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Abstract For the offline segmentation of long hydro-

meteological time series, a new algorithm which combines

the dynamic programming with the recently introduced

remaining cost concept of branch-and-bound approach is

developed. The algorithm is called modified dynamic pro-

gramming (mDP) and segments the time series based on

the first-order statistical moment. Experiments are per-

formed to test the algorithm on both real world and artifi-

cial time series comprising of hundreds or even thousands

of terms. The experiments show that the mDP algorithm

produces accurate segmentations in much shorter time than

previously proposed segmentation algorithms.

Keywords Time series � Offline segmentation �
Change point � Dynamic programming � Modified

dynamic programming � Remaining cost concept

1 Introduction

Time series analysis has always been an important topic in

hydrology and related sciences, such as climatology,

meteorology, environmetrics, etc. For instance, analysis of

streamflow, precipitation and temperature records has been

conducted widely in the past and it is still attractive due to

its importance in both research and practice. The past

behavior of a time series is important toward understanding

its future behavior: we forecast the future by looking at the

past. In the same manner, the detection of abrupt or gradual

changes in the time series has always been interesting.

Therefore, variability in hydrometeorological time series,

i.e. streamflow and precipitation, should be analyzed by

proper means (Kundzewicz and Robson 2004; Radziejewski

and Kundzewicz 2004; Xiong and Guo 2004; Koutsoyiannis

2006; Aksoy 2007; Dahamsheh and Aksoy 2007; Aksoy

et al. 2008a). The recent emergence of interest in climate

change scenaria makes the issue even more important. For

example, global temperature records from the past centu-

ries can be used to test the hypothesis of an ongoing

‘‘greenhouse effect’’ (which can possibly lead to an envi-

ronmental disaster). The detection of gradual or abrupt

changes (trend or jump, respectively) is of the highest

importance in order to detect the natural or manmade

causes changing the behavior of the hydrometeorological

time series. The changing behavior must be taken into

account when attempting to extrapolate the past into the

future.

Structural characteristics of hydrometeorological vari-

ables (precipitation, streamflow, etc.) are important in

modeling studies. For instance, if an autoregressive (AR)

type model is to be applied to the observed time series of

the variable of interest, it is required to remove any trend

before the model is applied. Similarly, any time series

discontinuities (abrupt shifts, jumps) should be removed

prior to modeling. AR type models (and many others)

assume that the data follow a prespecified probability dis-

tribution function, such as the normal distribution. In
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practice, information on the structural characteristics of

precipitation data might signal for climate change or var-

iability. Such information can be extracted from the trend

analysis of the precipitation record (Dahamsheh and Aksoy

2007).

Analysis of streamflow characteristics can help in

understanding possible effects of manmade or natural short-

or long-term changes. For example; any change in the

physical conditions of the measuring system causes shifts in

the time series of the process analyzed. Another example is

from water resources engineering; an abrupt change in the

river cross-section due to a major flood is likely to cause a

permanent shift in the discharge time series of this partic-

ular cross-section. In such cases, the stage-discharge rela-

tionship of the cross-section changes due to erosion and

sedimentation (Tsakalias and Koutsoyiannis 1999). Such

information can be extracted from the jump analysis of the

streamflow record. Jump analysis of a time series is closely

related to the segmentation of the time series.

In this paper, we study the offline time series segmen-

tation problem. A given time series must be divided into

several segments (i.e. blocks of contiguous data) so that

each segment is homogeneous, while contiguous segments

are heterogeneous; homogeneity and heterogeneity are

defined in terms of some appropriate segment statistics.

The problem has received considerable attention in

hydrological literature. As a result, the development of fast

and efficient segmentation algorithms emerges as a prac-

tically significant problem. An early landmark study

on hydrological time series segmentation was made by

Buishand (1982), and an extensive bibliography on seg-

mentation methods was presented in Basseville and

Nikiforov (1993). Hubert et al. (1989) worked on the

segmentation of hydrometeorological time series with a

continuous effort (Hubert 2000; Labbé et al. 2004; Hubert

et al. 2007). Motivated by the pioneering work of Hubert

(2000), Kehagias et al. (2006) used the dynamic pro-

gramming (DP) optimization algorithm for segmentation of

hydrological and environmental time series from the real

world which then become motivation for this study. Some

alternative approaches, for instance the Bayesian Markov

Chain Monte Carlo (MCMC) approach of Fortin et al.

(2004) and Kehagias and Fortin (2006) and the hidden

Markov model (HMM) approach of Kehagias (2004) and

Kehagias and Fortin (2006) should be noted.

The focus of the current paper is on multiple segments,

offline segmentation. A key advance introduced in the

current paper is the modification of the DP algorithm by the

remaining cost concept of Gedikli et al. (2008). The unique

offer of this study is the modification of the DP algorithm.

The DP and its modified version yield optimal segmenta-

tions (in terms of a well defined segmentation criterion) and

can segment long time series of over one thousand items in

a few seconds. Both algorithms are evaluated on both real

world (hydrometeorological) and artificial time series.

The paper is organized as follows. In the following

section, definitions about and general formulation of the

segmentation problem are presented, which will be used in

subsequent sections. The DP segmentation algorithm and

its modified version (mDP) are then presented. After the

issue of optimal segmentation order is discussed, the

algorithms are evaluated (on both artificial and real world

hydrometeorological time series) and compared to each

other. Finally, conclusions are drawn and future studies

foreseen are presented.

2 Definitions and formulation of the problem

The aim in the segmentation process is to determine time

points where changes are observed in the time series

characteristics. These time points are called change points;

the interval included between two change points is defined

as a segment (of the time series); and the procedure by

which the segments of a time series are determined is

named ‘‘time series segmentation’’. In this study, an offline

segmentation (see definition below) algorithm is presented,

which is based on the DP optimization technique (Kehagias

et al. 2006); also a modified version (mDP) is developed,

which is based on the remaining cost concept of Gedikli

et al. (2008). In the offline segmentation an entire time

series (x1,x2,…,xT) is given and must be divided into seg-

ments. In the online segmentation, on the other hand, the

data points (x1,x2,…,xt,…) arrive one at a time and, at every

time step t, it is required to decide whether xt belongs to the

previous segment or assigned to a new segment which

starts at t (Dobigeon and Tourneret 2007).

Assume that the time series x = (x1,x2,…,xT) is given.

The segmentation can be described by a sequence t =

(t0,t1,…,tK) satisfying 0 = t0 \ t1 \ ���\ tK-1 \ tK = T.

The intervals of integers [t0 ? 1,t1], [t1 ? 1,…,t2],…,

[tK-1 ? 1,tK] are called segments, the times t0,t1,…,tK are

called segment boundaries and K, the number of segments, is

called the order of the segmentation. The set of all seg-

mentations of {1, 2,…,T} is denoted by T and the set of all

segmentations of order K by TK. Clearly, T = [K=1
T TK. The

number of all possible segmentations of {1,2,…,T} is 2T-1.

Offline segmentation can be formulated as an optimi-

zation problem. The segmentation cost J(t) is defined by

JðtÞ ¼
XK

k¼1

d
tk�1þ1;tk

ð1Þ

where ds,t (for 0 B s \ t B T) is the segment error

corresponding to segment [s,t]. The segment error

depends on the data vector x = (xs,xs?1,…,xt). A variety

of ds,t functions can be used. In this study,
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ds;t ¼
Xt

s¼s

xs � ls;t

� �2 ð2Þ

is used in which the segment-mean is given by

ls;t ¼
Pt

s¼s xs

t � sþ 1
ð3Þ

The optimal segmentation, denoted by bt ¼ bt0;
�

bt1; . . .; btKÞ is defined as bt ¼ arg mint2T JðtÞ and the

optimal segmentation of order K, denoted by bt Kð Þ ¼

bt Kð Þ
0 ; bt Kð Þ

1 ; . . .; bt Kð Þ
K

� �
; is defined as bt Kð Þ ¼ arg mint2TK

J ðtÞ:
The optimal segmentation can be found by exhaustive

enumeration of all possible segmentations (and computation

of the corresponding ds,t). However, this is computationally

infeasible, because the total number of segmentations

increases exponentially in T. Hubert (2000) uses a branch-

and-bound approach to search efficiently the set of all

possible segmentations and states that this approach

‘‘currently’’ (in 2000) can segment time series with several

tens of terms but is not able ‘‘… to tackle series of much more

than a hundred terms…’’ because of the combinatorial

increase of computational burden. In Sects. 3 and 4 below,

algorithms which can segment time series with hundreds of

terms in a few seconds are presented.

In order to obtain these fast algorithms, it will be useful

to develop a fast method for computing the costs ds,t. The

recursive formulation of

ds;tþ1 ¼ ds;t

þ t � sþ 1ð Þ ls;t � ls;tþ1

� �2þ xtþ1 � ls;tþ1

� �2

ð4Þ

where

ls;tþ1 ¼
t � sþ 1ð Þls;t þ xtþ1

t � sþ 2
: ð5Þ

is easily proved as a special case of the results in (Kehagias

et al. 2006).

3 The DP algorithm

The DP segmentation algorithm of Kehagias et al. (2006)

computes efficiently the optimal segmentation of order k

for k = 1,2,…K in the following manner.

Consider the optimal segmentation (t1,t2,…,tk) of

(x1,x2,…,xt) which contains k segments and suppose its last

segment is [s ? 1,t]. Then the first k - 1 segments form an

optimal segmentation (t1,t2,…,tk-1) of (x1,x2,…,xs). More

specifically, if ct
k is the minimum segmentation cost of

(x1,x2,…,xt) into k segments then

ck
t ¼ ck�1

s þ dsþ1;t ð6Þ

is satisfied. Equation 6 allows the use of a typical DP

approach to compute the optimal costs and the

corresponding optimal segmentations, as illustrated in the

Dynamic Programming pseudocode in Appendix A. The

algorithm is based on standard dynamic programming

arguments and should be clear to the reader; let us only

note that the variable zt
K denotes the optimal Kth segment

break of the sub-time series (x1,x2,…,xt) (and

z0
1 = z0

2 = ��� = z0
K = 0, corresponding to a fictitious

segment preceding the first actual segment [1, t1] in

segmentation of every order).

On termination, the algorithm has computed the

optimal segmentation cost cK
T ¼ J Kð Þ ¼ mint2TK

J tð Þ
and, by backtracking, the optimal segmentation bt Kð Þ ¼

bt Kð Þ
0 ; bt Kð Þ

1 ; . . .; bt Kð Þ
K

� �
; these quantities have been computed

for K = 1,2,…,Kmax, in other words a sequence of mini-

mization problems has been solved recursively.1

4 The modified DP algorithm

As suggested by Hubert (2000), the upper bound, u, of the

kth segment in the Kth order segmentation can trivially be

given as

tk� u ¼ T � K þ k ð7Þ

The easiest but the most time-consuming way to

determine optimal segmentations of any order from

K = 2 to T - 1 requires 2T-1 computational loops and it

is therefore not effective in obtaining all optimal

segmentations. In this way, the loops are always

completed from K = 2 to T - 1 and then a comparison

and update is made to minimize the cost which initially is

taken equal to d1,T. This also means that the cost ck
tk

(where

t \ T) of any kth-order segmentation of the first tk elements,

is not considered. By taking this cost into account and also

reducing the upper bound of segments as defined in Eq. 7, a

more efficient way is obtained to further eliminate

segmentations. For this purpose, it is easy to check that

ck
tþ1� ck

t �ðckþ1
t and ckþ1

tþ1 Þ ð8Þ

1 The recursive solution of an entire sequence of minimization

problems makes the DP algorithm very attractive for online operation;

the same feature, however, is the main difficulty in converting the

algorithm to online operation. Indeed, the two inner loops in the

Minimization section of the algorithm show that, if a new datum xT?1

is added to the time series, the costs es,t must be recomputed for every

pair (s,t) with s \ t B T ? 1. Hence, for every new datum T ? 1

additional computation must be performed; as T (i.e., the length of the

time series) increases the amount of computation required becomes

prohibitive, especially for online operation.
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is valid for t = 2,…,T - 1 and k = 1,…,t. A detailed

derivation of Eq. 8 can be found in Gedikli et al. (2008),

where four lemmas—one with proof—are given. In addi-

tion to Eq. 8, it is also known that any k sequential seg-

ments extracted from the optimal segmentation are also

optimal; i.e., if the cost of the optimal segmentation is Jð̂tÞ;
then the cost Jð̂tkÞ with change points tk = (t0,t1,…,tk) also

satisfies the optimality condition. It then becomes clear that

a kth-order segmentation of (x1,x2,…,xt) with cost

ct
k-1 [ cT

K cannot be optimal (Gedikli et al. 2008).

In order to reduce the upper bound u in this way, the

remaining cost concept is defined by Gedikli et al. (2008)

as

RK;k
T ;t ¼ cK

T � ck
t ð9Þ

where k B K and t B T. Considering Eq. 8, the reduced

upper bound of the kth segment, e, can be obtained as the

largest integer satisfying

s� e� T � K þ k ð10Þ

and

ds;e�RK;k�1
T ;s�1 ð11Þ

where s is the starting point of the kth segment.2 Based

upon Eq. 11, it is seen that the cost of the kth segment must

be less than or equal to the remaining cost. When Eqs. 9

and 11 are combined, it is noted, for k = 1, that Eq. 11

takes the form of

d1;e� cK
T ð12Þ

since RT,0
K,0 = cT

K - c0
0 and c0

0 = 0, therefore

RK;0
T ;0 ¼ cK

T ð13Þ

is obtained. Considering the kth-order segmentation of the

subseries made of the first r items, and using Eq. 11

ds;r �Rk;k�1
e;s�1 ð14Þ

can be written and hence a new upper bound, r, satisfying

s� r� e ð15Þ

can be obtained.

The above detailed remaining cost concept of the AUG

segmentation algorithm (Gedikli et al. 2008) was coupled

to the DP algorithm developed by Kehagias et al. (2006) as

in the pseudocode in Appendix B to obtain the modified DP

segmentation algorithm which is the unique original

method developed in this study.

5 The optimal segmentation

Both the DP algorithm and its modified version (mDP)

compute a sequence of optimal segmentations; t̂1; t̂2; . . .; t̂K

where t̂k is the kth-order optimal segmentation. Determining

the optimal order of segmentation; i.e. selecting the number

of segments, is however a subsequent step in the segmenta-

tion procedure to be performed for which the Scheffe’s

hypothesis test (Scheffe 1959), which, in short, is a very

general multiple means comparison test, was employed in

this study. For a given segmentation (̂tk for instance), the

hypothesis that the means of consecutive segments are sig-

nificantly different is tested. The test was applied on the

optimal segmentations t̂
ð1Þ
; t̂
ð2Þ
; . . .; t̂

ðKÞ
: If bt kþ1ð Þ

is the first

lowest order segmentation which is rejected by the Scheffe

test (i.e. the first segmentation for which at least two con-

secutive segments do not show a statistically significant

difference in their means), thenbt kð Þ
is accepted as the optimal

segmentation in Hubert (2000). In this study, the optimal

segmentation order is selected differently. The segmentation

process does not stop as soon as a rejection was decided by

the Scheffe test but continues to search for higher order

segmentations; because it is possible to have a higher order

segmentation that can pass the Scheffe test and hence be

accepted as the optimal segmentation. In other words, not the

first lowest but the highest order segmentation which is

accepted by the Scheffe test is considered instead.

6 Experiments

In this section, using several real-world and artificial data

sets, the performance of the DP and mDP algorithms is

studied. Previously used by Aksoy et al. (2008b) the real

data sets (annual total precipitation data at Fortaleza, Brazil

and the minimum water level data of the River Nile) have

been again used in this study, since series of length in the

order of hundred or even thousand years are very rare and

expensive to construct. A longer time series (precipitation

data of Nevada) was added in this study; because validation

on real-world data is crucial for the applicability of the

proposed algorithm. Also three artificial data sets were

used. The lengths of the artificial data has been selected as

100, 1,000 and 8,000. Details of the generation of the

artificial data are provided in Sect. 6.2.

In all experiments presented here the DP and mDP

algorithms have obtained identical segmentations of all

orders. Therefore, experimental results are presented in a

single table which contains the segmentations of all orders

up to the highest order accepted by the Scheffe test. In the

artificial data case, also the change points of the true seg-

mentation are provided. Results of the experiments

2 Note that here too the assumption of offline segmentation is crucial.

Namely, to implement the reduction of upper bound u is possible only

if the costs ds,t are known for every value of s,t and, in particular, for

t = T, which implies that the final time T is known; this would not be

the case for online segmentation.
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performed using hydrometeorological time series of pre-

cipitation, temperature, streamflow and river water level

are given below together with a short analysis that does not

concentrate on hydrological, meteorological or climato-

logical process itself but only on how the DP and mDP

algorithms perform time series segmentation as computa-

tional tools.

6.1 Real data experiments

Annual total precipitation data (in mm) at Fortaleza, Brazil,

has a length of 131 years for the period 1849–1979. The

time series has been previously presented in Morettin et al.

(1987). The DP and mDP algorithms were applied on the

time series. The segmentations obtained are listed in

Table 1 up to the fourth-order, which is the highest order

segmentation accepted by the Scheffe test. In Fig. 1, both

the original time series and segment means corresponding

to the fourth-order segmentation are plotted together with

long-term average. When Fig. 1 is analyzed, it is seen that

the annual precipitation ranges approximately from 500 to

2,500 mm. However, for the last segment, the minimum

annual precipitation remains higher than 1,000 mm; which

is the reason for having this upward shift in the time series

mean.

The DP and mDP algorithms were also applied on the

time series of minimum water level data of the River Nile

for the years 622–1918. These data can also be found in

Hipel and McLeod (1994). It has been previously used,

among others, in Kehagias (2004), Kehagias et al. (2006,

2007), Aksoy et al. (2007, 2008b), and Gedikli et al.

(2008). The segmentations obtained are listed in Table 2 up

to order 16, which is again the highest order segmentation

accepted by the Scheffe test.3 In Fig. 2, the 16th-order

segmentation of the time series is plotted together with the

original time series and its long-term average. As previ-

ously observed by Gedikli et al. (2008), a very long stable

period was located for a period of 294 years starting very

early in the ninth century. A segment of constant values

was discovered by both algorithms starting with 1528,

which can be considered a kind of verification that the

algorithms work properly. This data set can be considered a

‘‘hockey-stick’’ graph as an increasing trend is observed in

last decades of the time series.

Next, the DP and mDP algorithms were applied on the

time series of raw precipitation data of Nevada, a long time

series, consisting of 7,996 annual data points extending

back to 6000 BC. These data were obtained using the

multi-millennial-length tree ring chronology network

available in the World Data Center (WDC) for Paleocli-

matology in the US (Hughes and Graumlich 1996). The

segmentations obtained by the DP and mDP algorithms are

listed in Table 3 up to order 6, the highest order segmen-

tation accepted by the Scheffe test. In Fig. 3, the 6th-order

segmentation of the time series is plotted together with the

original time series and its long-term average. It can be

seen that precipitation in Nevada looked stable around its

mean value when a few short fluctuations were ignored.

6.2 Artificial data experiments

Next the mDP and DP algorithms were applied on three

artificial time series. The advantage of using an artificial

time series is that its true segmentation is known and hence

an evaluation can be made on how efficient the segmen-

tation algorithms are in approaching the true change points.

The artificial time series were generated by the follow-

ing procedure.

1. The length T of the time series is selected (In this

study, T = 100, 1,000 and 8,000 were selected).

2. Then K segment lengths lk (for k = 1,2,…,K) are

generated, following a normal distribution with mean

lL and standard deviation rL, and rounding off fractional

lengths to the closest integer. For each time series K is

chosen large enough that l1 ? l2 ? ��� ? lK C T. The

relationship of the lengths lk to the change points tk is that

t1 = l1, t2 = l1 ? l2,…,tK = l1 ? … ? lK.

3. For k = 1,2,…,K we choose a mean value lk with

uniform probability from the set {1,2,…,6}.

4. Next, the values xt are generated for t =

1,2,…,l1 ? l2 ? ��� ? lK. For the k-th segment (i.e.,

for t [ [lk-1 ? 1,lk]) xt is chosen from a normal

distribution with mean lk and standard deviation r
(note that each segment has a different mean, but all

have the same standard deviation). This results in a

time series which has length at least T.

5. Finally, the time series is truncated by dropping all xt

values with t [ T.

Note that this procedure generates a time series of length

exactly T but with a random number of segments. By using

this procedure three time series, characterized by the

parameters listed in Table 4 were generated. The time

Table 1 Change points in the optimal segmentations of the Fortaleza

annual total precipitation data (1849–1979), for orders k = 2–4

k Change points

2 1848 1962 1979

3 1848 1949 1960 1979

4 1848 1893 1897 1962 1979

3 In previous applications of this data set (Aksoy et al. 2007; Gedikli

et al. 2008), the optimal segmentation was mistakenly printed as 14

instead of 16.
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series (along with their segmentations) are plotted in

Figs. 4, 5, 6.

Both DP and mDP algorithms are applied to these time

series. The segmentations obtained are listed in Tables 5, 6,

7 (for time series no. 1–3, respectively) and the highest

order segmentation passing the Scheffe test is also plotted in

Figs. 4, 5, 6 (for time series no. 1–3, respectively). It can be

seen that in all cases, both the DP and mDP algorithm (in

combination with the Scheffe test) have determined the

correct number of segments. In addition the overwhelming

proportion of time series data has been placed in the true

segment. This can be seen in Figs. 4, 5, 6 and also be stated

more precisely as follows. For every time step

(t = 1,2,…,T) define zt to be the number of the true segment

and z
_

t to be the number of the estimated segment to which xt

belongs; then define ut to be the error indicator, i.e.,

ut ¼ 1 if zt ¼ z
_

t

0 else

�
ð16Þ

Finally, define segmentation accuracy c as

c ¼ 1�
PT

t¼1 ut

T
: ð17Þ

In other words, segmentation accuracy is 1 minus the

fraction of data points which have been misclassified. The

c values for the three artificial time series are listed in

Table 8 and are always very close to 1, indicating the high

accuracy of the segmentations achieved.

Table 2 Change points in the optimal segmentations of the minimum water level data of the River Nile (622–1918), for orders k = 2–16

k Change points

2 621 1857 1918

3 621 1527 1583 1918

4 621 1527 1583 1857 1918

5 621 1426 1527 1583 1857 1918

6 621 1017 1428 1527 1583 1857 1918

7 621 1081 1196 1426 1527 1583 1857 1918

8 621 1081 1196 1426 1527 1583 1836 1887 1918

9 621 731 804 1081 1196 1426 1527 1583 1857 1918

10 621 731 804 1081 1196 1426 1527 1583 1836 1887 1918

11 621 731 804 1098 1131 1196 1426 1527 1583 1836 1887 1918

12 621 731 804 1098 1131 1196 1426 1527 1583 1619 1836 1887 1918

13 621 731 804 1098 1131 1196 1353 1396 1426 1527 1583 1836 1887 1918

14 621 731 804 1098 1131 1196 1353 1396 1426 1527 1583 1619 1836 1887 1918

15a 621 731 804 1098 1131 1196 1356 1357 1396 1426 1527 1583 1619 1836 1887 1918

16 621 731 804 1098 1131 1196 1353 1396 1426 1527 1583 1619 1798 1822 1857 1889 1918

a Rejected by the Scheffe test

Fig. 1 Segmentation of the

Fortaleza annual total

precipitation data (1849–1979)

for k = 4
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6.3 Comparison

Based on the experimental results detailed above, both the

DP and mDP algorithms are seen to minimize, in an exact

manner (without approximation), the segmentation cost

defined by Eqs. 1–3. Since the minimization is exact, both

algorithms naturally give the same results. Hence the only

comparison possible between the two algorithms is in

terms of the execution time. This is listed in Table 8, where

it can be seen that both algorithms (mDP in particular) are

very fast and segment time series with even thousands of

terms (on which the algorithm of Hubert (2000) does not

terminate). It can also be seen that the mDP is always faster

than the DP algorithm and this becomes especially obvious

in the long time series. For example, for the Nevada time

series, execution time is 42 min 41 s for the DP and 21 min

38 s for mDP; for artificial time series no. 3 the respective

Fig. 2 Segmentation of the

minimum water level data of the

River Nile (622–1918) for

k = 16

Table 3 Change points in the optimal segmentations of Nevada

precipitation data for orders k = 2–6

k Change points

2 -6001 -5956 1995

3 -6001 -5997 -5956 1995

4 -6001 -5956 -852 -821 1995

5 -6001 -852 -821 -267 359 1995

6 -6001 -5956 -852 -821 -267 359 1995

Fig. 3 Segmentation of the

Nevada precipitation data for

k = 6

Table 4 The characteristics of the three artificial time series: T
(Length), lL (average segment length), rL (standard deviation of

segment length), K (number of segments), lk (average value in k-th

segment), r (standard deviation of noise—same for all segments)

Time series T lL rL K lk r

1 100 25 4 4 (1, 4, 1, 6) 3

2 1000 200 40 5 (3, 5, 2, 6, 4) 4

3 8000 800 40 10 (2, 5, 3, 6, 4, 6, 5, 3, 5, 3) 4
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times are 50 min 01 s and 25 min 04 s, respectively.4

These results show the superiority of the mDP algorithm,

namely that it can segment long time series significantly

faster than the DP algorithm.

Looking at the artificial time series (Table 8) for which

the true segmentations are known it can also be seen that

both DP and mDP achieve excellent (over 0.95) segmen-

tation accuracy. Finally, it is worth mentioning that the

algorithms defined in this study have been presented in user

friendly software and applied on long time series by

Gedikli et al. (2009).

Fig. 4 Segmentation of the

artificial time series No. 1 for

k = 4

Fig. 5 Segmentation of the

artificial time series No. 2 for

k = 5

Fig. 6 Segmentation of the

artificial time series No. 3 for

k = 10

Table 5 Change points in the optimal segmentations of the artificial

time series No. 1 for orders k = 2–4 and change points in the true

segmentation

k Change points

2 0 74 100

3 0 21 74 100

4 0 21 58 73 100

True segmentation 0 22 55 74 100

4 All experiments were performed by running a Microsoft Visual

Studio 2005 C# implementation of DP and mDP. The executable was

run on a Windows PC with HT processor running at 3.00 GHz (CPU)

and 2 GB memory (RAM).
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7 Conclusion

Using the remaining cost concept (or the upper bound

reduction), the DP segmentation approach is changed to

obtain the modified DP segmentation algorithm. The

remaining cost concept is used to determine and eliminate

(with minimal computation) a number of segmentations

which do not satisfy the minimum cost condition. The DP

algorithm is made faster after the upper bound reduction is

used, i.e. the remaining cost concept of the AUG seg-

mentation algorithm is incorporated into the DP algorithm.

Efforts to link the AUG segmentation algorithm with the

DP and mDP algorithms as a set of programs in a user-

friendly interface are in progress.
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Table 6 Change points in the optimal segmentations of the artificial

time series No. 2 for orders k = 2–5 and change points in the true

segmentation

k Change points

2 0 584 1000

3 0 378 583 1000

4 0 378 583 775 1000

5 0 179 378 583 775 1000

True segmentation 0 178 379 584 777 1000

Table 7 Change points in the optimal segmentations of the artificial time series No. 3 for orders k = 2–10 and change points in the true

segmentation

k Change points

2 0 806 8000

3 0 806 5569 8000

4 0 796 2336 5569 8000

5 0 806 1573 2336 5569 8000

6 0 796 2336 5569 6499 7374 8000

7 0 806 1573 2336 5569 6499 7374 8000

8 0 806 1573 2336 3081 5569 6499 7374 8000

9 0 806 1573 2336 3161 3978 5569 6499 7374 8000

10 0 806 1573 2336 3161 3978 4742 5569 6499 7374 8000

True segmentation 0 808 1579 2339 3157 3978 4744 5563 6494 7377 8000

Table 8 Segmentation accuracy for artificial TS (time series) and execution time (h:min:s) required for the DP and mDP algorithms

Experiment Length (years) Segmentation accuracy c Computer run time (h:m:s)

DP mDP

Fortaleza 131 Not applicable 00:00:00.094 00:00:00.094

Nile 1297 Not applicable 00:00:10.531 00:00:02.594

Nevada 7996 Not applicable 00:42:41.328 00:21:38.547

Artificial TS No. 1 100 0.950 00:00:00.063 00:00:00.063

Artificial TS No. 2 1000 0.995 00:00:04.980 00:00:02.938

Artificial TS No. 3 8000 0.996 00:50:01.000 00:25:04.063

All times refer to running a Microsoft Visual Studio 2005 C# implementation of DP and mDP on a Windows PC with HT processor running at

3.00 GHz (CPU) and 2 GB memory (RAM)
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