
Auton Robot (2010) 29: 99–118
DOI 10.1007/s10514-010-9189-9

GSST: anytime guaranteed search

Geoffrey Hollinger · Athanasios Kehagias · Sanjiv Singh

Received: 31 May 2009 / Accepted: 7 April 2010 / Published online: 23 April 2010
© Springer Science+Business Media, LLC 2010

Abstract We present Guaranteed Search with Spanning
Trees (GSST), an anytime algorithm for multi-robot search.
The problem is as follows: clear the environment of any ad-
versarial target using the fewest number of searchers. This
problem is NP-hard on arbitrary graphs but can be solved in
linear-time on trees. Our algorithm generates spanning trees
of a graphical representation of the environment to guide the
search. At any time, spanning tree generation can be stopped
yielding the best strategy so far. The resulting strategy can
be modified online if additional information becomes avail-
able. Though GSST does not have performance guarantees
after its first iteration, we prove that several variations will
find an optimal solution given sufficient runtime. We test
GSST in simulation and on a human-robot search team us-
ing a distributed implementation. GSST quickly generates
clearing schedules with as few as 50% of the searchers used
by competing algorithms.

Keywords Multi-robot coordination · Graph search ·
Anytime algorithms · Decentralized computation ·
Pursuit/evasion

Electronic supplementary material The online version of this article
(doi:10.1007/s10514-010-9189-9) contains supplementary material,
which is available to authorized users.

G. Hollinger (�) · S. Singh
Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA 15217, USA
e-mail: gholling@ri.cmu.edu

S. Singh
e-mail: ssingh@ri.cmu.edu

A. Kehagias
Faculty of Engineering, Aristotle University of Thessaloniki,
Box 464, Thessaloniki 54124, Greece
e-mail: kehagiat@auth.gr

1 Introduction

Suppose you are with a group in a large, complex building
like a museum, supermarket, or office, and you suddenly re-
alize that a member of the group is gone. You now need to
coordinate the group to find the lost person. After searching
fruitlessly for a while, you may wonder if it is possible to
coordinate the group in such a way that you are guaranteed
to find the lost group member. We refer to this as the guaran-
teed search problem, where searchers work together to scour
the environment to ensure that they find a target if one exists.
It is important to note that, depending on the complexity of
the environment, a given number of searchers may be insuf-
ficient to guarantee finding the lost group member.

Guaranteed search requires the coordination of multiple
agents such that a target cannot escape detection. This sit-
uation arises in at least two cases. The first is if the target
is acting adversarially, and the second is if an accurate mo-
tion model of the target is unavailable. In both cases, the
searchers wish to guarantee that the target will be found re-
gardless of its movement pattern. In contrast with efficient
search, which seeks to exploit a motion model to maxi-
mize capture probability (Hollinger et al. 2009b), guaran-
teed search makes a worst-case assumption on the target’s
path.

This paper examines the problem of guaranteed search
in physical environments with multiple autonomous robots.
The problem of coordinating a team of mobile robots to
search large physical environments is relevant to many sce-
narios of interest in robotics. Military and first response
teams often need to locate lost team members or survivors in
disaster scenarios. The increasing use of search and rescue
robots and mechanized infantry necessitates the develop-
ment of algorithms for autonomously searching such envi-
ronments. Similarly, a major application that has motivated

http://dx.doi.org/10.1007/s10514-010-9189-9
mailto:gholling@ri.cmu.edu
mailto:ssingh@ri.cmu.edu
mailto:kehagiat@auth.gr

100 Auton Robot (2010) 29: 99–118

this work is that of locating a lost first responder in an in-
door environment (Kumar et al. 2004). In this application,
a moving first responder is lost during disaster response, and
a team of robots must locate him or her.

Optimal solutions to tightly coupled multi-robot prob-
lems typically scale exponentially with increasing robots,
which makes them computationally intractable for large
teams and large environments. This intractability arises in
domains like guaranteed search because the result of each
robot’s actions depends heavily on the actions of the other
robots. Thus, in many cases, we cannot determine the op-
timal action for a single robot without considering a large
number of possible actions for the entire group. Optimally
resolving such tight coupling requires considering the ex-
ponentially growing joint path space of all searchers (see
Sect. 3 for a formal definition of the joint path space). Con-
sidering the joint space is an example of explicit coordi-
nation during which the searchers explicitly plan for their
teammates.

Alternatively, if each searcher plans individually with-
out taking into account the future actions of its teammates,
the size of the search space does not increase. Since the
searchers are no longer coordinating in any way, this is an
instance of no coordination. Paths generated without any co-
ordination often perform poorly because the searchers have
no mechanism for reasoning about their teammates’ actions.
This limitation is particularly problematic during guaranteed
search because progress may be impossible without coordi-
nation between searchers.

If searchers share their plans during planning and exe-
cution, they can use this information to improve the joint
search plan. In this case, the searchers are not explicitly
planning for their teammates, but they are implicitly coor-
dinating by sharing plans. We present an algorithm that uti-
lizes implicit coordination to achieve better scalability than
centralized and market-based approaches.

Uninformed implicit coordination can provide poor so-
lutions in domains like guaranteed search that require tight
coordination. To improve performance for these problems,
searchers can execute a shared pre-processing step, which
transforms the environment representation into one solvable
through implicit coordination. We show how utilizing span-
ning trees of the environment can yield implicitly coordi-
nated search strategies for guaranteed search (see Fig. 1 for
examples). This approach leads to an “anytime” algorithm
for guaranteed search. Our anytime algorithm quickly finds
a solution with potentially many searchers and then contin-
ues to generate solutions with fewer searchers over time. Our
technique yields guaranteed search paths with few searchers
even in very large environments.

In addition to its anytime capabilities, GSST can be dis-
tributed, and it allows for some modifications of the initial
strategy to be performed during execution. Example modifi-

Fig. 1 Spanning trees are utilized to generate search strategies that
clear a graphical representation of a physical environment of any po-
tential adversary. The searchers utilize the optimal search strategy on
the underlying tree to guide the search of the graph. Guards are used to
prevent recontamination on edges not in the spanning tree. The office
(top) admits a search strategy with three searchers, and the museum
(bottom) admits one with five. Solid lines denote edges in the spanning
tree, and dashed lines denote edges that need to be guarded during
search. The square denotes the searchers’ starting position

cations include dealing with the case of fortuitous informa-
tion (e.g., an area of the environment happens to be cleared
during the schedule), and correcting for poorly synchronized
movement between the searchers. We demonstrate these ca-
pabilities on a team of human-robot searchers in an indoor
urban search and rescue scenario.

This paper is organized as follows. We first describe re-
lated work in graph search, pursuit-evasion, and approxima-
tion algorithms (Sect. 2). Our survey of the literature high-
lights the need for scalable guaranteed search algorithms,
and it shows the lack of an anytime algorithm for guaran-
teed search. We then formally define the guaranteed search
problem on both arbitrary graphs and trees (Sect. 3), and
we demonstrate why uninformed implicit coordination can
perform poorly when applied to guaranteed search (Sect. 4).
This leads us to Sect. 5, in which we describe our anytime
guaranteed search algorithm and several variants. We then
prove that several variants of our algorithm are probabilis-
tically complete, and we provide loose performance bounds
relative to the number of edges in the graph. We give a sim-
ulated analysis of our proposed algorithm as well as tests

Auton Robot (2010) 29: 99–118 101

on a human-robot search team (Sect. 6). Finally, we draw
conclusions and discuss avenues for future work (Sect. 7).

2 Related work

Guaranteed search on graphs has a long history in both
robotics and mathematics. Parsons (1976) developed some
of the earliest methods for solving the adversarial pursuit-
evasion problem on graphs. He considered the graph to be
a system of tunnels represented by the edges of the graph
in which an evader was hiding, and he defined the search
number of a graph to be the minimum number of pur-
suers necessary to catch an adversarial evader with arbitrar-
ily high speed. Determining the search number of a graph
was found to be NP-hard by Megiddo et al. (1988), and
later to be NP-complete due to the monotonicity of opti-
mal edge search schedules (Bienstock and Seymour 1991;
LaPaugh 1993). In this early work in pursuit-evasion, the
evader can only hide in the edges of the graph, which does
not fit with the intuitive representation of many environ-
ments (e.g., the rooms of a building naturally correspond
to nodes, not edges of a graph). Early researchers were pri-
marily concerned with examining the hardness of the guar-
anteed search problem on graphs, and they did not introduce
algorithms that are scalable to large teams in realistic envi-
ronments.

Recent work in graph search discusses several interesting
variations of the guaranteed search problem. The traditional
formulation does not restrict the movement of searchers. In
other words, searchers are allowed to “teleport” between
nodes in the graph without following the edges between
them. This enables searchers to clear disjoint parts of the
graph without maintaining a route to a starting node. Bar-
rière et al. (2003) introduced the idea of connected search
during which searchers must maintain a connected subgraph
of cleared nodes. Connected search guarantees that a path
exists to the starting nodes at all times and that searchers are
connected by a cleared or “safe” region of the graph. Bar-
rière et al. argue that this is an important quality for search
strategies in the computer network domain.

Connectedness is also an important characteristic of guar-
anteed search strategies in the physical world. Real robots
cannot teleport between nodes in the graph because these
nodes represent physical locations. Instead, robots must re-
strict their search paths to those traversable in the environ-
ment. Furthermore, domains like urban search and rescue
and military reconnaissance require a safe path back to the
starting point to aid in evacuation. This motivates the exam-
ination of connected search paths during guaranteed search.
However, there is a “price of connectedness” because clear-
ing a graph with a connected search strategy may require
more searchers than with a disconnected one (Fomin et al.
2004).

The fact that finding the search number of a graph
is NP-hard suggests that exact solutions to the guaran-
teed search problem on large graphs are intractable (unless
P = NP). This has motivated researchers to develop guaran-
teed search algorithms on special cases of graphs. Barrière
et al. (2002) showed that a connected search strategy with
minimum number of searchers can be found in linear-time
on trees. Polynomial-time algorithms for searching hyper-
cubes (Flocchini et al. 2008), tori, and chordal rings (Floc-
chini et al. 2007) have also been developed. Unfortunately,
most environments in the physical world cannot be repre-
sented by these special cases.

Since many applications require guaranteed search in ar-
bitrary environments, prior work has proposed some heuris-
tic algorithms that provide good performance. Flocchini
et al. (2005) examined a genetic algorithm approach for
clearing arbitrary graphs. Their approach does not take into
account prior information about the environment, and it
does not allow for extensive coordination between searchers.
Thus, it can require many searchers in fairly simple environ-
ments.

Kolling and Carpin (2010) showed how a polynomial-
time graph cut algorithm can be applied to a weighted graph
formulation of the multi-robot surveillance domain. Their
algorithm operates on an alternative formulation of the clear-
ing problem, which requires several searchers to clear areas
in the environment. They consider the optimal traversal of
the minimum spanning tree to help generate a search sched-
ule, but they do not examine alternative spanning trees or
traversal strategies.

We have shown that a dynamic programming inspired al-
gorithm, which iteratively maximizes the number of cleared
nodes, can work well on complex graphs (Kehagias et al.
2009b). However, this algorithm is unable to find a search
strategy with the minimal number of searchers on many
complex graphs (see Sect. 6). On the other hand, this al-
gorithm can produce nonmonotonic searches and can deal
with both finite evader speed and non-local visibility.

A key insight in the development of approximate guar-
anteed search algorithms is the connection between graph
search and the graph parameters of treewidth and path-
width (Dendris et al. 1994). A tree decomposition of a graph
is a new graph, which (a) is a tree; (b) has nodes which
correspond to sets of nodes of the original graph (these
new “supernodes” are called bags); (c) satisfies some ad-
ditional technical conditions (listed in Dendris et al. 1994).
The width of a tree decomposition is the cardinality of its
largest bag minus one. The treewidth of a graph G is the
minimum of the widths of all tree decompositions of G.
A minimum width tree decomposition of G yields an op-
timal clearing schedule for the visible search problem (i.e.,

102 Auton Robot (2010) 29: 99–118

when the searchers know the location of the target).1 Sim-
ilarly, a path decomposition of a graph G is a tree decom-
position where the tree is also a path; the pathwidth of G is
the minimum of the widths of all path decompositions of G;
a minimum width path decomposition provides an optimal
solution to the guaranteed invisible search problem. Approx-
imation algorithms for treewidth and pathwidth have been
proposed (Kloks 1994), but they are not guaranteed to pro-
vide connected or internal path decompositions.

Fraigniaud and Nisse (2006) proposed an algorithm for
connected search by finding approximately minimal width
tree decompositions. They show how these decompositions
can be used to find connected search strategies. Though
polynomial-time, their algorithm grows in complexity with
both the search number and the size of the graph. In addi-
tion, the approximation bound degrades fairly quickly with
the size of the graph. They do not implement their algorithm,
and they do not provide sufficient information to demon-
strate that an implementation would be efficient or feasible.

Much of the above work examines the “edge search”
problem in which the evader hides in the edges of the graph.
A more intuitive representation for physical environments
is for the nodes to correspond to rooms and hallways and
for the edges to correspond to doorways or borders between
the rooms. In the resulting formulation, the evader hides in
the nodes of the graph. We discuss many of the theoretical
properties of node search in Kehagias et al. (2009a), and we
show its formal relationship to edge search.2

With robotic applications in mind, Guibas and LaValle
extended guaranteed search techniques to polygonal envi-
ronments (LaValle et al. 1997; Guibas et al. 1999; LaValle
2006). Their algorithm discretizes polygonal environments
into conservative visibility regions and then uses an informa-
tion space approach to guarantee capture. For a single pur-
suer, their approach is guaranteed to find a solution if one
exists. To maintain completeness with multiple searchers,
their algorithm would need to generate a potentially expo-
nential number of visibility regions and search the resulting
information space. This is only tractable for few searchers
and small environments. An alternative is to use an iterative
visibility-based method, but such an approach loses com-
pleteness and becomes similar to uninformed implicit coor-
dination (see Sect. 4).

In addition, Isler et al. (2005) showed that randomized
strategies can lead to arbitrarily high probability of capture

1Note that finding a minimal width tree decomposition of an arbitrary
graph G also is an NP-hard problem.
2Note that several alternative versions of “node search” appear in the
literature (see Alspach 2006 and Fomin and Thilikos 2008 for surveys).
In one formulation, the evader resides in the edges of the graph, and
these edges are cleared by trapping (i.e., two searchers occupy the ad-
jacent nodes). In another, the pursuers have knowledge of the evader’s
position while attempting to capture the evader by moving onto the
same node. We do not consider these variants in this paper.

in simply connected polygons and trees even with a single
pursuer. They relax the assumption that the evader is fully
aware of the pursuer’s plan, and they allow the pursuer to
make unpredictable random movements. However, unlike
the approaches discussed above, their randomized approach
does not provide a definitive time at which the environment
is cleared (i.e., it cannot contain an evader).

Many of the methods mentioned above are not scalable to
large teams of searchers. To improve scalability, robotics re-
searchers have applied auction methods to multi-agent coor-
dinated search domains. Kalra (2006) presented Hoplites, an
algorithm that utilizes auction-based plan sharing to perform
tightly coupled tasks. Hoplites allows searchers to actively
coordinate by running auctions when they are presented with
high-cost situations, and it provides a framework for incor-
porating team constraints, which she demonstrates in the
constrained search domain. Hoplites depends on multi-robot
auctions to generate good search plans, but it does not pro-
vide a mechanism for deciding when to hold an auction if
it is not obvious. Setting a synthetic threshold is one option,
but this leads to poor performance if the threshold is set in-
correctly.

Gerkey et al. (2005) also developed a parallel stochas-
tic hill-climbing method for small teams (PARISH) that is
closely related to auction-based methods. Rather than us-
ing the market metaphor, they frame guaranteed search as
a parallel optimization problem. Their algorithm dynami-
cally forms teams of searchers that work together to solve
tasks. Team formation and path generation are guided by a
heuristic, which makes their algorithm’s performance sen-
sitive to the choice of heuristic. Regardless of the heuris-
tic used, the algorithm requires explicit coordination within
teams, which can lead to high computation in large environ-
ments. We show in Sect. 6 that our algorithm clears several
test environments with fewer searchers than PARISH.

While auction-based algorithms are more scalable than
coupled planning approaches, they still rely on auctions
and/or team formation, which can consume large amounts of
communication bandwidth and planning time. We demon-
strate that implicit coordination with the addition of an in-
formed pre-processing step allows for fast solutions to guar-
anteed search problems. Our technique allows for distrib-
uted and online operation, which is also typically found in
auction-based techniques.

Guaranteed search algorithms in the literature do not
demonstrate “anytime” capabilities. An anytime algorithm
is one that quickly generates an initial solution and then im-
proves solution quality with increasing runtime. Anytime al-
gorithms have been successfully applied to POMDP plan-
ning (Smith 2007), dynamic path planning (Likhachev et al.
2005), and many other domains. These state-of-the-art algo-
rithms allow for high-quality solutions with varying levels of
computational resources. Zilberstein (1996) discusses some

Auton Robot (2010) 29: 99–118 103

of the desirable qualities of anytime algorithms in intelli-
gent systems. Our proposed algorithm (GSST) shows many
of these qualities, including monotonicity (the solution only
improves over time), recognizable quality (the quality of the
solution, i.e. number of searchers, can be determined at run-
time), consistency (the algorithm will not spend too much
time finding a single solution), and interruptibility. Expand-
ing GSST to incorporate other desirable qualities of anytime
algorithms is discussed in Sect. 7. To the best of our knowl-
edge, GSST is the first algorithm to bring the advantages of
anytime algorithms to the domain of guaranteed search.

3 Problem setup

We now formally define the guaranteed search problem
on graphs. Let G = (N,E) be the undirected environment
graph with vertices N and edges E. At any time t , the k-th of
K searchers exists on vertex sk(t) = u ∈ N . The searcher’s
movement is deterministically controlled, and each may
travel to vertex sk(t + 1) = v if there exists an edge be-
tween u and v. A target also exists on this graph on vertex
e(t) = u ∈ N . The target moves along edges between ver-
tices. A searcher “captures” the target by moving onto the
same vertex (i.e., ∃k, t : sk(t) = e(t)). In this paper, we as-
sume that a searcher on a given node will always detect a
target on the same node, and the target is assumed to have
potentially unbounded speed.

At any time during the search, there are nodes that may
contain the target (dirty nodes) and nodes that may not
(cleared nodes). We denote the set of dirty nodes at time
t as ND(t) ⊆ N and the cleared set as NC(t) = N \ ND(t).
The searchers’ goal is to progressively decrease the set of
dirty nodes to the empty set, thus guaranteeing capture of
any target in the environment.

The guaranteed search optimization problem is to gener-
ate a clearing strategy for a given graph requiring the min-
imum number of searchers. Let S(t) = {s1(t), . . . , sK(t)}
(the set of locations of each searcher at time t), let S =
S(0), . . . , S(tf) (the full search schedule), let sn(S) = K

(the number of searchers required for the schedule), and let
ND(t |S) be the dirty set at time t given S. Finally let Ψ F (tf)

be the set of feasible searcher paths on the search graph from
time t = 0, . . . , tf .3 The optimization problem is to generate
a feasible schedule S with minimal searchers K for which
ND(tf |S) = ∅ as shown in (1). In this paper, we assume that
the variable tf is left unspecified and can be modified as part

3Formally, the joint path space (or set of possible paths) for a graph
G = (N,E) considers the possible locations sk(t) ∈ N of K searchers
at times t ∈ {0,1, . . . , tf }. The searchers’ configuration space at
time t is Φ(t) = {(s1(t), . . . , sK(t))|s1(t) ∈ N, . . . , sK(t) ∈ N}. The
searchers’ joint path space is defined as the Cartesian product Ψ (tf) =
Φ(0) × · · · × Φ(tf).

of the optimization. Note that (1) can (and likely does) have
many possible optimal solutions

S∗ = argmin
tf ,S

sn(S) s.t. ND(tf |S) = ∅. (1)

Equation (1) does not directly consider minimizing the
length of the schedule tf (i.e., the clearing time of the sched-
ule). However, if many schedules are generated with a mini-
mal number of searchers, the shortest schedule can easily be
chosen. In addition, our ongoing work shows that a variation
of GSST can be used to minimize clearing time given a fixed
number of searchers (Hollinger et al. 2009a).

We examine the guaranteed search problem on graphs
with the understanding that both the target and searchers
exist on the vertices of the graph. We refer to this prob-
lem as node search, which is different from the edge search
problem discussed in the literature (i.e., the target exists in
the edges of the graph) (Parsons 1976). Searching built en-
vironments lends itself to the node search formulation be-
cause rooms and hallways can be easily decomposed into
nodes on the graph. The edge search formulation, on the
other hand, describes a situation in which the edges on the
graph are contaminated (e.g., with poison gas) or the search
is performed in a system of tunnels. We deal with the node
search formulation because of its direct connection with in-
door searching. In our ongoing work, we have shown that
any edge clearing schedule is also a node clearing sched-
ule Kehagias et al. (2009a), which allows us to take advan-
tage of algorithms from the edge search literature to find
node clearing schedules.

It is important to note that we only consider search strate-
gies that are internal, monotone, and connected.4

Definition 1 A node search schedule S is internal, mono-
tone, connected (IMC), and rooted if the following hold.

1. Internal: once placed on the graph, searchers can only
move along the edges, and searchers are never removed
from the graph.

2. Monotone: for all t , we have NC(t − 1) ⊆ NC(t).
3. Connected: for all t , (NC(t),EC(t)) is a connected sub-

graph of G.
4. Rooted: searchers only can be placed onto a single, pre-

specified node called the root of the search.

Internal search strategies restrict the movement of the
searchers to those feasible on the graph (i.e., searchers can-
not teleport), and connected search strategies always main-
tain a connected subgraph of cleared nodes. Both of these

4Throughout this paper we will refer to a minimal search strategy
as one that requires the smallest possible number of searchers while
remaining internal, monotone, and connected. The attained minimal
search strategy is the best strategy found thus far.

104 Auton Robot (2010) 29: 99–118

characteristics are desirable in robotic search applications.
The movements of robots in the real world are restricted to
those that are physically possible. In addition, robot teams
will often start in the same location, thus allowing the
cleared regions to grow as a connected subgraph from that
location.

3.1 Environment discretization

The application of GSST to physical environments requires
discretization into a number of cells. We accomplish this
by dividing the environment into a convex tessellation. The
convexity of the cells guarantees that a searcher in a given
cell will have line-of-sight to a target in the same cell. Gain-
ing line-of-sight is relevant to most sensors that a mobile
robot would carry including cameras and laser scanners.

Sufficiently small convex cells allow for clearing sched-
ules with only a 180 degree field-of-view sensor. The re-
quirements are that (1) a searcher can see an entire cell
while at a boundary (pointing inward) and (2) the searcher
can move from one cell border to another while keeping
the entire destination border in view at all times (Gerkey
et al. 2005). These requirements are met with small convex
cells, and we implement several 180 degree FOV schedules
in Sect. 6.

One method for discretization is to take advantage of
the inherent characteristics of indoor environments. To dis-
cretize an indoor map by hand, simply label convex hallways
and rooms as cells and arbitrarily collapse overlapping sec-
tions. Taking into account the cell adjacency in a discretized
map yields an undirected graph that the searchers can tra-
verse. Figure 2 shows two example floorplans used in our
experiments. Ongoing work by Kolling and Carpin (2008)
has attempted to automate the generation of this type of dis-
cretization.

Alternatively, a suitable discretization can be found au-
tomatically by generating a constrained Delaunay triangula-
tion of the environment (Shewchuk 2002). The constrained
Delaunay triangulation ensures that the edges of the obsta-
cles correspond to edges in the triangulation, which gener-
ates a convex tessellation of the free space. The resulting
search graph has a bounded branching factor of three be-
cause it consists only of triangles. Delaunay triangulations
can be generated with angle and size constraints on the poly-
gons, which allows for the inclusion of range constraints on
the sensors. If a triangular tessellation is not suitable, any
convex tessellation can be used, but we note that the relation-
ship between the discretization and the number of searchers
required is not well understood (see Sect. 7 for some avenues
for future work in this area).

In indoor environments, there are several different cate-
gories of “obstacles” that may exist. In this paper, we in-
clude major obstacles (e.g., walls and buildings), but we do

Fig. 2 Example floorplans and graphical representation of environ-
ments used for guaranteed search trials. The Newell-Simon Hall (top)
and National Gallery of Art (bottom) were used for simulated testing

Auton Robot (2010) 29: 99–118 105

not consider minor obstacles, such as small furniture. We as-
sume that the robots’ sensors can see through minor obsta-
cles, or that the adversary is large enough that it could not
hide behind these obstacles. Of course, a finer discretiza-
tion taking into account minor obstacles can also be ob-
tained and used with GSST, at the possible cost of using
more searchers. The types of obstacles to consider during
the discretization in various environments is a design deci-
sion and a subject of ongoing research.

4 Uninformed implicit coordination

The multi-robot guaranteed search problem is difficult to
solve due to the tight coupling of the searchers in the joint
path space and the necessity to search a large number of
paths to find an optimal strategy. If an environment graph
has a branching factor b and requires K searchers tf steps
to clear, the number of possible paths is O(bKtf). As the
environment size increases, both the number of searchers
required and the time to clear will increase. This quickly
leads to the intractability of any exhaustive search of the
joint space.

In prior work, we presented FHPE + SA, an approxima-
tion algorithm for solving the efficient search path planning
problem (Hollinger et al. 2009b). In this domain, searchers
must maximize the probability of finding a non-adversarial
target. FHPE + SA has searchers plan paths by enumerat-
ing all possible strategies to a finite-horizon. The robots do
so greedily and sequentially, which allows for linear scala-
bility in the number of searchers. Planning sequentially and
sharing paths is a form of implicit coordination because the
robots do not explicitly plan for their teammates.

We can extend this approximation algorithm to guar-
anteed search with a simple modification. During finite-
horizon planning, the searchers can limit their paths to those
that do not cause recontamination (i.e., paths that do not al-
low clean nodes to become dirty). If the searchers plan se-
quentially and share their paths to construct a partial sched-
ule incrementally, this leads to a piggyback effect during
which each successive searcher extends the clearing sched-
ule further in the environment. By iteratively planning on the
receding horizon, the searchers can find a clearing schedule
in this manner.

Algorithm 1 gives a description of this receding horizon
algorithm, which we refer to as Receding Horizon Greedy
Clearing (RHGC). The parameter d represents the horizon
length in the receding-horizon planner. The running time of
RHGC scales linearly with the number of searchers K but
exponentially with increasing d : O(Kbd), where b is the
branching factor of the search graph. Thus, d should be set
to a fairly small value, particularly if the branching factor is
large.

Algorithm 1 Receding Horizon Greedy Clearing (RHGC)
for guaranteed search

1: Input: Graph G = (N,E), Start node b ∈ N

2: K ← 1, t ← 0, s1(0) ← b

3: while ND �= ∅ do
4: for searcher k = 1 to K do
5: % P is a feasible path for searcher k in the search

graph to horizon d

6: % S = s1(0), . . . , sK(0), . . . , s1(t + d), . . . ,

sk−1(t + d) is a partial schedule
7: % ND(t +d|S) is the dirty set at time t +d given S
8: sk(t + 1), . . . , sk(t + d) ←

argminP |ND(t + d|P,S)|
9: end for

10: t ← t + 1
11: if no searcher can move without recontamination

then
12: % Add a new searcher and reset to start
13: K ← K + 1, t ← 0, sk(0) ← b for all searchers
14: end if
15: end while
16: Output: Search strategy S, clearing time t

Fig. 3 Example of an environment in which uninformed implicit co-
ordination leads to a large number of searchers. If each searcher maxi-
mizes its own path on the finite-horizon, each will choose to go down a
different corridor, requiring N + 1 searchers to clear the environment.
A minimal clearing strategy requires only three searchers regardless
of the number of corridors: one searcher guards the main hallway, and
two searchers clear the corridors together. In contrast, if the environ-
ment is discretized into a tree, a three-searcher solution can be found
easily with Algorithm 3

Algorithm 1 is an application of linearly scalable im-
plicit coordination to the guaranteed search domain. Un-
fortunately, uninformed implicit coordination can perform
poorly because it ignores the requirement for tight coordi-
nation. In other words, the searchers sometimes must work
together to make any progress in clearing the environment.
Figure 3 gives an example where uniformed implicit coordi-
nation leads to a large number of searchers. We also compare
RHGC to GSST in Sect. 6.

Given the potentially poor performance of implicit coor-
dination during guaranteed search, it may be tempting to uti-
lize market-based techniques or other methods of injecting
explicit coordination into the search schedule. GSST pro-

106 Auton Robot (2010) 29: 99–118

Algorithm 2 Edge labeling for trees
1: Input: Tree T = (N,E), Start node b ∈ N

2: O ← leafs of T

3: while O �= ∅ do
4: l ← any node in O , O ← O \ l

5: if l is a leaf then
6: e ← only edge of l

7: λ(e) = 1
8: else if l has exactly one unlabeled edge then
9: e ← unlabeled edge of l

10: e1, . . . , ed ← labeled edges of l

11: λm ← max{λ(e1), . . . , λ(ed)}
12: if multiple edges of l have label λm then
13: λ(e) ← λm + 1
14: else
15: λ(e) ← λm

16: end if
17: end if
18: if l �= b and parent(l) has exactly one unlabeled edge

then
19: O ← O ∪ parent(l)
20: end if
21: end while
22: Output: Edge labeling λ(E)

vides an alternative method for improving the performance
of implicit coordination by exploiting the relatively easy
problem of finding a guaranteed search schedule on trees.

5 The GSST algorithm

In this section, we present GSST, an anytime algorithm for
generating guaranteed node search schedules on graphs by
utilizing their spanning trees. Our algorithm takes advantage
of the minimal edge search on the underlying spanning tree
to guide node search on the full graph. Though GSST does
not have a performance guarantee with respect to the optimal
solution, we present several traversal variants that are prob-
abilistically complete (i.e., they have a nonzero probability
of producing an optimal search schedule at each iteration).
GSST and its variants allow for scalable guaranteed search
with long term planning and coordination.

5.1 Guaranteed search on trees

Guaranteed search on arbitrary graphs is an NP-hard prob-
lem, but linear-time algorithms exist for guaranteed search
on trees. This section describes a non-recursive version of
the algorithm from Barrière et al. (2002). This algorithm
generates a minimal strategy for a given tree in time linear
in the nodes in the search graph. Eliminating the need for

Algorithm 3 Guaranteed search schedule for trees

1: Input: Tree T = (N,E′), Edge labeling λ : E′ → Z,
Start node b ∈ N

2: % Define sk(t) as the node occupied by the k ≤ μ

searcher at time t

3: Calculate required searchers, μ = edge label into b

4: t ← 0, K ← μ, sk(t) ← b for all k, ND ← N \ b

5: while ND �= ∅ do
6: t ← t + 1
7: for all searchers k do
8: if searcher cannot move without recontamination

then
9: sk(t) ← sk(t − 1)

10: else if positive edge label exists incident to
sk(t − 1) then

11: sk(t) ← node reached through lowest labeled
edge

12: Decrement λ(e) of edge traversed
13: else
14: sk(t) ← node reached through negative labeled

edge
15: Increment λ(e) of edge traversed
16: end if
17: ND ← ND \ sk(t)

18: end for
19: end while
20: Output: Search schedule S, clearing time t

recursion allows for the direct application of implicit coor-
dination (see Sect. 6).

We assume that the starting node of the searchers is
known and the same for all searchers. Denote this starting lo-
cation as b ∈ N . First, label the edges on the tree T = (N,E)

with λ : E → Z+ as in Algorithm 2. The mapping λ(e) de-
scribes the number of searchers that must move down the
tree along that edge during the search strategy.

Now, make the edges directional by pointing them down
the tree from the start node to the leaves. Double the edges
and give these new edges opposite direction. Label the dou-
bled edges with λ(e2) = −λ(e), where e2 is the double of
edge e. The negative values represent recursive steps back
up the tree after clearing. Refer to the set of edges and their
doubles as E′.

A minimal edge search strategy can be generated from
this labeling in a distributed manner. Algorithm 3 uses a
variation of the recursive algorithm in prior work to clear the
edges of a tree T rooted at node b with the minimum number
of searchers (Barrière et al. 2002). The number of searchers
necessary is equivalent to the edge labeling of an edge enter-
ing the start node. Refer to this value as μ. Since this sched-
ule is an edge clearing schedule, it is also a node clearing
schedule of the underlying tree (Kehagias et al. 2009a).

Auton Robot (2010) 29: 99–118 107

Algorithm 4 Randomized depth-first spanning tree genera-
tion

1: Input: Graph G = (N,E), Start node b ∈ N

2: V ← ∅, S ← ∅, B ← ∅, x ← b

3: while some edges are in neither S nor B do
4: V ← V ∪ x, R ← ∅
5: for all nodes y adjacent to node x do
6: if y ∈ V then
7: B ← B ∪ e(x, y)

8: else if y not already visited from x then
9: R ← R ∪ y

10: end if
11: end for
12: if R is empty then
13: x ← parent of x

14: else
15: Choose random node z ∈ R

16: Set parent of z to x

17: S ← S ∪ e(x, z), x ← z

18: end if
19: end while
20: Output: Set of tree edges S, Set of non-tree edges B

5.2 Generating spanning trees

The algorithm described above for trees does not apply to
arbitrary graphs because the edge labeling is not possible
with cycles. However, additional searchers can be used as
guards to transform an arbitrary graph G = (N,E) into a
tree T = (N,S). The non-guard searchers can then traverse
the resulting tree using the algorithm described above. This
reduces the guaranteed search problem to that of generating
a “good” spanning tree on which to base the search.

The problem of uniformly sampling the space of span-
ning trees has been heavily studied. Wilson’s algorithm
based on the use of loop-erased random walks is both ef-
ficient and conceptually simple (Wilson 1996). As an alter-
native, we propose Algorithm 4, which uses a randomized
depth-first search to find a spanning tree. This algorithm fo-
cuses the search on trees that have non-tree edges incident to
few nodes. This intuitively leads to trees that require fewer
guards. We compare these methods for spanning tree gener-
ation in Sect. 6.

5.3 Labeled traversal

Given a set of tree edges S and a set of non-tree edges B ,
a naive search strategy can be found by assigning guards to
a node incident to each non-tree edge and then searching the
tree as in Algorithm 3. This technique ignores two impor-
tant characteristics of the problem. First, adding a guard for
every non-tree edge will likely be redundant. If several non-
tree edges are incident to a single node, one guard will suf-

Algorithm 5 Guaranteed Search with Labeled Traversal
1: Input: Graph G = (N,E), Start node b

2: while time is available do
3: Find a spanning tree T = (N,S)

4: Label edges of T using Algorithm 2
5: Calculate required searchers, μ = edge label into b

6: Generate μ tree searchers
7: while graph is not cleared do
8: Move tree searchers according to Algorithm 3
9: if a tree searcher reaches a node c with incident

non-tree edge then
10: if guard can move without recontamination

then
11: Move guard to node c

12: else
13: Generate new guard and move to node c

14: Increment number of guards
15: end if
16: end if
17: end while
18: Record η = number of tree searchers plus guards
19: end while
20: Output: Search strategy with lowest η

fice for all of them. Second, the search strategy occurs over a
time interval. Guards that are necessary at earlier times may
be free to guard other edges at later times.

Algorithm 5 shows how these observations can be taken
into consideration during search to generate a traversal strat-
egy. We will refer to the resulting traversal as labeled traver-
sal (GSST-L). Algorithm 5 also demonstrates the anytime
nature of GSST. As more spanning trees are generated, the
lowest attained search number is stored. More strategies are
generated with increasing computation, which leads to lower
attained search numbers.

Note that Algorithm 5 can be modified for more conser-
vative use of guards. Instead of calling for a guard when-
ever a tree searcher reaches a node with incident non-tree
edges, the algorithm can wait for all tree searchers to reach
such nodes. This ensures that moving tree searchers will not
release a previously stuck searcher. Furthermore, the algo-
rithm can reassign tree searchers that are no longer neces-
sary. For instance, three searchers may be needed to clear
an early portion of the graph, but the remaining subgraph
may only require two. In this case, a tree searcher can be
reassigned as a guard after it is no longer needed as a tree
searcher. These reassignments may affect search number be-
cause they can provide extra guards later in the search sched-
ule. These two extensions are used in Sect. 6.

The guard allocation step can be seen as an instance of
implicit coordination. Each searcher determines where it can
best assist the search schedule and then broadcasts that in-
formation to the other searchers. The tree searchers do not

108 Auton Robot (2010) 29: 99–118

Algorithm 6 Randomized traversal
1: Input: Graph G

2: Generate a random spanning tree of G

3: Initialize the cleared set NC as the root node
4: Generate a searcher at the root
5: while graph not cleared do
6: Randomly choose edge e in the spanning tree and ad-

jacent to NC

7: if a searcher can traverse e without recontamination
then

8: Move to and traverse e with that searcher, up-
date NC

9: else
10: Generate a searcher at the root
11: end if
12: end while
13: Output: search schedule S

explicitly coordinate with the guards to cover the non-tree
edges. Instead, the searchers utilize the shared spanning tree
representation to help determine their task assignments. The
generation of a spanning tree is a shared pre-processing step,
which occurs before implicit coordination.

5.4 Randomized and label-weighted traversal

We now consider several traversal variants for GSST that
utilize the labeling in different ways. Algorithm 6 shows
a randomized traversal strategy (GSST-R). The randomized
strategy sends searchers down branches of the spanning tree
without considering the tree labeling. Unlike labeled traver-
sal, randomized traversal does not utilize information from
optimal search on the spanning tree.

A simple modification of random traversal is to weight
the edge selection based on their labeling. We will refer to
this as label-weighted traversal (GSST-LW). We prove that
these variations of GSST are probabilistically complete (see
Theorem 2 below).

5.5 Label-dominated traversal

Another alternative is to traverse labeled edges that lead to
branches with known clearing numbers. This can be done by
labeling edges that lead to parts of the graph that are trees
(subtrees of the graph). A list of searchers who can move
without recontamination can be maintained during search.
If an edge adjacent to NC leads to a subtree of the graph,
and enough free searchers are available, clearing this sub-
tree can only improve the search strategy. The additional
clearing moves can be determined randomly or using a label-
weighted approach. We refer to this as label-dominated tra-
versal (GSST-LD).

5.6 Correctness

Theorem 1 proves that all variations of GSST are guaranteed
to generate a node clearing schedule with a finite number of
searchers given a spanning tree. From this, we see that every
iteration of the anytime algorithm will generate a clearing
strategy with a finite number of searchers.

Theorem 1 For every graph G and spanning tree T , all pre-
sented variations of GSST generate a node clearing strategy
with a finite number of searchers.

Proof Any spanning tree T of G contains all nodes in G.
Also, any edge clearing strategy of T is also a node clear-
ing strategy of T (Kehagias et al. 2009a). Thus, GSST-L
will generate a clearing schedule of G if sufficient guards
are added to prevent recontamination. Since the number of
guards cannot be larger than the number of non-tree edges
on the graph, the strategy uses finitely many searchers.

GSST-R, GSST-LW, and GSST-LD start a single searcher
at the root and progressively makes clearing moves with
searchers that can move without recontamination. Searchers
are added when non-contaminating clearing moves are im-
possible. Thus, progress is made at each step, and recon-
tamination does not occur, which leads to a node clearing
schedule. �

5.7 Completeness

Theorem 2 shows that random and label-weighted traversal
have a nonzero chance to find a minimal monotone, con-
nected node clearing schedule on any graph. In other words,
every iteration of the anytime algorithm has a chance to gen-
erate a minimal search schedule on the graph. Thus, if the
algorithm were run for a sufficiently long time, it would find
a minimal schedule on any graph.

Theorem 2 At each iteration, both random traversal
(GSST-R) and label-weighted random traversal (GSST-LW)
of a uniformly generated spanning tree have a nonzero
chance of yielding a minimal monotone/connected node
search strategy on any graph.

The proof of Theorem 2 is given in the Appendix B. We
conjecture that the same holds for label-dominated random
traversal, but we do not provide a formal proof. The com-
pleteness of labeled traversal is an open problem, which we
discuss in Sect. 7. In addition, our proofs assume that a span-
ning tree generation strategy is employed that has a nonzero
chance of producing any spanning tree. Uniform sampling
has this property, but randomized depth-first sampling (Al-
gorithm 4) does not. Thus, GSST may not be probabilis-
tically complete when used in conjunction with depth-first
sampling.

Auton Robot (2010) 29: 99–118 109

5.8 Solution quality

We now give theoretical analysis regarding the performance
of GSST. This analysis is limited to labeled traversal. The
performance of the search schedules generated by GSST is
determined by the number of total searchers (guards plus
tree searchers) required to clear the graph. Barrière et al.
(2002) show that the worst-case bound on trees is μ ≤
log2(|N |). This is an upper bound on the number of tree
searchers needed for a graph with |N | nodes. Labeled tra-
versal requires both tree searchers and guards. As described
above, the maximum number of guards needed is |B| =
|E|−|N |+1. Thus, the worst-case total number of searchers
η for the algorithm is η ≤ log2(|N |) + |E| − |N | + 1.

The maximum number of searchers describe above is a
worst-case bound on the performance of the first spanning
tree generated for a graph. Randomly searching over the
space of spanning trees and using temporal aspects of the
search to reuse guards significantly reduces this number. It
may be possible to construct a traversal strategy such that
this worst-case is bounded relative to optimal, and we leave
this as an avenue for future work.

This analysis highlights the anytime nature of GSST. The
searchers begin the initial step of generating spanning trees.
If an acceptable strategy has been found or time has run
out, the best spanning tree is utilized to perform the search.
At any time during tree generation, a clearing schedule is
available, though perhaps one requiring a large number of
searchers.

5.9 Computational complexity

Each iteration of GSST performs the following steps:
(1) generate a spanning tree, (2) label the spanning tree,
(3) determine the attained search number, and (4) generate
the traversal. We show that the first three steps can be per-
formed in time linear in the number of nodes in the graph.

Finding a spanning tree using depth-first search requires
visiting each node once to label its edges and is thus O(|N |).
We direct the reader to Wilson (1996) for a discussion of the
complexity of uniform spanning tree generation.

As described by Barrière et al. (2002), edge labeling and
determining search schedules on trees can be done in linear-
time. Our non-recursive labeling (Algorithm 2) also is linear
in the number of nodes, since it visits each node once.

Our labeled tree traversal algorithm (Algorithm 3) with
K searchers is O(K|N |) since it requires an inner loop that
determines the schedule for each individual searcher for
|N | clearing moves.5 The worst-case number of searchers
to clear a tree is O(log |N |) (see above), which leads to

5We note that a clearing schedule on a tree may require up to 2|N |
moves since the searchers may need to recurse up the tree.

O(|N | log |N |) computation. This has the advantage that
it allows the computation to be distributed among the
searchers.

Replacing the inner loop with a centralized planner that
moves multiple searchers during each iteration reduces the
computation to O(|N |). This is equivalent to the recursive
planner used by Barrière et al. (2002) on trees, except that
it also counts guard placements. The randomized traversal
variants (e.g., Algorithm 6) also are O(|N |) because they
must make |N | random choices of frontier nodes to generate
a clearing schedule.

The output of all planners described above may contain
teleporting guard moves, which will require further process-
ing to make the schedule internal. For labeled traversal of
arbitrary graphs, the search schedules of guards can be de-
termined using Dijkstra’s algorithm between guard points,
which is O(|E| + |N | log |N |) per guard. A feasible guard
schedule is always possible because the search schedule is
monotone and connected. Note that this step only needs to
be performed once when a schedule with sufficiently few
searchers is found and ready to be executed.

In some cases, there may be a limited number, Kmax, of
available searchers, and strategies requiring more than Kmax

searchers may be considered infeasible. In these cases, the
determination of the attained search number can be stopped
when Kcurr > Kmax, and a new spanning tree can be gen-
erated at this time. Additionally, Kmax can be set to the best
solution so far, which will throw out any schedule as soon as
it generates more than the current attained minimal. These
modifications save computation and lead to finding a desir-
able strategy more quickly.

GSST is limited by the number of iterations (i.e., number
of spanning trees) needed to find a schedule with sufficiently
few searchers. For large graphs, an exponential number of
spanning trees are possible. Our algorithm leverages the fact
that many spanning trees will yield good search schedules
(though not necessarily minimal ones).

5.10 Example

The following example demonstrates the importance of the
choice of underlying spanning tree when using GSST. For
explanatory purposes, we use labeled traversal for the exam-
ple. Figure 4 shows a small house environment. If the span-
ning tree on the left of Fig. 4 is found, then two tree searchers
are required to clear the tree. Assume that the searchers start
in cell three. The searchers first move down the spanning
tree to cell four. Then one searcher must remain at cell four
while the other searcher clears the rest of the graph. Since
cell four is the only cell that needs to be guarded to remove
the non-tree edges, this yields a two searcher clearing strat-
egy of the original graph. Two is also the minimal number
of searchers capable of clearing this environment.

110 Auton Robot (2010) 29: 99–118

Fig. 4 Example discretization of house environment (top) and two ex-
ample spanning trees of resulting graph (bottom). Solid lines are span-
ning tree edges, and dashed lines are non-tree edges. If searchers start
in cell 3, the left spanning tree gives a two searcher clearing schedule
while the right spanning tree gives a three searcher clearing schedule

Even in this simple example, all spanning trees do not
yield a minimal (two searcher) strategy. Consider the right
spanning tree in Fig. 4. Ignoring the non-tree edges, this
spanning tree requires two searchers to clear. However,
when clearing the original graph, an extra guard must be
placed on one of the cycles. The guard at cell four cannot
be reused because its movement would cause recontamina-
tion. Thus, this spanning tree yields a three searcher sched-
ule on the original graph due to the necessity of guarding the
non-tree edges. This is the motivation for generating many
spanning trees and choosing the best schedule.

6 Results

We conducted experiments on a 3.2 GHz Pentium 4 proces-
sor with 2 GB RAM running Ubuntu Linux. We imple-
mented and tested three methods for generating spanning
trees. They are described below.

1. Spanning tree enumeration (Char 1968): Char’s algo-
rithm for enumerating all spanning trees. This is a brute
force method for generating all possible spanning trees,
which is computationally viable only on small graphs
with few spanning trees.

2. Uniform sampling (Wilson 1996): Wilson’s algorithm for
uniformly sampling the space of spanning trees using
loop-erased random walks. The algorithm generates a

random spanning tree sampled uniformly from the space
of all spanning trees.

3. Depth-first sampling (Sect. 5): randomized depth-first
search to generate spanning trees. This technique does
not sample the entire space of trees, but it attempts to
bias sampling towards trees requiring a small number of
guards.

A summary of the five traversal variants described in
Sect. 5 is given below.

1. GSST-L: labeled traversal. The labeling of the underlying
spanning tree is used deterministically to guide the search
(see Algorithm 5).

2. GSST-R: randomized traversal. The underlying spanning
tree is traversed randomly. The labeling is not used.

3. GSST-LW: label-weighted traversal. The underlying
spanning is traversed in a randomized manner with
weights determined by the labeling.6

4. GSST-LD: label-dominated traversal. Subtrees of the
graph are deterministically cleared as available and other
moves are determined randomly.

5. GSST-LDW: label-dominated/weighted traversal. Sub-
trees of the graph are deterministically cleared as avail-
able, and other clearing moves are determined in a ran-
domized manner with weights determined by the label-
ing.

6.1 Simulated indoor environments

With robotic search in mind, we tested GSST on the two
complex indoor environments shown in Fig. 2. The first map
is a floorplan of the third floor of Newell-Simon Hall at
Carnegie Mellon University. The second is a map of the first
floor of the National Gallery of Art in Washington, DC. The
Newell-Simon Hall (“office”) environment has two major
cycles, and the National Gallery (“museum”) environment
has many cycles by which the target can escape capture.
Both of these environments are considerably larger than
those searched by many authors using comparable meth-
ods (Guibas et al. 1999; Gerkey et al. 2005).

The office map is 100 m × 50 m discretized into 60 cells
with 64 edges. Kirchhoff’s matrix-tree theorem shows that
the office has 3604 different spanning trees. The museum
map is 150 m × 100 m discretized into 70 cells with 93
edges (5.3 × 1014 spanning trees). Thus, we can exhaus-
tively search the space of spanning trees for the office but
not for the museum. It is not immediately obvious, but the

6The exact weighting function used in this paper is to continuously step
through the frontier edges and generate a random integer τ ∈ [0, λmax],
where λmax is the maximum label of all frontier edges. A frontier edge
e is accepted for traversal if its label λ(e) ≤ τ . Any probabilistic func-
tion that is inversely proportional to the weights could be used in place
of this.

Auton Robot (2010) 29: 99–118 111

Table 1 Comparison of variations of GSST in two environments. The
first column gives the method of edge traversal, the second column the
minimum number of searchers attained, the third column the percent-
age of minimal solutions over all computed solutions, and the fourth
column the total execution time (for 100,000 spanning trees). The same
minimal schedule may be counted more than once in the percent mini-
mum. The starting node is fixed throughout the trials

Office Uniform ST generation

Edge traversal Min Percent min Time

GSST-L 3 0.7780% 20.1886

GSST-R 3 0.0040% 15.4610

GSST-LW 3 0.0320% 20.7670

GSST-LD 3 0.3540% 21.5415

GSST-LDW 3 0.4070% 22.1352

DFS ST generation

GSST-L 3 19.9880% 18.1599

GSST-R 3 0.0510% 13.8348

GSST-LW 3 0.5390% 20.1243

GSST-LD 3 20.0480% 20.4685

GSST-LDW 3 20.005% 21.0810

Museum Uniform ST generation

Edge traversal Min Percent min Time

GSST-L 5 0.0020% 47.5863

GSST-R 5 0.0010% 31.6156

GSST-LW 5 0.0040% 45.4039

GSST-LD 5 0.0090% 45.5225

GSST-LDW 5 0.0110% 45.9819

DFS ST generation

GSST-L 5 0.4220% 47.1498

GSST-R 5 0.3360% 29.0825

GSST-LW 5 0.5400% 48.0258

GSST-LD 5 0.8650% 47.4625

GSST-LDW 5 0.8330% 48.0719

office can be cleared with three searchers and the museum
with five.7

Table 1 shows a comparison of different spanning tree
generation techniques and traversal methods on the mu-
seum and office maps. GSST is able to generate and search
100,000 spanning trees in under a minute (often under 30
seconds) on these complex maps. We also note that all tra-
versal variants yield similar running times, with the excep-
tion of GSST-R that does not need to perform the labeling
step. Traversal methods using spanning tree labeling (i.e.,
all but GSST-R) generate more minimal schedules, which

7While it is not proven that five is the minimal search strategy in the
museum, we have been unable to find a four searcher strategy on this
map using any method.

demonstrates the gain from using the optimal traversal of
the underlying spanning tree to guide search. The gain from
using the labeling is greater on the office map than on the
museum map. This is as expected because the office map
has fewer cycles and is thus closer to a tree.

On the office and museum, depth-first sampling yields a
higher proportion of minimal schedules due to its bias to-
wards graphs requiring fewer guards. However, particularly
in the office, depth-first sampling severely limits the space
of spanning trees, which leads to only ten distinct schedules
(two of which are minimal). This demonstrates the incom-
pleteness of depth-first sampling along with its tendency to
produce minimal search schedules on the reduced space of
trees.

Figure 5 illustrates the anytime behavior of GSST by
showing the attained search number with increasing num-
bers of generated spanning trees. As above, in both environ-
ments, depth-first sampling generates solutions with fewer
searchers much more quickly than uniform sampling. In ad-
dition, Fig. 6 displays histograms of the number of searchers
to clear the graphs for many different spanning trees. Depth-
first sampling clearly generates trees that lead to strategies
with fewer searchers in these environments. Figure 1 shows
example spanning trees yielding minimal search schedules
in both environments.

6.2 Performance comparison

Here we compare GSST to several competing algorithms
using three additional environments (shown in Fig. 7). The
hallway, cave, and Gates Hall environments were introduced
by Gerkey et al. (2005) to test their PARISH algorithm. We
use their discretization for the Gates and hallway environ-
ments, and we generate a constrained Delaunay triangula-
tion for the cave environment (see Sect. 3) since the dis-
cretization by Gerkey et al. is not available.

Table 2 shows the attained search number (i.e., the min-
imal number of searchers with which a clearing schedule
was found) for GSST, PARISH, RHGC, and the iterative
greedy algorithm. PARISH is a stochastic hill-climbing ap-
proach that has much in common with market-based tech-
niques (Gerkey et al. 2005).8 The use of finite-horizon plan-
ning with sequential allocation for guaranteed search is dis-
cussed in Sect. 4 and is an extension of our prior work
in non-adversarial search (Hollinger et al. 2009b). We in-
troduced the iterative greedy algorithm in our prior work,
which uses an approach similar to dynamic programming
to generate clearing schedules (Kehagias et al. 2009b). The

8The results reported in Table 2 for PARISH are taken di-
rectly from Gerkey et al. (2005) and that article’s supplementary
videos (Gerkey 2004) in which some of the same environments are
examined. We have not implemented the PARISH algorithm for this
paper.

112 Auton Robot (2010) 29: 99–118

Fig. 5 Demonstration of anytime behavior of GSST in the office (top)
and museum (bottom). In both environments, depth-first spanning tree
generation more quickly generates a spanning tree with few searchers.
Labeled traversal is used in these experiments

version of GSST employed in this section uses uniform
spanning tree generation and labeled traversal. GSST gen-
erated 10,000 spanning trees before returning the best solu-
tion, which took less than 10 seconds in the larger environ-
ments. RHGC and iterative greedy were run with an increas-
ing number of searchers (e.g., K = 1,2, . . .) until a clearing
schedule was found. The horizon depth for RHGC was set
to d = 6.

GSST yields the lowest attained search numbers in all
environments versus these competing algorithms. The im-
provement in attained search number increases with the
complexity of the environment (i.e., number of nodes and
edges). This demonstrates the effectiveness of utilizing the
underlying spanning tree to guide implicit coordination on
large graphs. In addition, the linear scalability and anytime
capabilities of GSST allow it to remain effective in large

environments like the office and museum maps. Video Ex-
tension 1 shows a playback of several searches generated by
GSST in these environments.

6.3 Human-robot teams

The experiments above were run on a single processor with
shared memory, and they do not demonstrate GSST’s po-
tential to be distributed across a team of searchers. In addi-
tion, the schedules in the simulated experiments were gen-
erated offline, and the paths of the robots were assumed to
be completely synchronized. In real-world applications, it is
possible to make some modifications to the schedules gener-
ated by GSST online. If a searcher is behind in its schedule,
then other searchers can continue their schedules until they
reach a point where moving would cause recontamination.
Furthermore, if an entire branch of the tree is cleared for-
tuitously (e.g., by some uncontrolled searchers or informa-
tion), the schedule can prune this branch and continue with-
out clearing it. Note, however, that some online modifica-
tions could alter the attained search number of the schedule
(e.g., a searcher moving to clear an area instead of moving
to a required guard position), and these should be avoided.

To test the distributed and online capabilities of GSST,
we ran experiments with a human/robot search team on a
single floor of an office building (shown in Fig. 8). Two
humans and a single Pioneer robot share their position in-
formation across a wireless network, and the entire team is
guided by a decentralized implementation of labeled traver-
sal. Figure 9 shows a diagram describing the decentralized
system architecture. The searchers communicate through the
GSST modules, which receive position feedback and pro-
vide waypoints back to the team. This architecture does not
require a centralized control mechanism. In addition, the
GSST modules are anonymous: they do not need to know
whether the position/clearing input comes from a human or
a robot.

The robot’s position is determined by laser AMCL,
and it is given waypoints through the Player/Stage soft-
ware (Gerkey et al. 2003). The robot uses the built in Wave-
front planner and Vector Field Histogram (VFH) obstacle
avoidance to follow the waypoints specified by the GSST
module. The robot uses a 180 degree FOV camera with a
video feed to the humans as its clearing sensor. The humans
input their position through the keyboard, and they are given
waypoints through a GUI.

Prior to search, the searchers generated spanning trees
in parallel until a three-searcher schedule was found. After
agreeing on an underlying spanning tree, the traversal was
computed during search using the decentralized network.
Thus, the search can be modified on-the-fly if necessary dur-
ing clearing. For instance, one of the human searchers per-
formed its clearing schedule more slowly than expected. The

Auton Robot (2010) 29: 99–118 113

Fig. 6 Histograms of number of searchers to clear the office (left) and
museum (right) using labeled traversal on many different spanning
trees. In the office, exhaustive search is compared to depth-first sam-
pling. Depth-first sampling limits the space of spanning trees searched

but generates trees that require fewer searches. In the museum, uniform
sampling of 30,000 trees is substituted for exhaustive search. Again,
depth-first sampling generates spanning trees requiring fewer searchers

other searchers were able to continue their schedules with-
out that human until they reached a point of recontamina-
tion. This avoided strict synchronization, which would have
required more costly communication.

The first three-searcher schedule was generated very
quickly (less than a second), and the network then came to
consensus on an acceptable spanning tree. The human-robot
search team proceeded to clear the floor of a potential adver-
sary. The schedule clears the left portion of the map first and
then continues to clear the right portion. Video Extension
2 shows a playback of the search. In addition to showing
the distributed and online capabilities of GSST, our results
with a human/robot team demonstrate the feasibility of the
communication and computational requirements on a small
team.

7 Conclusions

We have presented GSST, an anytime guaranteed search
algorithm applicable to complex physical environments.
GSST generates guaranteed search schedules on arbitrary
graphs by leveraging the easier problem of generating a
schedule on an underlying spanning tree. Our algorithm
works in an anytime manner by quickly generating an initial
schedule with potentially many searchers and then produc-
ing more schedules with increasing computation. We have
shown several variations of GSST that utilize the underlying
spanning tree in different ways, and we have given a novel
method for generating random spanning trees that tend to
yield search schedules with few searchers.

We have shown that GSST produces a feasible clearing
schedule at every iteration, and we have proven that several

114 Auton Robot (2010) 29: 99–118

Fig. 7 Additional simulated environments used to compare GSST to
competing algorithms. The hallway (top) and Gates (middle) environ-
ments use the same discretizations as Gerkey et al. (2005). The cave
(bottom) was discretized using a constrained Delaunay triangulation

variations are probabilistically complete. In addition, GSST
is linearly scalable in the number of nodes in the search
graph, making it applicable to very large environments. We
also have given loose performance bounds on the algorithm
based on the worst-case number of searchers required to tra-
verse the underlying spanning tree.

GSST is an implicit coordination algorithm, which al-
lows for each agent to plan for itself without considering
the joint planning space. The agents share the spanning tree
of the environment as an informed representation, and they
communicate information about their actions to execute a
joint schedule. This indirect form of coordination provides
the necessary coupling to generate schedules in difficult
clearing instances without requiring exponential computa-
tion.

Table 2 Comparison of attained search numbers of GSST (proposed
algorithm) with PARISH (Gerkey et al. 2005), RHGC (Sect. 4), and
Iterative Greedy (Kehagias et al. 2009b). GSST yields the lowest at-
tained search number in all environments with more improvement in
more complex environments

Hallway Cave Gates Office Museum

PARISH 2 4 5 – –

RHGC 2 3 4 6 7

Iter. Greedy 2 3 4 4 6

GSST 2 3 3 3 5

Fig. 8 Map of office building (top) used for experiments with a hu-
man/robot search team. Pioneer robot searcher (bottom) with laser
scanner and camera. The robot used the laser scanner for localization,
and it used the camera to provide a video feed of the search environ-
ment. The robot and human team started their search at the building
entrance in cell eight

Our results demonstrate both the scalability and effec-
tiveness of GSST. Our implementation of GSST generates
over 2000 schedules per second in an environment with 70
nodes and 93 edges. We have shown that GSST outperforms
three competing algorithms in five environments ranging
from a cave to a museum. In some cases, GSST reduces
the required number of searchers by 50% over competing
algorithms.

In addition, we have demonstrated the feasibility of
GSST with an implementation on a human-robot search
team. The distributed implementation utilizes existing wire-
less infrastructure to communicate the searchers’ positions,
and the team effectively clears a floor of an office building of
any potentially adversarial target. Furthermore, the schedule
is modified online to account for poor synchronization be-
tween the searcher paths. To our knowledge, this is the first
implementation of a clearing schedule on this scale, thus
highlighting the real-world applicability of GSST to robotic
search.

Auton Robot (2010) 29: 99–118 115

Fig. 9 Diagram describing
system architecture for
human-robot search
experiments. The decentralized
GSST modules receive position
feedback from the
heterogeneous search team and
then provide search waypoints
back to the team

7.1 Future work

Our findings open up several interesting avenues for im-
provements to GSST. In the current paper, trees were se-
lected randomly using one of two methods. Alternatively,
informed heuristics could be used to generate spanning trees
with a high likelihood of yielding low-searcher strategies.
GSST could also incorporate traversal strategies other than
the ones presented here. One potential avenue to explore is
the use of a traversal based on a graph cut algorithm similar
to the one used by Kolling and Carpin (2010) for weighted
graph searching on trees.

In addition, our proposed algorithm does not provide a
bound on the current solution quality relative to optimal.
In other words, when the search is stopped, we cannot say
whether or not we have found a minimal (or near-minimal)
search strategy. Solving this problem requires a method for
bounding the minimum number of searchers from below.
One of the main challenges in generating near-optimal per-
formance guarantees for GSST is to do so while keeping the
algorithm linearly scalable, distributable, modifiable online,
and preserving of anytime capabilities.

The strategies discussed in this paper do not directly con-
sider clearing time as a performance metric. In many ap-
plications, faster clearing schedules are desirable. Our on-
going work in combining efficient search with guaranteed
search discusses a variation of GSST that incorporates clear-
ing time considerations (Hollinger et al. 2009a).

As mentioned in Sect. 3, discretization of environ-
ments for search is still an active research area. Automatic
discretization using the constrained Delaunay triangula-
tion (Shewchuk 2002) or the Voronoi diagram (Kolling and
Carpin 2008) are two possible approaches. Visibility-based
methods that take advantage of environment geometry are
an alternative (Guibas et al. 1999), but a visibility-based

method that produces a sufficiently small number of con-
vex cells in complex, cluttered environments is still an open
problem. In some cases, a larger number of cells may actu-
ally require fewer searchers, which leaves open the question
of how best to discretize to help minimize the number of
searchers. In addition, alternative methods for taking into
account varying sensor modalities (e.g., limited range and
limited FOV) yield interesting avenues for future work.

An important open problem regarding GSST is the com-
pleteness of labeled traversal. In other words, can we guar-
antee that at least one minimal labeled traversal exists after
having examined all spanning trees of a graph. It is possible
to construct worst-case graphs where a minimal labeled tra-
versal for a particular starting node is not possible (Kehagias
et al. 2009a), but we have not found such an example if the
starting node is left unspecified.

GSST restricts the moves of the searchers to those that
do not recontaminate nodes in the graph. Node recontam-
ination occurs if a searcher leaves a node unguarded, and
one or more of its adjacent nodes are dirty (with the ex-
ception of the node the searcher is moving into). Node re-
contamination can improve the search number for connected
search on graphs (Yang et al. 2004). However, situations in
which recontamination helps may be rare in realistic envi-
ronments, making it difficult to incorporate them into guar-
anteed search.

In addition to solving the guaranteed search problem, our
algorithm serves as an efficient method for generating con-
nected path decompositions of planar graphs. These decom-
positions are similar but not exactly the same as those stud-
ied in the literature (i.e., ours are derived from a node game
rather than edge game). Generating path decompositions is
an important graph theoretic problem with applications out-
side of guaranteed search (Kloks 1994). The linear scalabil-
ity of our algorithm makes it well-suited for the generation
of path decompositions on very large graphs. Future work

116 Auton Robot (2010) 29: 99–118

includes studying the relationship between path decomposi-
tions generated from a node search game and those gener-
ated from an edge search game.

Acknowledgements The authors gratefully acknowledge Joseph
Djugash, Ben Grocholsky, Dave Ferguson, and Siddhartha Srinivasa
for their insightful comments. Thanks to volunteer firefighter (and pro-
fessional roboticist) Seth Koterba for feedback on the system. Parts
of this work utilized Jonathan Richard Shewchuk’s free Delaunay tri-
angulation software. This research is partially funded by the National
Science Foundation under Grant No. IIS-0426945. Further thanks to
Intel Research Pittsburgh.

Appendix A: Index to multimedia extensions

Extension Media type Description

1 Video Simulated guaranteed
search with GSST

2 Video Guaranteed search with
a human-robot team

Appendix B: Proof of completeness

B.1 Definitions

Definition 2 Given a graph G and an IMC node clearing
schedule S defined over time t = 1,2, . . . , tf . Let sn(S, t)

be the number of searchers required in the schedule at time
step t . Let sn(S) be the maximum number of searchers re-
quired for the schedule.9

Definition 3 Given a graph G and a search S of G, the fron-
tier at t (under S) is

NF (t) = {u : u ∈ NC(t) and ∃v : v ∈ ND(t), uv ∈ E},
i.e., the clear nodes which are connected to dirty nodes.

B.2 Completeness

Lemma 1 Given a graph G = (N,E) and a rooted IMC
node clearing search S of G. The clearing moves of S gen-
erate a sequence of trees, (T0,T1,T2, . . . ,T|N |), where (for
n = 1,2, . . . , |N |) Tn = (Nn,En) and the following hold:

D1 T0 is the empty graph (and N0 = ∅, E0 = ∅);
D2 N|N | = N , E|N | ⊆ E;
D3 for n = 1,2, . . . , |N |: Nn−1 ⊆ Nn ⊆ N , En−1 ⊆ En ⊆

E (in other words Tn−1 is a subtree of Tn);

9Note that sn(S) = sn(S, tf) in an IMC clearing schedule since no
searchers are removed.

D4 for n = 1,2, . . . , |N |: Nn = Nn−1 ∪ {un}, and for n =
2,3, . . .: En = En−1 ∪ {uiun}, with i ∈ [1, n − 1].

Proof Inductively. Since S is monotone, it involves |N |
clearing moves. T0 is the empty graph. T1 is formed by the
first move of S, which consists in placing a searcher at the
root node. So T1 is the tree with a single node and trivially
has T0 as a subgraph. Suppose D3 and D4 hold up to m = n

and consider the (n + 1)-th clearing move of S. Since S is
connected, we add to Tn one node un+1 and exactly one
edge uiun+1 (with i ∈ [1, n]) to obtain a new tree Tn+1 (of
n + 1 nodes and n edges) which also satisfies D3 and D4.
Hence D3 and D4 hold for m = 1,2, . . . , |N |. At m = |N |,
N|N | contains |N | nodes, hence N|N | = N ; since T|N | is a
tree, it is a spanning tree of G. �

Corollary 1 Given a graph G = (N,E), every minimal
IMC node clearing search S of G generates a sequence of
trees which satisfy the conditions of Lemma 1.

Lemma 2 Given a graph G = (N,E) and a tree sequence
(T0,T1, . . . ,T|N |). Then GSST-R/GSST-LW using a single
uniformly generated spanning tree has a nonzero probability
of producing a search S which generates (T0,T1, . . . ,T|N |).

Proof The probability of generating the tree sequence
(T0,T1, . . . ,T|N |) is:

Pr(T0,T1, . . . ,T|N |)

=
[|N |∏

n=1

Pr(Tn|T|N |,T0, . . . ,Tn−1)

]

× Pr(T0|T|N |)Pr(T|N |).

Note that the conditioning in the above expression al-
ways includes T|N |, since this is the first choice made in run-
ning GSST-R / GSST-LW. Now obviously, Pr(T0|T|N |) = 1.
Pr(T|N |) > 0 is nonzero for any uniform spanning tree gen-
erator.

Pr(Tn|T|N |,T0,T1, . . . ,Tn−1) is the probability of ex-
panding (at the n-th step) Tn−1 by the edge uiun ∈ En −
En−1 which, by the construction of both GSST-R and GSST-
LW, is always positive. Finally, Pr(T|N ||T|N |,T0,T1, . . . ,

T|N |−1) = 1. Hence Pr(T0,T1, . . . ,T|N |) > 0 for every se-
quence T1, . . . ,T|N |. �

Lemma 3 Given a graph G = (N,E) and a rooted IMC
node clearing search S of G; let (T0,T1, . . . ,T|N |) be the
tree sequence generated by S. Let S′ be a search pro-
duced by either GSST-R or GSST-LW and also generating
(T0,T1, . . . ,T|N |). Then sn(S) ≥ sn(S′).

Auton Robot (2010) 29: 99–118 117

Proof The proof is exactly the same for GSST-R and GSST-
LW, so we only prove the first one, by induction. Let
t1, . . . , t|N | be the clearing times of S and t ′1, . . . , t ′|N | be the
clearing times of S′. Also let t0 = t ′0 = 0.

At t0 = t ′0 = 0 we have sn(S′,0) = sn(S,0) = 0.

The only times at which sn(S′, t) may change are 1, t ′1 +
1, . . . , t ′|N |−1 + 1 . Suppose that

sn(S, tn) ≥ sn
(
S′, t ′n

)
.

Further, suppose that at t ′n + 1 a new searcher is introduced
in S′. This can only happen (in the S′ search) if all of the
following hold:

1. at t ′n exactly |NF (t)| searchers exist in G;
2. there are no searchers inside nodes u ∈ NC(t ′n) − NF (t ′n)

(i.e., all searchers are located inside frontier nodes);
3. all searchers are stuck (i.e., moving a searcher out of a

frontier node u exposes u to recontamination).

The sequence (T0,T1, . . . ,T|N |) and the clearing times
determine the frontier NF (t) for every t . Hence S′ at t ′n has
the same frontier as S at tn. If conditions 1–3 above hold
in S′, then every searcher is located in a frontier node and
is stuck. It is possible that non-stuck searchers exist in S
(located either in frontier or non-frontier nodes) but this
also means that sn(S, tn) ≥ sn(S′, t ′n) + 1; hence adding a
searcher in S′ at t ′n + 1 preserves

sn(S, tn) ≥ sn
(
S′, t ′n + 1

)
.

Since no searchers are added in S′ for t ∈ [t ′n + 2, t ′n+1]
and no searchers are ever removed in S (i.e., sn(S, tn+1) ≥
sn(S, tn)) we also get

sn(S, tn+1) ≥ sn
(
S′, t ′n+1

)
.

From the above inequality inductively we get sn(S, t|N |) ≥
sn(S′, t ′|N |), which proves the lemma. �

Theorem 1 At each iteration, both random traversal
(GSST-R) and label-weighted random traversal (GSST-LW)
of a uniformly generated spanning tree have a nonzero
chance of yielding a minimal monotone/connected node
search strategy on any graph.

Proof Restating, we must prove that given a graph G =
(N,E):

1. GSST-R will generate a minimal monotone, connected
clearing of G with probability greater than or equal to
1 − αM

1 where M is the number of iterations and α1 ∈
(0,1).

2. GSST-LW will generate a minimal monotone, connected
clearing of G with probability greater than or equal to
1 − αM

2 where M is the number of iterations and α2 ∈
(0,1).

The proof is exactly the same for GSST-R and GSST-
LW, so we only prove the first one. G has at least one
minimal rooted IMC node clearing search S of G. Let
(T0,T1, . . . ,T|N |) be the tree sequence generated by S. By
Lemma 2, GSST-R has a nonzero probability, call it β1, of
generating in a single iteration a search S′ with the same
tree sequence as S. Then, by Lemma 3,

sn(S) ≥ sn
(
S′).

Since S is minimal, sn(S) = sn(S′) and so S′ is minimal too.
Now, the probability of not generating S′ in a single iteration
is α1 = 1 − β1; and the probability of not generating S′ in
M iterations is αM

1 = (1 − β1)
M , while the probability of

generating S′ in M iterations is 1 − αM
1 . �

References

Alspach, B. (2006). Searching and sweeping graphs: a brief survey.
Matematiche, 59, 5–37.

Barrière, L., Flocchini, P., Fraigniaud, P., & Santoro, N. (2002). Cap-
ture of an intruder by mobile agents. In Proc. 14th ACM symp.
parallel algorithms and architectures (pp. 200–209).

Barrière, L., Fraigniaud, P., Santoro, N., & Thilikos, D. (2003). Search-
ing is not jumping. Graph-Theoretic Concepts in Computer Sci-
ence, 2880, 34–45.

Bienstock, D., & Seymour, P. (1991). Monotonicity in graph searching.
Journal of Algorithms, 12(2), 239–245.

Char, J. (1968). Generation of trees, two-trees, and storage of master
forests. IEEE Transactions on Circuit Theory, 15(3), 228–238.

Dendris, N., Kirousis, L., & Thilikos, D. (1994). Fugitive-search games
on graphs and related parameters. In Proc. 20th int. workshop
graph-theoretic concepts in computer science (pp. 331–342).

Flocchini, P., Nayak, A., & Schulz, A. (2005). Cleaning an arbitrary
regular network with mobile agents. In Proc. int. conf. distributed
computing and Internet technology (pp. 132–142).

Flocchini, P., Huang, M., & Luccio, F. (2007). Decontamination of
chordal rings and tori using mobile agents. International Journal
of Foundations of Computer Science, 18(3), 547–564.

Flocchini, P., Huang, M., & Luccio, F. (2008). Decontamination of hy-
percubes by mobile agents. Networks, 52(3), 167–178.

Fomin, F., & Thilikos, D. (2008). An annotated bibliography on guar-
anteed graph searching. Theoretical Computer Science, 399, 236–
245.

Fomin, F., Fraigniaud, P., & Thilikos, D. (2004). The price of con-
nectedness in expansions. Technical Report LSI-04-28-R, UPC
Barcelona.

Fraigniaud, P., & Nisse, N. (2006). Connected treewidth and connected
graph searching. In Proc. 7th Latin American symp. theoretical
informatics.

Gerkey, B. (2004). Pursuit-evasion with teams of robots. http://ai.
stanford.edu/~gerkey/research/pe/index.html.

Gerkey, B., Vaughan, R., & Howard, A. (2003). The player/stage
project: tools for multi-robot and distributed sensor systems. In
Proc. int. conf. advanced robotics (pp. 317–323).

Gerkey, B., Thrun, S., & Gordon, G. (2005). Parallel stochastic hill-
climbing with small teams. In Proc. 3rd int. NRL workshop multi-
robot systems.

http://ai.stanford.edu/~gerkey/research/pe/index.html
http://ai.stanford.edu/~gerkey/research/pe/index.html

118 Auton Robot (2010) 29: 99–118

Guibas, L., Latombe, J., LaValle, S., Lin, D., & Motwani, R. (1999).
Visibility-based pursuit-evasion in a polygonal environment. In-
ternational Journal of Computational Geometry and Applica-
tions, 9(5), 471–494.

Hollinger, G., Kehagias, A., & Singh, S. (2009a). Efficient, guaranteed
search with multi-agent teams. In Proc. robotics: science and sys-
tems conf.

Hollinger, G., Singh, S., Djugash, J., & Kehagias, A. (2009b). Efficient
multi-robot search for a moving target. International Journal of
Robotics Research, 28(2), 201–219.

Isler, V., Kannan, S., & Khanna, S. (2005). Randomized pursuit-
evasion in a polygonal environment. IEEE Transactions on Ro-
botics, 21(5), 875–884.

Kalra, N. (2006). A market-based framework for tightly-coupled
planned coordination in multirobot teams. Ph.D. thesis, Robotics
Institute, Carnegie Mellon Univ.

Kehagias, A., Hollinger, G., & Gelastopoulos, A. (2009a). Searching
the nodes of a graph: theory and algorithms. Technical Report
arXiv:0905.3359 [cs.DM].

Kehagias, A., Hollinger, G., & Singh, S. (2009b). A graph search al-
gorithm for indoor pursuit/evasion. Mathematical and Computer
Modelling, 50(9–10), 1305–1317.

Kloks, T. (1994). Treewidth: computations and approximations. Berlin:
Springer.

Kolling, A., & Carpin, S. (2008). Extracting surveillance graphs from
robot maps. In Proc. int. conf. intelligent robots and systems.

Kolling, A., & Carpin, S. (2010). Pursuit-evasion on trees by robot
teams. IEEE Transactions on Robotics, 26, 32–47.

Kumar, V., Rus, D., & Singh, S. (2004). Robot and sensor networks for
first responders. Pervasive Computing, 3(4), 24–33.

LaPaugh, A. (1993). Recontamination does not help to search a graph.
Journal of ACM, 40(2), 224–245.

LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge
University Press.

LaValle, S., Lin, D., Guibas, L., Latombe, J., & Motwani, R. (1997).
Finding an unpredictable target in a workspace with obstacles. In
Proc. IEEE international conf. robotics and automation.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., & Thrun, S.
(2005). Anytime dynamic A*: an anytime, replanning algorithm.
In Proc. int. conf. automated planning and scheduling.

Megiddo, N., Hakimi, S., Garey, M., Johnson, D., & Papadimitriou, C.
(1988). The complexity of searching a graph. Journal of ACM,
35(1), 18–44.

Parsons, T. (1976). Pursuit-evasion in a graph. In Y. Alavi, & D. Lick
(Eds.) Theory and applications of graphs (pp. 426–441). Berlin:
Springer.

Shewchuk, J. (2002). Delaunay refinement algorithms for triangular
mesh generation. Computational Geometry: Theory and Applica-
tions, 22(1–3), 21–74.

Smith, T. (2007). Probabilistic planning for robotic exploration. Ph.D.
thesis, Robotics Institute, Carnegie Mellon Univ.

Wilson, D. (1996). Generating random spanning trees more quickly
than the cover time. In Proc. 28th ACM symp. theory of computing
(pp. 296–303).

Yang, B., Dyer, D., & Alspach, B. (2004). Sweeping graphs with large
clique number. In Proc. 5th international symp. algorithms and
computation (pp. 908–920).

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems.
Artificial Intelligence Magazine, 17(3), 73–86.

Geoffrey Hollinger is a Ph.D. Can-
didate at Carnegie Mellon Univer-
sity in the Robotics Institute. He
is currently interested in designing
scalable and distributed algorithms
for estimation and multi-robot coor-
dination in the physical world. He
has worked on personal robotics at
Intel Research Pittsburgh, active es-
timation at the University of Penn-
sylvania’s GRASP Laboratory, and
miniature inspection robots for the
Space Shuttle at NASA’s Marshall
Space Flight Center. He received
his M.S. in Robotics from Carnegie

Mellon University in 2007 and his B.S. in General Engineering along
with his B.A. in Philosophy from Swarthmore College in 2005.

Athanasios Kehagias is an Assis-
tant Professor of Applied Mathe-
matics at the Aristotle University of
Thessaloniki. He received the Dipl.
Ing. Degree in electrical engineer-
ing from the School of Engineering
of Aristotle University of Thessa-
loniki in 1984, the M.Sc. in Applied
Mathematics from Lehigh Univer-
sity in 1986 and the Ph.D. in applied
mathematics from Brown Univer-
sity, Providence, RI, in 1992. Since
November 1999, he has been with
the Department of Mathematics,
Physical and Computational Sci-

ences, School of Engineering, Aristotle University of Thessaloniki,
Thessaloniki, Greece. His research interests include mathematical
modeling, applications of probability theory, algebra and fuzzy sets.

Sanjiv Singh is a Research Pro-
fessor at the Robotics Institute,
Carnegie Mellon University. His re-
cent work has two main themes:
perception in natural environments
and multi-agent coordination. He
has led projects in both ground and
air vehicles operating in unknown
or partially known environments, in
applications such as mining, agri-
culture, emergency response, sur-
veillance and exploration. He is also
actively involved in the automation
of complex tasks, such as the assem-
bly of large space structures, that

cannot be addressed by single agents and must necessarily be per-
formed by teams. Prof. Singh received his B.S. in Computer Science
from the University of Denver (1983), M.S. in Electrical Engineering
from Lehigh University (1985) and a Ph.D. in Robotics from Carnegie
Mellon (1995). He is the founder and Editor-in-Chief of the Journal of
Field Robotics.

http://arxiv.org/abs/arXiv:0905.3359

	GSST: anytime guaranteed search
	Abstract
	Introduction
	Related work
	Problem setup
	Environment discretization

	Uninformed implicit coordination
	The GSST algorithm
	Guaranteed search on trees
	Generating spanning trees
	Labeled traversal
	Randomized and label-weighted traversal
	Label-dominated traversal
	Correctness
	Completeness
	Solution quality
	Computational complexity
	Example

	Results
	Simulated indoor environments
	Performance comparison
	Human-robot teams

	Conclusions
	Future work

	Acknowledgements
	Appendix A: Index to multimedia extensions
	Appendix B: Proof of completeness
	Definitions
	Completeness

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

