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Abstract:

A time series with natural or artificially created inhomogeneities can be segmented into parts with different statistical
characteristics. In this study, three algorithms are presented for time series segmentation; the first is based on dynamic
programming and the second and the third—the latter being an improved version of the former—are based on the branch-
and-bound approach. The algorithms divide the time series into segments using the first order statistical moment (average).
Tested on real world time series of several hundred or even over a thousand terms the algorithms perform segmentation
satisfactorily and fast. Copyright  2008 John Wiley & Sons, Ltd.
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INTRODUCTION

Hydrometeorological time series are among the basic data
used to study earth-related phenomena. Records of river
streamflow, precipitation, temperature, etc. are scruti-
nized to detect regularities and trends, which can be used
to predict their future behaviour (Aksoy et al., 2008). For
example, the records of global temperature through the
centuries can be used to test the hypothesis that a green-
house effect is currently taking place which can result in
environmental disaster. Equally important is the analysis
of hydrological records and ozone concentration.

The detection of irregularities, jumps and changes is
of the highest importance (Aksoy, 2007; Dahamsheh
and Aksoy, 2007). Various natural or manmade actions
can result in the changing behaviour of a hydrom-
eteorological time series and such changes must be
taken into account when extrapolating the past into
the future. The time points where changes take place
are called change points; the interval included between
two change points is a segment (of the time series);
and the procedure by which the segments of a time
series are determined is called time series segmenta-
tion. Time series segmentation is an important prob-
lem in hydrometeorology (as well as in many other
applied sciences, e.g. climatology and environmetrics)
for which the development of fast and efficient seg-
mentation algorithms emerges as a practically significant
problem.

The problem of time series segmentation has received
considerable attention in the hydrological literature. An
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early landmark study on hydrological segmentation was
made by Buishand (1982). Many segmentation methods
and a very extensive bibliography are presented in
Basseville and Nikiforov (1993) where the emphasis is
on the online segmentation.

In this study, offline segmentation algorithms, based
on dynamic programming (DP) and branch-and-bound
(BB) approaches are presented and evaluated on several
hydrometeorological time series. A very broad dichotomy
can be made between offline and online segmentation
methods. In the offline segmentation, an entire time series
x1, x2, . . . , xT is given which is required to be divided into
segments. In the online segmentation, on the other hand,
the data points x1, x2, . . . , xt, . . . arrive one at a time
and, at every time step t, it must be decided whether xt

belongs to the previous segment or should be assigned to
a new segment which starts at t (Dobigeon and Tourneret,
2007).

The main inspiration of the current study has been
Hubert’s (2000) work on multiple segments, offline seg-
mentation. A version of the DP-based algorithm (denoted
as DP) has been presented in Kehagias et al. (2006); sim-
ilarly, early versions of the BB-based algorithm (denoted
as AUG) appear in Aksoy et al. (2007) and Gedikli et al.
(2008). The DP and AUG algorithms yield optimal seg-
mentations (in terms of a well-defined segmentation cri-
terion) and can segment long time series of over one
thousand terms in seconds. Both algorithms are eval-
uated on several real world hydrometeorological time
series. All the studies above contain fairly extensive refer-
ences to the segmentation literature, which was therefore
omitted from the current study. However, some alterna-
tive approaches, for instance the Bayesian Markov Chain
Monte Carlo (MCMC) approach of Fortin et al. (2004a,b)
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and Kehagias and Fortin (2006) and the hidden Markov
model (HMM) approach of Kehagias (2004) and Keha-
gias and Fortin (2006) should be noted.

The study is organized as follows. In the follow-
ing section, a general formulation of the segmentation
problem is presented, which will be used in subsequent
sections. The DP and AUG segmentation algorithms are
then presented and it is detailed how the AUG algorithm
was improved. After the issue of determining the num-
ber of segments, use of the Scheffe (1959) criterion is
discussed. The performance of the algorithms on several
natural hydrometeorological time series are evaluated and
compared in separate subsequent sections. Conclusions
are finally drawn and directions for future research are
presented.

FORMULATION OF THE PROBLEM

The formulation and notation of Hubert (2000) are fol-
lowed with slight changes. While the final goal is the
segmentation of a time series, what is really segmented
is the set of integers f1, 2, . . . , Tg (the time series
gives the information by which the various segmenta-
tions are evaluated and compared). The segmentation
can be described by a sequence t D �t0, t1, . . . , tK� satis-
fying 0 D t0 < t1 < . . . < tK�1 < tK D T. The intervals
of integers [t0 C 1, t1], [t1 C 1, t2], . . . , [tK�1 C 1, tK] are
called segments, the times t0, t1, . . . , tK are called seg-
ment boundaries and K, the number of segments, is called
the order of the segmentation.

The set of all segmentations of f1, 2, . . . , Tg is denoted
T and the set of all segmentations of the order K by
TK. Clearly, T D [T

KD1TK. The number of all possible
segmentations of f1, 2, . . . , Tg is 2T�1.

A time series x D fx1, x2, . . . , xTg is given and a seg-
mentation of f1, 2, . . . , Tg is sought which corresponds
to changes in the behaviour of x. This can be formulated
as an optimization problem. In other words the optimal
segmentation depends on x. The so-called normalized
segmentation cost J�t� is defined

J�t� D
K∑

kD1

dtk�1C1,tk �1�

where ds,t (for 0 � s < t � T) is the normalized segment
error corresponding to segment [s, t]. The segment error
depends on the data vector x D �xs, xsC1, . . . , xt�. A
variety of ds,t functions can be used. The current study
uses

Ods,t D
t∑

�Ds

��� � �s,t�
2 �2�

where the segment-mean is given by

�s,t D

t∑
�Ds

��

t � s C 1
�3�

The normalized cost in Equation (1) is obtained by
dividing the cost calculated in Equation (2) by Od1,T (the
highest cost) such that the cost matrix is bound with zero
at the lower limit and with 1 at the upper limit. Extensions
using other regression functions are immediate (Kehagias
et al., 2006).

The optimal segmentation, denoted by Ot D (Ot0, Ot1, . . . ,
OtK

)
is defined as Ot D arg min

t2T
J�t� and the optimal seg-

mentation of order K, denoted by Ot�K� D
(

Ot�K�
0 , Ot�K�

1 , . . . ,

Ot�K�
K

)
, is defined as Ot�K� D arg min

t2TK

J�t�. The optimal seg-

mentation can be found by exhaustive enumeration of all
possible segmentations (and computation of the corre-
sponding ds,t). However, this is computationally infeasi-
ble, because the total number of segmentations increases
exponentially in T. Hubert (2000) used a BB approach
to search efficiently the set of all possible segmentations
and stated that this approach can segment time series
with several tens of terms but was not able “. . . to tackle
series of much more than a hundred terms. . . ” because
of the combinatorial increase of computational burden. In
Sections 3 and 4 in this study, algorithms which can seg-
ment time series with hundreds of terms in a few seconds
are presented.

In order to obtain these fast algorithms, it will be useful
to develop a fast method for computing the costs ds,t. The
recursive formulation of

ds,tC1 D ds,t C �t � s C 1���s,t � �s,tC1�2

C �xtC1 � �s,tC1�2 �4�

is easily proven where

�s,tC1 D �t � s C 1��s,t C xtC1

t � s C 2
. �5�

THE DP ALGORITHM

In this section, the DP segmentation algorithm is pre-
sented; it efficiently computes the optimal segmentation
of order k for k D 1, 2, . . . , K.

Consider the optimal segmentation of x1, x2, . . . , xt

which contains k segments; suppose its last segment is
[s C 1, t]. Then the first k � 1 segments form an optimal
segmentation of x1, x2, . . . , xs. More specifically, if ck

t is
the minimum segmentation cost of x1, x2, . . . , xt into k
segments then

ck
t D ck�1

s C dsC1,t �6�

is satisfied. Equation (6) allows the use of a typical
dynamic programming approach to efficiently compute
the optimal costs. Details of the DP algorithm can be
found in Kehagias et al. (2006).

THE AUG ALGORITHM

As stated before, the AUG segmentation algorithm is
based on the BB-type technique. The branches are
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the possible segments of a kth order segmentation. As
suggested by Hubert (2000), the upper bound u of the
kth segment in a Kth order segmentation can trivially be
given as

tk � u D T � K C k �7�

In the AUG algorithm, the term upper bound should not
be understand as a constraint on the objective function
of the optimization, but the criteria on the possible
maximum value of tk .

The easiest but most time-consuming formulation to
determine the optimal segmentations of any order from
K D 2 to T � 1 is presented in the following pseudocode
referred to as the primitive code.

The Primitive code

Initialization
For K D 1, . . . , T
cK

T D d1,T

Next K
Minimization
For K D 2, . . . , T � 1
For t1 D 1, . . . , T � K C 1
C1 D d1,t1

For t2 D t1 C 1, . . . , T � K C 2
C2 D C1 C dt1C1,t2

. . .
For tk D tk�1 C 1, . . . , T � K C k
Ck D Ck�1 C dtk�1C1,tk
. . .
For tK�1 D tK�2 C 1, . . . , T � 1
CK�1 D CK�2 C dtK�2C1,tK�1

CK D CK�1 C dtK�1C1,T

If cK
T > CK then cK

T D CK and Ot�K� D f0, t1, . . . , tK�1, Tg
Next tK�1, . . . , tk, . . . , t2, t1

Next K

It is clear from the primitive code that it requires
2T�1 computational loops and is therefore not effective
in obtaining all optimal segmentations. Loops in the
primitive code are always completed from K D 2 to
T � 1 and then a comparison and an update is made
to minimize the cost which initially is taken equal to
d1,T. This also means that the cost of any kth order
segmentation of the first tk elements ck

tk where k < T
is not considered in the primitive code. When this cost
is considered, a more efficient way, referred to as the
intermediate code, can be written as follows.

Intermediate code

Initialization
For t D 1, .., T
For k D 1, .., t
ck

t D dk,t

Next k,t
Minimization
For K D 2, . . . , T � 1
For t1 D 1, . . . , T � K C 1

C1 D d1,t1

For t2 D t1 C 1, . . . , T � K C 2
C2 D C1 C dt1C1,t2

If c2
t2

> C2 then c2
t2

D C2 else Next t2.
. . .
For tk D tk�1 C 1, . . . , T � K C k
Ck D Ck�1 C dtk�1C1,tk
If ck

tk > Ck then ck
tk D Ck else Next tk .

. . .
For tK�1 D tK�2 C 1, . . . , T � 1
CK�1 D CK�2 C dtK�2C1,tK�1

If cK�1
tK�1

> CK�1 then cK�1
tK�1

D CK�1 else Next tK�1.
CK D CK�1 C dtK�1C1,T

If cK
tK > CK then cK

tK D CK and Ot�K� D f0, t1, . . . , tKg
Next tK�1, . . . , tk, . . . , t2, t1

Next K

When the cost of any kth order segmentation of the
first tk elements, ck

tk for k < T is considered, the process
becomes much faster than that of the primitive code. It is
also observed in the intermediate code that a comparison
is made to the most recent updated cost and a new cost
update takes place when applicable. Therefore, in this
code, some of the segmentations with a cost higher than
the updated cost are automatically eliminated to finally
reduce required execution time.

The basic idea of the AUG algorithm (and, more
generally, of the BB-type technique) is to enumerate
(branch into) the possible solutions of the segmentation
problem but to avoid exhaustive enumeration (which
would require O�2T�1� computation time) by eliminating
clearly suboptimal solutions (bounds). Hence, before
presenting the AUG algorithm, it is worth discussing
upper and lower bounds of the segmentation, more
specifically of the boundaries tk (for k D 1, 2, . . . , K).

In addition to those eliminated in the intermediate
code, it is possible to further eliminate segmentations
by reducing the upper bound of segments as defined in
Equation (7). It is also easy to check that

ck
tC1 ½ ck

t ½ �ckC1
t and ckC1

tC1 � �8�

is valid for t D 2, . . . , T � 1 and k D 1, . . . , t. The
inequality (8) is rather obvious; a detailed derivation of
it can be found in Gedikli et al. (2008) where four lem-
mas are given. In addition to Equation (8), it is also
known that any k sequential segments extracted from the
optimal segmentation are also optimal; i.e. if the cost of
the optimal segmentation is J�Ot�, then the cost J�Otk� with
change points tk D ft0, t1, . . . , tkg also satisfies the opti-
mality condition. It then becomes clear that a kth order
segmentation of x1, . . . , xt with cost ck�1

t > cK
T cannot be

optimal (Gedikli et al., 2008).
In order to reduce the upper bound u in this way, the

remaining cost concept is defined as

RK,k
T,t D cK

T � ck
t �9�

where k � K and t � T. Considering Equation (8), the
reduced upper bound of the kth segment e can be obtained
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as the largest integer satisfying

s � e � T � K C k �10�

and
ds,e � RK,k�1

T,s�1 �11�

where s is the starting point of the kth segment. Based
upon Equation (11), it is seen that the cost of the kth
segment must be less than or equal to the remaining cost.
When Equation (9) and inequality (11) are combined, it
is noted for k D 1 that inequality (11) takes the form

d1,e � cK
T �12�

since it is already known that

RK,0
T,0 D cK

T �13�

is valid. Considering the kth order segmentation of the
subseries made of the first r items, and using inequality
(11),

ds,r � Rk,k�1
e,s�1 �14�

can be written and hence a new upper bound r satisfying

s � r � e �15�

can be obtained. From our observations, it was noted that
although additional computational efforts are required,
locating r does not, for short series in particular, always
result in a net gain in the execution time. However, it
is worth emphasizing that the reduction in the upper
bound of the segments is the unique feature of the
AUG algorithm and it drastically reduces the number
of possible segmentations evaluated by the algorithm in
case of long time series in particular. Utilizing the above
ideas, the AUG algorithm can now be described in the
following pseudocode. This is an improved version of
the AUG algorithm given in Gedikli et al. (2008), to be
denoted as iAUG.

The iAUG algorithm

Input
The time series x1, x2, . . . , xT; the errors ds,t (0 � s <
t � T).
Initialization
c1

0 D 0
For t D 1 to T

For k D 1 to t
ck

t D dk,t

Next k
Next t

Main
K D 1
For K D 2 to T � 1

Update(T, K, c)
r D ReduceUB�T, K, 1, tŁ, CŁ, cŁ

Ł�
For t1 D 1 to r

C1 D d1,t1

c1
t1

D d1,t1

r D ReduceUB�T, K, 2, tŁ, CŁ, cŁ
Ł�

For t2 D t1 C 1 to r
C2 D C1 C dt1C1,t2

If c2
t2

> C2 then c2
t2

D C2 else Next t2.
. . .
r D ReduceUB�T, K, k, tŁ, CŁ, cŁ

Ł�
For tk D tk�1 C 1 to T � K C k

Ck D Ck�1 C dtk�1C1,tk
If ck

tk > Ck then ck
tk D Ck else Next tk .

. . .
r D ReduceUB�T, K, K � 1, tŁ, CŁ, cŁ

Ł�
For tK�1 D tK�2 C 1 to T � 1

CK�1 D CK�2 C dtK�2C1,tK�1

If cK�1
tK�1

> CK�1 then cK�1
tK�1

D CK�1

else Next tK�1.
CK D CK�1 C dtK�1C1,T

If cK
tK > CK then

cK
tK D CK

Ot�K� D f0, t1, . . . , tKg
Next tK�1, . . . , tk, . . . , t2, t1

Next K

Function ReduceUB(T, K, k, tŁ, CŁ, cŁ
Ł)

e D T � K C k
r D Reduce�T, K, k, tŁ, CŁ, cŁ

Ł�
While (e > r)

e D r
r D Reduce�e, k, k, tŁ, CŁ, cŁ

Ł�
End While
Return r

Function Reduce(T, K, k, tŁ, CŁ, cŁ
Ł)

! p and q are dummy variables as integer.
p D s D tk�1 C 1
u D T � K C k
R D cK

T � Ck�1 ! Remaining cost defined by
Equation (9)

While (u > p C 1)
q D �u C p�/2 ! Round down to the nearest

integer.
If ds,j > R then u D q else p D q

End While
Return u

Subroutine Update(T, K, cŁ
Ł)

For t D K C 1 to T
If cK�1

t < cK�1
t�1 then cK�1

t�1 D cK�1
t

If cK�1
t�1 < cK

t then cK
t D cK�1

t�1
Next k

As stated above, this is an improved version of
the AUG algorithm (iAUG). The basic improvement is
present in the global update phase of the algorithm.
The pseudocode of the global update used in the AUG
algorithm is provided below to demonstrate the difference
between the iAUG algorithm as given above.

Subroutine Update(T, K, cŁ
Ł)

For k D K to T

Copyright  2008 John Wiley & Sons, Ltd. Hydrol. Process. 22, 4600–4608 (2008)
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For t D k C 1 to T
If ck�1

t < ck�1
t�1 then ck�1

t�1 D ck�1
t

If ck�1
t�1 < ck

t then ck
t D ck�1

t�1
Next t

Next k

When the pseudocodes are compared, it is seen that
the cost values are updated according to the lemmas for
all segmentation orders, K � 1, K, K C 1, . . . , T in the
AUG algorithm while an improvement is made in the
iAUG algorithm by updating the cost for segmentation
orders K � 1 and K only. That is, the number of
loops in the global update is reduced to 1 from 2
in the iAUG algorithm, i.e. the process runs in order
O(T) not in O�T2� as before. The algorithms were
all written and compiled (in the release mode) with
Microsoft Visual CCC 6Ð0 and run on an Intel Pentium
4 CPU 3Ð00 GHz, 2Ð00 GB of RAM running Microsoft
Windows XP. The algorithms are online available at
http://www2.itu.edu.tr/¾gedikliab/Segmentation.

DETERMINING THE NUMBER OF SEGMENTS

The algorithms compute a sequence of optimal segmen-
tations Ot1, Ot2, . . . , OtK where Otk is the kth order optimal
segmentation. Determining the optimal order of segmen-
tation i.e. selecting the number of segments, is however
a subsequent step in the segmentation procedure to be
performed for which the Scheffe test is employed.

The Scheffe test is based on the following idea. For a
given segmentation (Otk for instance), the hypothesis that
the means of consecutive segments are significantly dif-
ferent is tested. This is done using Scheffe’s hypothesis
test (Scheffe, 1959) which, in short, is a very general
multiple means comparison test. We run this test on the
optimal segmentations Ot�1�, Ot�2�, . . . , Ot�K�. In the Hubert
(2000) algorithm, Ot�k� is accepted as the optimal segmen-
tation when Ot�kC1� is the first lowest order segmentation

rejected by Scheffe’s test (i.e. the first segmentation for
which at least two consecutive segments do not show a
statistically significant difference in their means). In this
study, the highest order segmentation accepted by the
Scheffe test is considered instead of the first lowest.

EXPERIMENTS

In this section, the performance of the DP, AUG and
iAUG algorithms using several data sets was studied. In
all of the experiments presented here, the three algorithms
have obtained identical segmentations of all orders.
This is not surprising, since the algorithms minimize
(in an exact manner, without approximation) the same
segmentation cost. Hence, in every one of the following
experiments, results are presented in a single table which
contains the segmentations (obtained by either DP, AUG
or iAUG) of all orders up to the highest order accepted
by the Scheffe test.

Given below are results of the experiments performed
using hydrometeorological time series of streamflow,
precipitation and temperature, with a short analysis.
The analysis does not aim to concentrate on hydrology,
meteorology or climatology but only on the performance
of the DP, AUG and iAUG algorithms on time series
segmentation as a computational problem. If desired, the
results can be submitted to hydrologists, meteorologists
and climatologists for further physical interpretation.

Experiment 1

This time series has a length of 131 years and consists
of the annual total precipitation data (in mm) at Fortaleza,
Brazil, for the period 1849–1979. The time series has
been presented in Morettin et al. (1987). The algorithms
have been applied to the time series. The segmentations
obtained are listed in Table I up to the 4th order, which
is the highest order segmentation accepted by the Scheffe
test. In Figure 1, both the original time series and segment

Figure 1. Segmentation of the Fortaleza total annual precipitation data (1849–1979) for K D 4

Copyright  2008 John Wiley & Sons, Ltd. Hydrol. Process. 22, 4600–4608 (2008)
DOI: 10.1002/hyp



FAST SEGMENTATION ALGORITHMS FOR LONG HYDROMETEOROLOGICAL TIME SERIES 4605

Table I. Change points in the optimal segmentations of the
Fortaleza annual precipitation data, for orders K D 2, 3, 4

K Change points

2 1848 1962 1979
3 1848 1949 1960 1979
4 1848 1893 1897 1962 1979

means corresponding to the 4th order segmentation are
plotted together with long-term average.

With the exception of the 4 year segment during the
period 1893–1896, the annual precipitation in Fortaleza
can be considered stable for more than a century until
1962, after which an increase is observed up to the end
of the observation period, 1979. Figure 1 demonstrates
that the annual precipitation ranges approximately from
500 mm to 2500 mm except for the last segment in which
the minimum annual precipitation remains higher than
1000 mm; this is considered the reason for the upward

shift in the time series. Having consecutive years with
high precipitation reaching about 2500 mm at annual
scale resulted in the 4 year segment mentioned above.

Experiment 2

The second time series used in the study has 581 years
and consists of the ‘hockey-stick’ data, the northern
hemisphere mean temperature for the period 1400–1980
(McIntyre and McKitrick, 2005). The data set was
reconstructed by Mann et al. (1999, 2000) using proxy
data networks.

The algorithms were applied to the time series. The
segmentations obtained are listed in Table II up to the
10th order, which is the highest order segmentation
accepted by the Scheffe test. In Figure 2, the original
time series was plotted together with segment means
corresponding to the 10th order segmentation as well as
its long-term average. The most dominant observation
made in Figure 2 is the rapid increase taking place in
early 20th century to stabilize after the second half of

Figure 2. Segmentation of the northern hemisphere mean temperature (1400–1980) for K D 10

Figure 3. Segmentation of the annual streamflow data at Limber Pine Dell, Montana, US (1311–1965) for K D 9

Copyright  2008 John Wiley & Sons, Ltd. Hydrol. Process. 22, 4600–4608 (2008)
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Table II. Change points in the optimal segmentations of the northern hemisphere mean temperature (1400–1980) for orders
K D 2, 3, . . . , 10

K Change points

2 1399 1925 1980
3 1399 1811 1925 1980
4 1399 1453 1473 1925 1980
5 1399 1453 1473 1811 1925 1980
6 1399 1453 1473 1747 1811 1925 1980
7 1399 1453 1473 1662 1717 1811 1925 1980
8 1399 1453 1473 1662 1717 1811 1922 1933 1980
9 1399 1453 1473 1662 1717 1769 1776 1811 1925 1980
10 1399 1453 1473 1662 1717 1769 1776 1811 1922 1933 1980

Table III. Change points in the optimal segmentations of the Limber Pine, Dell, Montana, US for orders K D 2, 3, . . . , 9

K Change points

2 1310 1962 1965
3 1310 1417 1434 1965
4 1310 1358 1417 1434 1965
5 1310 1417 1431 1527 1603 1965
6 1310 1417 1434 1450 1527 1603 1965
7 1310 1417 1431 1527 1603 1780 1809 1965
8 1310 1417 1434 1450 1527 1603 1780 1809 1965
9 1310 1358 1417 1434 1450 1527 1603 1780 1809 1965

the century. It is this increase which has led to the data
set being referred to as the ‘hockey-stick’ data/graph
(McIntyre and McKitrick, 2005). Another observation
made from the time series is the departure of the
mentioned increase from the overall mean value of the
time series, recorded as the maximum departure through
the time series.

Experiment 3

The third time series consists of streamflow data from
the Limber Pine, Dell, Montana, US for the period
1311–1965. The time series was used in Hipel and
McLeod (1994) and has a length of 655 years.

Again the three algorithms were applied. The segmen-
tations obtained are listed in Table III up to the 9th order,
which is the highest order segmentation accepted by the
Scheffe test. In Figure 3, the time series, the ninth-order
segmentation and the long-term average are plotted. It is
seen that the first six segments fluctuate around the over-
all mean value of the time series and then a steady regime
is noted for the data set when the 29 year 8th segment is
considered null.

Experiment 4

Finally, the algorithms were applied to the time series
of minimum water level data of the River Nile for the
years 622–1918. These data can also be found in Hipel
and McLeod (1994). It has previously been used in
Kehagias (2004), Kehagias et al. (2006, 2007), Aksoy
et al. (2007) and Gedikli et al. (2008).

While the time series purportedly covers the years
622–1921 and should have length 1300, its actual length
is 1297. We assume that the actual years corresponding to

these 1297 data points are 622–1918. With 1297 points,
it is the longest of all data sets used in this study.

The segmentations obtained are listed in Table IV up
to order 16, which is again the highest order segmentation
accepted by the Scheffe test. (In previous applications of
this data set (Aksoy et al., 2007; Gedikli et al., 2008),
the optimal segmentation was mistakenly printed as 14
instead of 16). In Figure 4, the 16th order segmentation
of the time series is plotted together with the original time
series and its long-term average. As previously observed
by Gedikli et al. (2008), a very long stable period was
located for a period of 294 years beginning very early
in the 9th century. A segment of constant values was
discovered by both algorithms starting with 1528, which
can be considered as verification that the algorithms work
properly. This data set can also be considered a ‘hockey-
stick’ graph as an increase trend is observed in last
decades of the time series.

Comparison

Based upon the experimental results detailed above,
the algorithms are seen to minimize the segmentation
cost defined by Equations (1–3). Since the minimization
is exact, the algorithms naturally give the same results.
The only comparison possible between the algorithms is
therefore in terms of the execution time, which can be
seen in Table V from which it is observed that the DP
algorithm is much faster than the AUG and its improved
version. It is also seen that with the improvement in
the AUG algorithm, the process is completed faster.
However, it should be mentioned that the three algorithms
can produce segmentations of time series on which the
Hubert (2000) algorithm does not even terminate.
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Table IV. Change points in the optimal segmentations of the Nile minimum level, for orders K D 2, 3, . . . , 16

K Change points

2 621 1857 1918
3 621 1527 1583 1918
4 621 1527 1583 1857 1918
5 621 1426 1527 1583 1857 1918
6 621 1017 1428 1527 1583 1857 1918
7 621 1081 1196 1426 1527 1583 1857 1918
8 621 1081 1196 1426 1527 1583 1836 1887 1918
9 621 731 804 1081 1196 1426 1527 1583 1857 1918
10 621 731 804 1081 1196 1426 1527 1583 1836 1887 1918
11 621 731 804 1098 1131 1196 1426 1527 1583 1836 1887 1918
12 621 731 804 1098 1131 1196 1426 1527 1583 1619 1836 1887 1918
13 621 731 804 1098 1131 1196 1353 1396 1426 1527 1583 1836 1887 1918
14 621 731 804 1098 1131 1196 1353 1396 1426 1527 1583 1619 1836 1887 1918
15Ł 621 731 804 1098 1131 1196 1356 1357 1396 1426 1527 1583 1619 1836 1887 1918
16 621 731 804 1098 1131 1196 1353 1396 1426 1527 1583 1619 1798 1822 1857 1889 1918

Ł Rejected by the Scheffe test

Figure 4. Segmentation of the minimum water level data of the River Nile (622–1918) for K D 16

CONCLUSIONS AND FUTURE RESEARCH

The following conclusions can be drawn from the study.

(1) Execution time: Using the pioneering work of Hubert
(2000) as the starting point, three segmentation algo-
rithms are obtained. The algorithms use recursive
computation and are able to segment time series of
over a thousand samples in a few seconds (DP) or
just a minute or two (AUG and iAUG). Hence, they
are all fast in terms of computer time and can handle
much longer time series than the Senegal River annual
flow time series, which was shorter than 100 years at
the time it was used by Hubert (2000). Because of
the speed of execution, the DP algorithm, the AUG
algorithm and its improved version can be used not
only as standalone segmentation algorithms but also
as exploratory tools, used by a human operator to
quickly and interactively explore the set of candidate
segmentations.

(2) Variation in the time series: One important point
observed during the study is that the performance
of the AUG and iAUG algorithms depends not only
on the length of the time series but also on its
variation. For example, the execution time required
for a time series may differ from the execution time
required when the time series is reversed as x D
�xT, xT�1, . . . , x1�. Observations on that issue show
that a longer execution time is required when the time
series is more variable at the beginning than its end.

Table V. Execution time (s) for the DP, AUG and iAUG algo-
rithms

Experiment Length DP AUG iAUG

1 131 0Ð016 0Ð110 0Ð079
2 581 0Ð625 12Ð109 10Ð981
3 655 0Ð875 47Ð750 45Ð500
4 1297 7Ð140 87Ð234 67Ð640
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(3) Upper bound reduction: It is also noted from our
observations that, although additional computational
efforts are required, the upper bound reduction does
not (for short time series in particular) always result
in a net gain in the execution time. The AUG and
iAUG algorithms strictly depend on the intermediate-
code presented in the study. The only way to arrive at
faster algorithms is the reduction of upper bounds of
each branch/segment. By using Equations (9–15), this
reduction is performed. If a more effective reduction
method is obtained in the future, then faster versions
of the AUG and iAUG algorithms can be written. The
DP algorithm can also be made faster than its present
version if the upper bound reduction is incorporated.

(4) Linear or quadratic segmentation for future studies:
Various issues remain open and we plan to address
them in future research. As presented in this study,
the algorithms are based on a ‘mean-inhomogeneity’
segmentation cost. But they can be modified to incor-
porate other segmentation costs based on various
autoregressive models, for example linear (Kehagias,
2004), quadratic, exponential or logarithmic. Or even,
a segmentation algorithm can be formulated combin-
ing all these approximations. In particular, the linear
segmentation among these approximations can serve
as an exploratory tool for trend analysis, a recent pop-
ular topic in environmetrics and climatology to detect
climate change or climate variability, for instance.

(5) Multiple optimal segmentation: Another worthwhile
research topic is to address the issue of non-
uniqueness of optimal segmentation (i.e. the case
when two or more segmentations yield the same cost).
In such cases, the current AUG and iAUG codes (in
CCC) report the minimum number of non-unique
solutions alternating each other. The DP algorithm
can be modified to track such multiple optimal seg-
mentations.

(6) Dominant change points: When the change points
are analysed, it is seen that certain points in the
time series always appear as change points of the
optimal segmentations after a critical segmentation
order is reached. Such change points can be referred
to as dominant change points and their properties
merit further analysis in the future. The dominant
change points can help in determining the optimal
segmentation with considerably reduced execution
time provided that the time series is divided into sub-
series using the dominant change points.

(7) Evaluation of Type I and Type II errors: There are
two types of error which a time series segmentation
algorithm can commit. It can produce segments of
a data sequence which was actually produced by a
stationary process (Type I error) or ignore the changes
of a non-stationary time series (Type II error). These
two types of errors are somewhat complimentary, i.e.
an algorithm can be prone to either over-segment or
under-segment. To study the interplay of the two error
types the true segmentation must be known, which

will generally be the case only for artificially created
time series. The developed algorithms are planned for
further applications in the future for this type of study.
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