð^
M2eJ MÞp ¼ \M2eJ Mp. Then for every M 2 eJ, the cut Mp will be a closed interval (per-

haps the empty interval). From Proposition 2.3, an arbitrary intersection of closed intervals yields a closed interval. Hence,
for every p 2 L the set ð^

M2eJ MÞp is a closed interval, i.e. ^
M2eJ M is a fuzzy interval.

Since eI # F, it follows that ðeI;6Þ is an ordered set. We now establish (using Proposition 3.3) that ðeI;6Þ is a lattice. h
Definition 3.4. For all M;N 2 eI we define M __N as follows. We define eSðM;NÞ¼: fA : A 2 eI;M 6 A;N 6 Ag and then define
M __N¼: ^
A2eSðM;NÞ

A

Proposition 3.5. ðeI;6; __;^Þ is a complete lattice.
Proof

(i) M ^ N is the infimum in F of M and N. From Proposition 3.3 we have M ^ N 2 eI, hence M ^ N is also the infimum of M
and N in eI.

(ii) For all A 2 eSðM;NÞ we have M 6 A and so M 6 ^
A2eSðM;NÞ

A ¼ M __N; similarly N 6 M __N. Furthermore, if there is some

B 2 eI such that M 6 B, N 6 B, then B 2 eSðM;NÞ. Hence M __N ¼ ^
A2eSðM;NÞ

A 6 B. Finally, since eSðM;NÞ#eI, we have

M __N ¼ ^
A2eSðM;NÞ

A 2 eI. Hence M __N is the supremum in eI of M and N.

(iii) To establish completeness of ðeI;6; __;^Þ we must show that any eJ #eI has an infimum and a supremum in eI. We have

already remarked (Proposition 3.3) that, for any eJ #eI, the set ^
M2eJ M is a well defined fuzzy interval. Since ^eJ ¼ ^

M2eJ M
is the infimum of eJ in F, it will also be the infimum of eJ in eI # F. Regarding the supremum, we must define appropri-

ately __eJ. Define a set eSðeJÞ ¼ fA 2 eI : 8M 2 eJ we have M 6 A}. Define __eJ¼: ^
A2eSðeJÞA. Then __eJ 2 eI (as an intersection of fuzzy

intervals), and it is easy to show that: 8M 2 eJ we have M 6 __eJ; 8A 2 eSðeJÞwe have __eJ 6 A. Hence __eJ is the supremum ofeJ and completeness has been established. h

The following propositions establish some properties of fuzzy intervals.

Definition 3.6. For every fuzzy set M we define LM ¼
: {p: Mp – ;}.
Proposition 3.7. Let M: X ? L be a fuzzy set. Then M is a fuzzy interval of X if and only if M is a fuzzy convex sublattice of X and
satisfies the condition
technical condition \ p2PMp = M_P is not required in [33]; however it is a necessary condition for a collection {Mp}p2L to be the cuts of a fuzzy set.
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8p 2 LM : MðuMpÞP ^x2Mp MðxÞ; MðtMpÞP ^x2Mp MðxÞ: ð3Þ
Proof

(i) Assume M is a fuzzy convex sublattice of X and satisfies (3). Choose any p 2 LM. Now, by completeness of (X,v), uMp

and tMp exist. Clearly Mp # [uMp,tMp]. On the other hand, from (3), MðuMpÞP ^x2Mp MðxÞP p) uMp 2 Mp, i.e. Mp

contains its infimum. Similarly MðtMpÞP ^x2Mp MðxÞP p) tMp 2 Mp. Since Mp is a convex sublattice and uMp,
tMp 2Mp, it follows that [uMp,tMp] # Mp. Hence for all p 2 LM we have that Mp = [uMp,tMp]. Further, for all
p 2 L � LM, Mp is the empty set, which is considered a closed interval. Hence for all p 2 L the set Mp is a closed interval,
i.e. M is a fuzzy interval.

(ii) Conversely, assume M is a fuzzy interval. Then for all p 2 LM we have Mp = [uMp,tMp], which is a closed interval and a
fortiori a convex sublattice. Hence M is a fuzzy convex sublattice. Furthermore, Mp ¼ ½uMp;tMp� ) uMp 2 Mp )
MðuMpÞP ^x2Mp MðxÞ. Similarly, tMp 2 Mp ) MðtMpÞP ^x2Mp MðxÞ. h
Corollary 3.8. If M is a fuzzy interval, then "p 2 LM we have MðuMpÞ ^MðtMpÞ ¼ ^x2Mp MðxÞ.
Corollary 3.9. Let X be finite. Then every fuzzy convex sublattice is a fuzzy interval and conversely.
Proposition 3.10. If M is a fuzzy interval, then "p 2 LM we have Mp ¼ Mp1^p2 , where p1 = M(uMp), p2 = M(tMp).
Proof. Choose any p 2 LM. Since M is a fuzzy interval, we have Mp = [uMp,tMp]. Set p1 = M(uMp) P p, p2 = M(tMp) P p. Then
M(uMp) = p1 P p1 ^ p2 and so uMp 2 Mp1^p2 . Similarly tMp 2 Mp1^p2 . Since M is a fuzzy interval (and so a fuzzy convex sub-
lattice) it follows that ½uMp;tMp�# Mp1^p2

. On the other hand p1 ^ p2 P p) Mp1^p2
# Mp ¼ ½uMp;tMp�. Hence Mp1^p2

¼
Mp. h

4. Distributivity of the fuzzy intervals lattice

In all of this section we assume (X,v,t,u) to be completely distributive according to the following definition.

Definition 4.1. The lattice (X,v,t,u) is said to be completely distributive, iff for every set Y # X we have
x t (uy2Yy) = uy2Y(x t y), x u (ty2Yy) = ty2Y(x u y).

In addition, we will assume (L,6,_,^) to be completely distributive and a chain (i.e., L is totally ordered with respect to 6).
We also retain the assumptions that (L,6,_,^) is a complete lattice, with minimum element 0 and maximum element 1.

Let M, N be fuzzy intervals. Our first task is to establish some properties of the cuts (M ^ N)p and ðM __NÞp. From Proposition
3.5 we see that M ^ N and M __N are fuzzy intervals; hence "p 2 L the cuts (M ^ N)p and ðM __NÞp are closed intervals.

Definition 4.2. For all M;N 2 eI and for all p 2 L we define Cp(M,N) = Mp \ Np.
We recall (Proposition 2.14) the following.

Proposition 4.3. For all M;N 2 eI and for all p 2 L we have: (M ^ N)p = Cp(M,N).
Proposition 4.4. Take any M;N 2 eI. We have:

(i) "p, q 2 L:p 6 q) Cq(M,N) # Cp(M,N),
(ii) "P # L: \ p2PCp(M,N) = C_P(M,N).

(iii) C0(M,N) = X.
Proof. These properties follow from the fact that for all p 2 L we have Cp(M,N) = (M ^ N)p, i.e. the family {Cp(M,N)}p2L is a
family of cuts. h

Hence we have characterized the cuts of M ^ N in terms of the cuts of M and N. We will now do the same for the cuts of
M __N. However, before proceeding we need some auxiliary definitions and propositions.

Definition 4.5. For every M 2 eI, we define the functions M : L! X;M : L! X as follows. For p 2 LM;MðpÞ¼
: uMp;MðpÞ¼: tMp;

for p 2 L� LM;MðpÞ¼
: t X;MðpÞ¼: u X.
Remark. Hence we can write Mp ¼ MðpÞ;MðpÞ
� �

for every p 2 L. Because: if p 2 LM, then Mp ¼ uMp;tMp
� �

¼ MðpÞ;MðpÞ
� �

; if
p 2 L � LM, then Mp ¼ ; ¼ ½tX;uX� ¼ MðpÞ;MðpÞ

� �
.
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Proposition 4.6. Take any M 2 eI and for all p 2 L set Mp ¼ ½MðpÞ;MðpÞ�. Then

(i) 8p; q 2 L : p 6 q) ðMðpÞ v MðqÞ;MðpÞ w MðqÞÞ.
(ii) 8P # L : tp2PMðpÞ ¼ Mð_PÞ;up2PMðpÞ ¼ Mð_PÞ.
Proof

(i) Since {Mp}p2P are cuts, from Proposition 2.11.(i) we have: p 6 q) Mq # Mp ) MðqÞ;MðqÞ
� �

# MðpÞ;½
MðpÞ� ) ðMðpÞ 6 MðqÞ;MðpÞP MðqÞÞ. Note in particular that: if q R LM, then M(p) vM(q) = tX and MðpÞ w MðqÞ ¼ uX.

(ii) Since {Mp}p2P are cuts, from Proposition 2.11.(ii) we have: \p2PMp = M_P. But M_P ¼ Mð_PÞ;Mð_PÞ
� �

and (Proposition
2.3) \p2PMp ¼ tp2PMðpÞ;up2PMðpÞ

� �
which yields the required result. Note in particular that: if there exists some

q 2 P such that q 2 L � LM, then Mq = ;, \ p2PMp = ;, and M_P ¼ ; ¼ Mð_PÞ;Mð_PÞ
� �

with Mð_PÞ ¼ tX;Mð_PÞ ¼ uX. Also,
in this case MðqÞ ¼ tX;tp2PMðpÞ ¼ tX;MðqÞ ¼ uX;up2PMðpÞ ¼ uX. h
Proposition 4.7

(i) Take any P # L and any functions F: L ? ? X which satisfy
Please
j.ins.2
p 6 q) FðpÞ v FðqÞ; tp2PFðpÞ ¼ Fð_PÞ;
p 6 q) GðpÞ v GðqÞ; tp2PGðpÞ ¼ Gð_PÞ:

Then tp2P(F(p) u G(p)) = F(_P) u G(_P).

(ii) Take any P # L and any functions F: L ? ? X which satisfy
p 6 q) FðpÞ w FðqÞ; up2PFðpÞ ¼ Fð_PÞ;
p 6 q) GðpÞ w GðqÞ; up2PGðpÞ ¼ Gð_PÞ:

Then up2P(F(p) t G(p)) = F(_P) t G(_P).
Proof. For (i), take any p 2 P. Then F(p) u G(p) v F(p). Hence tp2P(F(p) u G(p)) v tp2PF(p) = F(_P). Similarly
tp2P(F(p) u G(p)) v tp2PG(p) = G(_P). It follows that
tp2PðFðpÞ u GðpÞÞ v Fð_PÞ u Gð_PÞ: ð4Þ
On the other hand, using complete distributivity, we have tp2P,q2P(F(p) u G(q)) = tp2P(F(p) u 0(tq2PG(q))) =
tp2P(F(p) u G(_P)) = (tp2PF(p)) u G(_P) = F(_P) u G(_P). In short
Fð_PÞ u Gð_PÞ ¼ tp2P;q2PðFðpÞ u GðqÞÞ ð5Þ
Finally, since (L,6) is totally ordered, P is a sublattice of (L,6); so for any p, q 2 P we have p _ q 2 P. Then (p 6 p _
q,q 6 p _ q)) F(p) u G(q) v F(p _ q) u G(p _ q). So tp2P,q2P(F(p) u G(q)) v tp2P,q2P(F(p _ q) u G(p _ q)) v tr2P(F(r) u G(r)).
Hence
tp2P;q2PðFðpÞ u GðqÞÞ v tp2PðFðpÞ u GðpÞÞ ð6Þ
From (4)–(6) it follows that tp2P(F(p) u G(p)) = F(_P) u G(_P) and (i) has been proved; (ii) is proved dually. h

Now we return to the cuts of M __N.

Definition 4.8. For all M;N 2 eI and for all p 2 L we define DpðM;NÞ ¼ Mp _[Np.
Proposition 4.9. Take any M;N 2 eI . We have

(i) "p, q 2 L: p 6 q) Dq(M,N) # Dp(M,N),
(ii) "P # L: \ p2PDp(M,N) = D_P(M,N).

(iii) D0(M,N) = X.
Proof

(i) Assume p 6 q. Then ðMq # Mp;Nq # NpÞ ) Mq _[Nq # Mp _[Np ) DqðM;NÞ# DpðM;NÞ.
(ii) Take any P # L and any p 2 P. We have DpðM;NÞ ¼ MðpÞ u NðpÞ;MðpÞ t NðpÞ

� �
, hence
\p2PDpðM;NÞ ¼ tp2P MðpÞ u NðpÞð Þ;up2P MðpÞ t NðpÞ
� �� �

: ð7Þ
cite this article in press as: A. Kehagias, Some remarks on the lattice of fuzzy intervals, Inform. Sci. (2010), doi:10.1016/
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Also
Please
j.ins.2
D_PðM;NÞ ¼ Mð_PÞ u Nð_PÞ;Mð_PÞ t Nð_PÞ
� �

: ð8Þ
Use Proposition 4.7.(i) with F(p) = M(p) and G(p) = N(p). Then
tp2P MðpÞ u NðpÞð Þ ¼ Mð_PÞ u Nð_PÞ: ð9Þ
Use Proposition 4.7.(ii) with FðpÞ ¼ MðpÞ and GðpÞ ¼ NðpÞ. Then
up2P MðpÞ t NðpÞ
� �

¼ Mð_PÞ t Nð_PÞ: ð10Þ
Eqs. (7)–(10) yield the required result.
(iii) D0ðM;NÞ ¼ M0 _[N0 ¼ X _[X ¼ X. h
Proposition 4.10. For all M;N 2 eI and for all p 2 L we have: ðM __NÞp ¼ DpðM;NÞ.
Proof. From Proposition 4.9 it follows that {Dp(M,N)}p2L is a family of cuts. Hence, if we define a fuzzy set (M Y N) by setting
8x 2 X : ðMYNÞðxÞ¼: _ fp : x 2 DpðM;NÞg
then "p 2 L we will have (M Y N)p = Dp(M,N) (Proposition 2.12). From this also follows that (M Y N) is a fuzzy interval (since
"p 2 L we have ðMYNÞp ¼ DpðM;NÞ ¼ Mp _[Np). Now choose any p 2 L; we will show that ðM __NÞp ¼ ðMYNÞp.

First, ðM __NÞp is a closed interval. Also, x 2 Mp ) ðM __NÞðxÞP MðxÞP p) x 2 ðM __NÞp. So Mp # ðM __NÞp. Similarly
Np # ðM __NÞp. Hence ðM __NÞp 2 SðMp;NpÞ which implies that ðMYNÞp ¼ DpðM;NÞ ¼ Mp _[Np ¼ \A2SðMp;NpÞA # ðM __NÞp.

Second, choose any x 2 X and set p = M(x). Then x 2Mp # Dp(M,N) = (M Y N)p. Hence (M Y N)(x) P p = M(x); similarly
(M Y N)(x) P N(x). Since M __N ¼ supðM;NÞ, it follows that ðMYNÞðxÞP ðM __NÞðxÞ and so ðMYNÞp � ðM __NÞp.

So we have ðMYNÞp ¼ ðM __NÞp which (Proposition 2.10) implies MYN ¼ M __N. h
Proposition 4.11. ðeI;6; __;^Þ is a distributive lattice.
Proof We must show that for any A;B;C 2 eI we have ðA __BÞ ^ C ¼ ðA ^ CÞ __ðB ^ CÞ and ðA ^ BÞ __C ¼ ðA __CÞ ^ ðB __CÞ. We will
show this by showing equality of the p-cuts.

Indeed, choose any p 2 L and set Ap = [a1,a2], Bp = [b1,b2], Cp = [c1,c2] (in case any of these intervals is empty, denote it by
[tX,uX]). Now
ðA __BÞ ^ Cð Þp ¼ ðA __BÞp \ Cp ¼ Ap _[Bp
� �

\ Cp ¼ ½a1; a2� _[½b1; b2�ð Þ \ ½c1; c2� ¼ ½a1 u b1; a2 t b2� \ ½c1; c2�
¼ ða1 u b1Þ t c1; ða2 t b2Þ u c2½ � ¼ ½ða1 t c1Þ u ðb1 t c1Þ; ða2 u c2Þ t ðb2 u c2ÞÞ�
¼ a1 t c1; a2 u c2½ � _[½b1 t c1; b2 u c2� ¼ ð½a1; a2� \ ½c1; c2�Þ _[ð½b1; b2� \ ½c1; c2�Þ ¼ Ap \ Cp

� �
_[ðBp \ CpÞ

¼ ðA ^ CÞp _[ðB ^ CÞp ¼ ððA ^ CÞ __ðB ^ CÞÞp:
Since for all p 2 L we have ððA __BÞ ^ CÞp ¼ ððA ^ CÞ __ðB ^ CÞÞp , it follows that ðA __BÞ ^ C ¼ ðA ^ CÞ __ðB ^ CÞ. Dually we show that
ðA ^ BÞ __C ¼ ðA __CÞ ^ ðB __CÞ. h
5. Inclusion measures in the fuzzy intervals lattice

Inclusion measures are used widely in the FIN papers by Kaburlasos et al. [21–23,31,33] and, more generally, have been
studied widely in the fuzzy literature (a rather extensive survey appears in [28], see also [8,9]). In this section we present
an inclusion measure which possesses many desirable properties and (as far as we know) has not been previously considered
in the literature.

An inclusion meaure is a mapping r: F � F ? L; the value r(A,B) quantifies the degree to which a fuzzy set A is contained
in fuzzy set B. As explained in [28], considerable effort has been expended in discovering inclusion measures which have
‘‘desirable properties”. We list below such desirable properties, which we divide into two groups: ‘‘basic properties” and
‘‘additional properties”. The basic properties are listed in Table 1.

We consider properties A1–A3 basic, because they are the properties which define a fuzzy order [29]. We consider a fuzzy
inclusion measure to be the fuzzification of the (set inclusion relation # which, as is well known, is a order. Unfortunately,
especially the transitivity property A3 appears to be particularly hard to obtain and is not satisfied by the ‘‘usual” inclusion
measures which most often appear in the literature (for a discussion see [28]).

In addition, various authors [7,19,38,44] have considered the properties listed in Table 2 to be ‘‘appropriate” or desirable
to be satisfied by an inclusion measure.

Again, many of these properties are not satisfied by the ‘‘usual” inclusion measures. For an extensive discussion see [28].
cite this article in press as: A. Kehagias, Some remarks on the lattice of fuzzy intervals, Inform. Sci. (2010), doi:10.1016/
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Table 1
Basic properties of an inclusion measure r.

A1 "A 2 F: r(A,A) = 1 (Reflexivity)
A2 "A,B 2 F: r(A,B) = r(B,A)) A = B (Antisymmetry)
A3 "A,B,C 2 F: r(A,B) ^ (B,C) 6 r(A,C) (Transitivity)

Table 2
Additional properties of an inclusion measure r.

B1 "A,B 2 F: A 6 B, r(A,B) = 1
B2 "A 2 F: r(A,A

0
) = 0, A is set

B3 "A,B 2 F: r(A,B) = r(B
0
,A
0
)

B4 "A,B,C 2 F: B 6 C) r(A,B) 6 r(A,C)
B5 "A,B,C 2 F: B 6 C) r(C,A) 6 r(B,A)
B6 "A,B,C 2 F: r(A _ B,C) = r (A,C) ^ r(B,C)
B7 "A,B,C 2 F: r(A ^ B,C) P r(A,C) _ r(B,C)
B8 "A,B,C 2 F: r(A,B _ C) P r(A,B) _ r(A,C)
B9 "A,B,C 2 F: r(A,B ^ C) = r(A,B) ^ r(A,C)
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We will now introduce an inclusion measure r (proposed, as far as we know, for the first time) which satisfies most of the
above properties – and in particular it satisfies transitivity, which we consider especially important for any reasonable inclu-
sion measure. We emphasize that the new inclusion measure applies to fuzzy sets in general, not only to fuzzy intervals; we
believe its introduction and study is particularly pertinent in the context of fuzzy intervals since, as demonstrated by Kabu-
rlasos, fuzzy intervals (and their equivalent FIN’s) combined with inclusion measures yield very useful approaches to various
applied problems.

Definition 5.1. For all A, B 2 F we define
Please
j.ins.2
rðA;BÞ ¼ _fp : 8r 6 p : Ar # Brg:

We first show that the r(A,B) of Definition 5.1 satisfies the ‘‘basic” properties A1 and A3.
Remark. In the rest of this section (and especially in the proofs of Propositions 5.2 and 5.4) we assume that fuzzy sets A, B, C
are continuous. Actually the proofs can go through without this restriction; we assume continuity for the sake of simplicity
and to make the basic ideas behind the proofs more obvious to the reader.
Proposition 5.2. r(A,B) is reflexive and transitive, i.e., it satisfies properties A1 and A3.
Proof. The proof of A1 is straightforward: let p = 1 and note that for all r 6 p = 1 we have Ar # Ar. Hence
rðA;AÞ ¼ _fp : 8r 6 p : Ar # Arg ¼ 1:
For A3, take any A, B, C 2 F and let
p ¼ rðA;BÞ; q ¼ rðB;CÞ; r ¼ p ^ q:
Then, for all s 6 r we have
s 6 r ¼ p ^ q 6 p ¼ rðA; BÞ ) As # Bs

s 6 r ¼ p ^ q 6 q ¼ rðB; CÞ ) Bs # Cs

�
) ð8s 6 r : As # CsÞ ) rðA;CÞP r ¼ p ^ q ¼ rðA;BÞ ^ rðB; CÞ; �
Remark. The antisymmetry property A2 is not fully satisfied, as can be seen by the following example. Take fuzzy sets A:
[0,4] ? [0,1], B: [0,4] ? [0,1] with
AðxÞ ¼
1=2 iff x – 2
1 iff x ¼ 2

�
; BðxÞ ¼

1=2 iff x – 3
1 iff x ¼ 3

�
:

Then rðA;BÞ ¼ rðB;AÞ ¼ 1
2 but A – B. However, we have the following weak form of antisymmetry
Proposition 5.3. For all A, B 2 F such that r(A,B) = r(B,A) = 1 we have A = B.
Proof. If r(A,B) = 1, then "r 2 [0,1] we have Ar # Br. Similarly, if r(B,A) = 1, then "r 2 [0,1] we have Br # Ar. Hence "r we
have Ar = Br and so A = B. h

Next we show that r(A,B) of Definition 5.1 also satisfies most of the ‘‘additional” properties.
cite this article in press as: A. Kehagias, Some remarks on the lattice of fuzzy intervals, Inform. Sci. (2010), doi:10.1016/
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Proposition 5.4. r(A,B) satisfies properties B1, B3–B9 but does not satisfy B2.
Proof. In the following take any A, B, C 2 F. We have the following.

B1 Assume A 6 B, then (from Proposition 2.13) we have: ("p: Ap # Bp)) r(A,B) = 1. Conversely, assume that r(A,B) = 1,
then ("p: Ap # Bp)) A 6 B.

B2 We show that it does not hold by a counterexample. Take a fuzzy set A: [0,2] ? [0,1] with
Please
j.ins.2
AðxÞ ¼
x iff x 6 1
2� x iff x P 1

�
:

Then A
0
(x) is given by
A0ðxÞ ¼
1� x iff x 6 1
x� 1 iff x P 1

�

and we see that r(A,A

0
) = 0, while A is not a classical set (i.e. one with 0/1 membership).

B3 Say r(A,B) = p. Then ð8r 6 p : Ar # BrÞ ) ð8r 6 p : B0r # A0rÞ ) q ¼ rðB0;A0ÞP p. Starting with r(B
0
,A
0
) = q we we can

show similarly that p P q and so r(A,B) = p = q = r(B
0
,A
0
).

B4 We have
B 6 C ) ð8r : Br # CrÞ: ð11Þ
Let r(A,B) = p, then
8r 6 p) Ar # Br ð12Þ
From (11) and (12) we get
8r 6 p) Ar # Cr ð13Þ
from which follows r(A,C) P p = r(A,B).
B5 This is proved similarly to B4.
B6 Since A 6 A _ B and B 6 A _ B, from B4 we have
rðA;CÞP rðA _ B; CÞ
rðB;CÞP rðA _ B;CÞ

�
) rðA; CÞ ^ rðB; CÞP rðA _ B;CÞ: ð14Þ
On the other hand, let p = r(A,C), q = r(B,C), r = p ^ q. Then
8s 6 r 6 p : As # Cs

8s 6 r 6 q : Bs # Cs

�
) ð8s 6 r : As [ Bs # CsÞ ) ð8s 6 r : ðA _ BÞs # CsÞ ) rðA _ B; CÞP r ¼ p ^ q ¼ rðA; CÞ ^ rðB; CÞ:

ð15Þ
From (14) and (15) we get r(A _ B) = r(A,C) ^ r(B,C).
B7 Since A P A ^ B and B P A ^ B, from B4 we have
rðA ^ B;CÞP rðA; CÞ
rðA ^ B;CÞP rðB;CÞ

�
) rðA ^ B;CÞP rðA; CÞ _ rðB; CÞ: ð16Þ
B8 This is proved similarly to B7.
B9 This is proved similarly to B6. h
6. Conclusion

In this paper we have introduced a general definition of fuzzy intervals and shown its relationship to a previous more
restricted definition of fuzzy intervals, as well as to fuzzy numbers and to Kaburlasos’ FIN’s. Furthermore we have obtained
some of the basic properties of fuzzy intervals and introduced a novel inclusion measure which can be used in FIN
applications.

The method we have used is rather standard in the study of fuzzy algebras – in particular we have obtained several prop-
erties of fuzzy intervals by studying their p-cuts. This method can be used to obtain further properties of fuzzy intervals.

In our analysis we have assumed that the origin lattice (X,v,t,u) is complete and completely distributive. These assump-
tions are essential. Obviously, if (X,v,t,u) is not complete, there is no guarantee that an infinite union of fuzzy intervals will
be a fuzzy interval. Complete distributivity, on the other hand, has only been used in Section 4, but there it plays an essential
role in the proof of Proposition 4.7. Let us note that in the important special case where X has finite cardinality, completeness
is automatically satisfied and complete distributivity is equivalent to distributivity (which clearly is a minimum requirement
for the lattice of fuzzy intervals to be distributive).

Regarding the target lattice (L,6,_,^), we have assumed that it is a complete lattice with a minimum element 0 and a
maximum element 1. These are rather weak assumptions in the context of L-fuzzy sets. In Section 4 we have further assumed
cite this article in press as: A. Kehagias, Some remarks on the lattice of fuzzy intervals, Inform. Sci. (2010), doi:10.1016/
010.05.007
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that L is a completely distributive chain. This is also a crucial assumption: it does not seem obvious how to extend our results
to general L-fuzzy lattices, because Proposition 4.7 requires that for every P # L, and for all p, q 2 P, we have p _ q 2 P; for
this to be true for arbitrary P # L, (L,6) must be a chain.

We believe that the theoretical framework provided in the current paper can serve as a foundation for further mathemat-
ical study of FIN’s with special emphasis placed on applications, for example on the properties of inclusion measures used in
applied engineering tasks. This task, however, will be accomplished in future publications.
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