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Abstract

In this paper we study relations which are congruences with respect to ∧ and tp, where tpis
the p-cut of the L-fuzzy hyperoperation t. The main idea is to start from an equivalence relation
R1 which is a congruence with respect to ∧ and t1and, for each p ∈ X, construct an equivalence
relation Rp which is a congruence with respect to ∧ and tp. Furthermore, for each x ∈ Rp we
construct a quotient hyperoperation tp and we show that the hyperalgebra

(
X/Rp,tp

)
is a join

space and the hyperalgebra
(
X/Rp,tp,∧p

)
is a hyperlattice.

AMS Classification: 06B99, 06D30, 08A72, 03E72, 20N20.

1 Introduction

In a previous paper [8] we have constructed the L-fuzzy Nakano hyperoperation t in terms of its
p-cuts. Our construction can be summarized as follows1. Consider a generalized de Morgan lattice
(X,≤,∨,∧,′ ) and for every x, y, p ∈ X define

x tp y =
{
z : x ∨ y ∨ p′ = x ∨ z ∨ p′ = y ∨ z ∨ p′

}
. (1)

Hence, for every x, y, p ∈ X we obtain a crisp2 set xtp y; i.e. tp is a crisp hyperoperation which maps
the pair x, y to the set xtp y. In [8] we have also shown how to define (for every x, y ∈ X) the L-fuzzy
set xt y in such a manner that for every p ∈ X the p-cut (x t y)p is equal to xtp y. Hence we obtain
an L-fuzzy hyperoperation t which maps the pair x, y to the L-fuzzy set x t y.

In the current paper we study equivalences on X which are congruences with respect to ∧ and
tp. The work presented here can be seen as a continuation of [8] in conjunction to previous work on
congruences with respect to t1 [9]. The main idea is to start from an equivalence relation R1 which
is a congruence with respect to ∧ and t1and, for each p ∈ X, construct an equivalence relation Rp

which is a congruence with respect to ∧ and tp. Furthermore, for each p ∈ X we will construct a
quotient hyperoperation tp and we will show that the hyperalgebra

(
X/Rp,tp

)
is a join space and the

hyperalgebra
(
X/Rp,tp,∧p

)
is a hyperlattice.

In addition to our already mentioned earlier work, the current paper is related to work on join
spaces [15, 10], hyperlattices [1, 6, 11, 16, 17, 12], L-fuzzy hyperoperations [4, 7, 20] and the Nakano
hyperoperations [14, 2]. This is only a partial list of relevant work; further references appear in [8].

1For details and background material, see [8].
2“Crisp” is used here in contradistinction to “fuzzy” [8].
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2 Preliminaries

In this section we present some basic definitions, notations and propositions which will be used in the
sequel. Further related material can be found in [8].

Throughout this paper we use a structure (X,≤,∨,∧,′ ) which we assume to be a generalized
deMorgan lattice, i.e. a structure satisfying the following.

Definition 2.1 A generalized deMorgan lattice is a structure (X,≤,∨,∧,′ ), where (X,≤,∨,∧) is a
complete distributive lattice with minimum element 0 and maximum element 1; the symbol ′ denotes a
unary operation (“complement”); and the following properties are satisfied.

1. For all x ∈ X, Y ⊆ X we have x∧(∨y∈Y y) = ∨y∈Y (x∧y), x∨(∧y∈Y y) = ∧y∈Y (x∨y). (Complete
distributivity).

2. For all x ∈ X we have: (x′)′ = x. (Negation is involutory).

3. For all x, y ∈ X we have: x ≤ y ⇒ y′ ≤ x′. (Negation is order reversing).

4. For all Y ⊆ X we have (∨y∈Y y)′ = ∧y∈Y y′, (∧y∈Y y)′ = ∨y∈Y y′ (Complete deMorgan laws).

The reader will recall that a crisp hyperoperation ∗ is a mapping of pairs x, y ∈ X to crisp sets
x∗y ⊆ X; the set X endowed with one or more hyperoperations forms a hyperalgebra. 3. The following
notation is standard in the literature of hyperalgebras.

Definition 2.2 For x ∈ X, A ⊆ X and a hyperoperation ∗, we define x ∗A = ∪a∈Ax ∗ y.

We have already defined the hyperoperation tp by (1); it is the main hyperoperation of interest in
this paper. Let us also note that setting p = 1 we obtain

x t1 y = {z : x ∨ y = x ∨ z = y ∨ z} ;

this is the classical Nakano hyperoperation which has been the object of much study [9, 2, 14]
The notion of an equivalence relationship R on X is well-known. Let us recall the following definition

of the classes of an equivalence.

Definition 2.3 Given an equivalence R on X and an element x ∈ X, we denote the class of x (with
respect to R) by R(x) and we define it by

R(x) = {y : (x, y) ∈ R} ;

The quotient of X with respect to R is denoted by X/R and defined by

X/R = {R(x)}x∈X ;

finally, for A ⊆ X we define
R (A) = {R(x)}x∈A .

3Clearly, a hyperoperation is a generalization of the concept of an operation, since an operation · maps a pair of
elements x, y ∈ X to an element x ·y ∈ X. A further generalization is that of an L-fuzzy hyperoperation, which maps pairs
x, y ∈ X to L-fuzzy sets x ∗ y ⊆ X. For details on hyperoperations and hyperalgebras see the books [3, 5]; for details on
L-fuzzy hyperoperations see [8, ?].
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The following proposition is simply a restatement of some set theoretic properties following from
Definition 2.3.

Proposition 2.4 Given an equivalence R on X, for every B ⊆ X and every family {Au} with Au ⊆ X
(for every u ∈ B) we have: R(∪u∈BAu) = ∪u∈BR(Au).

Proof. First, Q ∈ R(∪u∈BAu) ⇔ (∃x : x ∈ ∪u∈BAu, R(x)= Q) ⇔ (∃u, x : u ∈ B, x ∈ Au, R(x)=
Q). Second, Q ∈ ∪u∈BR(Au) ⇔ (∃u : u ∈ B, Q ∈ R(Au)) ⇔ (∃u, x : u ∈ B, x ∈ Au, R(x)= Q) ⇔
(∃u, x : u ∈ B, x ∈ Au, R(x) = Q). Hence Q ∈ R(∪u∈BAu) ⇔ Q ∈ ∪u∈BRp(Au).

We can extend the well known definition of “congruence with respect to an operation” to “con-
gruence with respect to an hyperoperation” as follows.

Definition 2.5 Let R be an equivalence on X, let · be an operation and ∗ an hyperoperation.

1. We say that R is a congruence with respect to · iff the following holds for every x, y, z ∈ X:

R (x) = R(y) ⇒ R (x · z) = R(y · z). (2)

2. We say that R is a congruence with respect to ∗ iff the following holds for every x, y, z ∈ X:

R (x) = R(y) ⇒ R (x ∗ z) = R(y ∗ z). (3)

Note that R (x · z) and R(y · z) in (2) are sets, while R (x ∗ z) and R(y ∗ z) in (3) are families of
sets. Hence R(x ∗ z) = R(y ∗ z) is equivalent to

∀u ∈ x ∗ z ∃w ∈ y ∗ z : R(u) = R(w)
∀w ∈ y ∗ z ∃u ∈ x ∗ z : R(u) = R(w).

Regarding (2), let us also remark that in the context of “classical” lattice theory we simply say that
“R is a congruence” meaning that it is a congruence with respect to ∨ and ∧, i.e. that (2) specializes
to

R (x) = R(y) ⇒ (R (x ∨ z) = R(y ∨ z) and R (x ∧ z) = R(y ∧ z)) .

3 The Family of Nakano Congruences

3.1 The “Generating” Congruence R1

We start with an arbitrary crisp equivalence R1. In the rest of the paper we assume that R1 is
a congruence with respect to ∧ and t1. The following propositions describe well-known (classical)
properties of R1 which can be obtained using only congruence with respect to ∧.

Proposition 3.1 The classes of R1 are convex.

Definition 3.2 We write R1(x) �1 R1(y) iff R1(x ∧ y) = R1(x).

Proposition 3.3 �1 is an order on X/R1 and for all x, y ∈ X we have: x ≤ y ⇒ R1(x) �1 R1(y).

If we also use the fact that R1 is a congruence with respect to t1we can show that R1 is also a
congruence with respect to ∨ (hence R1 is a congruence in the “classical” sense).
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Proposition 3.4 R1 is a congruence with respect to ∨.

Proof. Choose any x, y, z ∈ X such that R1(x) = R1(y). Then we also have R1(xt1z)= R1(yt1z).
Since x∨ z ∈ xt1 z there exists some u such that u ∈ yt1 z and R1(u) = R1(x∨ z). Now u ∈ yt1 z ⇒
u ≤ u∨z = y∨z ⇒ R1(u) �1 R1(y∨z) ⇒ R1(x∨z) �1 R1(y∨z). Similarly we show R1(y∨z) �1 R1(x∨z)
and so we conclude R(y ∨ z) = R(x ∨ z).

Since R1 is a congruence with respect to ∨,∧, the following propositions (well known properties of
classical congruences) also hold.

Proposition 3.5 For every x, y ∈ X: R1(x) �1 R1(y) ⇔ R1(y) = R1(x ∨ y).

Proposition 3.6 The classes of R1 are convex sublattices.

Proposition 3.7 For all A,B ∈ X/R1 such that A �1 B we have:

∀a ∈ A ∃b ∈ B such that a ≤ b,

∀b ∈ B ∃a ∈ A such that a ≤ b.

The next proposition will prove quite useful in the sequel. Its proof makes essential use of the fact
that R1 is a congruence with respect to t1.

Proposition 3.8 Let A ∈ X/R1 and x, y ∈ A with x < y. Then there exists no (nonempty) B ∈ X/R1

such that ∀z ∈ B we have z ≤ x.

Proof. Suppose there exists some (nonempty) B ∈ X/R1 such that ∀z ∈ B we have z ≤ x. Then
z ∈ B ⇒ z ∨ x = x ∨ x ⇒ z ∈ x t1 x ⇒ B = R1(z) ∈ R1(x t1 x). In short we have shown

z ∈ B ⇒ B ∈ R1(x t1 x) = R1(x t1 y). (4)

On the other hand

z ∈ B ⇒


x ∨ z = x
y ∨ z = y 6= x
y ∨ x = y

hence z /∈ x t1 y. In short we have shown

z ∈ B ⇒ z /∈ x t1 y. (5)

But (5) implies that B /∈ R1(xt1y). Indeed, if B ∈ R1(xt1y) then exists some w such that R1(w) = B
(i.e. w ∈ B) and w ∈ xt1 y and this contradicts (5) which states that w ∈ B ⇒ w /∈ xt1 y. Hence the
assumption that a (nonempty) B exists with the property (z ∈ B ⇒ z ≤ x) leads to both B ∈ R1(xt1y)
and B /∈ R1(x t1 y) which is absurd.

Using Proposition 3.8 we will now show that in certain cases the classes of R1 can be obtained from
“pointwise” operations.

Proposition 3.9 Suppose that for some x, y ∈ X we have R1(x) = [x1, x2], R1(y) = [y1, y2] and
R1(x ∨ y) = [a, b]. Then R1(x ∨ y)= R1(x) ∨R1(y).
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Proof. (i) We have

R1(x1) = R1(x)
R1(y1) = R1(y)

}
⇒ R1(x1 ∨ y1) = R1(x ∨ y) = [a, b] ⇒ x1 ∨ y1 ∈ [a, b] ⇒ a ≤ x1 ∨ y1.

Also x ≤ x ∨ y ⇒ R1(x) �1 R1(x ∨ y) = [a, b] which implies that there exists some x0 such that
x0 ∈ R1(x) and x1 ≤ x0 ≤ a. Similarly y ≤ x∨y ⇒ R1(y) � R1(x∨y) = [a, b] which implies that there
exists some y0 such that y0 ∈ R1(y) and y1 ≤ y0 ≤ a. Hence x1 ∨ y1 ≤ a. In short x1 ∨ y1 = a.

(ii.1) If R1(x) = R1(y) then

[a, b] = R1(x ∨ y) = R1(y ∨ y) = R1(y) = [y1, y2] ⇒ b = y2 = x2 ∨ y2.

(ii.2) If R1(x) 6= R1(y) then either R1(x) 6= R1(x ∨ y) or R1(y) 6= R1(x ∨ y) or both. Assume
(withour loss of generality) that R1(x) 6= R1(x ∨ y). Now

R1(x2 ∨ y2) = R1(x ∨ y) = [a, b] ⇒ x2 ∨ y2 ∈ [a, b] ⇒ x2 ∨ y2 ≤ b.

If x2 ∨ y2 = b we are done. Assume on the other hand, that x2 ∨ y2 < b. Also

x2 ∈ R1(x)
x2 ∨ y2 ∈ R1(x ∨ y)
R1(x) 6= R1(x ∨ y)

 ⇒ x2 6= x2 ∨ y2 ⇒ x2 < x2 ∨ y2 < b.

But then we have
z ∈ R1(x) ⇒ z < x2 ∨ y2 < b

which contradicts Proposition 3.8 (if one takes B to be R1(x), x to be x2 ∨ y2 and y to be b). Hence
we must have x2 ∨ y2 = b.

(iii) We have concluded that R1(x ∨ y) = [a, b] = [x1 ∨ y1, x2 ∨ y2]. But also R1(x) = [x1, x2],
R1(y) = [y1, y2] and R1(x)∨R1(y) = [x1, x2]∨ [y1, y2] = [x1 ∨ y1, x2 ∨ y2], since (X,≤) is a distributive
lattice. Hence the proof is complete.

3.2 The Family of Congruences Rp

Now we will use R1 to construct a family of relations Rp, one for every p ∈ X. These will be constructed
in such a manner that, for every p ∈ X, Rp will be a congruence with respect to ∧,∨,tp.

Definition 3.10 For all p ∈ X we define the relation Rp by:

(x, y) ∈ Rp iff
(
x ∨ p′, y ∨ p′

)
∈ R1.

It is clear that if we set p = 1 in the above definition, then Rp becomes the original R1. Furthermore,
from congruence with respect to ∨ the following proposition is obvious.

Proposition 3.11 For all p ∈ X, Rp is an equivalence and Rp ⊇ R1.

The following properties of Rp classes are immediate consequences of Definition 3.10 (hence their
proofs are omitted).

Proposition 3.12 For all x, y, p ∈ X we have:

1. R1(x) = R1(y) ⇒ Rp(x) = Rp(y).
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2. Rp(x) = Rp(y) ⇔ R1(x ∨ p′) = R1(y ∨ p′).

3. R1(x) ⊆ Rp(x).

4. R1(x ∨ p′) ⊆ Rp(x) = Rp(x ∨ p′).

Now we can prove that Rp is a congruence with respect to ∨,∧,tp (for every p ∈ X).

Proposition 3.13 For all x, y, z, p ∈ X we have:

Rp(x) = Rp(y) ⇒


Rp(x ∨ z) = Rp(y ∨ z)
Rp(x ∧ z) = Rp(y ∧ z)
Rp(x tp z) = Rp(y tp z)

.

Proof. Since R1 is a congruence with respect to ∨ we have Rp(x) = Rp(y) ⇒ R1(x ∨ p′)=
R1(y ∨ p′) ⇒ R1(x ∨ p′ ∨ z)= R1(y ∨ p′ ∨ z) ⇒ Rp(x ∨ z)= Rp(y ∨ z). Similarly we can show Rp(x)=
Rp(y) ⇒ Rp(x ∧ z) = Rp(y ∧ z).

To show the last implication, take any A ∈ Rp(x tp z). Then there exists a such that a ∈ x tp z
and Rp(a) = A. Hence

x ∨ z ∨ p′ = a ∨ x ∨ p′ = a ∨ z ∨ p′ ⇒
a ∨ p′ ∈

(
x ∨ p′

)
t1

(
z ∨ p′

)
⇒

R1(a ∨ p′) ∈ R1(
(
x ∨ p′

)
t1

(
z ∨ p′

)
).

Also R1(x) = R1(y) ⇒ R1(x ∨ p′) = R1(y ∨ p′), hence by congruence of R1 with respect to t1 we get

R1(a ∨ p′) ∈ R1(
(
y ∨ p′

)
t1

(
z ∨ p′

)
)

and so there exists some b such that b ∈ (y ∨ p′) t1 (z ∨ p′) and R1(b) = R1(a ∨ p′). But

R1(a ∨ p′) = R1(b) ⇒ R1(a ∨ p′ ∨ p′) = R1(b ∨ p′) ⇒ R1(a ∨ p′) = R1(b ∨ p′) ⇒ Rp(a) = Rp(b).

Since b ∈ y tp z and Rp(b) = A it follows that A ∈ Rp(y tp z). Hence Rp(x tp z) ⊆ Rp(y tp z). In
similar manner we show Rp(y tp z) ⊆ Rp(x tp z) and conclude that Rp(x tp z) = Rp(y tp z).

Since Rp is a congruence with respect to ∨,∧ the following propositions are immediate.

Proposition 3.14 For all p ∈ X the classes of Rp are convex sublattices.

Definition 3.15 For every p ∈ X we write Rp(x) �p Rp(y) iff Rp(x) = Rp(x ∧ y).

Proposition 3.16 For every p ∈ X the relation �p is an order on X/Rp.

Proposition 3.17 For all p, x, y ∈ X we have:

1. x ∨ p′ ≤ y ∨ p′ ⇒ Rp(x) �p Rp(y).

2. Rp(x) �p Rp(y) ⇔ Rp(y) = Rp(x ∨ y).

3. R1(x) �1 R1(y) ⇔ Rp(x) �p Rp(y).
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Proposition 3.18 For every p and all A,B ∈ X/Rp such that A �p B we have:

∀a ∈ A ∃b ∈ B such that a ≤ b,

∀b ∈ B ∃a ∈ A such that a ≤ b.

and
(a ∈ A, b ∈ B) ⇒ (a ∧ b ∈ A, a ∨ b ∈ B) .

Proposition 3.19 Suppose that for some p, x ∈ X we have Rp(x) = [x1, x2]. Then p′ ≤ x2.

Proof. x2 ∈ Rp(x) = [x1, x2] = Rp(x2) = Rp(x2 ∨ p′) 3 x2 ∨ p′. Hence x2 ∨ p′ ≤ x2 ⇒ p′ ≤ x2.
Next we prove the generalizations of Propositions 3.8, 3.9 for arbitrary p.

Proposition 3.20 Let A ∈ X/Rp and x, y ∈ A with x ∨ p′ < y ∨ p′. Then there exists no B ∈ X/Rp

such that ∀z ∈ B we have z ≤ x.

Proof. Suppose there exists some B ∈ X/Rp such that ∀z ∈ B we have z ≤ x. Then z ∈ B ⇒
z ∨ x ∨ p′ = x ∨ x ∨ p′ ⇒ z ∈ x tp x ⇒ B = Rp(z) ∈ Rp(x tp x). In short we have shown

z ∈ B ⇒ B ∈ Rp(x tp x) = Rp(x tp y). (6)

However

z ∈ B ⇒


x ∨ z ∨ p′ = x ∨ p′

y ∨ z ∨ p′ = y ∨ p′ 6= x ∨ p′

y ∨ x ∨ p′ = y ∨ p′

hence z /∈ x tp y. In short we have shown

z ∈ B ⇒ z /∈ x tp y. (7)

But (7) implies that B /∈ Rp(x tp y). Indeed

B ∈ Rp(x tp y) ⇒
{
∃z :

z ∈ x tp y
z ∈ B

}
⇒

{
∃z :

z ∈ x tp y
z /∈ x tp y.

}
hence we have a contradiction. So we have

z ∈ B ⇒ B /∈ Rp(x tp y). (8)

But (8) contradicts (6) so we have wrongly assumed that there exists some B ∈ H/Rp such that ∀z ∈ B
we have z ≤ x.

Proposition 3.21 Suppose that for some p, x, y we have Rp(x) = [x1, x2], Rp(y) = [y1, y2] and Rp(x∨
y) = [a, b]. Then Rp(x ∨ y)= Rp(x) ∨Rp(y).

Proof. (i) We show that a = x1 ∨ y1 in exactly the same maner as in Proposition 3.9.
(ii.1) If Rp(x) = Rp(y) we show that b = x2 ∨ y2 in exactly the same manner as in Proposition 3.9.
(ii.2) Now suppose Rp(x) 6= Rp(y). Then we can assume (without loss of generality) that Rp(x) 6=

Rp(x ∨ y). Also

Rp(x2 ∨ y2) = Rp(x ∨ y) = [a, b] ⇒ x2 ∨ y2 ∈ [a, b] ⇒ x2 ∨ y2 ≤ b ⇒ x2 ∨ y2 ∨ p′ ≤ b ∨ p′.
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If x2 ∨ y2 ∨ p′ = b ∨ p′ then we are done, because by Proposition 3.19,we also have p′ ≤ x2, p′ ≤ y2,
p′ ≤ b; hence x2 ∨ y2 = x2 ∨ y2 ∨ p′ = b ∨ p′ = b. If, on the other hand x2 ∨ y2 ∨ p′ < b ∨ p′, then

x2 ∨ p′ ∈ Rp(x)
x2 ∨ y2 ∨ p′ ∈ Rp(x ∨ y)
Rp(x) 6= Rp(x ∨ y)

 ⇒ x2 ∨ p′ 6= x2 ∨ y2 ∨ p′ ⇒ x2 ∨ p′ < x2 ∨ y2 ∨ p′ < b ∨ p′.

But then we have
z ∈ Rp(x) ⇒ z < x2 ∨ y2 ∨ p′ < b ∨ p′

which contradicts Proposition 3.20 (if one takes B to be Rp(x), x to be x2 ∨ y2 and y to be b). Hence
we must have x2 ∨ y2 ∨ p′ = b ∨ p′. But, by Proposition 3.19, p′ ≤ x2 ∨ y2 and p′ ≤ b, hence finally
x2 ∨ y2 = b.

(iii) Hence we have concluded that Rp(x∨ y) = [a, b] = [x1 ∨ y1, x2 ∨ y2]. But also Rp(x) = [x1, x2],
Rp(y) = [y1, y2] and Rp(x)∨Rp(y) = [x1, x2]∨ [y1, y2] = [x1 ∨ y1, x2 ∨ y2], since (X,≤) is a distributive
lattice. Hence the proof is complete.

Proposition 3.21 can be applied immediately in case X is finite: since the classes of X are finite
convex sublattices, they are intervals. Hence we have the following corollary.

Corollary 3.22 If X is finite, then for all p, x, y ∈ X we have Rp(x ∨ y)= Rp(x) ∨Rp(y).

In Section 3.3 we will present another application of Proposition 3.21.
Next we show that both the family of relations {Rp}p∈X and the family of classes {Rp(x)}p∈X have

the p-cut properties [8].

Proposition 3.23 For all p, q ∈ X, P ⊆ X we have the following:

1. R0 = X ×X.

2. p ≤ q ⇒ Rq ⊆ Rp.

3. Rp∨q = Rp ∩Rq; more generally, ∩p∈P Rp = R∨P .

Proof. 1 is obvious. For 2, take p and q with p ≤ q (hence q′ ≤ p′). Then

(x, y) ∈ Rq ⇒
(
x ∨ q′, y ∨ q′

)
∈ R1

⇒ R1(x ∨ q′) = R1(y ∨ q′)
⇒ R1(x ∨ q′ ∨ p′) = R1(y ∨ q′ ∨ p′)
⇒ R1(x ∨ p′) = R1(y ∨ p′)
⇒ Rp(x) = Rp(y)
⇒ (x, y) ∈ Rp.

For 3, we will prove directly the second part which is more general. Take some P ⊆ X. Set s = ∨P . For
every p ∈ P we have p ≤ s ⇒ Rs ⊆ Rp. Since this is true for every p ∈ P , we have Rs ⊆ ∩p∈P Rp.On
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the other hand, take any p0 ∈ P . We have p0 ≤ s ⇒ p′0 ≥ s′. Also

(x, y) ∈ Rp0

⇒ Rp0 (x) = Rp0(y)
⇒ R1(x ∨ p′0) = R1(y ∨ p′0)
⇒ R1(

(
x ∨ p′0

)
∧

(
x ∨ s′

)
) = R1(

(
y ∨ p′0

)
∧

(
x ∨ s′

)
)

⇒ R1(x ∨
(
p′0 ∧ s′

)
) = R1(y ∨

(
p′0 ∧ s′

)
)

⇒ R1(x ∨ s′) = R1(y ∨ s′)
⇒ Rs(x) = Rs(y)
⇒ (x, y) ∈ Rs.

Hence ∩p∈P Rp ⊆ Rp0 ⊆ Rs and so we see that ∩p∈P Rp = Rs = R∨P .

Proposition 3.24 For all p, q, x ∈ X, P ⊆ X we have the following:

1. R0(x) = X ×X.

2. p ≤ q ⇒ Rq(x) ⊆ Rp(x).

3. Rp∨q(x) = Rp(x) ∩Rq(x); more generally, ∩p∈P Rp(x) = R∨P (x).

Proof. In fact all of the above 1 – 3 are restatements of results 1–3 of Proposition 3.23, based on
the equivalence x ∈ Rp(a) ⇔ (x, a) ∈ Rp.

In light of Propositions 3.23 and 3.24, both
(
{Rp}p∈X ,∩

)
and

(
{Rp(a)}p∈X ,∩

)
are closure sys-

tems. Hence the following propositions are immediate.

Proposition 3.25 The structure ({Rp}p∈X ,
.
∪,∩,⊆) is a complete lattice (where Rp

.
∪Rq

.= ∩s:Rp⊆Rs,Rq⊆RsRs).

Proposition 3.26 For every x ∈ X the structure ({Rp(x)}p∈X ,
.
∪,∩,⊆) is a complete lattice (where

Rp(x)
.
∪Rq(x) .= ∩s:Rp(x)⊆Rs(x),Rq(x)⊆Rs(x)Rs(x)).

3.3 The Family of Congruences Derived from the Identity

We now turn to a special relation, namely the identity relation, which we denote by ρ1.

Definition 3.27 We define ρ1 as follows: (x, y) ∈ ρ1 iff x = y.

It is obvious that ρ1 is an equivalence and a congruence with respect to ∨,∧ and t1. Let us define
(for all p ∈ X) the family of relations ρp in the usual manner.

Definition 3.28 For every p ∈ X we define ρp as follows: (x, y) ∈ ρp iff (x ∨ p′, y ∨ p′) ∈ ρ.

Definition 3.29 For every p, x, y ∈ X we define �p as follows: ρp(x) �p ρp(y) iff ρp(x ∧ y) = ρp(x).

We will also write x =p y when x ∨ p′ = y ∨ p′ ; similarly we will write x ≤p y when x ∨ p′ ≤ y ∨ p′

(these notations have been introduced in [8]). Obviously, for all x, y, p ∈ X we have:

ρp(x) = ρp(y) ⇔ x =p y, ρp(x) �p ρp(y) ⇔ x ≤p y.

Since ρ1 is a special case of R1 all the results of Sections 3.2 hold for this special case as well; in
particular for every p ∈ X, ρp is a congruence with respect to ∨,∧,tp. Some special properties follow
from the fact that ρ1 is the identity relation.
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Proposition 3.30 For every x, a, b, p ∈ X we have: x ∈ a tp b ⇒ ρp(x) ⊆ a tp b.

Proof. Choose any a, b, x, p ∈ X. Suppose that x ∈ a tp b. Now take any y ∈ ρp (x). Then we
have:

x ∈ a tp b ⇒ a ∨ b ∨ p′ = a ∨ x ∨ p′ = b ∨ x ∨ p′

ρp(x) = ρp(y) ⇒ x ∨ p′ = y ∨ p′

hence a ∨ b ∨ p′ = a ∨ y ∨ p′ = b ∨ y ∨ p′ and so y ∈ a tp b.

Corollary 3.31 For every x, a, b, p ∈ X we have: a tp b = ∪x∈atpb ρp(x).

Proof. Straightforward.

Proposition 3.32 For every x, p ∈ X we have ρp(x) = [a, x ∨ p′].

Proof. Choose any x, p ∈ X. Define a = ∧ρp(x) and b = ∨ρp(x). I.e.

a = ∧{y : x ∨ p′ = y ∨ p′}, b = ∨{y : x ∨ p′ = y ∨ p′}.

Then

∀y ∈ ρp(x) : x ∨ p′ = y ∨ p′ ⇒
x ∨ p′ = ∧y∈ρp(x)

(
y ∨ p′

)
⇒

x ∨ p′ =
(
∧y∈ρp(x)y

)
∨ p′ = a ∨ p′ ⇒

a ∈ ρp(x)

Similarly we show that b ∈ ρp(x). Since ρp(x) is also a convex sublattice, we have ρp(x) = [a, b]. Now
x ∈ ρp(x) = ρp(x ∨ p′) ⇒ x ∨ p′ ∈ [a, b] ⇒ x ∨ p′ ≤ b. On the other hand, b ≤ b ∨ p′ = x ∨ p′. Hence
b = x ∨ p′ .

Since every class of ρp is an interval, the following corollary of Proposition 3.21 is immediate.

Corollary 3.33 For all p, x, y ∈ X we have ρp(x ∨ y)= ρp(x) ∨ ρp(y).

Given some x ∈ X, we say that an element y ∈ X is an opposite of x iff 0 ∈ x tp y. In general an
element will have more than one opposites. It is easy to see that every x ∈ X is an opposite of itself
(auto-opposite, see [8]). The following proposition shows that all opposites of x are contained in the
class of one such opposite, in particular in the class of x.

Proposition 3.34 For every x, p ∈ X we have: 0 ∈ x tp y ⇒ y ∈ ρp(x).

Proof. 0 ∈ x tp y ⇒ x ∨ y ∨ p′ = x ∨ 0 ∨ p′ = y ∨ 0 ∨ p′ ⇒ x ∨ p′ = y ∨ p′ ⇒ y ∈ ρp(x).

4 Families of Quotient Hyperalgebras

Since Rp is a congruence with respect to ∨,∧,tp it is straightforward to define corresponding oper-
ations/ hyperoperations on classes, which will be denoted by ∨p,∧p,tp. As will turn out, tp can be
associated with some interesting quotient hyperalgebras.

Definition 4.1 For every x, y, p ∈ X we define

Rp(x)∨pRp(y) = Rp(x ∨ y), Rp(x)∧pRp(y) = Rp(x ∧ y), Rp(x)tpRp(y) = Rp(x tp y).
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The following are immediate consequences of the corresponding properties of tp.

Proposition 4.2 For every p, x, y, z ∈ X we have:

1. Rp(z) ∈ Rp(x)tpRp(y) ⇔ Rp (z)∨pRp(p′) ∈ Rp(x)tpRp(y).

2. Rp(x)tpRp(y) = Rp(x ∨ p′)tpRp (y ∨ p′) .

Proof. For 1, note that Rp(z) = Rp(z ∨ p′)= Rp(z)∨pRp(p′). Similarly, to prove 2 we use Rp(x) =
Rp(x ∨ p′) and Rp(y) = Rp(y ∨ p′).

Also, in certain circumstances, ∨p and tp can be obtained from “pointwise” operations.

Proposition 4.3 If for some p ∈ X every A ∈ X/Rp is an interval, then for every x, y we have:

1. Rp(x)∨pRp(y) = Rp(x) ∨Rp(y).

2. Rp(x)tpRp(y) = {Rp(z) : Rp(x) ∨Rp(y) = Rp(x) ∨Rp(z) = Rp(y) ∨Rp(z) } .

Proof. 1 is simply a restatement of Proposition 3.21. Regarding 2, let us tentatively define a
hyperoperation tpby

Rp(x)t
p
Rp(y) = {Rp(z) : Rp(x) ∨Rp(y) = Rp(x) ∨Rp(z) = Rp(y) ∨Rp(z) } .

We note the following.
(i) A ∈ Rp(x)tpRp(y) = Rp(x tp y) implies that there exists some z0 such that z0 ∈ A and

z0 ∈ x tp y. Hence

x ∨ y ∨ p′ = z0 ∨ x ∨ p′ = z0 ∨ y ∨ p′ ⇒
R1(x ∨ y ∨ p′) = R1

(
z0 ∨ x ∨ p′

)
= R1

(
z0 ∨ y ∨ p′

)
⇒

Rp(x ∨ y) = Rp(z0 ∨ x) = Rp(z0 ∨ y) ⇒
Rp(x) ∨Rp(y) = Rp(z0) ∨Rp(x) = Rp(z0) ∨Rp(y).

Hence A = Rp(z0) ∈ Rp(x)t
p
Rp(y), i.e. Rp(x)tpRp(y) ⊆ Rp(x)t

p
Rp(y).

(ii) On the other hand, take some A ∈ Rp(x)t
p
Rp(y). Then there exists some z0 such that z0 ∈ A

and
Rp(x) ∨Rp(y) = Rp(z0) ∨Rp(x) = Rp(z0) ∨Rp(y)

Now z0∨x ∈ Rp(z0∨x) and so there exist z1 ∈ Rp(z0), y1 ∈ Rp(y) such that z0∨x = z1∨y1. Similarly,
ther exist x2 ∈ Rp(x), y2 ∈ Rp(y) such that z0 ∨ x = x2 ∨ y2. Now:

z0 ∨ x = z1 ∨ y1 ⇒ z0 ∨ x ∨ z1 = z1 ∨ y1 ∨ z1 = z1 ∨ y1 = x2 ∨ y2 (9)

and
z0 ∨ x = z1 ∨ y1 ⇒ z0 ∨ x ∨ z0 = z1 ∨ y1 ∨ z0 = z0 ∨ x2 ∨ y2 = x2 ∨ y2 (10)

(in the last step we have used that z0 ≤ z0 ∨ x = x2 ∨ y2.) Now, (9) implies

z0 ∨ x ∨ z1 = x2 ∨ y2 ⇒ z0 ∨ x ∨ z1 ∨ x2 = x2 ∨ y2 (11)

and (10) implies
z0 ∨ y1 ∨ z1 = x2 ∨ y2 ⇒ z0 ∨ x ∨ z1 ∨ y2 = x2 ∨ y2. (12)
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But x ≤ z0 ∨ x = x2 ∨ y2 and y1 ≤ z1 ∨ y1 = x2 ∨ y2 imply

x ∨ y1 ≤ x2 ∨ y2 ⇒ x2 ∨ y2 = x ∨ y1 ∨ x2 ∨ y2. (13)

Hence (11) and (13) imply
z0 ∨ x ∨ z1 ∨ x2 = x ∨ y1 ∨ x2 ∨ y2 ⇒

(z0 ∨ z1) ∨ (x ∨ x2) ∨ p′ = (x ∨ x2) ∨ (y1 ∨ y2) ∨ p′; (14)

similarly (12) and (13) imply

z0 ∨ y1 ∨ z1 ∨ y2 = x ∨ y1 ∨ x2 ∨ y2 ⇒

(z0 ∨ z1) ∨ (y1 ∨ y2) ∨ p′ = (x ∨ x2) ∨ (y1 ∨ y2) ∨ p′. (15)

From (14) and (15) we see that z0 ∨ z1 ∈ (x ∨ x2) tp (y1 ∨ y2). Then it follows that

Rp(z0 ∨ z1) ∈ Rp((x ∨ x2) tp (y1 ∨ y2)) = Rp(x ∨ x2)tpRp(y1 ∨ y2). (16)

Finally
z0, z1 ∈ Rp(z0) ⇒ z0 ∨ z1 ∈ Rp(z0) ⇒ Rp(z0 ∨ z1) = Rp(z0) (17)

x, x2 ∈ Rp (x) ⇒ x ∨ x2 ∈ Rp (x) ⇒ Rp (x ∨ x2) = Rp(x) (18)

y1, y2 ∈ Rp(y) ⇒ y1 ∨ y2 ∈ Rp(y) ⇒ Rp (y1 ∨ y2) = Rp(y) (19)

and (17), (18), (19) in conjunction with (16) imply that Rp (z0) ∈ Rp(x)tpRp (y) and hence Rp(x)t
p

Rp(y)p ⊆ Rp(x) tp Rp(y). This, in conjunction with the conclusion of (i.1) means that

Rp(x)t
p
Rp(y)p = Rp(x)tpRp(y)

and so
Rp(x)tpRp(y) = {Rp(z) : Rp(x) ∨Rp(y) = Rp(x) ∨Rp(z) = Rp(y) ∨Rp(z) } .

Now we turn to the hyperalgebras associated with tp. First, for every value of p, the resulting
quotient hyperalgebra is a hypergroup.

Proposition 4.4 For all p ∈ X, (X/Rp,tp) is a commutative hypergroup, with neutral element
Rp(0), i.e. for all x, y, z ∈ X the following hold.

1. Rp(x)tpX/Rp = X/Rp.

2. Rp(x)tpRp(y) = Rp(y)tpRp(x).

3.
(
Rp(x)tpRp(y)

)
tpRp(z) = Rp (x)tp

(
Rp(y)tpRp(z)

)
.

4. Rp (x) ∈ Rp (x)tpRp (0) .

5. Rp (0) ∈ Rp (x)tpRp (x) .
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Proof. Regarding 1:

Rp(x)tpX/Rp = ∪z∈XRp(x)tpRp(z) = ∪z∈XRp(x tp z) = Rp(x tp X) = Rp(X) = X/Rp,

where we have used Proposition 2.4. As for 2, it is immediate. Regarding 3, first note that for every
x, y, z ∈ X we have: Rp

(
∪u∈ytpzx tp u

)
= ∪u∈ytpzRp (x tp u) where we have used again Proposition

2.4. Now

Rp(x)tp

(
Rp(y)tpRp(z)

)
= Rp(x)tpRp(y tp z) = ∪u∈ytpzRp (x tp u) = Rp

(
∪u∈ytpzx tp u

)
= Rp (x tp y tp z) .

Similarly we can show
(
Rp(x)tpRp(y)

)
tpRp(z)= Rp (x tp y tp z) and this completes the proof of 3.

Finally, regarding 4, x ∈ x tp 0 ⇒ Rp (x) ∈ Rp (x tp 0) = Rp (x)tpRp (0); 5 is proved similarly.
In fact, (X/Rp,tp) is not simply a hypergroup, but a join space. To show this we will prove a

sequence of propositions.

Proposition 4.5 For all x, y, z, p ∈ X we have

Rp (z) ∈ Rp (x)tpRp (y) ⇔ Rp (x) ∈ Rp (y)tpRp (z) ⇔ Rp (y) ∈ Rp (z)tpRp (x) .

Proof. We only show the first equivalence (the second is proved in identical manner). We

have Rp (z) ∈ Rp (x)tpRp (y) ⇔
(
∃u :

u ∈ x tp y
Rp(u) = Rp(z)

)
⇔

(
∃u :

x ∈ y tp u
Rp(u) = Rp(z)

)
⇔ Rp (x) ∈

Rp (y)tpRp (z), where we have used the property z ∈ x tp y ⇔ x ∈ y tp z, established in [8].
In the standard manner of join spaces we can define for every p ∈ X the extension hyperoperation

/p by: x/py = {z : x ∈ z tp y} (this definition actually appears in [8]). Then we can also define the
corresponding extension hyperoperation on the quotient X/Rp.

Definition 4.6 For every x, y, p ∈ X we define Rp (x) //pRp (y) = Rp(x/py).

The extension hyperoperation //p is identical to tp.

Proposition 4.7 For every x, y, p ∈ X we have Rp (x) //pRp (y) = Rp (x)tpRp (y).

Proof. As already shown in [8], for every x, y, p ∈ X we have x/py = x tp y, from which the
required result follows immediately.

Proposition 4.8 For all x, y, z, u, p ∈ X, the following holds.

(Rp(x)//pRp(y)) ∩ (Rp(u)//pRp(z)) 6= ∅ ⇒
(
Rp(x)tpRp (z)

)
∩

(
Rp (y)tpRp (u)

)
6= ∅.

Proof. We already know that (Rp(x)//pRp(y))∩(Rp(u)//pRp(z)) =
(
Rp(x)tpRp(y)

)
∩

(
Rp(u)tpRp(z)

)
=

(
Rp(x)tpRp(y)

)
∩

(
Rp(z)tpRp(u)

)
. Now

(
Rp(x)tpRp(y)

)
∩

(
Rp(z)tpRp(u)

)
6= ∅ ⇒

∃v, w :
v ∈ x tp y
w ∈ z tp u
Rp(v) = Rp(w)

 .

Now

v ∈ x tp y ⇒ y ∈ x tp v ⇒
Rp(y) ∈ Rp (x tp v) = Rp (x tp w) . (20)
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Also, since w ∈ z tp u it follows that

Rp (x tp v) ⊆ Rp (x tp (z tp u)) = Rp (x tp z tp u) = Rp ((x tp z) tp u) (21)

From (20) and (21) follows that Rp(y) ∈ Rp ((x tp z) tp u) and hence there exist a and b such that

a ∈ x tp z (22)
b ∈ a tp u (23)

Rp(b) = Rp(y) (24)

From (22) follows that Rp(a) ∈ Rp (x tp z) ; from (23) and (24) follows that Rp(y) ∈ Rp (a tp u) and
hence (from Proposition 4.5) that Rp(a) ∈ Rp (y tp u). In short

(
Rp (x)tpRp (z)

)
∩

(
Rp(y)tpRp (u)

)
6=

∅.

Corollary 4.9 For every p ∈ X, (X/Rp,tp) is a join space.

Finally, we will show that the quotient hyperoperation tp, in conjunction with the quotient opera-
tion ∧p, generates a hyperlattice. To establish this fact, let us present some order-related properies of
tp.

Proposition 4.10 For all x, y, z, p ∈ X we have the following:

1. Rp(x) ∈ Rp(x)tpRp(x)

2. Rp(x)tpRp(y) = Rp(y)tpRp(x).

3.
(
Rp(x)tpRp(y)

)
tpRp(z) = Rp (x)tp

(
Rp(y)tpRp(z)

)
.

4. Rp(x) ∈
(
Rp(x)tpRp(y)

)
∧pRp(x), Rp(x) ∈

(
Rp(x)∧pRp(y)

)
tpRp(x).

5. Rp(x) ∈ Rp(x)tpRp(y) ⇔ Rp(y) �p Rp(x).

Proof. Regarding 1 we have x ∈ xtp x and so Rp(x) ∈ Rp(xtp x) = Rp(x)tpRp(x). Parts 2 and 3
have already been proved in Proposition 4.4. Regarding part 4, since x∨ y ∈ xtp y, it follows that x=
(x ∨ y) ∧ x ∈

(
Rp(x)tpRp(y)

)
∧pRp(x). Also

(
Rp(x)∧pRp(y)

)
tpRp(x) = (Rp(x ∧ y))tpRp(x) which

contains (x ∧ y) ∨ x = x. Finally, regarding 5, if Rp(x) ∈ Rp(x)tpRp(y) then there exists some u such
that Rp(x) = Rp(u) and x ∨ y ∨ p′= x ∨ u ∨ p′= y ∨ u ∨ p′. From this follows that

Rp (x ∨ y) = Rp (x ∨ u) ∈ Rp (x tp u) = Rp (x)tpRp (u) = Rp (x)tpRp (x) = Rp (x)

hence Rp(y) �p Rp(x). Conversely, Rp(y) �p Rp(x) ⇒ Rp(x) = Rp(x ∨ y) ∈ Rp(x tp y).

Corollary 4.11 For every p ∈ X, (X/Rp,tp,∧p) is a hyperlattice.

From the above corollary we see that, in particular, (X/ρp,tp,∧p,�p) is a hyperlattice. Recall that
in [8] we had mentioned that the hyperalgebra (X,tp,∧,≤p) closely resembles a hyperlattice except
for the fact that ≤p is not an order but a preorder. Now we see that if we use the relationship ρp

(which is the natural equivalence generated from ≤p) we obtain in a “natural” manner the hyperlattice
(X/ρp,tp,∧p,�p) which can be seen as the “quotient hyperlattice” which corresponds to (X,tp,∧,≤p)
under ρp.
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