The International Journal of Robotics
Research

http://ijr.sagepub.com

Improving the Efficiency of Clearing with Multi-agent Teams
Geoffrey Hollinger, Sanjiv Singh and Athanasios Kehagias
The International Journal of Robotics Research 2010; 29; 1088 originally published online May 4, 2010;
DOI: 10.1177/0278364910369949

The online version of this article can be found at:
http://ijr.sagepub.com/cgi/content/abstract/29/8/1088

Published by:
®SAGE

http://www.sagepublications.com

On behalf of;
1_|I'I'

Multimedia Archives

Additional services and information for The International Journal of Robotics Research can be found at:

Email Alerts: http://ijr.sagepub.com/cgi/alerts

Subscriptions: http://ijr.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.co.uk/journalsPermissions.nav

Citations http://ijr.sagepub.com/cgi/content/refs/29/8/1088

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://ijr.sagepub.com/cgi/content/refs/29/8/1088
http://ijr.sagepub.com

Geoffrey Hollinger
Sanjiv Singh

Robotics Institute,

Carnegie Mellon University,
Pittsburgh, PA 15213, USA
{gholling, ssingh} @ri.cmu.edu

Athanasios Kehagias

Division of Mathematics,
Department of Mathematics, Physics,
and Computer Sciences,

Aristotle University of Thessaloniki,
Thessaloniki GR54124, Greece
kehagiat@gen.auth.gr

Abstract

We present an anytime algorithm for coordinating multiple au-
tonomous searchers to find a potentially adversarial target on a
graphical representation of a physical environment. This problem is
closely related to the mathematical problem of searching for an ad-
versary on a graph. Prior methods in the literature treat multi-agent
search as either a worst-case problem (i.e. clear an environment of
an adversarial evader with potentially infinite speed), or an average-
case problem (i.e. minimize average capture time given a model of
the target’s motion). Both of these problems have been shown to be
NP-hard, and optimal solutions typically scale exponentially in the
number of searchers. We propose treating search as a resource allo-
cation problem, which leads to a scalable anytime algorithm for gen-
erating schedules that clear the environment of a worst-case adver-
sarial target and have good average-case performance considering
a non-adversarial motion model. Our algorithm yields theoretically
bounded average-case performance and allows for online and decen-
tralized operation, making it applicable to real-world search tasks.
We validate our proposed algorithm through a large number of exper-
iments in simulation and with a team of robot and human searchers
in an office building.

KEY WORDS—multi-robot coordination, autonomous

search, pursuit/evasion, decentralized planning

The International Journal of Robotics Research

Vol. 29, No. 8, July 2010, pp. 1088-1105

DOI: 10.1177/0278364910369949

© The Author(s), 2010. Reprints and permissions:
http://www.sagepub.co.uk/journalsPermissions.nav
Figures 1-8 appear in color online: http://ijr.sagepub.com

1088

Improving the Efficiency
of Clearing with
Multi-agent Teams

1. Introduction

Imagine you are the leader of a team of agents (humans, ro-
bots, and/or virtual agents), and you enter a building looking
for a person, moving object, or contaminant. You wish either
to locate a target in the environment or authoritatively say that
no target exists. Such a scenario may occur in urban search
and rescue (Kumar et al. 2004), military operations, network
decontamination (Barriere et al. 2002), or even care of the el-
derly (Roy et al. 2003). In some special cases, you may have
a perfect model of how the target is moving; however, in most
cases you will only have an approximate model or even no
model at all. To complicate the situation further, the target may
be adversarial and actively avoiding being found.

Known algorithms would force you, the leader, to make
a choice in this situation. Do you make the worst-case as-
sumption and choose to treat the target as adversarial? This
would allow you to utilize graph search algorithms to guaran-
tee finding the target (if one exists), but it would not allow you
to take advantage of any model of the target’s motion. As a
result your search might take a very long time. Or do you de-
cide to trust your motion model of the target and assume that
the target is non-adversarial? This assumption would allow the
use of efficient (average-case) search methods from the opti-
mization literature, but it would eliminate any guarantees if the
model is inaccurate. In this case, your target may avoid you en-
tirely. It is necessary to make one of these choices because no
existing method provides fast search times and also guarantees
finding a target if the model is wrong.

In this paper, we bridge the gap between worst-case (or
guaranteed) search and average-case (or efficient) search. We
propose a novel algorithm that augments a guaranteed clear-

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

Hollinger, Singh, and Kehagias / Improving the Efficiency of Clearing with Multi-agent Teams

Fig. 1. Volunteer firefighter searching with a Pioneer mobile
robot. The robot and humans execute a combined schedule
that both clears the environment of an adversarial target and
optimizes a non-adversarial target motion model. Our decen-
tralized algorithm allows for robot and humans flexibly to fill
the different search roles. The agents share their paths and an
estimation of the target’s position.

ing schedule with an efficient component based on a non-
adversarial target motion model. We extend a guaranteed
search spanning tree traversal algorithm to optimize clearing
time, and we augment it with a decentralized finite-horizon
planning method in which agents implicitly coordinate by
sharing plans. We show that the average-case performance of
the combined algorithm is bounded, and we demonstrate how
our algorithm can be used in an anytime fashion by provid-
ing additional search schedules with increasing runtime. This
produces a family of clearing schedules that can easily be se-
lected before the search or as new information becomes avail-
able during the search. We validate our approach using exten-
sive simulated experiments as well as on a human-robot search
team (shown in Figure 1). The contribution of this paper is the
first algorithm that provides guaranteed solutions to the clear-
ing problem and (given additional knowledge of the target’s
behavior) improves average performance.

The remainder of this paper is organized as follows. We first
discuss related work in both worst-case search and average-
case search highlighting the lack of a combined treatment
(Section 2). We then define both the worst-case and average-
case search problems and show the formal connection between
the two (Section 3). This leads us to the presentation of our
search algorithm, including a description of the finite-horizon
and spanning tree traversal components, as well as theoretical
analysis of performance bounds (Sections 4 and 5). We then
test our algorithm through simulated trials and through ex-
periments on a heterogeneous human—robot search team (Sec-

1089

tion 6). Finally, we conclude and discuss avenues for future
work (Section 7).

2. Related Work

As mentioned above, literature in autonomous search can be
partitioned into average-case and worst-case problems. The
initial formulation of the worst-case graph search problem is
due to Parsons (1976). He described a scenario where a team of
agents searches for an omniscient, adversarial evader with un-
bounded speed in a cave-like topology represented by a graph.
In this formulation, the edges of the graph represent passages
in the cave, and the nodes represent intersections. The evader
hides in the edges (passages) of the graph, and it can only move
through nodes that are not guarded by searchers. This problem
was later referred to as edge search since the evader hides in
the edges of the graph. Parsons defined the edge search num-
ber of a graph as the number of searchers needed to guarantee
the capture of an evader on that graph. Megiddo et al. (1988)
later showed that finding the edge search number is NP-hard
for arbitrary graphs. Fomin and Thilikos (2008) recently pro-
vided a comprehensive survey of recent results in guaranteed
graph searching.

Several variations of the edge search problem appear in the
literature that place restrictions on the form of the cleared set
(i.e. the edges of the graph that have been cleared of a potential
target). Connected edge search requires that the cleared set be
a connected subgraph at all times during the search. Barriere et
al. (2002) argued that connected edge search is important for
network decontamination problems because decontaminating
agents should not traverse dangerous contaminated parts of the
graph. They also formulated a linear-time algorithm that gen-
erates search schedules with the minimal number of searchers
on trees. Borie et al. (2009) more recently explored complex-
ity results and algorithms for various edge search problems on
trees and several other special types of graphs.

Unfortunately, edge search does not apply directly to many
robotics problems. The possible paths of an evader in many
indoor and outdoor environments in the physical world cannot
be accurately represented as the edges in a graph'. For this rea-
son, robotics researchers have studied alternative formulations
of the guaranteed search problem. Guibas et al. (1999) formu-
lated the search problem in polygonal environments and pre-
sented a complete algorithm for clearing with a single searcher.
However, their algorithm shows poor scalability to large teams
and complex environments. Gerkey et al. (2005) demonstrated
how a stochastic optimization algorithm (Parallel Stochastic
Hill-Climbing for Small Teams (PARISH)) can be used to co-
ordinate multiple robotic searchers in small indoor environ-
ments. Although it is more scalable than complete algorithms,

1. One exception would be a road network, which could be modeled as an edge
search problem. The application of our combined algorithm to these types of
environments is left for future work.

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

1090 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2010

PARISH still requires considerable computation and commu-
nication between searchers, which makes it difficult to apply
to complex environments.

Kolling and Carpin (2010) showed how an extension of
edge search algorithms can be applied to a weighted graph
formulation of the multi-robot surveillance problem. Their al-
gorithm operates on an alternative formulation of the clearing
problem, which requires several searchers to clear areas in the
environment. They consider a probabilistic variant with im-
perfect capture sensors (Kolling and Carpin 2009), but they do
not provide any mechanism to utilize information about the
target’s motion beyond a worst-case assumption.

In our previous work, we examined the node search prob-
lem in which the evader hides in the nodes of a graph, and
we showed how search problems in the physical world can
be represented as node search’>. We proposed the Guaran-
teed Search with Spanning Trees (GSST) anytime algorithm
that finds connected node search clearing schedules with few
searchers (Hollinger et al. 2008, 2010). GSST is linearly scal-
able in the number of nodes in the graph, which makes it ap-
plicable to large teams and complex environments. Note that
the algorithms described above (including our own previous
work) do not optimize the time to clear the environment, and
they do not take into account a model of the target’s movement
beyond a worst-case model.

A different, but closely related, search problem arises if we
relax the need to deal with an adversarial target. If the target’s
motion model is non-adversarial and approximately known to
the searchers, the searchers can optimize the average-case per-
formance of their search schedule given this motion model.
Assuming a Markovian motion model (i.e. the target’s next
position is dependent only on the target’s current position),
the average-case search problem can be expressed as a Par-
tially Observable Markov Decision Process (POMDP). It is
possible to compute near-optimal solutions to fairly large
POMDPs (Smith 2007), particularly those where parts of the
state are fully observed (e.g. the searchers’ locations) (Ong et
al. 2009). However, the size of multi-robot search problems
scales exponentially in the number of searchers, which puts
search problems with even moderately sized teams outside the
scope of general POMDP solvers.

In response to the intractability of optimal solutions, re-
searchers have proposed several approximation algorithms for
average-case search. Sarmiento et al. (2004) examined the case
of a stationary target and presented a scalable heuristic. Singh
et al. (2007) discussed the related problem of multi-robot in-
formative path planning and showed a scalable constant factor
approximation algorithm in that domain. In our prior work,

2. Note that several alternative versions of “node search” appear in the litera-
ture (see Alspach (2006) for a survey). In one formulation, the evader resides
in the edges of the graph (hence, despite the name, this is really an edge search
problem), and these edges are cleared by trapping (i.e. two searchers occupy
the adjacent nodes). In another, the pursuers have knowledge of the evader’s
position while attempting to capture the evader by moving onto the same node.

we extended these approximation guarantees to average-case
search with our Finite-Horizon Path Enumeration with Se-
quential Allocation (FHPE+SA) algorithm (Hollinger et al.
2009b). Our algorithm provides near-optimal performance in
our test domains, but it does not consider the possibility that
the model is inaccurate. Thus, the search may last for infinite
time if the target is acting in a way that is not properly mod-
eled. For instance, if a target is modeled as moving but is ac-
tually stationary, the searchers may never examine parts of the
environment because they believe the target would have moved
out of them.

The search problem has also been studied in conjunction
with the problem of exploration and mapping. Calisi et al.
(2007) provided a solution to the single robot exploration and
search problem using Petri nets. Their work provides a prin-
cipled architecture for robotic mission planning during urban
search-and-rescue operations. However, they formulate their
algorithm for the case of a single searcher, and it is difficult
to see how it could extend to the multi-searcher case. In ad-
dition, they do not consider guaranteed strategies for clearing
the environment of a worst-case target.

It is important to note that related work in static sensor
networks combines worst-case and average-case guarantees.
Krause et al. (2008) presented the SATURATE algorithm,
which guides the placement of stationary sensors against an
adversarial agent. SATURATE’s runtime scales linearly with
the number of actions available to the adversary. In search
problems, the number of actions (paths) available to the target
scales exponentially with the size of the graph. Thus, SATU-
RATE is infeasible for all but the smallest search problems.

This paper draws on some algorithms from our prior work,
but the main contribution is independent of these tools. The
FHPE+SA algorithm (Hollinger et al. 2009b) is utilized to de-
termine the schedules for the average-case searchers in the
current paper’s combined algorithm. The proposed G-GSST
algorithm in the current paper is an extension of the GSST al-
gorithm (Hollinger et al. 2010). Unlike GSST, G-GSST allows
for the optimization of clearing time and the implicit use of
guards. The current paper is the first to consider combining the
worst-case and average-case search problem, which includes
analysis of both hardness and connection with graph search.
Finally, the combined algorithm is in itself a novel resource
allocation algorithm for solving the worst-case/average-case
search problem, which is independent of the use of FHPE+SA
and G-GSST as its components. A preliminary treatment of
the results in the current paper appear in an earlier conference
paper (Hollinger et al. 2009a).

To the best of the authors’ knowledge, no search algorithm
exists that can clear an environment of a worst-case target and
improve average-case search performance based on additional
information (e.g. a target motion model or online sensor data).
Our algorithm fills this gap.

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

Hollinger, Singh, and Kehagias / Improving the Efficiency of Clearing with Multi-agent Teams

3. Problem Setup

In this section, we define the search problem with respect to
both a worst-case adversarial target and a non-adversarial tar-
get. We also show the formal connection between worst-case
search and the guaranteed search problem found in the litera-
ture. Assume that we are given K searchers and a graph G =
(N, E) with |N| nodes and |E| edges. The nodes in the graph
represent possible locations in the environment, and the edges
represent connections between them (see Figure 3 for exam-
ples in indoor environments). At all times¢t = 1,2, ..., T, the
searchers and the target exist on the nodes of this graph and
can move through an edge to arrive at another node at time
¢t + 1. Given a graph of possible locations and times, we can
generate a time-evolving, time-unfolded graph G’ = (N’, E’),
which gives a time-indexed representation of the nodes in the
environment.

Definition 1. The time-augmented search graph G’ is a di-
rected graph and is obtained from G as follows: if u is a node
of G then (u,t) is a node of G', wheret = 1,2, ..., T is the
time stamp;, if uv is an edge of G, then (u,t) (v,t + 1) and
v, 1) (u, t + 1) are directed edges of G’ for every t. There is
also a directed edge from (u,t) to (u,t + 1) forall u and t. In
other words, G’ is a “time evolving” version of G and every
path in G’ is a “time-unfolded” path in G.

The searchers’ movements are controlled, and they are lim-
ited to feasible paths on G’. We refer to the time-stamped
nodes visited by a searcher k as Ay C N’, and the combined
set of visited time-stamped nodes as> A = A U---U Ag.
The searchers receive reward by moving onto the same node
as the target. This reward is discounted by the time at which
this occurs. Given that a target visits time-stamped nodes Y,
the searchers receive reward Fy(A) = y'A, where 14, =
min{z : (u,t) € ANY} (i.e. the first time at which Y inter-
sects A), with the understanding that y € (0, 1), min@ = oo,
and y ®° = 0. Thus, if their paths do not intersect the target, the
searchers receive zero reward.

This paper considers two possible assumptions on the tar-
get’s behavior, which yield the average-case and worst-case
search problems. If we make a non-adversarial assumption on
the target’s behavior, we can utilize a target motion model in-
dependent of the locations of the searchers. This yields a prob-
ability P (Y) for all possible target paths ¥ € ¥, where U is
the set of feasible paths the target can take. We can now define
the optimization problem as follows:

A* = argmax Y P(Y)Fy(A), 1)
ACN" yew

3. Note that this formulation assumes that multiple searchers can visit the same
node at the same time. The time-stamped nodes visited by each searcher also
define its path. For ease of notation, we sometimes refer to Ay as a searcher
path and A as a set of paths.

1091

where A = A; U ... U Ak, and Ay is a feasible path for all
searchers k. Equation (1) maximizes the average-case reward
given a motion model defined by P(Y). Note that if the tar-
get’s motion model obeys the Markov property, we can es-
timate its location efficiently at each time step using matrix
algebra.

The average-case optimization problem in Equation (1)
does not consider the possibility that the motion model may
be incorrect. An alternative assumption on the target’s behav-
ior is to assume that it actively avoids the searchers as best as
possible. For the search problem, this implies that the target
chooses path Y that minimizes Fy(A), which yields the game
theoretic optimization problem:

A" = argmax min Fy(A), 2)
ACN’ Y

where A = A; U --- U Ak, and Ay is a feasible path for all
searchers k. Here, the searchers’ goal is to maximize the worst-
case reward if the target acts as best it can to reduce reward.

It is important to note that in the above worst-case for-
mulation, the searchers must reveal their entire paths before
the target chooses its path, so both sides must have a deter-
ministic optimal strategy. The searchers choose a schedule,
and the target chooses the path that best evades that schedule.
In addition, this formulation assumes that the searchers have
a “perfect” sensor that will always detect the target if it re-
sides in the same cell. We can relax this assumption somewhat
by modeling a non-unity capture probability into the average-
case reward function. For the worst-case reward function, the
searchers could run the schedule several times to generate a
bound on the worst-case probability of missing the target (i.e.
each schedule will be guaranteed to have some non-zero prob-
ability of locating the target). More sophisticated modeling
approaches could also be applied to determine a probabilis-
tic worst-case guarantee with imperfect sensors (Kolling and
Carpin 2009).

Given the worst-case and average-case assumptions on
the target’s behavior (either of which could be correct), the
searchers’ goal is to generate a feasible set of paths A such
that the reward of both optimization problems are maximized.
One option is to use scalarization to generate a final weighted
optimization problem as follows:

A* = argmaxa Y _ P(Y)Fy(A) + (1 —) min Fy(4), (3)
ACN' ey Y

where A = AU---UAkg, Ay is a feasible path for all searchers
k,and a € [0, 1] is a weighting variable to be tuned based on
the application. The variable o is a weighting value that can
be tuned depending on how likely the target is to follow the
average-case model.

While scalarization is a viable approach, we argue that
it makes the problem more difficult to solve. Note that the
underlying function Fy(A) is non-decreasing and submo-

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

1092 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2010

dular* as is its expectation in Equation (1). In fact, Equa-
tion (1) is the efficient search (MESPP) problem (Hollinger
et al. 2009b), which can be optimized using the FHPE+SA
algorithm. FHPE+SA yields a performance guarantee on the
finite-horizon and has been shown to perform near-optimally
in practice. In contrast, miny Fy(A) is non-decreasing but is
not submodular. Thus, FHPE+SA does not provide a perfor-
mance guarantee and, in fact, performs poorly in practice. Fur-
thermore, we show in the following that the optimization prob-
lem in Equation (2) does not yield any bounded approximation
(unless P = NP)>. Thus, scalarization combines an easier
problem with a more difficult problem, which prevents exploit-
ing the structure of the easier MESPP problem.

We propose treating the combined search problem as a
resource allocation problem. More precisely, some searchers
make the average-case assumption while others make the
worst-case assumption. One case where this approach can im-
prove the search schedule is in the (very common) scenario
where a portion of the map must be cleared before progress-
ing. In this scenario, several searchers are often assigned to
guard locations while waiting for the other searchers to finish
clearing. Some of these guards can be used to explore the un-
cleared portion of the map. An example of this case is shown
in our human-robot experiments in Section 6.

If the searchers are properly allocated to the average-case
and worst-case tasks, we can generate search schedules with
good performance under both assumptions. The decentralized
nature of the multi-robot search task makes this approach fea-
sible by allowing different robots to optimize the two separate
components of the combined problem. The question now be-
comes: how many searchers do we assign to each task? Sev-
eral observations relating worst-case search to graph-theoretic
node search can help answer this question.

The graph-theoretic node search optimization problem is to
find a feasible schedule S for a minimal number of searchers
such that S is a clearing schedule. In other words, find a sched-
ule that clears the environment of an adversarial evader using
the fewest searchers. We now show the connection between
graph-theoretic node search and the worst-case search prob-
lem described above. Several formal definitions are required
to begin our analysis.

Definition 2. The cleared set Nc(t) C N is the set of nodes
that can no longer contain the target at time t. Conversely the
dirty set Np(t) C N is the set of nodes that may still contain
the target. N = N¢(t) U Np(t), which implies Nc(t) = N \
Np(t) forall t.

4. A function F : P(N') — EKO+ is called non-decreasing iff for all A, B €
P(N’), we have A C B = F(A) < F(B). A function F : P(N') - 9?3' is
called submodular iff for all A, B € P(N’) and all singletons C = {(m, 1)} €
P(N’),wehave AC B= F(AUC)— F(A) > F(BUC) — F(B).

5.1t is also interesting to note that the more general adversarial sensor network
placement problem of the same form described by Krause et al. (2007) has the
same hardness property.

Definition 3. A schedule S C N’ (i.e. a feasible set of
node/time pairs visited by the searchers) is a clearing schedule
if the dirty set Np(ty) = @ at some time t; (which also implies
Np(t) =0 for every t > ty).

Definition 4. The node search number s(G) of a graph G is the
minimum number of searchers required to generate a clearing
schedule on that graph.

Given the definitions above, we need only define the recon-
tamination rules to fully formulate the graph-theoretic node
search problem. We assume that the target exists on the nodes
of the graph, and that it cannot move through nodes containing
searchers. In addition, the target may be arbitrarily fast, and it
has complete knowledge of the searchers’ strategy. Thus, any
node in the cleared set that does not contain a searcher and is
adjacent to a node in the dirty set will be recontaminated and
switch to the dirty set.

Definition 5. A node v is considered recontaminated at time t
if v.e Nc(t — 1), v does not contain a searcher at time t, and
there exists a path that does not contain a searcher to a node
u € Np(t). If these conditions hold, then v € Np(t).

Since the target may be arbitrarily fast, recontamination
will spread until either all nodes are in the dirty set or a frontier
of searchers exists between the dirty and cleared sets. Thus, the
searchers can make progress towards a clearing schedule by
expanding the cleared set while maintaining a frontier to pre-
vent recontamination. Propositions 1 and 2 show the connec-
tion between node clearing and the worst-case search problem
defined in Equation (2)°.

Proposition 1. The value miny Fy (A) is greater than O if and
only if A is a clearing schedule (i.e. a set of paths that clear
the environment of any target within it).

Proof. Assume that A is not a clearing schedule and
miny Fy(A) > 0. Since A is not a clearing schedule, this im-
plies that one or more nodes in G are dirty (i.e. may contain
a target) at all times r = 1, ..., T. Without loss of generality
let Y be a target path that remains within the dirty set for all
t. Such a path is feasible due to the assumptions of the evader
and the recontamination rules. The dirty set at a given time is
by definition not observed by the searchers at that time. Thus,
A NY =@, which implies that Fy(A) = O for these A and Y.
If the target chooses this path, we have a contradiction.

Now, assume that A is a clearing schedule and
miny Fy(A) = 0. This assumption implies that ANY = @.

6. Note that Propositions 1 and 2 hold for both monotone and non-monotone
clearing schedules. In other words, the propositions hold regardless of whether
recontamination is allowed in the schedule.

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

Hollinger, Singh, and Kehagias / Improving the Efficiency of Clearing with Multi-agent Teams

By the definition of a clearing schedule, there is a time 7 at
which the dirty set is the empty set. However, this implies that
ANY # @ or otherwise there would exist a dirty cell. Again
we have a contradiction.]

Proposition 2. Let A be restricted to feasible paths for
a given number of searchers K. Given a graph G,
maxacy miny Fy(A) = 0 if and only if K < s(G), where
s(G) is the node search number of G.

Proof. The value of s(G) implies that a clearing schedule ex-
ists for all K > s(G). By Proposition 1, this implies that a
schedule A exists such that miny Fy(A) > Oforall K > s(G).

Similarly, the value of s(G) implies that a clearing schedule
does not exist with K < s(G). By Proposition 1, this implies
that a schedule A does not exist such that miny Fy(A) > 0 for
K < s(G).]

Proposition 1 shows that any non-zero solution to the opti-
mization problem in Equation (2) will also be a node clearing
solution with K searchers. Proposition 2 shows that s(G), the
node search number of G, will affect the optimization prob-
lem in Equation (2); if K < s(G), then miny Fy(A) = 0 for
all A. We now use the result from Proposition 2 to show that
no bounded approximation can exist for the worst-case prob-
lem unless P = N P. The intuition behind this result is that
in order to provide a non-trivial approximation guarantee we
must achieve non-zero reward whenever the optimal reward is
non-zero, which means we have to clear the graph if possible.

Theorem 1. Assuming that P # N P, there can be no bounded
polynomial-time approximation algorithm for the worst-case
optimization problem in Equation (2).

Proof. Let n be an arbitrary problem instance defined by the
graph input G and number of searchers K. Let f(n) be any
strictly positive function of the problem instance (e.g. a func-
tion of the number of vertices, number of searchers, graph
diameter, etc.). We prove that if there exists a polynomial-
time algorithm that is guaranteed to find A" C N’ such that
miny Fy(A’) > f(n)maxscy miny Fy(A), then P = NP.
Note that f(rn) > 1 for any n would imply that miny Fy(A’) is
greater than optimal, which is clearly not possible.

Given K searchers and a graph G = (N, E), as-
sume that a polynomial-time algorithm JF exists that is
guaranteed to generate paths A’ such that miny Fy(A’) >
f(n) max,c s miny Fy(A). From Proposition 2, we know that
maxacy miny Fy(A) = 0 if and only if K < s(G). Thus, we
can test whether s(G) < K by testing whether miny Fy(A’) is
non-zero. Determining whether s(G) < K is a known NP-
hard problem (Kehagias et al. 2009). Thus, F would solve
an NP-hard problem in polynomial time, which would imply
P=NP. O

1093

Theorem 1 shows that we cannot expect to generate any
approximation guarantee for the worst-case problem in Equa-
tion (2), and hence the worst-case component of the combined
problem. However, as mentioned above, the average-case
problem admits a constant factor approximation on the finite-
horizon using sequential allocation (Hollinger et al. 2009b).
This analysis motivates our decision to split the searchers into
two groups: average-case searchers and worst-case searchers,
which preserves some approximation guarantees in the aver-
age case. From Proposition 2, we know that at least s(G)
searchers must make the worst-case assumption generate a
schedule with any non-zero worst-case reward. These theoret-
ical results motivate the use of guaranteed search algorithms
that minimize the attained search number. However, current
guaranteed search algorithms in the literature do not minimize
clearing time. We show how this limitation can be overcome
in the next section.

4. Algorithm Description

Drawing off the observations in the previous section, we can
design an algorithm that both clears the environment of an
adversarial target and performs well with respect to a target
motion model. The first step in developing a combined algo-
rithm is to generate a guaranteed search schedule that improves
clearing time with a given number of searchers. We extend the
GSST algorithm (Hollinger et al. 2010) to do just this.

The GSST algorithm is an anytime algorithm that lever-
ages the fact that guaranteed search is a linear-time solvable
problem on trees. Barriere et al. (2002) show how to gener-
ate a recursive labeling of a tree (we refer to this labeling as
B-labeling) in linear time. Informally, the labeling determines
how many searchers must traverse a given edge of the tree in
the optimal schedule (a non-recursive B-labeling algorithm is
given in Algorithm 1). If an edge label is positive, it means
that one or more searchers must still traverse that edge to clear
the tree. From the labeling, a guaranteed search algorithm can
be found using the minimal number of searchers on the tree.
GSST generates spanning trees of a given graph and then B-
labels them. The labeling is then combined with the use of
“guard” on edges that are not in the spanning tree to generate a
guaranteed search schedule on arbitrary graphs. In prior work,
searchers executing clearing on the underlying tree would call
for guards when they could not progress due to non-tree edges.
The number of guards was reduced due to the temporal aspects
of the search (i.e. guards would not need to remain in place
during the entire schedule). However, GSST gives no mech-
anism for utilizing more searchers than the minimal number.
Thus, it does not optimize the clearing time.

Algorithm 2 shows how GSST can be modified to improve
the clearing time with additional searchers. The algorithm uses
B-labeling to guide different groups of searchers into sub-
graphs that are cleared simultaneously. Algorithm 2 does not

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

1094 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2010

Algorithm 1 B-labeling for trees.
1: Input: Tree T = (N, E), Startnode b € N
2: O <« leafsof T
3: while O # @ do
4. [«anynodein O, O < O\

5. if [is a leaf then

6: e «onlyedgeofl, 1(e) =1

7. else

8: e « unlabeled edge of /

9: el,...,eq < labeled edges of

10 Am ¢ max{i(e;),..., A(eq)}
11 if multiple edges of / have label 4,, then

12: Ae) « Ay + 1

13: else

14: Ale) < A,

15: end if

16: end if

17: if [# b and parent(l) has exactly one unlabeled edge
then

18: O < O U parent(l)

19: end if

20: end while
21: Output: B-labeling A(E)

explicitly use guards on non-tree edges; the guards are instead
determined implicitly from the B-labeling (see Figure 2 for an
example). Thus, we refer to it as Guardless-GSST or G-GSST.
Note that the use of B-labeling allows the searchers to perform
the schedule asynchronously. For example, a searcher who ar-
rives at a node does not need to wait for other searchers to
finish their movement before clearing the next node (assuming
that the move does not cause a recontamination).

G-GSST can be combined with model-based search algo-
rithms to generate a combined search schedule. We augment
G-GSST with FHPE+SA to yield our combined search algo-
rithm. In short, FHPE+SA algorithm has each searcher plan its
own path on a finite-horizon and then share that path with other
searchers in a sequential fashion (see Hollinger et al. (2009b)
for a formal description). In other words, one searcher plans its
finite-horizon path and shares it with the other searchers; then
another searcher plans its finite-horizon path and shares it, and
so on. After the initial sequential allocation, searchers replan
asynchronously as they reach replanning points in the environ-
ment. We assume that the searchers have all-to-all communi-
cation, which allows each searcher to share its plan with any
other searcher. This assumption may be relaxed if certain areas
of the map can be searched without affecting the schedules of
members in other areas.

Algorithm 3 shows how G-GSST can be augmented with
FHPE+SA to yield a combined algorithm. For the remain-
der of this paper, we refer to searchers executing G-GSST as
clearers and searchers executing FHPE+SA as optimizers. An

Algorithm 2 Guardless Guaranteed Search with Spanning
Trees (G-GSST).
1: Input: Graph G, Spanning tree 7 with B-labeling,

Searchers K,

2: while graph not cleared do

3: for all searchers do

4 if moving will recontaminate then

5: Do not move

6

7

8

9

else if positive adjacent edge label exists then
Travel along an edge with smallest positive label
Decrement edge label

: else
10: Move towards closest positive edge label while
remaining in the clear set
11: end if
12: end for

13: if no moves possible without recontamination then
14: Return failure

15: endif

16: end while

17: Return feasible clearing schedule

important quality of the combined search is that, depending
on the actions of the optimizers, the schedule may be non-
monotone (i.e. it may allow for recontamination). However,
since the schedule of the clearers is monotone, the search will
still progress towards clearing the environment of a worst-case
target.

It is important to note that the schedule of the clearers can
be generated in conjunction with the optimizers. For instance,
we can modify the clearing schedule based on the actions of
the optimizers by pruning portions of the map that happen to
be cleared by the optimizers’. This extension provides a tighter
coupling between the clearing and average-case optimization.
Alternative methods for integrating the search plans are dis-
cussed in Section 7.

Finally, we generate many spanning trees (similar to the
GSST algorithm) to develop many search schedules (see Al-
gorithm 3). These schedules range in quality and also trade-
off worst-case and average-case performance. At any time,
the user can stop the spanning tree generation and choose
to execute the search schedule that best suits their needs.
This yields an anytime solution to the worst-case/average-case
search problems: one that, with increasing runtime, continues
to generate progressively better solutions.

7. Note that implementing this extension requires ensuring that ignoring a por-
tion of the map cleared by the optimizers does not lead to later recontamina-
tion. This can be determined by dynamically relabeling the spanning tree and
taking into account the cleared set. Since labeling is a linear-time operation,
this does not significantly affect runtime.

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

Hollinger, Singh, and Kehagias / Improving the Efficiency of Clearing with Multi-agent Teams 1095

(g) time = 6 (h) time =7 (i) time = 8

Fig. 2. Example of clearing a simple environment represented as a graph using G-GSST. Solid edges denote edges in the spanning
tree representation, and dotted edges denote non-tree edges. The searchers (circles) follow the B-labeling (shown next to each
edge) to clear the graph. Cells that may contain an adversary at each time are shaded. One searcher remains as an implicit guard
in the middle of the graph (any clearing move would cause contamination) while the other searcher moves to clear the top portion
of the graph. Once the top portion is cleared, both searchers then progress to clear the bottom of the graph.

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

1096 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2010

Algorithm 3 Anytime combined search algorithm.
I: Input: Graph G, Searchers K, Maximum computation
time 7
2: while computation time left do
3: Generate spanning tree 7 of G and B-label it
4. for K, = K downto K, = 1do

5: Assign K, guaranteed searchers and K — K, efficient
searchers
6 while graph not cleared do
7: for all searchers do
8 if guaranteed searcher then
9: Run G-GSST step
10: else
11: Run FHPE+SA step
12: end if
13: end for
14: if no moves possible then
15: Break
16: end if
17: end while
18: if clearing feasible then
19: Store strategy
20: else
21: Break
22 end if

23: end for

24: end while

25: if strategies stored then

26: Return strategy with maximal a Raye + (1 — @) Ryorst

27: else

28: Run FHPE+SA to maximize R,y (clearing schedule not
found)

29: end if

4.1. Decentralized and Online Operation

Once a schedule is found using Algorithm 3, the execution can
be modified online with decentralized computation. During
execution the optimizers can replan at every iteration based on
new information that becomes available (e.g. noisy measure-
ments of the target’s positions). In addition, the clearers can
continue their schedule, as long as their movement does not
cause recontamination, even if the other clearers fall behind in
their schedules. We do not provide a mechanism for dealing
with online changes to the environment, and we leave this as
an avenue for future work.

Modifications during execution are possible because of
the decentralized nature of the FHPE+SA and G-GSST al-
gorithms. A G-GSST clearing schedule is determined by the
spanning tree representation, which is shared by the searchers.
The searchers only need to share changes in the cleared set and
the current edge labeling to determine their next move. Simi-

larly, the sequential nature of FHPE+SA allows each searcher
to plan its own actions and then share that information with its
teammates. If the information is not current, or a robot fails,
the average-case performance could suffer somewhat, but the
search team can still continue operating. Thus, the optimizers
are robust to robot failure. In Section 6 we show a decentral-
ized implementation of the combined algorithm on a human—
robot search team.

5. Theoretical Analysis
5.1. Average-case Performance Bounds

We now show that the average-case component of the com-
bined algorithm is a bounded approximation on the finite-
horizon. Let A be the set of nodes visited by the paths re-
turned by the FHPE+SA algorithm. Let O be the set of nodes
visited by the optimal average-case paths (maximizes Equa-
tion (1)), and let Oy be the set of nodes visited by searcher k
on the optimal path. Let FAC(A) = Y, .y P(Y)Fy(A), ie.
the average-case reward for a path A as described in Section 3.
The average-case reward is bounded as in Theorem 2. This
bound is simply the FHPE+SA bound for K — K, searchers.

Theorem 2. We have

FAC(01 U---u OK—Kg) — €
2 b
where K is the total number of searchers, K, is the number
of searchers used for the clearing schedule, and € is the finite-
horizon error (€ = Ry “*!, where R is the reward received for

locating the target, y is the discount factor, and d is the search
depth).

FAC(A) >

“)

Proof. This bound is immediate from the theoretical bounds
on sequential allocation (Singh et al. 2007), the monotonic
submodularity of FAC (Hollinger et al. 2009b), and the fact
that K — K, searchers are deployed to perform sequential al-
location. The addition of searchers performing G-GSST can-
not decrease FAC(A) due to the monotonicity of FA® and the
monotonicity of the cleared set in the G-GSST schedule. [

We can extend the FHPE+SA component of the combined
algorithm to optimize over several different known models. If
there are M models being considered, and each has a probabil-
ity of S, ..., we can optimize the weighted average-case
objective function as follows:

= B Y P(Y)Fy(A)+...

YeU

F(A)

+ By Y Pu(Y)Fy(A),)

YeU

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

Hollinger, Singh, and Kehagias / Improving the Efficiency of Clearing with Multi-agent Teams

1097

Table 1. Statistics for Test Environments of Increasing Complexity (Attained Search Numbers Found Using G-GSST).

Cave Office Museum Merced SDR MOUT
Nodes 43 61 70 130 188 227
Edges 46 65 93 197 258 289
Attained search number 3 3 5 7 8 9

where f,+...4+f, = 1, and P, (Y) describes the probability
of the target taking path Y if it is following model m.

If all models obey the Markov assumption, this linear com-
bination of models can be estimated using matrices as if it were
a single model without an increase in computation. In addition,
monotonic submodularity is closed under non-negative linear
combination, so Theorem 2 holds in this extended case.

5.2. Computational Complexity

The labeling component of G-GSST requires visiting each
node once and is O(N), where N is the number of nodes in
the search graph. The G-GSST traversal is O(N K), where K,
is the number of guaranteed searchers. Finally, the FHPE+SA
component replanning at each step is O (N (K — K ;)b?), where
b is the branching factor of the search graph, and d is the FHPE
search depth. Thus, generating a single plan with the combined
algorithm is O(N+NK,+ N (K — K,)b?). This is linear in all
terms except the FHPE search depth, which often can be tuned
to a very low number depending on the application.

6. Experimental Results
6.1. Simulated Results

We performed simulated testing of our combined search al-
gorithm in several complex environments. The Newell-Simon
Hall (NSH) and National Gallery (museum) maps were used
in prior work and were discretized by hand into rooms
and hallways. The cave map is taken from the Player/Stage
project (Gerkey et al. 2003) and represents a sparsely cluttered
environment. The McKenna MOUT map is a polygonal rep-
resentation of a military testing facility. The cave and MOUT
maps were discretized automatically using a constrained De-
launay triangulation (Shewchuk 2002), which allows for size
constraints on the triangles to model limited sensor range.
The Merced and SDR maps were used in prior work with the
GRAPH-CLEAR problem (Kolling and Carpin 2008). Kolling
and Carpin’s method for discretization is not suitable for node
search because it does not generate convex regions. We dis-
cretize the SDR and Merced maps using a region growing
method: each region is grown until its bounding boxes contains
a number of obstacle pixels (set to 200). This region growing

Algorithm 4 Receding Horizon Greedy Clearing (RHGC).
1: Input: Graph G = (N, E), Number of searchers K, Start
node b € N
2: t < 0,50(0) < bforall k
3: while Np # ¢ do
4. for searcher k =1 to K do

5: % P is a feasible path for searcher k in the search
graph to horizon d

6: % S =5100),...,5¢0),...,51(t+d), ..., s,—1(t+
d) is a partial schedule

7: % Np(t+d|P,S) is the dirty set at time ¢t + d given
path P and schedule S are chosen

8: {sc(t + D), ...,50(t + d)} « argming|Np(t +

d|P, S)|
9: end for
10: if all searchers cannot move without recontamination

then
11: Return failure
122 endif

13: t—t+1
14: end while
15: Return clearing schedule S and clearing time ¢

approach assumes that the evader is large enough that it cannot
hide behind small obstacles. In addition, we set a maximum
length for the bounding box to 100 pixels to model a lim-
ited sensor range. Table 1 gives the attained search numbers
for these environments (i.e. the fewest number of searchers
for which a clearing strategy was found). Figure 3 shows dis-
cretized maps of the six test environments.

6.1.1. G-GSST Comparison

We tested the G-GSST algorithm to determine its effectiveness
at generating schedules with low clearing times. We compared
G-GSST to a sequential greedy algorithm that iteratively de-
creases the dirty set on the receding horizon. This variant of
sequential allocation is shown in Algorithm 4 for solving the
guaranteed search problem. We refer to this algorithm as Re-
ceding Horizon Greedy Clearing (RHGC). This algorithm was
also discussed in more detail in our prior work (Hollinger et
al. 2010).

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

1098

THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2010

38 37 32

1

1:|.J 12|13] 14

~ 56 5 PR
33| |3a|3s|36 . 21 |4
20
32 |59 37 | 38 |3q 40|53 59
22 m
19
31 1 30|20|28]27 18 6

3¢6 33
40 35 34 :

LZQ 14 215 16 217

11 12 13

49

' 57 @582 59 IBD

20

24

52

63 | 62 61

r63 87 GEI 69

Fig. 3. Maps of environments used for simulated coordinated search. The NSH (top left) and National Gallery (top right) were
discretized by hand, the Merced (middle left) and SDR (middle right) were discretized using an orthogonal region growing
method, and the cave (bottom left) and MOUT (bottom right) were discretized using a constrained Delaunay triangulation.

We also compare our algorithm with the PARISH algo-
rithm introduced by Gerkey et al. (2005). PARISH stochas-
tically samples a limited space of possible paths while allow-
ing for recontamination. As a result, the cleared set grows and
shrinks until eventually a clearing schedules is found. In addi-
tion, PARISH biases the chosen paths towards those that clear

more cells. The version of PARISH implemented in this paper
has been modified from the version presented in prior work.
Our implementation uses an exponential bias, which places
significantly more weight on plans that clear more cells. We
have also modified the algorithm to consider a target located
on the nodes rather than on the edges of the graph. Finally,

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

Hollinger, Singh, and Kehagias / Improving the Efficiency of Clearing with Multi-agent Teams 1099

NSH Map
250 ; . . ! - . ,
S —e—G-GSST
: - B -FHGC
200+ _‘ --e - PARISH |{
Bisol
o L e i
g 190 o
e Y
2
@© 1001 ‘a i
(] ’~..
50r q
O L L L

2 4 6 8 10 12 14 16 18 20 22
Number of Searchers

Merced Map
600 ——————————
—e—G-GSST
. -8 -FHGC
5000 --e- PARISH ||
. °
. »
5 400t .]
8 .
o
2 300¢ e o o]
%) ‘e
§ ¢ ¢ . ..‘..
@ 200 oo S Te
100r % & 1

6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Searchers

Cave Map
S —
——G-GSST
. - 8 -FHGC
sor --e- PARISH ||
.0
40t v o0 e e

Steps to Clear
w
(=]

N
o
T

2 3 4 5 6 7 8 9 10 11 12 13

Number of Searchers

Museum Map

150 . . :
—e— G-GSST
-8 -FHGC
1251 . --e-- PARISH ||
.
5 100 i
(] .
O o,
'E 75y ¢ * "'o.,‘ |
5] a AL DR %
n e ‘®:.9..0
b 500 . 1
S ag g
25¢ g
O L L L L

4 6 8 10 12 14 16 18 20 22
Number of Searchers

SDR Map
700 T T . . - - .
—e— G-GSST
600f ™ -8-FHGC ||
--e- PARISH
500 P 1
I ‘. .'.'c-c,
o} Y . e
O 400F K 1
o P '—“_
%)
2 300} 0 «® o
%)
200+ 1
100} “°S8%ypag]
7 9 11 13 15 17 19 21 23 25 27 29 31
Number of Searchers
MOUT Map
400——
. —e— G-GSST
3501 -, -E-FHGC |
--e- PARISH
300+ Lol ... h
9 . » o
g 2501 '.."": R
2 200} . v 1
[2]
5]
& 150+ 1
100+ 1
50} cHoEmE
o

8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of Searchers

Fig. 4. Clearing time comparison of the proposed G-GSST algorithm with PARISH (Gerkey et al. 2005) and RHGC (Algo-
rithm 4). G-GSST and PARISH were given 1 minute to generate solutions, and the best was taken after the time had run out.
RHGC was run once to completion. The graph shows the number of steps to clear the graph (i.e. one or more searchers moves in
a step) with increasing searchers. Values are only shown if a clearing schedule was found with that number of searchers.

by forcing PARISH to restart whenever a plan is unsuccessful,
we allow the algorithm to run for a given period of time and
return the best solution. Together these modifications improve
the performance of PARISH over what was presented in prior
work (Gerkey et al. 2005).

Figure 4 shows a comparison of G-GSST with PARISH
and RHGC. Since PARISH and G-GSST are stochastic, they
each were run for 1 minute in each trial, restarting after each
successful or failed strategy. PARISH trials were considered
failed after the schedule exceeded 1,000 steps without clear-

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

1100 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2010

Table 2. Average-case and Worst-case Capture Steps Comparison. The Average-case is the Expected Steps to Capture a
Randomly Moving Target. The average-case (AC) is the expected steps to capture a randomly moving target. The worst-
case (WC) is the number of steps to clear the environment. The Proposed Combined Algorithm is Compared with a Purely
Average-case Method (FHPE) (Hollinger et al. 2009b) and a Purely Worst-case Method (GSST) (Hollinger et al. 2010).

Cave (K = 5) NSH (K = 5) Museum (K = 7)

FHPE+SA AC 11.1 WC oo AC 5.4 WC o AC 9.3 WC 0o
GSST AC 14.7 WC 30 AC 24.6 WC 74 AC 21.8 WC 47
Combined (a = 0.25) AC 12.6 WC 23 AC 15.5 WC 39 AC 14.9 WC 37
Combined (¢ = 0.75) AC 11.6 WC 24 AC 8.6 WC 48 A.C 12.9 WC 43
Combined (o = 0.99) AC 11.6 WC 24 AC 6.9 WC 74 AC 12.8 WC 51
Merced (K = 10) SDR (K = 10) MOUT (K = 13)

FHPE+SA AC 13.3 WC oo AC 16.5 WC o AC 22.6 WC o
GSST AC45.7WC 112 AC 56.0 WC 135 AC 65.8 WC 150
Combined (a = 0.25) AC 32.4 WC 70 AC 48.7 WC 111 AC 44.9 WC 81
Combined (o = 0.5) AC 25.9 WC 75 AC 48.7 WC 111 AC 33.7 WC 87
Combined (o = 0.75) AC 259 WC 75 AC 33.5 WC 127 A.C30.3 WC 92
Combined (o = 0.99) AC 20.1 WC 97 AC 27.8 WC 154 AC 28.7 WC 121

ing the environment. The best feasible strategy was taken after
time ran out. RHGC was run once to completion, which took
approximately one second in the larger environments. Even
though the runtime of RHGC is lower, it does not provide
any mechanism for improving its solution after completion.
Stochastic algorithms such as PARISH and G-GSST, on the
other hand, allow the continued generation of potential strate-
gies with increasing runtime.

In all environments, RHGC requires more searchers than G-
GSST to find a feasible clearing schedule. As a result, fewer
searchers will be available for assignment as optimizers. Fur-
thermore, G-GSST yielded faster clearing times than RHGC
in almost all cases, particularly when only few searchers are
available. The one exception is on the MOUT map where G-
GSST and RHGC perform competitively. This is likely due
to the regularity of the triangular decomposition, which some-
what negates the benefit from long-term planning on the span-
ning tree representation. The PARISH algorithm was able to
find strategies with few searchers, but the resulting clearing
times were very large. The large clearing times are due to
PARISH’s stochastic nature and its use of recontamination.
PARISH’s clearing and recontamination hill climbing can take
a very large number searcher moves before finding a clearing
schedule.

The results above show that G-GSST yields fast clearing
times with few searchers, which leads to better worst-case
performance as well as more searchers available to improve
average-case performance. We now examine the effectiveness
of utilizing the additional searchers to optimize a target motion
model.

6.1.2. Combined Algorithm Comparison

We ran our algorithm on 2,000 random spanning trees on all
maps, and we compared these results to the schedules found
by pure average-case and pure worst-case algorithms. Table 2
gives a summary of these results. The first row shows the
average-case steps (i.e. at each step one or more searchers
moves between nodes) to capture a randomly moving target
using FHPE+SA with all searchers (a lookahead distance of
five was used for FHPE on these and all other trials)® This
strategy does not have worst-case guarantees if the model is
incorrect. The second row shows the best clearing time us-
ing GSST on 10,000 random spanning trees. Note that GSST
does not optimize for clearing time and only utilizes the min-
imal number of searchers required to clear. The results show
that our combined algorithm yields much lower clearing times
than those found with GSST. This is due to the use of addi-
tional searchers as in Algorithm 2. In addition, our combined
algorithm reduces the average capture time by over 75% in the
office when compared with GSST. Furthermore, a worst-case
guarantees on some maps can be gained by sacrificing only
one step of average capture time.

The user can determine the weighting of average-case ver-
sus worst-case performance by tuning the value of the a para-

8. The expected capture steps for FHPE+SA were determined over 10,000
trials with a randomly moving target. The expected capture steps for the com-
bined algorithm were computed in closed form. If the environment is cleared
at time 7 and the probability of capture is P(¢) for all ¢, the expected number
of capture steps is E(T) = Z,Tzl P (r)t. The probability of capture P(r) was
computed using matrix multiplication for a Markovian target model.

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

Hollinger, Singh, and Kehagias / Improving the Efficiency of Clearing with Multi-agent Teams 1101

NSH: N = 5 Total Searchers

; o o ;
75f c .]
e
§ 70 5 i 1
[75] 8o + p
o 65 & 1
2 T
S 60 % TM%’%H 1
(&) + mar
Yy % WW—HHHHF#»
o B+ 4
. i
O +
L B +
@ 50/ b Lo]
o 0 i}r—#
= 45l + NClearers iﬁﬁ |
o N-1 Clearers
40 o N-2 Clearers ‘ w ‘ ‘ |
0 10 20 30

Average-Case Capture Steps

Merced: N = 10 Total Searchers

"I+ N Clearers
1201 © N-1 Clearers|]|
é 5 o N-2 Clearers
& 110} Lo]
e +
= o R,
S BP0 D4t
% o o) ++
S EDD(@@ e
Q eor 5 0 % MR 1
® +
S e #
= 8ot e]
o A
N
70— :

0 10 20 30 40 50 60
Average-Case Capture Steps

Cave: N = 5 Total Searchers

42 ; ; ; : :
© + N Clearers
407 o © o N-1 Clearers||
& 38| 0 o4 o N-2Clearers||
(% ao o+
o 36f o @ + +
5 D ap +
Qa 34r @™ @+ i
] DD H-HH-
© 321 RTINS -
[7] ARt -
@
O 301 -
S .
g 28t T
; R
26+ D
-
241 [
5 10 15 20 25

Average-Case Capture Steps

Museum: N = 7 Total Searchers

+ N Clearers +
65/ o N-1Clearers . ++ . 1
§ o N-2 Clearers ot
] 60+ 1
o
>
a 55- |
[
o
&
@ 50t 1
?
®
S 45f 1
=
40t |
0 10 20 30
Average-Case Capture Steps
SDR: N = 10 Total Searchers
: : it :
1707 +]
o) o
7] o +
& 160t ° T]
% o ©0 * ++¢++ ’
2 o 5 T
3 150} B b 1
S o of 4
® Fo
2 L o +]
17} 140 + # ﬁ+$
S g ey
[0F Rl
g 130f SO gl *
<] @ Hipf,
= # " |+ NClearers
1201 +t+t+ o N-1 Clearers|]
1 o N-2 Clearers
20 40 60 80
Average—-Case Capture Steps
MOUT: N = 13 Total Searchers
160" T . —t " . 5
+
150+ 1
:7’)- ED) et
& 1401 O]
® o?;; 10 ¢ ;r
= L o 1
2 130 i
] ;
> 120f *4 |
2 £ 2
O 1107 %
1 * + N Clearers
S 100t o N-1 Clearers|]
= o N-2 Clearers
90+ = N-3 Clearers|{
* N-4 Clearers
0 20 40 60 80

Average-Case Capture Steps

Fig. 5. Scatter plot of search schedules from the combined algorithm run on 2,000 spanning trees. Each data point represents a
schedule generated by a different searcher allocation and spanning tree input to Algorithm 3. The data points are colored based on
the allocation of searchers to the guaranteed and efficient search roles. The total searchers in each environment remains constant

throughout the trials.

meter, which explores the Pareto-optimal frontier of solutions.
This frontier forms a convex hull of solutions, any of which
can be selected after runtime. Figure 5 gives a scatter plot of
average-case versus worst-case capture steps for all feasible
schedules on the six test maps. The figure also shows the num-
ber of clearers, K,, used for each data point. Note that the

total number of searchers is fixed throughout the trials, and
the remainder of the searchers performed FHPE+SA. In most
cases, the lowest average-case capture times are from the low-
est K,. This is due to more searchers being used for average-
case search and fewer for clearing. These results demonstrate
the utility of using FHPE+SA searchers in the schedule. Sim-

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

1102 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2010

150 ———
—e— Cave
—&— NSH

125¢ —a&— Museum ||
—e— Merced

100t —— SDR
—+— MOUT

Feasible Schedules per Second

75¢

50

25¢

0 n ' ' ‘AAA_LA

2 3 45 6 7 8 9 10111213 14 15 16

Number of Searchers

30

—=—NSH
—#— Museum
—e— Merced ||
—6—SDR
—+— MOUT

25

20¢

151

101

Feasible Schedules per Second

4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Searchers

o
2 3

Fig. 6. Number of feasible clearing schedules per second generated by the combined algorithm with a varying number of
searchers. As the number of searchers increases, the number of schedules generated first increases as schedules become eas-
ier to find and then decreases as the computational complexity becomes greater. The same graph is shown zoomed out (left) and
then zoomed in (right) for additional detail. Schedules with fewer searchers than those displayed were not found after examining

1,000 trees on each graph.

ilarly, the lowest clearing times are typically with K, = K
(i.e. all searchers are guaranteed searchers). Note that better
solutions yield points to the left/bottom of these plots.

Figure 6 shows the number of feasible clearing sched-
ules generated per second for various test environments with
increasing available searchers. As the number of available
searchers increases, the number of schedules generated ini-
tially increases as clearing schedules become easier to find.
As the number of searchers continues to increase, the sched-
ules per second decreases due to the added computational com-
plexity. Even in the large environments with few searchers, the
combined algorithm is often able to generate more than one
feasible clearing schedule per second.

6.1.3. Imperfect Motion Models

In some cases, the target will not act in accordance with the
assumed model, but it also will not be fully adversarial. To
test the robustness of the combined algorithm in these cases,
we examined several complex motion patterns for the target.
We introduce three target behaviors that we refer to as daily,
gallery, and escape. Targets following the daily behavior act
as if they are performing everyday tasks in an office building:
they spend significantly more time in offices, they rarely back-
track when moving, and they only stop in hallways for a short
time. Targets following the escape behavior act as if they are
attempting to find an exit to the building: they never backtrack,
rarely return to a room they have already been in, and spend
very little time standing still. Finally, targets performing the
gallery behavior act as if they are viewing art in a museum:
they spend most of their time moving slowly through rooms
that they have not yet visited.

The daily, gallery, and escape behaviors are implemented
using a set of randomized rules and a memory. The simulated
target remembers all locations that it has previously visited,
and its actions are determined based on a randomization of the
set schedule. The randomized policies are summarized below.
They were implemented for a simulated target using a pseudo-
random number generator and a complete memory of the tar-
get’s previous path. The searchers do not have access to the
target’s true model during planning. None of the above strate-
gies can be fully modeled using a Markovian model because
they require remembering history of where the target has been.

Daily Behavior

e If in an office (dead-end room): 20% leave office and
move to hallway, 80% stay in office.

e If not in an office: 5% move to last room or hallway
visited, 20% move to an office (if one or more adja-
cent offices have already been visited, bias towards these
offices), 60% keep moving to non-office (exclude hall-
ways previously visited since leaving an office), 15%
stay in the current hallway.

Gallery Behavior

e If in dead-end room: 80% leave this room, 20% stay in
this room.

e If not in dead-end room: 20% stay in this room, 20%
move to last room previously visited, 60% move to a
room not previously visited.

o If all adjacent rooms have been visited and not in a dead-
end room: move towards closest unvisited room.

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

Hollinger, Singh, and Kehagias / Improving the Efficiency of Clearing with Multi-agent Teams

NSH: Five Total Searchers

80 w w
70+ Target Behavior | |
6ol —=—Random
—— Daily
§ 50t —~— Escape
& = Stationary
© 40+ —=— Worst
=]
2 0!
© % x_._)(/x
20+
10+ % ! l

0 1 2 3 4 5
Searchers Optimizing Random Model

1103

Museum: Seven Total Searchers

60 :
Target Behavior
50r 1
———Random
—— Gallery
§ 40y —#—Escape | |
n —<— Stationary
g 30+ —=— Worst 1
S
5
O oot é; |
10+ — -
0

0 1 2 3 4 5 6 7
Searchers Optimizing Random Model

Fig. 7. Capture times using various models of the target’s movement in the NSH and museum environments. A fixed number of
searchers was used with some dedicated to clearing and some to optimizing a random motion model. Averages were over 10,000

runs. SEMs are small and omitted.

Escape Behavior

e If in dead-end room: 90% leave this room, 10% stay in
this room.

e If not in dead-end room: 5% move to last room or hall-
way previously visited, 30% move to dead-end room
(only those never visited), 65% keep moving (only to
a room never visited), 0% stay.

e If all adjacent rooms have been visited and not in a dead-
end room: move towards closest unvisited room.

We implemented the three behaviors described above on
simulated targets in the NSH and museum environments.
Searchers perform the combined algorithm assuming a ran-
dom motion model. Figure 7 shows that the daily, gallery, and
escape behavior all yield capture times very close to a target
truly moving randomly. Thus, searchers that assume a random
model will often quickly find targets performing these com-
plex behaviors. For comparison, we also implement a station-
ary target. The stationary target does not move throughout the
environment, which requires the searchers to examine all pos-
sible locations. The average time to find a stationary target is
closer to the worst-case clearing time than that of the targets
moving through the environment. These results are expected
because a moving target is, on average, easier to find than a
stationary target (Hollinger et al. 2009b). Note that, since the
schedule clears the environment, a target following any model
will be found by the time the schedule is completed.

6.2. Human—Robot Teams

To examine the feasibility of our algorithm for real-world ap-
plications, we ran several experiments with a human-robot

search team. We conducted these experiments on a single floor
of an office building as shown in Figure 8. For comparison,
we used the same building as in our prior work in worst-case
search (Hollinger et al. 2010). Two humans and a single Pi-
oneer robot share their position information through a wire-
less network, and the entire team is guided by a decentralized
implementation of Algorithm 3. The robot’s position is deter-
mined by laser AMCL, and it is given waypoints through the
Player/Stage software (Gerkey et al. 2003). The humans input
their position through the keyboard, and they are given way-
points through a GUL

The human-robot search team uses a shared pre-processing
step to determine a candidate spanning tree and searcher
allocation. Once a schedule is found that properly trades-
off average-case and worst-case performance, the execution
is done online with distributed computation. Each processor
plans the actions of a single searcher (human or robot), and
the schedule continues executing even if some searchers fall
behind. If moving will cause recontamination, and the searcher
is a clearer, it will wait until the other searchers catch up before
continuing. This avoids strict synchronization of the schedule,
which reduces communication between the team. These online
modifications are particularly desirable for real-world applica-
tions because they avoid many of the robustness issues with
executing an offline schedule.

In the first experiment, all three searchers (humans and ro-
bot) were assigned as clearers. This configuration takes 178
seconds to clear the floor of a potential adversary, and it yields
an expected capture time of 78 seconds with respect to the ran-
dom model. We also calculated the expected capture time if
the model of the target’s speed is 50% off (i.e. the target is
moving 50% slower than expected). With this modification,
the expected capture time increases to 83 seconds.

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

1104

——— -

Q 16 |15 |14 EB i‘ll

[R T S

: Ay - f:__q_l_ -
—:‘ll--];sj_%hglL L L UL T Lﬁ‘-‘;—

THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2010

sI12)a ()¢

Fig. 8. Map of an office building (left) used for experiments with a human-robot search team, and corresponding search graph
(right). The same environment was previously used to validate worst-case search techniques (Hollinger et al. 2010). The human—
robot search team (see Figure 1) started at the entrance in cell eight.

In the second experiment, the mobile robot was switched
to an optimizer, which took 177 seconds to clear and yielded
an expected capture time of 73 seconds. The expected cap-
ture time with a 50% inaccurate model was 78 seconds. Thus,
switching the mobile robot to an optimizer yields a 5-second
decrease in expected capture time without sacrificing any
worst-case capture time. The 5-second decrease remains even
if the model is inaccurate. This further confirms the simulated
results in Figure 7, showing that the schedules are robust to
changes in the target’s motion model.

In both experiments, the schedule clears the left portion of
the map first and then continues to clear the right portion.
Extensions 1 and 2 include playback of both simulated and
human-robot results (see the appendix). In this environment,
the assignment of the robot as a clearer does not decrease the
clearing time. The reason is that the robot spends a significant
portion of the schedule as a redundant guard. Consequently,
the right portion of the map is not searched until very late in
the clearing schedule. In contrast, when the robot is used as
an optimizer, the right hallway is searched early in the sched-
ule, which would locate a non-adversarial target moving in that
area.

In addition, our results with a human-robot team demon-
strate the feasibility of the communication and computational
requirements of our algorithm on a small team. The initial
plan-generation stage is distributed among the searcher net-
work, and once stopped by the user, the best plan is chosen.
During execution, there is a broadcast communication require-
ment as the searchers share their positions on the search graph.
This small amount of information was easily handled by a
standard wireless network in an academic building.

7. Conclusion and Future Work
We have presented an algorithm for improving the efficiency

of multi-robot clearing by generating multi-agent search paths
that both clear an environment of a potential adversary and

optimize over a non-adversarial target motion model. In addi-
tion, we have introduced a new algorithm for finding clearing
schedules with low search times by utilizing the underlying
spanning tree to guide clearing. We have integrated this ap-
proach into a combined algorithm to generate schedules that
perform well under both average-case and worst-case assump-
tions on the target’s behavior. We have shown through simu-
lated experiments that our combined algorithm performs well
when compared with search algorithms for both guaranteed
and efficient search. In addition, we have demonstrated the
feasibility of our algorithm on a heterogeneous human-robot
search team in an office environment.

Our current algorithm does not directly use a weighting
variable o to incorporate confidence in the model. Instead,
we cache many solutions and allow the user to choose one at
runtime in an anytime fashion. One method for directly incor-
porating o would be first to determine the lowest number of
searchers capable of clearing and assign the remainder of the
searchers proportional to a. An alternative would be to have
searchers switch between G-GSST and FHPE+SA during the
schedule with some probability related to o. This would allow
for dynamic switching but would require careful tuning of the
switching function.

Additional future work includes more extensive robustness
testing with inaccurate motion models and analysis of the com-
munication requirements with very large search teams. Future
field testing includes applications in emergency response, mili-
tary reconnaissance, and care of the elderly. Combining search
guarantees against an adversarial target with efficient perfor-
mance using a model has the potential to improve autonomous
search across this wide range of applications. This paper has
contributed with the first algorithm and results towards this
goal.

Acknowledgments

The authors gratefully acknowledge Joseph Djugash, Ben Gro-
cholsky, and Debadeepta Dey from CMU for their insightful

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://ijr.sagepub.com

Hollinger, Singh, and Kehagias / Improving the Efficiency of Clearing with Multi-agent Teams

comments and assistance with experiments. We thank volun-
teer firefighter (and professional roboticist) Seth Koterba for
feedback on the system. This work is funded in part by Na-
tional Science Foundation Grant No. IIS-0426945.
Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Simulated trials

2 Video Human-robot trials
References

Alspach, B. (2006). Searching and sweeping graphs: a brief
survey. Matematiche, 59: 5-37.

Barriere, L., Flocchini, P., Fraigniaud, P. and Santoro, N.
(2002). Capture of an intruder by mobile agents. Proceed-
ings of the 14th ACM Symposium on Parallel Algorithms
and Architectures, pp. 200-209.

Borie, R., Tovey, C. and Koenig, S. (2009). Algorithms and
complexity results for pursuit-evasion problems. Proceed-
ings of the International Joint Conference on Artificial In-
telligence.

Calisi, D., Farinelli, A., Locchi, L. and Nardi, D. (2007).
Multi-objective exploration and search for autonomous res-
cue robots. Journal of Field Robotics, 24(8-9): 763-777.

Fomin, F. and Thilikos, D. (2008). An annotated bibliography
on guaranteed graph searching. Theoretical Computer Sci-
ence, 399: 236-245.

Gerkey, B., Thrun, S. and Gordon, G. (2005). Parallel stochas-
tic hill-climbing with small teams. Proceedings of the 3rd
International NRL Workshop Multi-Robot Systems.

Gerkey, B., Vaughan, R. and Howard, A. (2003). The
player/stage project: Tools for multi-robot and distributed
sensor systems. Proceedings of the International Confer-
ence on Advanced Robotics, pp. 317-323.

Guibas, L., Latombe, J., LaValle, S., Lin, D. and Motwani, R.
(1999). Visibility-based pursuit-evasion in a polygonal en-
vironment. International Journal of Computational Geom-
etry and Applications, 9(5): 471-494.

Hollinger, G., Kehagias, A. and Singh, S. (2009a). Efficient,
guaranteed search with multi-agent teams. Proceedings of
the Robotics: Science and Systems Conference

Hollinger, G., Kehagias, A. and Singh, S. (2010). GSST:
Anytime guaranteed search. Autonomous Robots, DOI:
10.1007/s10514-010-9189-9.

Hollinger, G., Kehagias, A., Singh, S., Ferguson, D., and Srini-
vasa, S. (2008). Anytime guaranteed search using spanning

1105

trees. Technical Report CMU-RI-TR-08-36, Robotics Insti-
tute, Carnegie Mellon Univ.

Hollinger, G., Singh, S., Djugash, J. and Kehagias, A. (2009b).
Efficient multi-robot search for a moving target. The In-
ternational Journal of Robotics Research, 28(2): 201-
219.

Kehagias, A., Hollinger, G. and Gelastopoulos, A. (2009).
Searching the Nodes of a Graph: Theory and Algorithms.
arXiv Repository Technical Report 0905.3359 [cs.DM],
May 2009.

Kolling, A. and Carpin, S. (2008). Extracting surveillance
graphs from robot maps. Proceedings of the International
Conference on Intelligent Robots and Systems.

Kolling, A. and Carpin, S. (2009). Probabilistic graph-clear.
Proceedings of the IEEE International Conference on Ro-
botics and Automation.

Kolling, A. and Carpin, S. (2010). Pursuit-evasion on trees by
robot teams. /[EEE Transactions on Robotics, 26: 32—47.
Krause, A., McMahan, B., Guestrin, C. and Gupta, A. (2007).
Selecting observations against adversarial objectives. Pro-

ceedings of Neural Information Processing Systems.

Krause, A., McMahan, B., Guestrin, C. and Gupta, A. (2008).
Robust submodular observation selection. Journal of Ma-
chine Learning Research, 9: 2761-2801.

Kumar, V., Rus, D. and Singh, S. (2004). Robot and sensor
networks for first responders. Pervasive Computing, 3(4):
24-33.

Megiddo, N., Hakimi, S., Garey, M., Johnson, D. and Pa-
padimitriou, C. (1988). The complexity of searching a
graph. Journal of the ACM, 35(1): 18—44.

Ong, S., Png, S., Hsu, D. and Lee, W. (2009). POMDPs for
robotic tasks with mixed observability. Proceedings of the
Robotics: Science and Systems Conference

Parsons, T. (1976). Pursuit—evasion in a graph. Theory and Ap-
plications of Graphs, Alavi, Y. and Lick, D. (eds). Berlin,
Springer, pp. 426-441.

Roy, N., Gordon, G. and Thrun, S. (2003). Planning under un-
certainty for reliable health care robotics. Proceedings of
the International Conference on Field and Service Robot-
ics.

Sarmiento, A., Murrieta-Cid, R. and Hutchinson, S. (2004). A
multi-robot strategy for rapidly searching a polygonal en-
vironment. Proceedings of the 9th Ibero-American Confer-
ence Artificial Intelligence.

Shewchuk, J. (2002). Delaunay refinement algorithms for tri-
angular mesh generation. Computational Geometry: The-
ory and Applications, 22(1-3): 21-74.

Singh, A., Krause, A., Guestrin, C., Kaiser, W. and Batalin, M.
(2007). Efficient planning of informative paths for multiple
robots. Proceedings of the International Joint Conference
on Artificial Intelligence.

Smith, T. (2007). Probabilistic Planning for Robotic Explo-
ration. PhD Thesis, Robotics Institute, Carnegie Mellon
University.

Downloaded from http://ijr.sagepub.com at Aristotle University on July 2, 2010

http://www.ijrr.org/ijrr_2010/369949.htm
http://www.ijrr.org/ijrr_2010/369949.htm
http://ijr.sagepub.com

