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We study the Liar paradox and related systems of self-referential
sentences. Specifically, we consider the problem of assigning consistent
fuzzy truth values to systems of self-referential sentences. We show that
this problem can be reduced to the solution of a system of nonlinear
equations and we prove that, under certain conditions, a solution (i.e.
a consistent truth value assignment) always exists. Furthermore, we
show that, for the min/max implementation of logical “and” / “or” and
the standard negation, the “mid-point” solution is always consistent.
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1 INTRODUCTION

In this paper we study the celebrated “Liar Sentence”:

“This sentence is false”, (1)

and some of its generalizations. We say that (1) is self-referential because
it states something about itself. Self-reference becomes more obvious if
we rewrite (1) as follows:

A = “A is false”. (2)

1
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Here is another example (the “Inconsistent Dualist”) of two sentences which
talk about each other:

A1 = “A2 is true”. (3)

A2 = “A1 is false”. (4)

We will call systems such as (2) and (3)–(4) self-referential systems (of
sentences). Further examples of self-referential systems will be presented
in later sections.

It is well known that some self-referential systems generate logical
paradoxes1. In this paper we generalize the analyses of [18] and [17] and
show that a large family of self-referential systems admit consistent fuzzy
truth value assignments.

More specifically, we define a language which can talk about the truth
values of sentences; using this language we show to each self-referential
system of sentences (which talk about each other) can be mapped a system
of numerical equations. A solution of the numerical system corresponds to
a consistent truth value assignment for the sentences of the self-referential
system. Invoking Brouwer’s fixed point theorem, we show that every
numerical system of the above form (which satisfies some mild continuity
assumptions) possesses at least one solution; it follows that every self-
referential system possesses at least one consistent (fuzzy) truth value
assignment. Hence, self-referential systems which are paradoxical in the
Boolean context become non-paradoxical in the fuzzy context.

The following papers have directly influenced our work. The application
of fuzzy logic to the Liar paradox goes back to a paper by Zadeh [18]; as
already mentioned, we consider our work to be a generalization of Zadeh’s
approach. Another approach which is directly related to the current paper
(and can be considered as complementary to [18]) appears in [17] where a
procedure is presented to transform self-referential systems to systems of
equations; however, this approach is confined to the Boolean context. An
additional major influence to our work comes from a sequence of papers
by Grim and his collaborators [3,9,10,12]. Grim et al. consider collections
of self-referential sentences and models the fuzzy reasoning process as
a dynamical system. A method is presented to map each self-referential

1For example, regarding (2) assume the sentence A to be true, then what it says must hold,
i.e. the sentence must be false. But then its opposite must be true, i.e. it must be true that
“This sentence is true”. But then it is true that “This sentence is false”. In short, our reasoning
oscillates between two conclusions: first that the sentence is false, then that it is true. Notice
that we would enter a similar oscillation if we started by assuming the sentence to be false;
then we would conclude that the sentence is true, which would mean that the sentence is false
etc. This is the famous Liar Paradox. Similarly, the pair (3)–(4) generates a paradox: if A1 is
true, then A2 is also true; but then A1 must be false and so A2 must be false and so on ad
infinitum.
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collection to a dynamical system which represents the reasoning process.
Each sentence of the self-referential collection has a time-evolving fuzzy
truth value which corresponds to a state variable of the dynamical system.
Grim et al. present several examples of self-referential collections and study
the properties of the corresponding dynamical systems. One of the main
points of [3] is that self-referential collections can generate oscillating or
chaotic dynamical behavior. While Grim et al. concentrate on oscillatory/
chaotic behavior, in the current paper our main interest is in obtaining
stable, consistent truth value assignments.

We will not attempt even a brief overview of the extensive philosophical
literature on the Liar, semantic paradoxes and the related concept of truth.
This literature has a much wider scope than the current paper (a large
part of it concerns the possibility of defining a global truth predicate). Let
us simply emphasize that we do not claim to have achieved a complete
resolution of all the issues related to the Liar; we simply offer a fairly
complete solution regarding consistent truth value assignments to a specific
family of systems. However, we should mention Tarski’s fundamental papers
on the concept of truth, [13–15], where the idea of an infinite hierarchy of
languages is introduced, and Kripke’s seminal paper [8], which presents
the idea of a fixed point (in [8] fixed points appear as the limit of iterative
processes; actually his concept is somewhat different from our use of
Brouwer’s Fixed Point Theorem). The interested reader can find additional
references in our technical report [16]. We also mention that the definition
of a global fuzzy truth predicate (valid for the crisp Peano arithmetic) is
addressed in [4, 5]. Finally, an interesting approach to the Liar paradox
uses multidimensional logic [2].

2 THE LANGUAGE

In this section we will construct a language L which can talk about the
fuzzy truth values of sentences. This language is very similar to the one
presented in [10].

For motivation, consider the following restatement of the Liar sentence:

A = “The truth value of A is 0”

or, more compactly,

A = “Tr (A) = 0”

where the expression “Tr (A) = a” is understood as shorthand for “The
truth value of A is a”, A is assumed to belong to some collection of
sentences and a belongs to the interval [0, 1] (in the Boolean context, a

actually belongs to {0, 1}: true sentences have truth value 1, false sentences
have truth value 0; in the fuzzy context a can take any value in [0, 1]).
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Similarly, the Inconsistent Dualist can be written as follows

A1 = “Tr (A2) = 1”.

A2 = “Tr (A1) = 0”.

We construct the language L in several steps. The first step is well known
for both Boolean and fuzzy logic. We denote the finite set of 1st-level
elementary sentences (also called variables) by V1:

V1 = {A1, A2, . . . , AM} .

From the 1st level variables recursively build the set of 1st level sentences
denoted by S1:

If Am ∈ V1 then Am ∈ S1 (m = 1, 2, . . . , M)

If B1, B2 ∈ S1 then B1 ∨ B2, B1 ∧ B2, B
′
1 ∈ S1

(note that V1 ⊆ S1). The set of 2nd level elementary sentences is denoted
by V2 and defined by

V2 = {“Tr (B) = b” : B ∈ S1, b ∈ [0, 1]} .

The set of 2nd level sentences is denoted by S2 and defined recursively
as follows:

If C ∈ V2 then C ∈ S2

If D1, D2 ∈ S2 then D1 ∨ D2, D1 ∧ D2, D
′
1 ∈ S2

(again we have V2 ⊆ S2). Finally, the language L is the set of all sentences
previously defined: L = V1 ∪ S1 ∪ V2 ∪ S2.

The above definitions specify the syntactic form of the sentences in
which we are interested. The meaning we attach to these sentences is
understood as follows.

1 The symbols “∨”, “∧”, “ ′ ” denote the usual logical operators or, and,
negation. (Note that we treat parentheses in an informal manner and
we assume that precedence of operators, grouping of terms etc. are
well understood from the context).

2 The expression “Tr (B) = b” means “The truth value of B is b”. Note
that at this point we have not provided a mechanism for evaluating the
truth value of B (where B ∈ S1). In other words, Tr (·) is not (yet)
a function. Neither have we provided a mechanism for evaluating the
truth value of “Tr (B) = b” (where B ∈ S1 and “Tr (B) = b” ∈ S2).
This will be done in Section 3.

Let us summarize. We have defined a family of 1st level logical sentences
which combine a finite number of primitive (i.e. undefined) variables. We
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have also defined a family of 2nd level logical sentences which talk about
the truth values of the 1st level sentences. Here are some examples of
sentences from V1,S1,V2,S2.

V1 : A1, A2, . . . , AM.

S1 : A1 ∨ A3, A
′
2, (A2 ∧ A4) ∨ A′

5 . . . etc.

V2 : “Tr (A1) = 0”, “Tr
(
A′

7

) = 0”, “Tr ((A2 ∨ A5) ∧ A1) = 0.3” . . . etc.

S2 :
[
“Tr

(
A′

1

) = 0” ∧ “Tr ((A1 ∨ A4) ∧ A2) = 0.3”
] ∨ “Tr (A3)

= 0.8” . . . etc.

Obviously, we could keep building up the hierarchy of sentences, defining
Vn in terms of Sn−1, and Sn in terms of Vn; but, for the purposes of this
paper, going up to V2,S2 will be sufficient. However, it will be useful
to define a special subset of V2 and the corresponding subset of S2 as
follows. The 2nd level elementary Boolean sentences are denoted by Ṽ2

and defined by

Ṽ2 = {“Tr (B) = b” : B ∈ S1, b ∈ {0, 1}} .

The 2nd level Boolean sentences are denoted by S̃2 and defined recursively
as follows

If C ∈ Ṽ2 then C ∈ S̃2

If D1, D2 ∈ S̃2 then D1 ∨ D2, D1 ∧ D2, D
′
1 ∈ S̃2.

Hence Ṽ2 contains the sentences which claim crisp truth values for 1st
level sentences, and S̃2 contains the sentences which are formed from
combinations of Ṽ2 sentences. Again we have Ṽ2 ⊆ S̃2.

3 TRUTH VALUE ASSIGNMENT

We want to assign truth values to self-referential systems, i.e. to sentences
which talk about each other. However, let us first recall (in Section
3.1) a classical method of truth value assignment which works for the
non-self-referential case; then (in Section 3.2) we will adapt this method
for the self-referential case.

3.1 “Explicit” Truth Value Assignment
The “explicit” assignment of truth values to elements of S1 is classical
and works for both Boolean and fuzzy logics. We start by assigning an
arbitrary truth value to every element of V1 (1st level variable). This is
equivalent to selecting a mapping x : V1 → [0, 1], i.e. ∀Am ∈ V1 we have
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Family x ∧ y x ∨ y x ′

Standard min(x, y) max(x, y) 1 − x

Algebraic xy x + y − xy 1 − x

Bounded max(0, x + y − 1) min(1, x + y) 1 − x

Drastic


x when y = 1

y when x = 1
0 else





x when y = 0

y when x = 0
1 else


 1 − x

Tr (Am) = x (Am); for the sake of brevity we will henceforth use the simpler
notation

∀Am ∈ V1 : Tr (Am) = xm.

Next, take any B ∈ S1; it is a logical formula with variables A1, . . . , AM .
If we replace every occurrence of Am with xm then we obtain a formula
containing the variables x1, . . . , xM and the operators “∨”, “∧”, “ ′ ”,
which are now understood as numerical operators; in fuzzy logic (which
subsumes Boolean logic as a special case) “∨” denotes a t-conorm, “∧”
denotes a t-norm, and “ ′ ” denotes a negation. These operators have been
studied extensively by fuzzy logicians [6]. Several typical implementations
of t-norms, t-conorms and negations2 are presented in Table 1.

Hence, every sentence of S1

B = FB (A1, · · · , Am)

is translated to a numerical formula

Tr (B) = fB (Tr (A1) , . . . ,Tr (AM ))

or, more concisely,

Tr (B) = fB (x1, . . . , xM ) .

In this manner, the truth function originally defined onV1 (i.e. Tr (Am) = xm,
m = 1, 2, . . . , M) has been extended to S1. More precisely, the truth
value of any sentence B is a function fB (x1, . . . , xM ) of the truth values
x1, . . . , xM of the 1st level elementary sentences A1, . . . , AM .

Let us now extend the truth function so that it is defined everywhere
on S2. We will do this in two moves. First, take any 2nd level elementary
sentence C ∈ V2. This has the form

C = “Tr (B) = b”

2In particular, note that we only mention one implementation of negation, namely x′ = 1 − x;
this the standard negation, by far the most popular in the literature. In the rest of the paper
we will only work with the standard negation.
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with B ∈ S1, b ∈ [0, 1]. Let us define the truth-membership function of
sentence C (for every B ∈ S1 and b ∈ [0, 1]) to be

Tr (C) = 1 − |Tr (B) − b| . (5)

Tr (B) in (5) has already been defined and so we can compute the truth
value of C (for every C ∈ V2). Finally, we can extend truth values from
V2 to S2 in exactly the same manner as we extended truth values from V1

to S1. This completes the definition of the truth function Tr: L → [0, 1] .
While the first part of the construction is classical, the second part is

not as well known (but it has been used in the past, see for example
[3,10]). The key step is the definition of the truth-membership function in
(5). This has been used in [11] and [3, 10]. Note that, according to (5),
the maximum truth value of C is 1 and it is achieved when Tr (B) = b;
the latter is exactly what C says. More generally, the truth value of C is a
decreasing function of the absolute difference between Tr (B) and b. This
certainly appears reasonable3 .

In conclusion, explicit truth value assignment consists in choosing
arbitrary truth values x1, . . . , xM for the elementary sentences A1, . . . , AM

and then expressing the truth value of every sentence D ∈ L as a function
Tr (D) = fD (x1, . . . , xM ), where fD : [0, 1]M → [0, 1]. Explicit truth value
assignment does not involve any self-reference or circularity.

3.2 “Implicit” Truth Value Assignment
In the previous section we discussed the assignment of truth values to
sentences which do not refer to each other. We will now present an approach
for the assignment of truth values to self-referential sentences. The crux of
our approach is a procedure which maps every system of self referential
sentences to a system of numerical equations; then truth value assignment
consists in solving the numerical system.

3.2.1 Two Simple Examples
Example A: The Liar. Consider the sentence

D = “Tr (A) = 0”.

where A ∈ S2 and hence D ∈ V2. If we knew Tr (A), we would be able
to compute

T r (D) = 1 − |Tr (A)| . (6)

Suppose however that Tr (A) is unknown, but some other information is
available, namely that D and A are the same sentence. Taking D = A

3For further justification of (5) see [3]. Note however, that a number of other functions
could be used; as a simple example consider Tr(C) = 1 − (Tr (B) − b)2.
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in (6), we recover the Liar Sentence. It is also rather clear that D = A

implies Tr (D) = Tr (A). Hence, setting Tr(D) = Tr (A) = x (where x is
unknown), replacing in (6) and keeping in mind that we are looking for
x ∈ [0, 1], we obtain the numerical equation

x = 1 − x

which has the unique solution x = 1/2, i.e. the Liar Sentence is half-true.
This is the approach used by Zadeh in [18]. Hence the paradox is removed4.
Example B: The Inconsistent Dualist. Now consider the pair of sentences

D1 = “Tr (A2) = 1”

D2 = “Tr (A1) = 0”

where A1, A2 ∈ S2 and hence D1, D2 ∈ V2. To recover the Inconsistent
Dualist, we make the correspondences D1 = A1, D2 = A2, we set Tr (D1) =
Tr (A1) = x1, Tr (D2) = Tr (A2) = x2 and hence we obtain the system

x1 = 1 − |x2 − 1| (7)

x2 = 1 − |x1| (8)

which in [0, 1] × [0, 1] is equivalent to

x1 = x2

x2 = 1 − x1.

(7)–(8) has the unique solution x1 = x2 = 1/2, i.e. the Inconsistent Dualist
is half-true.

3.2.2 Description of the Procedure
Generalizing the approach of the previous two examples, we obtain a
procedure which maps every system of self-referential sentences to a system
of numerical equations.

The basic idea is the following. Suppose that we have a collection of
M sentences, which talk about the truth values of each other. Consider

4Before proceeding any further, let us note that the notation A =“Tr (A) = a” is not entirely
rigorous. If taken literally, it would mean that a sentence can be written in two different ways,
first using a single symbol A, and then using the string “Tr (A) = a”. But sentences have
been defined to be unique strings of symbols; furthermore if A =“Tr (A) = a” is taken as a
definition of A, then it is circular.

We have used the “=” symbol because it is more suggestive of self-reference. A more rigorous
notation would be to write A ↔“Tr (A) = a” where ↔ is understood as a biconditional: it
means that the sentence A is true iff the sentence “Tr (A) = a” is true or, more generally, that
A and “Tr (A) = a” always have exactly the same truth value. This latter property (identity
of truth value) is the one that we really needed to move from the self-referential sentence to
the numerical equation and (we believe) it captures the crucial self-reference of the Liar (and
similar systems of sentences, as will be seen in what follows).
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the set S2 which is generated from M elementary sentences. We can
pick sentences D1, . . . , DM ∈ S2 which have the same structure as
the original self-referential sentences. The only difference is that the M

self-referential sentences talk about each other, while D1,. . . , DM talk
about some elementary, unspecified sentences A1, . . . , AM . However,
since A1,. . . , AM are unspecified, we can identify Am with Dm (for
m ∈ {1, . . . , M}). Intuitively, this means that Dm says something about the
truth values of A1, . . . , AM , i.e. about the truth values of D1, . . . , DM .
This is exactly the situation which we were trying to model in the first
place.

Here are the details. As mentioned at the end of Section 3.1, the truth value
of every 2nd level sentence D ∈ S2 (for fixed M and a specific choice of
t-norm, t-conorm and negation) is a numerical function fD (x1, . . . , xM ), the
independent variables x1, . . . , xM being the truth values of A1, . . . , AM . To
obtain specific truth values by the procedure of Section 3.1, it is necessary to
specify x1, . . . , xM . To this end, choose a function � : {1, 2, . . . , M} → S2,
where �(m) is defined (for m ∈ {1, . . . , M}) so that it says about the
(unspecified) A1, A2, . . . , AM the same things that the m-th self-referential
sentence says about the self-referential collection of sentences (examples of
the procedure appear in Section 3.2.3). �(m) is a 2nd level sentence which
can also be denoted as Dm. Now Dm is a logical formula Fm (A1, . . . , AM ).
In other words, we have (for m = 1, 2, . . . , M):

D1 = F1 (A1, . . . , AM )

D2 = F2 (A1, . . . , AM )

. . .

DM = FM (A1, . . . , AM ) .

Identifying Am with Dm we can form the system of logical equations5

A1 = D1 = F1 (A1, . . . , AM )

A2 = D2 = F2 (A1, . . . , AM )

. . . (9)

AM = DM = FM (A1, . . . , AM ) .

The “natural” interpretation of (9) is that Am says (or is, or means) Dm.

5Keeping again in mind that Am ↔ Fm (A1, . . . , AM ) could be used in place of
Am = Fm (A1, . . . , AM ).
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(9) implies that:

Tr (A1) = Tr (D1) = f1 (Tr (A1) , . . . ,Tr (AM ))

Tr (A2) = Tr (D2) = f2 (Tr (A1) , . . . ,Tr (AM ))

. . . (10)

Tr (AM ) = Tr (DM ) = fM (Tr (A1) , . . . ,Tr (AM ))

where fm : [0, 1]M → [0, 1] is the numerical formula obtained (by the
procedure of Section 3.1) from Fm. A simpler way to write (10) is

x1 = f1 (x1, . . . , xM )

x2 = f2 (x1, . . . , xM )

. . . (11)

xM = fM (x1, . . . , xM ) .

(11) is a system of M numerical equations in M unknowns; we will refer
to it as the system of truth value equations.

Depending on the particular � used, (11) may have none, one or more
than one solutions in [0, 1]M. Hence, by specifying a particular �, we
obtain a set of possible consistent truth value assignments for the 1st level
elementary sentences. In other words, every solution of (11) is a consistent
truth value assignment. At this point we must consider the possibility that
the set of solutions is empty, i.e. that there is no consistent truth value
assignment. However, as we will see in Section 4, under mild conditions
there always exists at least one consistent assignment. Assuming that (11)
has one or more solutions, we can choose one of these to assign truth
values to the 1st level elementary sentences; next, using exactly the same
construction as in Section 3.1, we can assign truth values to 1st level
sentences, then to 2nd level elementary sentences and finally to 2nd level
sentences. In particular, it is easy to check that at the end of the procedure
the 2nd level sentences D1, . . . , DM will receive the truth values originally
specified by the solution of (11) – hence the truth value assignment is,
indeed, consistent.

3.2.3 More Examples
Example C: The Consistent Dualist. Now consider the pair of sentences:
A1 =“A2 is true”, A2 =“A1 is true”. This can be written in L as

A1 = “Tr (A2) = 1”

A2 = “Tr (A1) = 1”,
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which in turn gives{
Tr (A1) = 1 − |Tr (A2) − 1|
Tr (A2) = 1 − |Tr (A1) − 1|

}
or

{
x1 = 1 − |x2 − 1|
x2 = 1 − |x1 − 1|

}
.

Since we want solutions x1 ∈ [0, 1], x2 ∈ [0, 1] , we finally get

x1 = x2

x2 = x1.

Any vector of the form x = (β, β) (β ∈ [0, 1]) is a solution; i.e. there is an
infinite number of consistent truth value assignments including complete
truth (Tr (A1) =Tr (A2) = 1) and complete falsity (Tr (A1) =Tr (A2) = 0);
in accordance to Proposition 4, (1/2, 1/2) is also a solution.
Example D. Now consider

A1 = “A2 is true and A3 is false” (12)

A2 = “A1 is true and A3 is false” (13)

A3 = “A1 is false”. (14)

which translates to

A1 = “Tr (A2) = 1” ∧ “Tr (A3) = 0”

A2 = “Tr (A1) = 1” ∧ “Tr (A3) = 0”

A3 = “Tr (A1) = 0”.

We will consider two different implemementations of ∧.
If we implement ∧ by the min t-norm, the truth value equations become

x1 = min [x2, (1 − x3)] (15)

x2 = min [x1, (1 − x3)] (16)

x3 = 1 − x1 (17)

and they can be solved analytically. From (17) we obtain

x1 = 1 − x3

and then (15) – (16) become

x1 = min [x2, x1] , x2 = min [x1, x1]

from which follows that

x1 = x2, x3 = 1 − x1.

In other words, the general solution of (15) – (17) is

x = (β, β, 1 − β)
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with β ∈ [0, 1]. Note that this includes the extremal solutions (1, 1, 0) and
(0, 0, 1) as well as the mid-point solution (1/2, 1/2, 1/2).

If we implement ∧ by the product t-norm we obtain the truth value
equations

x1 = x2 · (1 − x3)

x2 = x1 · (1 − x3)

x3 = 1 − x1

We can still use x1 = 1 − x3 to simplify the truth value equations to

x1 = x2 · x1, x2 = x2
1 , x3 = 1 − x1

from which we obtain

x1 = x3
1 , x2 = x2

1 , x3 = 1 − x1

and finally

x1 · (
1 − x2

1

) = 0, x2 = x2
1 , x3 = 1 − x1.

This has the solutions

(0, 0, 1) , (1, 1, 0) , (−1, 1, 2) ;

the last solution, however, is inadmissible as a truth value assignment.
Hence we see that for the same self-referential collection, the product
implementation of ∧ yields a subset of the solutions obtained through the
min implementation.
Example E. Now consider

A1 = “Tr (A2) = 0.90” ∧ “Tr (A3) = 0.20”

A2 = “Tr (A1) = 0.80” ∧ “Tr (A3) = 0.30”

A3 = “Tr (A1) = 0.10”.

If we implement ∧ with the min operator the truth value equations
become

x1 = min [1 − |x2 − 0.90| , 1 − |x3 − 0.20|]
x2 = min [1 − |x2 − 0.80| , 1 − |x3 − 0.30|]
x3 = 1 − |x1 − 0.10| .

These equations cannot be further reduced and while in principle they
can be solved analytically by distinguishing cases, the amount of work
required is excessive. However, the equations can be solved numerically
(using the Newton-Raphson or some other root finding algorithm – for
details see [16]). One solution is x = (0.95, 0.85, 0.15). Repeated runs of
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the numerical algorithm (with different initial conditions) always give the
same solution, so it is possible that this is the unique consistent truth value
assignment for this problem.

The situation is similar when we implement ∧ by product.. The truth
value equations become

x1 = (1 − |x2 − 0.90|) · (1 − |x3 − 0.20|)
x2 = (1 − |x2 − 0.80|) · (1 − |x3 − 0.30|)
x3 = 1 − |x1 − 0.10|

and Newton-Raphson yields at least two solutions:

x = (0.6784 . . . , 0.7715 . . . , 0.4216 . . . )

x = (0.0473 . . . , 0.0872 . . . , 0.9473 . . . ) .

Each of these is a consistent truth value assignment
Example F. Our approach can also handle the case where the self-referential
system contains more sentences than self-rerefences. Consider the following
system

A1 = “A2 is true and A3 is false.” (18)

A2 = “A1 is true and A3 is false.” (19)

Using the min t-norm and the standard negation, the above translate to

x1 = min(x2, 1 − x3)

x2 = min(x1, 1 − x3)

and it can be checked that this system of two equations in three unknowns
is solved by any triple from the set {(α, α, β) : α ≤ 1 − β}; the intersection
of this set with [0, 1]3 yields the acceptable truth values for the original
self referential system. We see that this system is less specified (contains
fewer self-references) than the one of Example D and hence admits more
solutions. Of course, we could introduce additional, even non-self-referential
constraints; for example we could add

A3 = “Snow is white” (20)

which would specify that x3 = 1 and hence the expanded system would
only admit the (reasonable) truth value assignment (0, 0, 1). If on the other
hand, we used instead

A3 = “Snow is black” (21)
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then the system would admit any truth value assignment (α, α, 0) with α ≤ 1.
The reader may want to speculate on the intuitive justification of these
truth value assignments. Note that neither (20) nor (21) are self-referential;
but both [(18),(19),(20)] and [(18),(19),(21)] are self-referential systems.
Example G: The Strengthened Liar. The final example is the so-called
“Strengthened Liar”, which involves the following sentence

A = “A is not true”. (22)

The “Strengthened Liar” has been often used as a test of proposed solutions
to the Liar paradox. To treat this and similar sentences in the fuzzy context
we must translate it in terms of a membership function for the property of
being not true. To this end, consider the sentence

C = “The truth value of A is not a”. (23)

A possible truth value assignment for (23) is

Tr (C) =
{
1 when Tr (A) �= a

0 else
.

However, this falls outside the framework of the the previous sections (in
the language L we have not defined a predicate of the form “the truth value
of A is different from a”) and also it is too strict. Consider the case when
a = 1 and Tr(A) = 0.99. Do we really want to assign Tr(C) = 1? How
about the case Tr(A) = 0.99999? A more reasonable truth value assignment
can be obtained within the language as follows:

(Tr(A) �= a) = (Tr(A) = a)′

and so

Tr (Tr(A) �= a)= 1 − Tr (Tr(A) = a) = 1 − (1 − |Tr(A) − a|)
= |Tr (A) − a| (24)

which takes the maximum value of 1 when |Tr (A) − a| = 1, i.e. in the
cases: Tr(A) = 1 and a = 0; Tr(A) = 0 and a = 1.

Let us accept (24) and set A = C, i.e.

A = “Tr (A) �= a”. (25)

(25) is more general than (22); to obtain (22 ) we set a = 1:

A = “Tr (A) �= 1”.

Hence, setting x =Tr(A), we must solve the truth value equation

x = |x − 1| = 1 − x

which has the unique solution x = 1/2.
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3.2.4 Discussion
Consider the Liar sentence. In the classical (Boolean) context this sentence
has been considered paradoxical because it cannot be consistently considered
either true or false. Now consider its numerical version: x = 1 − x; what
was previously considered a paradox, reduces to a simple algebraic fact:
the equation x = 1 − x has no solution in the set {0, 1}. If we enlarge the
solution space to be the interval [0, 1], then the equation has a solution
(x = 1/2) and, in the fuzzy context, the sentence becomes non-paradoxical.

In Section 3.2.2 we have shown that, using the language L, we can write
a large number of self-referential systems and reduce each of these to a
system of numerical equations. Several examples of self-referential systems
have been given in Section 3.2.3. For each such system of sentences,
we have found one (or more) solution to the corresponding system of
equations, i.e. a consistent truth value assignment for the original system
of sentences. In other words, self-referential systems which are paradoxical
in the Boolean context, are non-paradoxical in the fuzzy context.

It is natural at this point to investigate the existence and uniqueness of
solutions for the general self-referential system. We will show in Section
4 that every self-referential system of the form (11) possesses at least
one solution, i.e. a consistent truth value assignment6 . On the other hand,
it is clear from the examples that uniqueness cannot be guaranteed: a
self-referential system may possess more than one consistent truth value
assignment. We will further discuss this point in Section 5.

4 EXISTENCE OF CONSISTENT TRUTH VALUE ASSIGNMENTS

We now turn to our main concern: we will investigate the consistency of
implicit truth value assignment. More specifically, we will show that (in the
fuzzy context) implicit truth value assignment (under very mild conditions
on the numerical implementation of fuzzy connectives) always results in
at least one consistent truth value assignment. In other words, we will
show that every � function specifies at least one consistent truth value
assignment. This is the subject of Proposition 3. However, we first need
two auxiliary propositions.

Proposition 1 If the implementationsof ∨, ∧,′ are, respectively, a continuous
t-conorm, a continuous t-normand the standardnegation, thenf1, f2, . . . , fM

in (11) are continuous functions of (x1, x2, . . . , xM ).

Proof: We give a sketch of the proof (we omit the complete proof for
the sake of brevity; the basic idea is clear). Suppose that ∨, ∧,′ are a

6More precisely, this statement holds for every self-referential system which can be expressed
using the language L. Systems of more general sentences will be discussed in Section 5.
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continuous t-conorm, t-norm and negation. Take some m ∈ {1, 2, . . . , M}.
Recall that fm (x1, x2, . . . , xM ) =Tr(Dm), where Dm ∈ S2. Now, take any
B ∈ S1; then Tr(B) = y (x1, x2, . . . , xM ) and y is a finite combination of
∨, ∧,′ and x1, . . . , xM , which is clearly a continuous function of the vector
(x1, x2, . . . , xM ). Furthermore, let C = “Tr(B) = b”; then

Tr (C) = 1 − |Tr (B) − b| = 1 − |y (x1, x2, . . . , xM ) − b|
which is also a continuous function of (x1, x2, . . . , xM ). Since this is true for
every B ∈ S1 and every b ∈ [0, 1], we conclude that Tr(C) is a continuous
function of x = (x1, x2, . . . , xM ) for every C ∈ V2. Finally, since Dm ∈ S2,
and Tr(Dm) is a finite combination of ∨, ∧,′ and a finite number of terms
Tr(C1), Tr(C2), . . . , Tr(CL) (where C1, C2, . . . , CL ∈ V2) it follows that
Tr(Dm) is a continuous function of (x1, x2, . . . , xM ). ✷

Proposition 2 Suppose that X is a nonempty, compact, convex set in RM .
If the function f : X → X is continuous, then there exists at least one
fixed point x ∈ X satisfying

x = f (x) .

Proof: This is the well-known Brouwer’s Fixed Point Theorem. Its proof can
be found in a number of standard texts, for instance in [1, pp.323–329]. ✷

Now we can easily prove the existence of consistent truth value
assignments.

Proposition 3 If the implementations of∨, ∧,′ are, respectively, a continuous
t-conorm, a continuous t-norm and the standard negation, then (11) has
at least one solution x = (x1, x2, . . . , xM ) ∈ [0, 1]M .

Proof: We define the vector function f (x1, x2, . . . , xM ) as follows:

f (x1, x2, . . . , xM ) =
(

f1 (x1, x2, . . . , xM ) , f2 (x1, x2, . . . , xM ) , . . . ,

fM (x1, x2, . . . , xM )

)
where (for m ∈ {1, 2, . . . , M}) fm (x1, x2, . . . , xM ) is the function appearing
in (11). Since fm (x1, x2, . . . , xM ) computes a truth value, we have
fm : [0, 1]M → [0, 1] and hence f : [0, 1]M → [0, 1]M . Furthermore, by
Proposition 1 each fm is a continuous function and so f is also a continuous
vector function. Now we can apply Proposition 2 with X = [0, 1]M . ✷

When we use Boolean truth value assessments, we can prove an additional
result about consistent truth value assignments.

Proposition 4 Suppose that in (9) D1, D2, . . . , DM ∈ S̃2 and the imple-
mentations of ∨, ∧,′ are, respectively, max, min and the standard negation.
Then (11) admits the solution (1/2, 1/2, . . . , 1/2).
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Proof: Take any m ∈ {1, 2, . . . , M}; then Fm (A1, A2, . . . , AM ) is a
combination (through∨, ∧,′) of afinite number of elementsC1, C2, . . . , CL ∈
Ṽ2. Take any Cl (with l ∈ {1, 2, . . . , L}); it has the form

Cl = “Tr (Bl) = bl”

where Bl ∈ S2 and bl ∈ {0, 1}. The corresponding numerical term will have
the form

Tr (Cl) = 1 − |Tr (Bl) − bl| .
or

zl = 1 − |yl − bl| (26)

where yl =Tr(Bl) and zl =Tr(Cl). Now, yl will be a finite combination
of x1, . . . , xM through max, min and negation operators, hence when
x1 = x2 = . . . = xM = 1/2 we also get yl = 1/2. Then, for bl ∈ {0, 1} we
also get from (26) that zl = 1/2.
Hence every term appearing in fm (1/2, 1/2, . . . , 1/2) (the numerical

version of Fm (A1, A2, . . . , AM )) will be equal to 1/2. Since these terms
will be combined with max, min and negation operators it follows that
fm (1/2, 1/2, . . . , 1/2) = 1/2 and this satisfies them-th truth value equation:

xm = 1

2
= fm (1/2, 1/2, . . . , 1/2) . (27)

Since (27) holds for all m ∈ {1, 2, .., M}, it follows that (11) admits the
solution (1/2, 1/2, . . . , 1/2). ✷

5 DISCUSSION

Our goal in this paper has been the investigation of the class of self-referential
systems which can be resolved (i.e. can receive a consistent truth value
assignment) within the context of fuzzy logic7 . In this direction, we have
shown that every self-referential system which is expressed using the
language L admits a consistent fuzzy truth value assignment and hence is
non-paradoxical in the fuzzy context. Note that L does not denote a single
language; depending on the implementation of the logical connectives and
the truth-membership function Tr(·) we obtain a different language; hence
our result holds with even greater generality. Indeed, further generalizations
of our result are possible. Consider the following cases.

7We repeat that we do not concern ourselves with the more general philosophical problems
associated withe Liar; in particular we do not make any claims regarding the definition of a
global truth predicate.



FLEng21 J. of Mult.-Valued Logic & Soft Computing. July 21, 2006 15:57

18 Kehagias, and Vezerides

1 It is possible to include in L the set S3 (of sentences which talk about
the truth values of S2 sentences), S4, . . . and so on to any finite number
of levels; and also by combining sentences from several levels of the
hierarchy (for example, a sentence such as “Tr(A4 ∧ A2) = 0.3”∨A3).

2 L can be extended to include sentences which talk about truth values
without using the “=” relationship (for instance, see Example F, the
Strengthened Liar; also consider the system “Tr(A1) �= 0.3”∧“Tr(A2)
< 0.8”).

3 L can also be extended to iclude linguistic hedges (such as “very”,
“more or less” etc.); Proposition 3 still holds, provided the hedges are
implemented by continuous numerical functions (e.g. second powers,
square roots etc.).

4 Finally, one can conceive of even more general self-referential claims
about sentences, e.g. sentences which talk about properties of the
solutions of the truth value equations. For example consider the
self-referential system: A1= “Tr(A2) = 0.3 ”, A2= “The system A1, A2

has no consistent truth value assignment”.

Our results can be extended to handle many instances of cases 1–3
above; case 4 is more open-ended and hence may contain more problematic,
i.e. unsolvable, systems. At any rate, we find it entirely possible that one
can construct a self-referential system which corresponds to an unsolvable
system of numerical equations; such a system would be paradoxical even
in the context of fuzzy logic (the results of [4] point in this direction).

On the other hand, we believe that even in such cases the paradox
would “merely” consist in the fact that a certain system of equations
has no solution. In other words, we believe Liar-like “paradoxes” do not
entail a paradox, but a false assumption, namely that a certain system of
equations has solutions within a certain set8 ; the paradox can be removed
by enlarging the set of admissible solutions.

It is perhaps worthwhile to elaborate the issue somewhat. The “explicit”
method to assign truth values to a collection of sentences is to give truth
values to the elementary variables / sentences and then evaluate all constituent
sentences. This method works always, for both Boolean and fuzzy logic. In
our opinion many of the “classical” self-reference paradoxes originate in the
following manner: we are given a collection of sentences and the additional
information does not consist in the truth values of some of them but in the
interrelationship between the sentences. It turns out that in theBoolean context
this information may be too restrictive, resulting in an unsolvable numerical
system; while in the fuzzy context the information may be not sufficiently
restrictive, resulting in a numerical system with more than one solution.

8This is exactly the way in which [17] treats Liar-like paradoxes.
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An alternative point of view regarding existence and uniqueness of truth
value assignments is the following: explicit truth value assignment is a form
of selecting axioms for a particular systems, namely postulating that certain
(elementary) sentences are true (have truth value 1) or false (have truth
value 0; in this case the axioms can be understood as the negations of the
elementary sentences); from this point of view one also has the choice of
postulating “half true axioms” in the fuzzy context. At any rate, if explicit
assignment of truth values is a method of specifying axioms, an alternative
method is to specify (postulate, axiomatize) relations between sentences;
these (self-referential) relations will implicitly determine the truth values
of the elementary sentences (but maybe not uniquely, resulting in several
equally possible axiomatizations).

Yet another point of view regarding the solutions of the truth value
equations (11) (and the existence and uniqueness of their solutions) is to
compare them to the dynamical systems used by Grim et al. [3,9,10,12].
These evolve in discrete time, according to equations of the form

xm(t + 1)= fm(x1(t), . . . , xM (t)),

for m = 1, 2, . . . , M and t = 0, 1, 2, . . . (28)

where fm(·) are exactly the functions we have used in (11). Clearly, every
solution of (11) (every consistent truth value assignment) is an equilibrium
point of (28). Because, if for some x = (x1, . . . , xM ) we have

xm = fm (x1, . . . , xM ) for m = 1, 2, . . . , M

and we take for some t that

x (t) = (x1, . . . , xM )

then clearly we will have

x (t + n) = f (x1, . . . , xM ) = (x1, . . . , xM ) for n = 1, 2, . . .

However, some of the equilibria x may be unreachable from certain initial
conditions (x1(0), . . . , xM (0)) and / or unstable, i.e. a small perturbation
send the system (28) away from x. Hence either unreachable or unstable
truth value assignments are not obtained with Grim’s approach. This is
a consequence of the fact that Grim uses the specific time update of
(28), perhaps because it is analogous to human reasoning. But many other
dynamical update schemes could be used; we have used Newton-Raphson
(and also steepest descent, see [16]) which give access to truth value
assignments not accessible by (28). Of course, Grim et al. are not interested
in solving (11) but in discovering oscillatory and chaotic behavior; we, on
the contrary, are interested in solving the truth value assignment, hence
we want to suppress such behavior. It is also interesting to compare the
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appearance of instability, oscillation and chaos in such “dynamical reasoning
systems” with the efforts expended for establishing the stability of more
conventional dynamic fuzzy rule bases (for instance consider [7] and the
references therein).

We have already mentioned in Section 3.2.3 that in certain cases the
resolution of a self-referential system requires the use of numerical methods.
Let us discuss two additional situations where numerical methods may
prove useful.

First, consider a self-referential system where multiple truth value
assignments are possible. Are some assignments “better” than other? For
instance, solutions on the vertices of the hypercube [0, 1]M are “crisper”
than solutions on the faces, which in turn are crisper than solutions in
the interior. In certain circumstances one might be interested in obtaining
the crispest solution to a self-referential system. The crispness can be
described by an entropy function, so one might want to select the truth
value assignment (x1, . . . , xM ) which minimizes the function

J =
M∑

m=1

xm · log(xm)

subject to

xm ∈ [0, 1], xm = f (x1, . . . , xM ) , m = 1, 2, . . . , M.

This problem might be attacked by methods of constrained optimization.
Second, consider a logic with a truth value set {0, 1/K, 2/K, . . . , 1} (it

has K + 1 truth values). In this context a self-referential system may fail
to have a consistent truth value assignment, i.e. the truth value equations
(11) may have no solution in the set {0, 1/K, 2/K, . . . , 1}. In this case an
approximate solution of the corresponding paradox can still be obtained
by minimizing the inconsistency of the system; where inconsistency could
be defined as

J =
M∑

m=1

(xm − fm (x1, . . . , xM ))2

(or some similar function) and the minimization of J must be subject to

xm ∈ {0, 1/K, 2/K, ...., 1}, m = 1, 2, . . . , M.

This is a combinatorial optimization problem.
Finally, a goal for further research is to establish an analog of Proposition

3 for lattice-valued logics; in this case a lattice fix-point theorem might be
used in place of Proposition 2.
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