Some Remarks on Congruences obtained from the L-Fuzzy Nakano Hyperoperation

K. Serafimidis and Ath. Kehagias

May 26, 2003

Abstract

In this paper we study relations which are congruences with respect to \wedge and \sqcup_{p}, where \sqcup_{p} is the p-cut of the L-fuzzy hyperoperation \sqcup. The main idea is to start from an equivalence relation R_{1} which is a congruence with respect to \wedge and \sqcup_{1} and, for each $p \in X$, construct an equivalence relation R_{p} which is a congruence with respect to \wedge and \sqcup_{p}. Furthermore, for each $x \in R_{p}$ we construct a quotient hyperoperation \unlhd_{p} and we show that the hyperalgebra $\left(X / R_{p}, \bigsqcup_{p}\right)$ is a join space and the hyperalgebra $\left(X / R_{p}, \sqcup_{p}, \wedge_{p}\right)$ is a hyperlattice.

AMS Classification: 06B99, 06D30, 08A72, 03E72, 20N20.

1 Introduction

In a previous paper [8] we have constructed the L-fuzzy Nakano hyperoperation \sqcup in terms of its p-cuts. Our construction can be summarized as follows ${ }^{1}$. Consider a generalized de Morgan lattice $\left(X, \leq, \vee, \wedge,{ }^{\prime}\right)$ and for every $x, y, p \in X$ define

$$
\begin{equation*}
x \sqcup_{p} y=\left\{z: x \vee y \vee p^{\prime}=x \vee z \vee p^{\prime}=y \vee z \vee p^{\prime}\right\} . \tag{1}
\end{equation*}
$$

Hence, for every $x, y, p \in X$ we obtain a crisp ${ }^{2}$ set $x \sqcup_{p} y$; i.e. \sqcup_{p} is a crisp hyperoperation which maps the pair x, y to the set $x \sqcup_{p} y$. In [8] we have also shown how to define (for every $x, y \in X$) the L-fuzzy set $x \sqcup y$ in such a manner that for every $p \in X$ the p-cut $(x \sqcup y)_{p}$ is equal to $x \sqcup_{p} y$. Hence we obtain an L-fuzzy hyperoperation \sqcup which maps the pair x, y to the L-fuzzy set $x \sqcup y$.

In the current paper we study equivalences on X which are congruences with respect to \wedge and \sqcup_{p}. The work presented here can be seen as a continuation of [8] in conjunction to previous work on congruences with respect to \sqcup_{1} [9]. The main idea is to start from an equivalence relation R_{1} which is a congruence with respect to \wedge and \sqcup_{1} and, for each $p \in X$, construct an equivalence relation R_{p} which is a congruence with respect to \wedge and \sqcup_{p}. Furthermore, for each $p \in X$ we will construct a quotient hyperoperation \unlhd_{p} and we will show that the hyperalgebra $\left(X / R_{p}, \sqcup_{p}\right)$ is a join space and the hyperalgebra $\left(X / R_{p}, \sqcup_{p}, \wedge_{p}\right)$ is a hyperlattice.

In addition to our already mentioned earlier work, the current paper is related to work on join spaces $[15,10]$, hyperlattices $[1,6,11,16,17,12]$, L-fuzzy hyperoperations $[4,7,20]$ and the Nakano hyperoperations [14, 2]. This is only a partial list of relevant work; further references appear in [8].

[^0]
2 Preliminaries

In this section we present some basic definitions, notations and propositions which will be used in the sequel. Further related material can be found in [8].

Throughout this paper we use a structure $\left(X, \leq, \vee, \wedge,{ }^{\prime}\right)$ which we assume to be a generalized deMorgan lattice, i.e. a structure satisfying the following.

Definition 2.1 A generalized deMorgan lattice is a structure $\left(X, \leq, \vee, \wedge,^{\prime}\right)$, where (X, \leq, \vee, \wedge) is a complete distributive lattice with minimum element 0 and maximum element 1 ; the symbol ' denotes a unary operation ("complement"); and the following properties are satisfied.

1. For all $x \in X, Y \subseteq X$ we have $x \wedge\left(\vee_{y \in Y} y\right)=\vee_{y \in Y}(x \wedge y), x \vee\left(\wedge_{y \in Y} y\right)=\wedge_{y \in Y}(x \vee y)$. (Complete distributivity).
2. For all $x \in X$ we have: $\left(x^{\prime}\right)^{\prime}=x$. (Negation is involutory).
3. For all $x, y \in X$ we have: $x \leq y \Rightarrow y^{\prime} \leq x^{\prime}$. (Negation is order reversing).
4. For all $Y \subseteq X$ we have $\left(\vee_{y \in Y} y\right)^{\prime}=\wedge_{y \in Y} y^{\prime}, \quad\left(\wedge_{y \in Y} y\right)^{\prime}=\vee_{y \in Y} y^{\prime}$ (Complete deMorgan laws).

The reader will recall that a crisp hyperoperation $*$ is a mapping of pairs $x, y \in X$ to crisp sets $x * y \subseteq X$; the set X endowed with one or more hyperoperations forms a hyperalgebra. ${ }^{3}$. The following notation is standard in the literature of hyperalgebras.

Definition 2.2 For $x \in X, A \subseteq X$ and a hyperoperation $*$, we define $x * A=\cup_{a \in A} x * y$.
We have already defined the hyperoperation \sqcup_{p} by (1); it is the main hyperoperation of interest in this paper. Let us also note that setting $p=1$ we obtain

$$
x \sqcup_{1} y=\{z: x \vee y=x \vee z=y \vee z\} ;
$$

this is the classical Nakano hyperoperation which has been the object of much study [9, 2, 14]
The notion of an equivalence relationship R on X is well-known. Let us recall the following definition of the classes of an equivalence.

Definition 2.3 Given an equivalence R on X and an element $x \in X$, we denote the class of x (with respect to R) by $R(x)$ and we define it by

$$
R(x)=\{y:(x, y) \in R\} ;
$$

The quotient of X with respect to R is denoted by X / R and defined by

$$
X / R=\{R(x)\}_{x \in X} ;
$$

finally, for $A \subseteq X$ we define

$$
R(A)=\{R(x)\}_{x \in A} .
$$

[^1]The following proposition is simply a restatement of some set theoretic properties following from Definition 2.3.

Proposition 2.4 Given an equivalence R on X, for every $B \subseteq X$ and every family $\left\{A_{u}\right\}$ with $A_{u} \subseteq X$ (for every $u \in B$) we have: $R\left(\cup_{u \in B} A_{u}\right)=\cup_{u \in B} R\left(A_{u}\right)$.

Proof. First, $Q \in R\left(\cup_{u \in B} A_{u}\right) \Leftrightarrow\left(\exists x: x \in \cup_{u \in B} A_{u}, R(x)=Q\right) \Leftrightarrow\left(\exists u, x: u \in B, x \in A_{u}, R(x)=\right.$ Q). Second, $Q \in \cup_{u \in B} R\left(A_{u}\right) \Leftrightarrow\left(\exists u: u \in B, Q \in R\left(A_{u}\right)\right) \Leftrightarrow\left(\exists u, x: u \in B, x \in A_{u}, R(x)=Q\right) \Leftrightarrow$ $\left(\exists u, x: u \in B, x \in A_{u}, R(x)=Q\right)$. Hence $Q \in R\left(\cup_{u \in B} A_{u}\right) \Leftrightarrow Q \in \cup_{u \in B} R_{p}\left(A_{u}\right)$.

We can extend the well known definition of "congruence with respect to an operation" to "congruence with respect to an hyperoperation" as follows.

Definition 2.5 Let R be an equivalence on X, let \cdot be an operation and $*$ an hyperoperation.

1. We say that R is a congruence with respect to • iff the following holds for every $x, y, z \in X$:

$$
\begin{equation*}
R(x)=R(y) \Rightarrow R(x \cdot z)=R(y \cdot z) . \tag{2}
\end{equation*}
$$

2. We say that R is a congruence with respect to $*$ iff the following holds for every $x, y, z \in X$:

$$
\begin{equation*}
R(x)=R(y) \Rightarrow R(x * z)=R(y * z) . \tag{3}
\end{equation*}
$$

Note that $R(x \cdot z)$ and $R(y \cdot z)$ in (2) are sets, while $R(x * z)$ and $R(y * z)$ in (3) are families of sets. Hence $R(x * z)=R(y * z)$ is equivalent to

$$
\begin{array}{ll}
\forall u \in x * z & \exists w \in y * z: R(u)=R(w) \\
\forall w \in y * z & \exists u \in x * z: R(u)=R(w) .
\end{array}
$$

Regarding (2), let us also remark that in the context of "classical" lattice theory we simply say that " R is a congruence" meaning that it is a congruence with respect to \vee and \wedge, i.e. that (2) specializes to

$$
R(x)=R(y) \Rightarrow(R(x \vee z)=R(y \vee z) \text { and } R(x \wedge z)=R(y \wedge z))
$$

3 The Family of Nakano Congruences

3.1 The "Generating" Congruence R_{1}

We start with an arbitrary crisp equivalence R_{1}. In the rest of the paper we assume that R_{1} is a congruence with respect to \wedge and \sqcup_{1}. The following propositions describe well-known (classical) properties of R_{1} which can be obtained using only congruence with respect to \wedge.

Proposition 3.1 The classes of R_{1} are convex.
Definition 3.2 We write $R_{1}(x) \preceq_{1} R_{1}(y)$ iff $R_{1}(x \wedge y)=R_{1}(x)$.
Proposition $3.3 \preceq_{1}$ is an order on X / R_{1} and for all $x, y \in X$ we have: $x \leq y \Rightarrow R_{1}(x) \preceq_{1} R_{1}(y)$.
If we also use the fact that R_{1} is a congruence with respect to \sqcup_{1} we can show that R_{1} is also a congruence with respect to \vee (hence R_{1} is a congruence in the "classical" sense).

Proposition 3.4 R_{1} is a congruence with respect to \vee.
Proof. Choose any $x, y, z \in X$ such that $R_{1}(x)=R_{1}(y)$. Then we also have $R_{1}\left(x \sqcup_{1} z\right)=R_{1}\left(y \sqcup_{1} z\right)$. Since $x \vee z \in x \sqcup_{1} z$ there exists some u such that $u \in y \sqcup_{1} z$ and $R_{1}(u)=R_{1}(x \vee z)$. Now $u \in y \sqcup_{1} z \Rightarrow$ $u \leq u \vee z=y \vee z \Rightarrow R_{1}(u) \preceq_{1} R_{1}(y \vee z) \Rightarrow R_{1}(x \vee z) \preceq_{1} R_{1}(y \vee z)$. Similarly we show $R_{1}(y \vee z) \preceq_{1} R_{1}(x \vee z)$ and so we conclude $R(y \vee z)=R(x \vee z)$.

Since R_{1} is a congruence with respect to \vee, \wedge, the following propositions (well known properties of classical congruences) also hold.

Proposition 3.5 For every $x, y \in X: R_{1}(x) \preceq_{1} R_{1}(y) \Leftrightarrow R_{1}(y)=R_{1}(x \vee y)$.
Proposition 3.6 The classes of R_{1} are convex sublattices.
Proposition 3.7 For all $A, B \in X / R_{1}$ such that $A \preceq_{1} B$ we have:

$$
\begin{array}{ll}
\forall a \in A & \exists b \in B \text { such that } a \leq b, \\
\forall b \in B & \exists a \in A \text { such that } a \leq b .
\end{array}
$$

The next proposition will prove quite useful in the sequel. Its proof makes essential use of the fact that R_{1} is a congruence with respect to \sqcup_{1}.

Proposition 3.8 Let $A \in X / R_{1}$ and $x, y \in A$ with $x<y$. Then there exists no (nonempty) $B \in X / R_{1}$ such that $\forall z \in B$ we have $z \leq x$.

Proof. Suppose there exists some (nonempty) $B \in X / R_{1}$ such that $\forall z \in B$ we have $z \leq x$. Then $z \in B \Rightarrow z \vee x=x \vee x \Rightarrow z \in x \sqcup_{1} x \Rightarrow B=R_{1}(z) \in R_{1}\left(x \sqcup_{1} x\right)$. In short we have shown

$$
\begin{equation*}
z \in B \Rightarrow B \in R_{1}\left(x \sqcup_{1} x\right)=R_{1}\left(x \sqcup_{1} y\right) \tag{4}
\end{equation*}
$$

On the other hand

$$
z \in B \Rightarrow\left\{\begin{array}{l}
x \vee z=x \\
y \vee z=y \neq x \\
y \vee x=y
\end{array}\right.
$$

hence $z \notin x \sqcup_{1} y$. In short we have shown

$$
\begin{equation*}
z \in B \Rightarrow z \notin x \sqcup_{1} y \tag{5}
\end{equation*}
$$

But (5) implies that $B \notin R_{1}\left(x \sqcup_{1} y\right)$. Indeed, if $B \in R_{1}\left(x \sqcup_{1} y\right)$ then exists some w such that $R_{1}(w)=B$ (i.e. $w \in B$) and $w \in x \sqcup_{1} y$ and this contradicts (5) which states that $w \in B \Rightarrow w \notin x \sqcup_{1} y$. Hence the assumption that a (nonempty) B exists with the property ($z \in B \Rightarrow z \leq x)$ leads to both $B \in R_{1}\left(x \sqcup_{1} y\right)$ and $B \notin R_{1}\left(x \sqcup_{1} y\right)$ which is absurd.

Using Proposition 3.8 we will now show that in certain cases the classes of R_{1} can be obtained from "pointwise" operations.

Proposition 3.9 Suppose that for some $x, y \in X$ we have $R_{1}(x)=\left[x_{1}, x_{2}\right], R_{1}(y)=\left[y_{1}, y_{2}\right]$ and $R_{1}(x \vee y)=[a, b]$. Then $R_{1}(x \vee y)=R_{1}(x) \vee R_{1}(y)$.

Proof. (i) We have

$$
\left.\begin{array}{l}
R_{1}\left(x_{1}\right)=R_{1}(x) \\
R_{1}\left(y_{1}\right)=R_{1}(y)
\end{array}\right\} \Rightarrow R_{1}\left(x_{1} \vee y_{1}\right)=R_{1}(x \vee y)=[a, b] \Rightarrow x_{1} \vee y_{1} \in[a, b] \Rightarrow a \leq x_{1} \vee y_{1} .
$$

Also $x \leq x \vee y \Rightarrow R_{1}(x) \preceq_{1} R_{1}(x \vee y)=[a, b]$ which implies that there exists some x_{0} such that $x_{0} \in R_{1}(x)$ and $x_{1} \leq x_{0} \leq a$. Similarly $y \leq x \vee y \Rightarrow R_{1}(y) \preceq R_{1}(x \vee y)=[a, b]$ which implies that there exists some y_{0} such that $y_{0} \in R_{1}(y)$ and $y_{1} \leq y_{0} \leq a$. Hence $x_{1} \vee y_{1} \leq a$. In short $x_{1} \vee y_{1}=a$.
(ii.1) If $R_{1}(x)=R_{1}(y)$ then

$$
[a, b]=R_{1}(x \vee y)=R_{1}(y \vee y)=R_{1}(y)=\left[y_{1}, y_{2}\right] \Rightarrow b=y_{2}=x_{2} \vee y_{2} .
$$

(ii.2) If $R_{1}(x) \neq R_{1}(y)$ then either $R_{1}(x) \neq R_{1}(x \vee y)$ or $R_{1}(y) \neq R_{1}(x \vee y)$ or both. Assume (withour loss of generality) that $R_{1}(x) \neq R_{1}(x \vee y)$. Now

$$
R_{1}\left(x_{2} \vee y_{2}\right)=R_{1}(x \vee y)=[a, b] \Rightarrow x_{2} \vee y_{2} \in[a, b] \Rightarrow x_{2} \vee y_{2} \leq b .
$$

If $x_{2} \vee y_{2}=b$ we are done. Assume on the other hand, that $x_{2} \vee y_{2}<b$. Also

$$
\left.\begin{array}{l}
x_{2} \in R_{1}(x) \\
x_{2} \vee y_{2} \in R_{1}(x \vee y) \\
R_{1}(x) \neq R_{1}(x \vee y)
\end{array}\right\} \Rightarrow x_{2} \neq x_{2} \vee y_{2} \Rightarrow x_{2}<x_{2} \vee y_{2}<b .
$$

But then we have

$$
z \in R_{1}(x) \Rightarrow z<x_{2} \vee y_{2}<b
$$

which contradicts Proposition 3.8 (if one takes B to be $R_{1}(x), x$ to be $x_{2} \vee y_{2}$ and y to be b). Hence we must have $x_{2} \vee y_{2}=b$.
(iii) We have concluded that $R_{1}(x \vee y)=[a, b]=\left[x_{1} \vee y_{1}, x_{2} \vee y_{2}\right]$. But also $R_{1}(x)=\left[x_{1}, x_{2}\right]$, $R_{1}(y)=\left[y_{1}, y_{2}\right]$ and $R_{1}(x) \vee R_{1}(y)=\left[x_{1}, x_{2}\right] \vee\left[y_{1}, y_{2}\right]=\left[x_{1} \vee y_{1}, x_{2} \vee y_{2}\right]$, since (X, \leq) is a distributive lattice. Hence the proof is complete.

3.2 The Family of Congruences R_{p}

Now we will use R_{1} to construct a family of relations R_{p}, one for every $p \in X$. These will be constructed in such a manner that, for every $p \in X, R_{p}$ will be a congruence with respect to \wedge, \vee, \sqcup_{p}.

Definition 3.10 For all $p \in X$ we define the relation R_{p} by:

$$
(x, y) \in R_{p} \text { iff }\left(x \vee p^{\prime}, y \vee p^{\prime}\right) \in R_{1} .
$$

It is clear that if we set $p=1$ in the above definition, then R_{p} becomes the original R_{1}. Furthermore, from congruence with respect to \vee the following proposition is obvious.

Proposition 3.11 For all $p \in X, R_{p}$ is an equivalence and $R_{p} \supseteq R_{1}$.
The following properties of R_{p} classes are immediate consequences of Definition 3.10 (hence their proofs are omitted).

Proposition 3.12 For all $x, y, p \in X$ we have:

1. $R_{1}(x)=R_{1}(y) \Rightarrow R_{p}(x)=R_{p}(y)$.
2. $R_{p}(x)=R_{p}(y) \Leftrightarrow R_{1}\left(x \vee p^{\prime}\right)=R_{1}\left(y \vee p^{\prime}\right)$.
3. $R_{1}(x) \subseteq R_{p}(x)$.
4. $R_{1}\left(x \vee p^{\prime}\right) \subseteq R_{p}(x)=R_{p}\left(x \vee p^{\prime}\right)$.

Now we can prove that R_{p} is a congruence with respect to \vee, \wedge, \sqcup_{p} (for every $p \in X$).
Proposition 3.13 For all $x, y, z, p \in X$ we have:

$$
R_{p}(x)=R_{p}(y) \Rightarrow\left\{\begin{array}{l}
R_{p}(x \vee z)=R_{p}(y \vee z) \\
R_{p}(x \wedge z)=R_{p}(y \wedge z) \\
R_{p}\left(x \sqcup_{p} z\right)=R_{p}\left(y \sqcup_{p} z\right)
\end{array} .\right.
$$

Proof. Since R_{1} is a congruence with respect to \vee we have $R_{p}(x)=R_{p}(y) \Rightarrow R_{1}\left(x \vee p^{\prime}\right)=$ $R_{1}\left(y \vee p^{\prime}\right) \Rightarrow R_{1}\left(x \vee p^{\prime} \vee z\right)=R_{1}\left(y \vee p^{\prime} \vee z\right) \Rightarrow R_{p}(x \vee z)=R_{p}(y \vee z)$. Similarly we can show $R_{p}(x)=$ $R_{p}(y) \Rightarrow R_{p}(x \wedge z)=R_{p}(y \wedge z)$.

To show the last implication, take any $A \in R_{p}\left(x \sqcup_{p} z\right)$. Then there exists a such that $a \in x \sqcup_{p} z$ and $R_{p}(a)=A$. Hence

$$
\begin{gathered}
x \vee z \vee p^{\prime}=a \vee x \vee p^{\prime}=a \vee z \vee p^{\prime} \Rightarrow \\
a \vee p^{\prime} \in\left(x \vee p^{\prime}\right) \sqcup_{1}\left(z \vee p^{\prime}\right) \Rightarrow \\
R_{1}\left(a \vee p^{\prime}\right) \in R_{1}\left(\left(x \vee p^{\prime}\right) \sqcup_{1}\left(z \vee p^{\prime}\right)\right) .
\end{gathered}
$$

Also $R_{1}(x)=R_{1}(y) \Rightarrow R_{1}\left(x \vee p^{\prime}\right)=R_{1}\left(y \vee p^{\prime}\right)$, hence by congruence of R_{1} with respect to \sqcup_{1} we get

$$
R_{1}\left(a \vee p^{\prime}\right) \in R_{1}\left(\left(y \vee p^{\prime}\right) \sqcup_{1}\left(z \vee p^{\prime}\right)\right)
$$

and so there exists some b such that $b \in\left(y \vee p^{\prime}\right) \sqcup_{1}\left(z \vee p^{\prime}\right)$ and $R_{1}(b)=R_{1}\left(a \vee p^{\prime}\right)$. But

$$
R_{1}\left(a \vee p^{\prime}\right)=R_{1}(b) \Rightarrow R_{1}\left(a \vee p^{\prime} \vee p^{\prime}\right)=R_{1}\left(b \vee p^{\prime}\right) \Rightarrow R_{1}\left(a \vee p^{\prime}\right)=R_{1}\left(b \vee p^{\prime}\right) \Rightarrow R_{p}(a)=R_{p}(b) .
$$

Since $b \in y \sqcup_{p} z$ and $R_{p}(b)=A$ it follows that $A \in R_{p}\left(y \sqcup_{p} z\right)$. Hence $R_{p}\left(x \sqcup_{p} z\right) \subseteq R_{p}\left(y \sqcup_{p} z\right)$. In similar manner we show $R_{p}\left(y \sqcup_{p} z\right) \subseteq R_{p}\left(x \sqcup_{p} z\right)$ and conclude that $R_{p}\left(x \sqcup_{p} z\right)=R_{p}\left(y \sqcup_{p} z\right)$.

Since R_{p} is a congruence with respect to \vee, \wedge the following propositions are immediate.
Proposition 3.14 For all $p \in X$ the classes of R_{p} are convex sublattices.
Definition 3.15 For every $p \in X$ we write $R_{p}(x) \preceq_{p} R_{p}(y)$ iff $R_{p}(x)=R_{p}(x \wedge y)$.
Proposition 3.16 For every $p \in X$ the relation \preceq_{p} is an order on X / R_{p}.
Proposition 3.17 For all $p, x, y \in X$ we have:

1. $x \vee p^{\prime} \leq y \vee p^{\prime} \Rightarrow R_{p}(x) \preceq_{p} R_{p}(y)$.
2. $R_{p}(x) \preceq_{p} R_{p}(y) \Leftrightarrow R_{p}(y)=R_{p}(x \vee y)$.
3. $R_{1}(x) \preceq_{1} R_{1}(y) \Leftrightarrow R_{p}(x) \preceq_{p} R_{p}(y)$.

Proposition 3.18 For every p and all $A, B \in X / R_{p}$ such that $A \preceq_{p} B$ we have:

$$
\begin{array}{ll}
\forall a \in A & \exists b \in B \text { such that } a \leq b, \\
\forall b \in B & \exists a \in A \text { such that } a \leq b .
\end{array}
$$

and

$$
(a \in A, b \in B) \Rightarrow(a \wedge b \in A, a \vee b \in B)
$$

Proposition 3.19 Suppose that for some $p, x \in X$ we have $R_{p}(x)=\left[x_{1}, x_{2}\right]$. Then $p^{\prime} \leq x_{2}$.
Proof. $x_{2} \in R_{p}(x)=\left[x_{1}, x_{2}\right]=R_{p}\left(x_{2}\right)=R_{p}\left(x_{2} \vee p^{\prime}\right) \ni x_{2} \vee p^{\prime}$. Hence $x_{2} \vee p^{\prime} \leq x_{2} \Rightarrow p^{\prime} \leq x_{2}$.
Next we prove the generalizations of Propositions 3.8, 3.9 for arbitrary p.
Proposition 3.20 Let $A \in X / R_{p}$ and $x, y \in A$ with $x \vee p^{\prime}<y \vee p^{\prime}$. Then there exists no $B \in X / R_{p}$ such that $\forall z \in B$ we have $z \leq x$.

Proof. Suppose there exists some $B \in X / R_{p}$ such that $\forall z \in B$ we have $z \leq x$. Then $z \in B \Rightarrow$ $z \vee x \vee p^{\prime}=x \vee x \vee p^{\prime} \Rightarrow z \in x \sqcup_{p} x \Rightarrow B=R_{p}(z) \in R_{p}\left(x \sqcup_{p} x\right)$. In short we have shown

$$
\begin{equation*}
z \in B \Rightarrow B \in R_{p}\left(x \sqcup_{p} x\right)=R_{p}\left(x \sqcup_{p} y\right) . \tag{6}
\end{equation*}
$$

However

$$
z \in B \Rightarrow\left\{\begin{array}{l}
x \vee z \vee p^{\prime}=x \vee p^{\prime} \\
y \vee z \vee p^{\prime}=y \vee p^{\prime} \neq x \vee p^{\prime} \\
y \vee x \vee p^{\prime}=y \vee p^{\prime}
\end{array}\right.
$$

hence $z \notin x \sqcup_{p} y$. In short we have shown

$$
\begin{equation*}
z \in B \Rightarrow z \notin x \sqcup_{p} y \tag{7}
\end{equation*}
$$

But (7) implies that $B \notin R_{p}\left(x \sqcup_{p} y\right)$. Indeed

$$
B \in R_{p}\left(x \sqcup_{p} y\right) \Rightarrow\left\{\exists z: \begin{array}{l}
z \in x \sqcup_{p} y \\
z \in B
\end{array}\right\} \Rightarrow\left\{\exists z: \begin{array}{l}
z \in x \sqcup_{p} y \\
z \notin x \sqcup_{p} y .
\end{array}\right\}
$$

hence we have a contradiction. So we have

$$
\begin{equation*}
z \in B \Rightarrow B \notin R_{p}\left(x \sqcup_{p} y\right) . \tag{8}
\end{equation*}
$$

But (8) contradicts (6) so we have wrongly assumed that there exists some $B \in H / R_{p}$ such that $\forall z \in B$ we have $z \leq x$.

Proposition 3.21 Suppose that for some p, x, y we have $R_{p}(x)=\left[x_{1}, x_{2}\right], R_{p}(y)=\left[y_{1}, y_{2}\right]$ and $R_{p}(x \vee$ $y)=[a, b]$. Then $R_{p}(x \vee y)=R_{p}(x) \vee R_{p}(y)$.

Proof. (i) We show that $a=x_{1} \vee y_{1}$ in exactly the same maner as in Proposition 3.9.
(ii.1) If $R_{p}(x)=R_{p}(y)$ we show that $b=x_{2} \vee y_{2}$ in exactly the same manner as in Proposition 3.9.
(ii.2) Now suppose $R_{p}(x) \neq R_{p}(y)$. Then we can assume (without loss of generality) that $R_{p}(x) \neq$ $R_{p}(x \vee y)$. Also

$$
R_{p}\left(x_{2} \vee y_{2}\right)=R_{p}(x \vee y)=[a, b] \Rightarrow x_{2} \vee y_{2} \in[a, b] \Rightarrow x_{2} \vee y_{2} \leq b \Rightarrow x_{2} \vee y_{2} \vee p^{\prime} \leq b \vee p^{\prime} .
$$

If $x_{2} \vee y_{2} \vee p^{\prime}=b \vee p^{\prime}$ then we are done, because by Proposition 3.19, we also have $p^{\prime} \leq x_{2}, p^{\prime} \leq y_{2}$, $p^{\prime} \leq b$; hence $x_{2} \vee y_{2}=x_{2} \vee y_{2} \vee p^{\prime}=b \vee p^{\prime}=b$. If, on the other hand $x_{2} \vee y_{2} \vee p^{\prime}<b \vee p^{\prime}$, then

$$
\left.\begin{array}{l}
x_{2} \vee p^{\prime} \in R_{p}(x) \\
x_{2} \vee y_{2} \vee p^{\prime} \in R_{p}(x \vee y) \\
R_{p}(x) \neq R_{p}(x \vee y)
\end{array}\right\} \Rightarrow x_{2} \vee p^{\prime} \neq x_{2} \vee y_{2} \vee p^{\prime} \Rightarrow x_{2} \vee p^{\prime}<x_{2} \vee y_{2} \vee p^{\prime}<b \vee p^{\prime} .
$$

But then we have

$$
z \in R_{p}(x) \Rightarrow z<x_{2} \vee y_{2} \vee p^{\prime}<b \vee p^{\prime}
$$

which contradicts Proposition 3.20 (if one takes B to be $R_{p}(x), x$ to be $x_{2} \vee y_{2}$ and y to be b). Hence we must have $x_{2} \vee y_{2} \vee p^{\prime}=b \vee p^{\prime}$. But, by Proposition 3.19, $p^{\prime} \leq x_{2} \vee y_{2}$ and $p^{\prime} \leq b$, hence finally $x_{2} \vee y_{2}=b$.
(iii) Hence we have concluded that $R_{p}(x \vee y)=[a, b]=\left[x_{1} \vee y_{1}, x_{2} \vee y_{2}\right]$. But also $R_{p}(x)=\left[x_{1}, x_{2}\right]$, $R_{p}(y)=\left[y_{1}, y_{2}\right]$ and $R_{p}(x) \vee R_{p}(y)=\left[x_{1}, x_{2}\right] \vee\left[y_{1}, y_{2}\right]=\left[x_{1} \vee y_{1}, x_{2} \vee y_{2}\right]$, since (X, \leq) is a distributive lattice. Hence the proof is complete.

Proposition 3.21 can be applied immediately in case X is finite: since the classes of X are finite convex sublattices, they are intervals. Hence we have the following corollary.

Corollary 3.22 If X is finite, then for all $p, x, y \in X$ we have $R_{p}(x \vee y)=R_{p}(x) \vee R_{p}(y)$.
In Section 3.3 we will present another application of Proposition 3.21.
Next we show that both the family of relations $\left\{R_{p}\right\}_{p \in X}$ and the family of classes $\left\{R_{p}(x)\right\}_{p \in X}$ have the p-cut properties [8].

Proposition 3.23 For all $p, q \in X, P \subseteq X$ we have the following:

1. $R_{0}=X \times X$.
2. $p \leq q \Rightarrow R_{q} \subseteq R_{p}$.
3. $R_{p \vee q}=R_{p} \cap R_{q}$; more generally, $\cap_{p \in P} R_{p}=R_{\vee P}$.

Proof. 1 is obvious. For 2 , take p and q with $p \leq q$ (hence $q^{\prime} \leq p^{\prime}$). Then

$$
\begin{aligned}
(x, y) & \in R_{q} \Rightarrow\left(x \vee q^{\prime}, y \vee q^{\prime}\right) \in R_{1} \\
& \Rightarrow R_{1}\left(x \vee q^{\prime}\right)=R_{1}\left(y \vee q^{\prime}\right) \\
& \Rightarrow R_{1}\left(x \vee q^{\prime} \vee p^{\prime}\right)=R_{1}\left(y \vee q^{\prime} \vee p^{\prime}\right) \\
& \Rightarrow R_{1}\left(x \vee p^{\prime}\right)=R_{1}\left(y \vee p^{\prime}\right) \\
& \Rightarrow R_{p}(x)=R_{p}(y) \\
& \Rightarrow(x, y) \in R_{p} .
\end{aligned}
$$

For 3 , we will prove directly the second part which is more general. Take some $P \subseteq X$. Set $s=\vee P$. For every $p \in P$ we have $p \leq s \Rightarrow R_{s} \subseteq R_{p}$. Since this is true for every $p \in P$, we have $R_{s} \subseteq \cap_{p \in P} R_{p}$. On
the other hand, take any $p_{0} \in P$. We have $p_{0} \leq s \Rightarrow p_{0}^{\prime} \geq s^{\prime}$. Also

$$
\begin{aligned}
(x, y) & \in R_{p_{0}} \\
& \Rightarrow R_{p_{0}}(x)=R_{p_{0}}(y) \\
& \Rightarrow R_{1}\left(x \vee p_{0}^{\prime}\right)=R_{1}\left(y \vee p_{0}^{\prime}\right) \\
& \Rightarrow R_{1}\left(\left(x \vee p_{0}^{\prime}\right) \wedge\left(x \vee s^{\prime}\right)\right)=R_{1}\left(\left(y \vee p_{0}^{\prime}\right) \wedge\left(x \vee s^{\prime}\right)\right) \\
& \Rightarrow R_{1}\left(x \vee\left(p_{0}^{\prime} \wedge s^{\prime}\right)\right)=R_{1}\left(y \vee\left(p_{0}^{\prime} \wedge s^{\prime}\right)\right) \\
& \Rightarrow R_{1}\left(x \vee s^{\prime}\right)=R_{1}\left(y \vee s^{\prime}\right) \\
& \Rightarrow R_{s}(x)=R_{s}(y) \\
& \Rightarrow(x, y) \in R_{s} .
\end{aligned}
$$

Hence $\cap_{p \in P} R_{p} \subseteq R_{p_{0}} \subseteq R_{s}$ and so we see that $\cap_{p \in P} R_{p}=R_{s}=R_{\vee P}$.
Proposition 3.24 For all $p, q, x \in X, P \subseteq X$ we have the following:

1. $R_{0}(x)=X \times X$.
2. $p \leq q \Rightarrow R_{q}(x) \subseteq R_{p}(x)$.
3. $R_{p \vee q}(x)=R_{p}(x) \cap R_{q}(x)$; more generally, $\cap_{p \in P} R_{p}(x)=R_{\vee P}(x)$.

Proof. In fact all of the above 1-3 are restatements of results 1-3 of Proposition 3.23, based on the equivalence $x \in R_{p}(a) \Leftrightarrow(x, a) \in R_{p}$.

In light of Propositions 3.23 and 3.24 , both $\left(\left\{R_{p}\right\}_{p \in X}, \cap\right)$ and $\left(\left\{R_{p}(a)\right\}_{p \in X}, \cap\right)$ are closure systems. Hence the following propositions are immediate.

Proposition 3.25 The structure $\left(\left\{R_{p}\right\}_{p \in X}, \dot{\cup}, \cap, \subseteq\right)$ is a complete lattice (where $\left.R_{p} \dot{\cup} R_{q} \doteq \cap_{s: R_{p} \subseteq R_{s}, R_{q} \subseteq R_{s}} R_{s}\right)$.
Proposition 3.26 For every $x \in X$ the structure $\left(\left\{R_{p}(x)\right\}_{p \in X}, \dot{\cup}, \cap, \subseteq\right)$ is a complete lattice (where $\left.R_{p}(x) \cup \dot{U} R_{q}(x) \doteq \cap_{s: R_{p}(x) \subseteq R_{s}(x), R_{q}(x) \subseteq R_{s}(x)} R_{s}(x)\right)$.

3.3 The Family of Congruences Derived from the Identity

We now turn to a special relation, namely the identity relation, which we denote by ρ_{1}.
Definition 3.27 We define ρ_{1} as follows: $(x, y) \in \rho_{1}$ iff $x=y$.
It is obvious that ρ_{1} is an equivalence and a congruence with respect to \vee, \wedge and \sqcup_{1}. Let us define (for all $p \in X$) the family of relations ρ_{p} in the usual manner.

Definition 3.28 For every $p \in X$ we define ρ_{p} as follows: $(x, y) \in \rho_{p}$ iff $\left(x \vee p^{\prime}, y \vee p^{\prime}\right) \in \rho$.
Definition 3.29 For every $p, x, y \in X$ we define \preceq_{p} as follows: $\rho_{p}(x) \preceq_{p} \rho_{p}(y)$ iff $\rho_{p}(x \wedge y)=\rho_{p}(x)$.
We will also write $x=_{p} y$ when $x \vee p^{\prime}=y \vee p^{\prime}$; similarly we will write $x \leq_{p} y$ when $x \vee p^{\prime} \leq y \vee p^{\prime}$ (these notations have been introduced in [8]). Obviously, for all $x, y, p \in X$ we have:

$$
\rho_{p}(x)=\rho_{p}(y) \Leftrightarrow x=_{p} y, \quad \rho_{p}(x) \preceq_{p} \rho_{p}(y) \Leftrightarrow x \leq_{p} y .
$$

Since ρ_{1} is a special case of R_{1} all the results of Sections 3.2 hold for this special case as well; in particular for every $p \in X, \rho_{p}$ is a congruence with respect to \vee, \wedge, \sqcup_{p}. Some special properties follow from the fact that ρ_{1} is the identity relation.

Proposition 3.30 For every $x, a, b, p \in X$ we have: $x \in a \sqcup_{p} b \Rightarrow \rho_{p}(x) \subseteq a \sqcup_{p} b$.
Proof. Choose any $a, b, x, p \in X$. Suppose that $x \in a \sqcup_{p} b$. Now take any $y \in \rho_{p}(x)$. Then we have:

$$
\begin{aligned}
& x \in a \sqcup_{p} b \Rightarrow a \vee b \vee p^{\prime}=a \vee x \vee p^{\prime}=b \vee x \vee p^{\prime} \\
& \rho_{p}(x)=\rho_{p}(y) \Rightarrow x \vee p^{\prime}=y \vee p^{\prime}
\end{aligned}
$$

hence $a \vee b \vee p^{\prime}=a \vee y \vee p^{\prime}=b \vee y \vee p^{\prime}$ and so $y \in a \sqcup_{p} b$.
Corollary 3.31 For every $x, a, b, p \in X$ we have: $a \sqcup_{p} b=\cup_{x \in a \sqcup_{p} b} \rho_{p}(x)$.
Proof. Straightforward.
Proposition 3.32 For every $x, p \in X$ we have $\rho_{p}(x)=\left[a, x \vee p^{\prime}\right]$.
Proof. Choose any $x, p \in X$. Define $a=\wedge \rho_{p}(x)$ and $b=\vee \rho_{p}(x)$. I.e.

$$
a=\wedge\left\{y: x \vee p^{\prime}=y \vee p^{\prime}\right\}, \quad b=\vee\left\{y: x \vee p^{\prime}=y \vee p^{\prime}\right\} .
$$

Then

$$
\begin{aligned}
\forall y & \in \rho_{p}(x): x \vee p^{\prime}=y \vee p^{\prime} \Rightarrow \\
x \vee p^{\prime} & =\wedge_{y \in \rho_{p}(x)}\left(y \vee p^{\prime}\right) \Rightarrow \\
x \vee p^{\prime} & =\left(\wedge_{y \in \rho_{p}(x)} y\right) \vee p^{\prime}=a \vee p^{\prime} \Rightarrow \\
a & \in \rho_{p}(x)
\end{aligned}
$$

Similarly we show that $b \in \rho_{p}(x)$. Since $\rho_{p}(x)$ is also a convex sublattice, we have $\rho_{p}(x)=[a, b]$. Now $x \in \rho_{p}(x)=\rho_{p}\left(x \vee p^{\prime}\right) \Rightarrow x \vee p^{\prime} \in[a, b] \Rightarrow x \vee p^{\prime} \leq b$. On the other hand, $b \leq b \vee p^{\prime}=x \vee p^{\prime}$. Hence $b=x \vee p^{\prime}$.

Since every class of ρ_{p} is an interval, the following corollary of Proposition 3.21 is immediate.
Corollary 3.33 For all $p, x, y \in X$ we have $\rho_{p}(x \vee y)=\rho_{p}(x) \vee \rho_{p}(y)$.
Given some $x \in X$, we say that an element $y \in X$ is an opposite of x iff $0 \in x \sqcup_{p} y$. In general an element will have more than one opposites. It is easy to see that every $x \in X$ is an opposite of itself (auto-opposite, see [8]). The following proposition shows that all opposites of x are contained in the class of one such opposite, in particular in the class of x.

Proposition 3.34 For every $x, p \in X$ we have: $0 \in x \sqcup_{p} y \Rightarrow y \in \rho_{p}(x)$.
Proof. $0 \in x \sqcup_{p} y \Rightarrow x \vee y \vee p^{\prime}=x \vee 0 \vee p^{\prime}=y \vee 0 \vee p^{\prime} \Rightarrow x \vee p^{\prime}=y \vee p^{\prime} \Rightarrow y \in \rho_{p}(x)$.

4 Families of Quotient Hyperalgebras

Since R_{p} is a congruence with respect to \vee, \wedge, \sqcup_{p} it is straightforward to define corresponding operations/ hyperoperations on classes, which will be denoted by $\underline{\vee}_{p}, \wedge_{p}, \unlhd_{p}$. As will turn out, \unlhd_{p} can be associated with some interesting quotient hyperalgebras.

Definition 4.1 For every $x, y, p \in X$ we define

$$
R_{p}(x) \underline{\bigvee}_{p} R_{p}(y)=R_{p}(x \vee y), \quad R_{p}(x) \wedge_{p} R_{p}(y)=R_{p}(x \wedge y), \quad R_{p}(x) \sqcup_{p} R_{p}(y)=R_{p}\left(x \sqcup_{p} y\right) .
$$

The following are immediate consequences of the corresponding properties of \sqcup_{p}.
Proposition 4.2 For every $p, x, y, z \in X$ we have:

1. $R_{p}(z) \in R_{p}(x) \sqcup_{p} R_{p}(y) \Leftrightarrow R_{p}(z) \underline{\vee}_{p} R_{p}\left(p^{\prime}\right) \in R_{p}(x) \sqcup_{p} R_{p}(y)$.
2. $R_{p}(x) \sqcup_{p} R_{p}(y)=R_{p}\left(x \vee p^{\prime}\right) \sqcup_{p} R_{p}\left(y \vee p^{\prime}\right)$.

Proof. For 1, note that $R_{p}(z)=R_{p}\left(z \vee p^{\prime}\right)=R_{p}(z) \bigvee_{p} R_{p}\left(p^{\prime}\right)$. Similarly, to prove 2 we use $R_{p}(x)=$ $R_{p}\left(x \vee p^{\prime}\right)$ and $R_{p}(y)=R_{p}\left(y \vee p^{\prime}\right)$.

Also, in certain circumstances, $\underline{\vee}_{p}$ and \bigsqcup_{p} can be obtained from "pointwise" operations.
Proposition 4.3 If for some $p \in X$ every $A \in X / R_{p}$ is an interval, then for every x, y we have:

1. $R_{p}(x) \underline{\vee}_{p} R_{p}(y)=R_{p}(x) \vee R_{p}(y)$.
2. $R_{p}(x) \sqcup_{p} R_{p}(y)=\left\{R_{p}(z): R_{p}(x) \vee R_{p}(y)=R_{p}(x) \vee R_{p}(z)=R_{p}(y) \vee R_{p}(z)\right\}$.

Proof. 1 is simply a restatement of Proposition 3.21. Regarding 2, let us tentatively define a hyperoperation \bigsqcup_{p} by

$$
R_{p}(x) \sqcup_{p} R_{p}(y)=\left\{R_{p}(z): R_{p}(x) \vee R_{p}(y)=R_{p}(x) \vee R_{p}(z)=R_{p}(y) \vee R_{p}(z)\right\}
$$

We note the following.
(i) $A \in R_{p}(x) \sqcup_{p} R_{p}(y)=R_{p}\left(x \sqcup_{p} y\right)$ implies that there exists some z_{0} such that $z_{0} \in A$ and $z_{0} \in x \sqcup_{p} y$. Hence

$$
\begin{aligned}
x \vee y \vee p^{\prime} & =z_{0} \vee x \vee p^{\prime}=z_{0} \vee y \vee p^{\prime} \Rightarrow \\
R_{1}\left(x \vee y \vee p^{\prime}\right) & =R_{1}\left(z_{0} \vee x \vee p^{\prime}\right)=R_{1}\left(z_{0} \vee y \vee p^{\prime}\right) \Rightarrow \\
R_{p}(x \vee y) & =R_{p}\left(z_{0} \vee x\right)=R_{p}\left(z_{0} \vee y\right) \Rightarrow \\
R_{p}(x) \vee R_{p}(y) & =R_{p}\left(z_{0}\right) \vee R_{p}(x)=R_{p}\left(z_{0}\right) \vee R_{p}(y) .
\end{aligned}
$$

Hence $A=R_{p}\left(z_{0}\right) \in R_{p}(x) \bigsqcup_{=} R_{p}(y)$, i.e. $R_{p}(x) \bigsqcup_{p} R_{p}(y) \subseteq R_{p}(x) \bigsqcup_{p} R_{p}(y)$.
(ii) On the other hand, take some $A \in R_{p}(x) \bigsqcup_{p} R_{p}(y)$. Then there exists some z_{0} such that $z_{0} \in A$ and

$$
R_{p}(x) \vee R_{p}(y)=R_{p}\left(z_{0}\right) \vee R_{p}(x)=R_{p}\left(z_{0}\right) \vee R_{p}(y)
$$

Now $z_{0} \vee x \in R_{p}\left(z_{0} \vee x\right)$ and so there exist $z_{1} \in R_{p}\left(z_{0}\right), y_{1} \in R_{p}(y)$ such that $z_{0} \vee x=z_{1} \vee y_{1}$. Similarly, ther exist $x_{2} \in R_{p}(x), y_{2} \in R_{p}(y)$ such that $z_{0} \vee x=x_{2} \vee y_{2}$. Now:

$$
\begin{equation*}
z_{0} \vee x=z_{1} \vee y_{1} \Rightarrow z_{0} \vee x \vee z_{1}=z_{1} \vee y_{1} \vee z_{1}=z_{1} \vee y_{1}=x_{2} \vee y_{2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{0} \vee x=z_{1} \vee y_{1} \Rightarrow z_{0} \vee x \vee z_{0}=z_{1} \vee y_{1} \vee z_{0}=z_{0} \vee x_{2} \vee y_{2}=x_{2} \vee y_{2} \tag{10}
\end{equation*}
$$

(in the last step we have used that $z_{0} \leq z_{0} \vee x=x_{2} \vee y_{2}$.) Now, (9) implies

$$
\begin{equation*}
z_{0} \vee x \vee z_{1}=x_{2} \vee y_{2} \Rightarrow z_{0} \vee x \vee z_{1} \vee x_{2}=x_{2} \vee y_{2} \tag{11}
\end{equation*}
$$

and (10) implies

$$
\begin{equation*}
z_{0} \vee y_{1} \vee z_{1}=x_{2} \vee y_{2} \Rightarrow z_{0} \vee x \vee z_{1} \vee y_{2}=x_{2} \vee y_{2} . \tag{12}
\end{equation*}
$$

But $x \leq z_{0} \vee x=x_{2} \vee y_{2}$ and $y_{1} \leq z_{1} \vee y_{1}=x_{2} \vee y_{2}$ imply

$$
\begin{equation*}
x \vee y_{1} \leq x_{2} \vee y_{2} \Rightarrow x_{2} \vee y_{2}=x \vee y_{1} \vee x_{2} \vee y_{2} . \tag{13}
\end{equation*}
$$

Hence (11) and (13) imply

$$
\begin{gather*}
z_{0} \vee x \vee z_{1} \vee x_{2}=x \vee y_{1} \vee x_{2} \vee y_{2} \Rightarrow \\
\left(z_{0} \vee z_{1}\right) \vee\left(x \vee x_{2}\right) \vee p^{\prime}=\left(x \vee x_{2}\right) \vee\left(y_{1} \vee y_{2}\right) \vee p^{\prime} ; \tag{14}
\end{gather*}
$$

similarly (12) and (13) imply

$$
\begin{gather*}
z_{0} \vee y_{1} \vee z_{1} \vee y_{2}=x \vee y_{1} \vee x_{2} \vee y_{2} \Rightarrow \\
\left(z_{0} \vee z_{1}\right) \vee\left(y_{1} \vee y_{2}\right) \vee p^{\prime}=\left(x \vee x_{2}\right) \vee\left(y_{1} \vee y_{2}\right) \vee p^{\prime} . \tag{15}
\end{gather*}
$$

From (14) and (15) we see that $z_{0} \vee z_{1} \in\left(x \vee x_{2}\right) \sqcup_{p}\left(y_{1} \vee y_{2}\right)$. Then it follows that

$$
\begin{equation*}
R_{p}\left(z_{0} \vee z_{1}\right) \in R_{p}\left(\left(x \vee x_{2}\right) \sqcup_{p}\left(y_{1} \vee y_{2}\right)\right)=R_{p}\left(x \vee x_{2}\right) \unlhd_{p} R_{p}\left(y_{1} \vee y_{2}\right) . \tag{16}
\end{equation*}
$$

Finally

$$
\begin{align*}
& z_{0}, z_{1} \in R_{p}\left(z_{0}\right) \Rightarrow z_{0} \vee z_{1} \in R_{p}\left(z_{0}\right) \Rightarrow R_{p}\left(z_{0} \vee z_{1}\right)=R_{p}\left(z_{0}\right) \tag{17}\\
& x, x_{2} \in R_{p}(x) \Rightarrow x \vee x_{2} \in R_{p}(x) \Rightarrow R_{p}\left(x \vee x_{2}\right)=R_{p}(x) \tag{18}\\
& y_{1}, y_{2} \in R_{p}(y) \Rightarrow y_{1} \vee y_{2} \in R_{p}(y) \Rightarrow R_{p}\left(y_{1} \vee y_{2}\right)=R_{p}(y) \tag{19}
\end{align*}
$$

and (17), (18), (19) in conjunction with (16) imply that $R_{p}\left(z_{0}\right) \in R_{p}(x) \sqcup_{p} R_{p}(y)$ and hence $R_{p}(x) \sqcup_{p}$ $R_{p}(y)_{p} \subseteq R_{p}(x) \sqcup_{p} R_{p}(y)$. This, in conjunction with the conclusion of (i.1) means that

$$
R_{p}(x) \sqcup_{p} R_{p}(y)_{p}=R_{p}(x) \sqcup_{p} R_{p}(y)
$$

and so

$$
R_{p}(x) \sqcup_{p} R_{p}(y)=\left\{R_{p}(z): R_{p}(x) \vee R_{p}(y)=R_{p}(x) \vee R_{p}(z)=R_{p}(y) \vee R_{p}(z)\right\}
$$

Now we turn to the hyperalgebras associated with \bigsqcup_{p}. First, for every value of p, the resulting quotient hyperalgebra is a hypergroup.

Proposition 4.4 For all $p \in X,\left(X / R_{p}, \underline{\bigsqcup}_{p}\right)$ is a commutative hypergroup, with neutral element $R_{p}(0)$, i.e. for all $x, y, z \in X$ the following hold.

1. $R_{p}(x) \sqcup_{p} X / R_{p}=X / R_{p}$.
2. $R_{p}(x) \sqcup_{p} R_{p}(y)=R_{p}(y) \sqcup_{p} R_{p}(x)$.
3. $\left(R_{p}(x) \sqcup_{p} R_{p}(y)\right) \sqcup_{p} R_{p}(z)=R_{p}(x) \sqcup_{p}\left(R_{p}(y) \sqcup_{p} R_{p}(z)\right)$.
4. $R_{p}(x) \in R_{p}(x) \sqcup_{p} R_{p}(0)$.
5. $R_{p}(0) \in R_{p}(x) \sqcup_{p} R_{p}(x)$.

Proof. Regarding 1:

$$
R_{p}(x) \sqcup_{p} X / R_{p}=\cup_{z \in X} R_{p}(x) \sqcup_{p} R_{p}(z)=\cup_{z \in X} R_{p}\left(x \sqcup_{p} z\right)=R_{p}\left(x \sqcup_{p} X\right)=R_{p}(X)=X / R_{p},
$$

where we have used Proposition 2.4. As for 2, it is immediate. Regarding 3, first note that for every $x, y, z \in X$ we have: $R_{p}\left(\cup_{u \in y \sqcup_{p} z} x \sqcup_{p} u\right)=\cup_{u \in y \sqcup_{p} z} R_{p}\left(x \sqcup_{p} u\right)$ where we have used again Proposition 2.4. Now

$$
\begin{aligned}
R_{p}(x) \sqcup_{p}\left(R_{p}(y) \sqcup_{p} R_{p}(z)\right) & =R_{p}(x) \sqcup_{p} R_{p}\left(y \sqcup_{p} z\right)=\cup_{u \in y \sqcup_{p} z} R_{p}\left(x \sqcup_{p} u\right)=R_{p}\left(\cup_{u \in y \sqcup_{p} z} x \sqcup_{p} u\right) \\
& =R_{p}\left(x \sqcup_{p} y \sqcup_{p} z\right) .
\end{aligned}
$$

Similarly we can show $\left(R_{p}(x) \sqcup_{p} R_{p}(y)\right) \sqcup_{p} R_{p}(z)=R_{p}\left(x \sqcup_{p} y \sqcup_{p} z\right)$ and this completes the proof of 3 . Finally, regarding $4, x \in x \sqcup_{p} 0 \Rightarrow R_{p}(x) \in R_{p}\left(x \sqcup_{p} 0\right)=R_{p}(x) \bigsqcup_{p} R_{p}(0) ; 5$ is proved similarly.

In fact, $\left(X / R_{p}, \sqcup_{p}\right)$ is not simply a hypergroup, but a join space. To show this we will prove a sequence of propositions.

Proposition 4.5 For all $x, y, z, p \in X$ we have

$$
R_{p}(z) \in R_{p}(x) \sqcup_{p} R_{p}(y) \Leftrightarrow R_{p}(x) \in R_{p}(y) \bigsqcup_{p} R_{p}(z) \Leftrightarrow R_{p}(y) \in R_{p}(z) \sqcup_{p} R_{p}(x) .
$$

Proof. We only show the first equivalence (the second is proved in identical manner). We have $R_{p}(z) \in R_{p}(x) \sqcup_{p} R_{p}(y) \Leftrightarrow\left(\exists u: \begin{array}{l}u \in x \sqcup_{p} y \\ R_{p}(u)=R_{p}(z)\end{array}\right) \Leftrightarrow\left(\exists u: \begin{array}{l}x \in y \sqcup_{p} u \\ R_{p}(u)=R_{p}(z)\end{array}\right) \Leftrightarrow R_{p}(x) \in$ $R_{p}(y) \sqcup_{p} R_{p}(z)$, where we have used the property $z \in x \sqcup_{p} y \Leftrightarrow x \in y \sqcup_{p} z$, established in [8].

In the standard manner of join spaces we can define for every $p \in X$ the extension hyperoperation $/ p$ by: $x / p y=\left\{z: x \in z \sqcup_{p} y\right\}$ (this definition actually appears in [8]). Then we can also define the corresponding extension hyperoperation on the quotient X / R_{p}.

Definition 4.6 For every $x, y, p \in X$ we define $R_{p}(x) / /{ }_{p} R_{p}(y)=R_{p}(x / p y)$.
The extension hyperoperation $/ / p$ is identical to \bigsqcup_{p}.
Proposition 4.7 For every $x, y, p \in X$ we have $R_{p}(x) / /{ }_{p} R_{p}(y)=R_{p}(x) \bigsqcup_{p} R_{p}(y)$.
Proof. As already shown in [8], for every $x, y, p \in X$ we have $x /_{p} y=x \sqcup_{p} y$, from which the required result follows immediately.

Proposition 4.8 For all $x, y, z, u, p \in X$, the following holds.

$$
\left(R_{p}(x) / /_{p} R_{p}(y)\right) \cap\left(R_{p}(u) / /_{p} R_{p}(z)\right) \neq \emptyset \Rightarrow\left(R_{p}(x) \sqcup_{p} R_{p}(z)\right) \cap\left(R_{p}(y) \sqcup_{p} R_{p}(u)\right) \neq \emptyset .
$$

Proof. We already know that $\left(R_{p}(x) / /{ }_{p} R_{p}(y)\right) \cap\left(R_{p}(u) / /{ }_{p} R_{p}(z)\right)=\left(R_{p}(x) \sqcup_{p} R_{p}(y)\right) \cap\left(R_{p}(u) \sqcup_{p} R_{p}(z)\right)$ $=\left(R_{p}(x) \sqcup_{p} R_{p}(y)\right) \cap\left(R_{p}(z) \bigsqcup_{p} R_{p}(u)\right)$. Now

$$
\left(R_{p}(x) \sqcup_{p} R_{p}(y)\right) \cap\left(R_{p}(z) \sqcup_{p} R_{p}(u)\right) \neq \emptyset \Rightarrow\left(\begin{array}{ll}
\exists v, w: & w \in z \sqcup_{p} y \\
& R_{p}(v)=\sqcup_{p}(w)
\end{array}\right) .
$$

Now

$$
\begin{gather*}
v \in x \sqcup_{p} y \Rightarrow y \in x \sqcup_{p} v \Rightarrow \\
R_{p}(y) \in R_{p}\left(x \sqcup_{p} v\right)=R_{p}\left(x \sqcup_{p} w\right) . \tag{20}
\end{gather*}
$$

Also, since $w \in z \sqcup_{p} u$ it follows that

$$
\begin{equation*}
R_{p}\left(x \sqcup_{p} v\right) \subseteq R_{p}\left(x \sqcup_{p}\left(z \sqcup_{p} u\right)\right)=R_{p}\left(x \sqcup_{p} z \sqcup_{p} u\right)=R_{p}\left(\left(x \sqcup_{p} z\right) \sqcup_{p} u\right) \tag{21}
\end{equation*}
$$

From (20) and (21) follows that $R_{p}(y) \in R_{p}\left(\left(x \sqcup_{p} z\right) \sqcup_{p} u\right)$ and hence there exist a and b such that

$$
\begin{array}{r}
a \in x \sqcup_{p} z \\
b \in a \sqcup_{p} u \\
R_{p}(b)=R_{p}(y) \tag{24}
\end{array}
$$

From (22) follows that $R_{p}(a) \in R_{p}\left(x \sqcup_{p} z\right)$; from (23) and (24) follows that $R_{p}(y) \in R_{p}\left(a \sqcup_{p} u\right)$ and hence (from Proposition 4.5) that $R_{p}(a) \in R_{p}\left(y \sqcup_{p} u\right)$. In short $\left(R_{p}(x) \sqcup_{p} R_{p}(z)\right) \cap\left(R_{p}(y) \bigsqcup_{p} R_{p}(u)\right) \neq$ \emptyset.

Corollary 4.9 For every $p \in X,\left(X / R_{p}, \bigsqcup_{p}\right)$ is a join space.
Finally, we will show that the quotient hyperoperation \bigsqcup_{p}, in conjunction with the quotient operation Λ_{p}, generates a hyperlattice. To establish this fact, let us present some order-related properies of \sqcup_{p}.

Proposition 4.10 For all $x, y, z, p \in X$ we have the following:

1. $R_{p}(x) \in R_{p}(x) \sqcup_{p} R_{p}(x)$
2. $R_{p}(x) \sqcup_{p} R_{p}(y)=R_{p}(y) \sqcup_{p} R_{p}(x)$.
3. $\left(R_{p}(x) \sqcup_{p} R_{p}(y)\right) \sqcup_{p} R_{p}(z)=R_{p}(x) \sqcup_{p}\left(R_{p}(y) \sqcup_{p} R_{p}(z)\right)$.
4. $R_{p}(x) \in\left(R_{p}(x) \sqcup_{p} R_{p}(y)\right) \wedge_{p} R_{p}(x), R_{p}(x) \in\left(R_{p}(x) \wedge_{p} R_{p}(y)\right) \sqcup_{p} R_{p}(x)$.
5. $R_{p}(x) \in R_{p}(x) \sqcup_{p} R_{p}(y) \Leftrightarrow R_{p}(y) \preceq_{p} R_{p}(x)$.

Proof. Regarding 1 we have $x \in x \sqcup_{p} x$ and so $R_{p}(x) \in R_{p}\left(x \sqcup_{p} x\right)=R_{p}(x) \sqcup_{p} R_{p}(x)$. Parts 2 and 3 have already been proved in Proposition 4.4. Regarding part 4, since $x \vee y \in x \sqcup_{p} y$, it follows that $x=$ $(x \vee y) \wedge x \in\left(R_{p}(x) \sqcup_{p} R_{p}(y)\right) \wedge_{p} R_{p}(x)$. Also $\left(R_{p}(x) \wedge_{p} R_{p}(y)\right) \sqcup_{p} R_{p}(x)=\left(R_{p}(x \wedge y)\right) \sqcup_{p} R_{p}(x)$ which contains $(x \wedge y) \vee x=x$. Finally, regarding 5 , if $R_{p}(x) \in R_{p}(x) \sqcup_{p} R_{p}(y)$ then there exists some u such that $R_{p}(x)=R_{p}(u)$ and $x \vee y \vee p^{\prime}=x \vee u \vee p^{\prime}=y \vee u \vee p^{\prime}$. From this follows that

$$
R_{p}(x \vee y)=R_{p}(x \vee u) \in R_{p}\left(x \sqcup_{p} u\right)=R_{p}(x) \sqcup_{p} R_{p}(u)=R_{p}(x) \sqcup_{p} R_{p}(x)=R_{p}(x)
$$

hence $R_{p}(y) \preceq_{p} R_{p}(x)$. Conversely, $R_{p}(y) \preceq_{p} R_{p}(x) \Rightarrow R_{p}(x)=R_{p}(x \vee y) \in R_{p}\left(x \sqcup_{p} y\right)$.
Corollary 4.11 For every $p \in X,\left(X / R_{p}, \bigsqcup_{p}, \wedge_{p}\right)$ is a hyperlattice.
From the above corollary we see that, in particular, $\left(X / \rho_{p}, \bigsqcup_{p}, \wedge_{p}, \preceq_{p}\right)$ is a hyperlattice. Recall that in [8] we had mentioned that the hyperalgebra $\left(X, \sqcup_{p}, \wedge, \leq_{p}\right)$ closely resembles a hyperlattice except for the fact that \leq_{p} is not an order but a preorder. Now we see that if we use the relationship ρ_{p} (which is the natural equivalence generated from \leq_{p}) we obtain in a "natural" manner the hyperlattice $\left(X / \rho_{p}, \bigsqcup_{p}, \bigwedge_{p}, \preceq_{p}\right)$ which can be seen as the "quotient hyperlattice" which corresponds to ($X, \sqcup_{p}, \wedge, \leq_{p}$) under ρ_{p}.

References

[1] A.R. Ashrafi. "About some join spaces and hyperlattices". Ital. J. Pure Appl. Math., vol. 10, pp.199205, 2001.
[2] G. Calugareanu and V. Leoreanu. "Hypergroups associated with lattices". Ital. J. of Pure and Appl. Math., vol. 9, pp.165-173, 2001.
[3] P. Corsini, Prolegomena of Hypergroup Theory, Udine: Aviani, 1993.
[4] P. Corsini and I. Tofan. "On fuzzy hypergroups". PU.M.A. vol.8, pp.29-37, 1997.
[5] P. Corsini and V. Leoreanu. Application of Hyperstructure Theory. Kluwer Academic, 2003.
[6] C. Gutan. "Les hypertreillis tres fins". Ratio Math., vol. 12, pp. 3-18, 1997.
[7] A. Hasankhani and M.M. Zahedi. "On F-polygroups and fuzzy sub-F-polygroups". J. Fuzzy Math., vol. 6, pp. 97-110. 1998.
[8] Ath. Kehagias and K. Serafimidis. "The L-fuzzy Nakano hypergroup". Submitted.
[9] Ath. Kehagias, K. Serafimidis and M. Konstantinidou. "A note on the congruences of the Nakano superlattice and some properties of the associated quotients". Rend. Circ. Mat. Palermo, vol. 51, pp. 333-354, 2002.
[10] Ath. Kehagias. "An example of L-fuzzy join space". Rend. Circ. Mat. Palermo, vol. 51, pp. 503526, 2002.
[11] M. Konstantinidou and J. Mittas. "An introduction to the theory of hyperlattices". Math. Balkan$i c a$, vol.7, pp.187-193, 1977.
[12] M. Konstantinidou and A. Synefaki. "A strong Boolean hyperalgebra of Boolean functions". Ital. J. Pure Appl. Math, vol. 2, pp.9-18, 1997.
[13] W. Prenowitz and J. Jantosciak. Join Geometries, New York: Springer, 1979.
[14] T. Nakano, "Rings and partly ordered systems". Math. Zeitschrift, vol.99, pp.355-376, 1967.
[15] W. Prenowitz and J. Jantosciak. Join Geometries, New York: Springer, 1979.
[16] A. Rahnamai-Barghi. "The prime ideal theorem and semiprime ideals in meet-hyperlattices". Ital. Journal of Pure and Applied Math., vol. 5, pp.53-60, 1999.
[17] A. Rahnamai-Barghi. "The prime ideal theorem for distributive hyperlattices". Ital. Journal of Pure and Applied Math., vol. 10, pp.75-78, 2001.
[18] S. Spartalis and T. Vougiouklis. "The fundamental relations of H_{v}-rings". Riv. Mat. Pura Appl., vol. 14, pp. 7-20, 1994.
[19] T. Vougiouklis. Hyperstructures and Their Representations. Palm Harbor: Hadronic Press, 1994.
[20] M.M. Zahedi and A. Hasankhani. "F-Polygroups (II)". Inf. Sciences, vol.89, pp.225-243, 1996.

[^0]: ${ }^{1}$ For details and background material, see [8].
 2 "Crisp" is used here in contradistinction to "fuzzy" [8].

[^1]: ${ }^{3}$ Clearly, a hyperoperation is a generalization of the concept of an operation, since an operation \cdot maps a pair of elements $x, y \in X$ to an element $x \cdot y \in X$. A further generalization is that of an L-fuzzy hyperoperation, which maps pairs $x, y \in X$ to L-fuzzy sets $x * y \subseteq X$. For details on hyperoperations and hyperalgebras see the books [3, 5]; for details on L-fuzzy hyperoperations see [8, ?].

