Some Remarks on Congruences obtained from the L-Fuzzy Nakano Hyperoperation

K. Serafimidis and Ath. Kehagias

May 26, 2003

Abstract

In this paper we study relations which are congruences with respect to \wedge and \sqcup_p , where \sqcup_p is the p-cut of the L-fuzzy hyperoperation \sqcup . The main idea is to start from an equivalence relation R_1 which is a congruence with respect to \wedge and \sqcup_1 and, for each $p \in X$, construct an equivalence relation R_p which is a congruence with respect to \wedge and \sqcup_p . Furthermore, for each $x \in R_p$ we construct a quotient hyperoperation $\underline{\sqcup}_p$ and we show that the hyperalgebra $\left(X/R_p,\underline{\sqcup}_p\right)$ is a join space and the hyperalgebra $\left(X/R_p,\underline{\sqcup}_p,\underline{\wedge}_p\right)$ is a hyperlattice.

AMS Classification: 06B99, 06D30, 08A72, 03E72, 20N20.

1 Introduction

In a previous paper [8] we have constructed the L-fuzzy Nakano hyperoperation \sqcup in terms of its p-cuts. Our construction can be summarized as follows¹. Consider a generalized de Morgan lattice $(X, \leq, \vee, \wedge, ')$ and for every $x, y, p \in X$ define

$$x \sqcup_p y = \left\{ z : x \vee y \vee p' = x \vee z \vee p' = y \vee z \vee p' \right\}. \tag{1}$$

Hence, for every $x, y, p \in X$ we obtain a $crisp^2$ set $x \sqcup_p y$; i.e. \sqcup_p is a crisp hyperoperation which maps the pair x, y to the set $x \sqcup_p y$. In [8] we have also shown how to define (for every $x, y \in X$) the L-fuzzy set $x \sqcup y$ in such a manner that for every $p \in X$ the p-cut $(x \sqcup y)_p$ is equal to $x \sqcup_p y$. Hence we obtain an L-fuzzy hyperoperation \sqcup which maps the pair x, y to the L-fuzzy set $x \sqcup y$.

In the current paper we study equivalences on X which are congruences with respect to \wedge and \sqcup_p . The work presented here can be seen as a continuation of [8] in conjunction to previous work on congruences with respect to \sqcup_1 [9]. The main idea is to start from an equivalence relation R_1 which is a congruence with respect to \wedge and \sqcup_1 and, for each $p \in X$, construct an equivalence relation R_p which is a congruence with respect to \wedge and \sqcup_p . Furthermore, for each $p \in X$ we will construct a quotient hyperoperation $\underline{\sqcup}_p$ and we will show that the hyperalgebra $\left(X/R_p,\underline{\sqcup}_p\right)$ is a join space and the hyperalgebra $\left(X/R_p,\underline{\sqcup}_p,\underline{\wedge}_p\right)$ is a hyperlattice.

In addition to our already mentioned earlier work, the current paper is related to work on *join spaces* [15, 10], *hyperlattices* [1, 6, 11, 16, 17, 12], *L-fuzzy hyperoperations* [4, 7, 20] and the *Nakano hyperoperations* [14, 2]. This is only a partial list of relevant work; further references appear in [8].

¹For details and background material, see [8].

² "Crisp" is used here in contradistinction to "fuzzy" [8].

2 Preliminaries

In this section we present some basic definitions, notations and propositions which will be used in the sequel. Further related material can be found in [8].

Throughout this paper we use a structure $(X, \leq, \vee, \wedge, ')$ which we assume to be a *generalized deMorgan lattice*, i.e. a structure satisfying the following.

Definition 2.1 A generalized deMorgan lattice is a structure $(X, \leq, \vee, \wedge,')$, where (X, \leq, \vee, \wedge) is a complete distributive lattice with minimum element 0 and maximum element 1; the symbol ' denotes a unary operation ("complement"); and the following properties are satisfied.

- 1. For all $x \in X$, $Y \subseteq X$ we have $x \land (\lor_{y \in Y} y) = \lor_{y \in Y} (x \land y)$, $x \lor (\land_{y \in Y} y) = \land_{y \in Y} (x \lor y)$. (Complete distributivity).
- 2. For all $x \in X$ we have: (x')' = x. (Negation is involutory).
- 3. For all $x, y \in X$ we have: $x \leq y \Rightarrow y' \leq x'$. (Negation is order reversing).
- 4. For all $Y \subseteq X$ we have $(\vee_{y \in Y} y)' = \wedge_{y \in Y} y'$, $(\wedge_{y \in Y} y)' = \vee_{y \in Y} y'$ (Complete deMorgan laws).

The reader will recall that a *crisp hyperoperation* * is a mapping of pairs $x, y \in X$ to *crisp sets* $x*y \subseteq X$; the set X endowed with one or more hyperoperations forms a *hyperalgebra*. ³. The following notation is standard in the literature of hyperalgebras.

Definition 2.2 For $x \in X$, $A \subseteq X$ and a hyperoperation *, we define $x * A = \bigcup_{a \in A} x * y$.

We have already defined the hyperoperation \sqcup_p by (1); it is the main hyperoperation of interest in this paper. Let us also note that setting p = 1 we obtain

$$x \sqcup_1 y = \{z : x \vee y = x \vee z = y \vee z\};$$

this is the classical Nakano hyperoperation which has been the object of much study [9, 2, 14]

The notion of an equivalence relationship R on X is well-known. Let us recall the following definition of the classes of an equivalence.

Definition 2.3 Given an equivalence R on X and an element $x \in X$, we denote the class of x (with respect to R) by R(x) and we define it by

$$R(x) = \{y : (x, y) \in R\};$$

The quotient of X with respect to R is denoted by X/R and defined by

$$X/R = \{R(x)\}_{x \in X};$$

finally, for $A \subseteq X$ we define

$$R(A) = \{R(x)\}_{x \in A}.$$

³Clearly, a hyperoperation is a generalization of the concept of an operation, since an operation \cdot maps a pair of elements $x, y \in X$ to an *element* $x \cdot y \in X$. A further generalization is that of an *L-fuzzy hyperoperation*, which maps pairs $x, y \in X$ to *L-fuzzy sets* $x * y \subseteq X$. For details on hyperoperations and hyperalgebras see the books [3, 5]; for details on *L-fuzzy hyperoperations* see [8, ?].

The following proposition is simply a restatement of some set theoretic properties following from Definition 2.3.

Proposition 2.4 Given an equivalence R on X, for every $B \subseteq X$ and every family $\{A_u\}$ with $A_u \subseteq X$ (for every $u \in B$) we have: $R(\bigcup_{u \in B} A_u) = \bigcup_{u \in B} R(A_u)$.

Proof. First, $Q \in R(\cup_{u \in B} A_u) \Leftrightarrow (\exists x : x \in \cup_{u \in B} A_u, R(x) = Q) \Leftrightarrow (\exists u, x : u \in B, x \in A_u, R(x) = Q)$. Second, $Q \in \cup_{u \in B} R(A_u) \Leftrightarrow (\exists u : u \in B, Q \in R(A_u)) \Leftrightarrow (\exists u, x : u \in B, x \in A_u, R(x) = Q) \Leftrightarrow (\exists u, x : u \in B, x \in A_u, R(x) = Q)$. Hence $Q \in R(\cup_{u \in B} A_u) \Leftrightarrow Q \in \cup_{u \in B} R_p(A_u)$.

We can extend the well known definition of "congruence with respect to an operation" to "congruence with respect to an hyperoperation" as follows.

Definition 2.5 Let R be an equivalence on X, let \cdot be an operation and * an hyperoperation.

1. We say that R is a congruence with respect to \cdot iff the following holds for every $x, y, z \in X$:

$$R(x) = R(y) \Rightarrow R(x \cdot z) = R(y \cdot z). \tag{2}$$

2. We say that R is a congruence with respect to * iff the following holds for every $x, y, z \in X$:

$$R(x) = R(y) \Rightarrow R(x * z) = R(y * z). \tag{3}$$

Note that $R(x \cdot z)$ and $R(y \cdot z)$ in (2) are sets, while R(x * z) and R(y * z) in (3) are families of sets. Hence R(x * z) = R(y * z) is equivalent to

$$\forall u \in x * z \quad \exists w \in y * z : R(u) = R(w)$$
$$\forall w \in y * z \quad \exists u \in x * z : R(u) = R(w).$$

Regarding (2), let us also remark that in the context of "classical" lattice theory we simply say that "R is a congruence" meaning that it is a congruence with respect to \vee and \wedge , i.e. that (2) specializes to

$$R(x) = R(y) \Rightarrow (R(x \lor z) = R(y \lor z) \text{ and } R(x \land z) = R(y \land z)).$$

3 The Family of Nakano Congruences

3.1 The "Generating" Congruence R_1

We start with an arbitrary crisp equivalence R_1 . In the rest of the paper we assume that R_1 is a congruence with respect to \wedge and \sqcup_1 . The following propositions describe well-known (classical) properties of R_1 which can be obtained using only congruence with respect to \wedge .

Proposition 3.1 The classes of R_1 are convex.

Definition 3.2 We write $R_1(x) \leq_1 R_1(y)$ iff $R_1(x \wedge y) = R_1(x)$.

Proposition 3.3 \leq_1 is an order on X/R_1 and for all $x, y \in X$ we have: $x \leq y \Rightarrow R_1(x) \leq_1 R_1(y)$.

If we also use the fact that R_1 is a congruence with respect to \sqcup_1 we can show that R_1 is also a congruence with respect to \vee (hence R_1 is a congruence in the "classical" sense).

Proposition 3.4 R_1 is a congruence with respect to \vee .

Proof. Choose any $x, y, z \in X$ such that $R_1(x) = R_1(y)$. Then we also have $R_1(x \sqcup_1 z) = R_1(y \sqcup_1 z)$. Since $x \vee z \in x \sqcup_1 z$ there exists some u such that $u \in y \sqcup_1 z$ and $R_1(u) = R_1(x \vee z)$. Now $u \in y \sqcup_1 z \Rightarrow u \leq u \vee z = y \vee z \Rightarrow R_1(u) \preceq_1 R_1(y \vee z) \Rightarrow R_1(x \vee z) \preceq_1 R_1(y \vee z)$. Similarly we show $R_1(y \vee z) \preceq_1 R_1(x \vee z)$ and so we conclude $R(y \vee z) = R(x \vee z)$.

Since R_1 is a congruence with respect to \vee , \wedge , the following propositions (well known properties of classical congruences) also hold.

Proposition 3.5 For every $x, y \in X$: $R_1(x) \leq_1 R_1(y) \Leftrightarrow R_1(y) = R_1(x \vee y)$.

Proposition 3.6 The classes of R_1 are convex sublattices.

Proposition 3.7 For all $A, B \in X/R_1$ such that $A \leq_1 B$ we have:

$$\forall a \in A \quad \exists b \in B \text{ such that } a \leq b,$$

 $\forall b \in B \quad \exists a \in A \text{ such that } a \leq b.$

The next proposition will prove quite useful in the sequel. Its proof makes essential use of the fact that R_1 is a congruence with respect to \sqcup_1 .

Proposition 3.8 Let $A \in X/R_1$ and $x, y \in A$ with x < y. Then there exists no (nonempty) $B \in X/R_1$ such that $\forall z \in B$ we have $z \le x$.

Proof. Suppose there exists some (nonempty) $B \in X/R_1$ such that $\forall z \in B$ we have $z \leq x$. Then $z \in B \Rightarrow z \lor x = x \lor x \Rightarrow z \in x \sqcup_1 x \Rightarrow B = R_1(z) \in R_1(x \sqcup_1 x)$. In short we have shown

$$z \in B \Rightarrow B \in R_1(x \sqcup_1 x) = R_1(x \sqcup_1 y). \tag{4}$$

On the other hand

$$z \in B \Rightarrow \left\{ \begin{array}{l} x \lor z = x \\ y \lor z = y \neq x \\ y \lor x = y \end{array} \right.$$

hence $z \notin x \sqcup_1 y$. In short we have shown

$$z \in B \Rightarrow z \notin x \sqcup_1 y. \tag{5}$$

But (5) implies that $B \notin R_1(x \sqcup_1 y)$. Indeed, if $B \in R_1(x \sqcup_1 y)$ then exists some w such that $R_1(w) = B$ (i.e. $w \in B$) and $w \in x \sqcup_1 y$ and this contradicts (5) which states that $w \in B \Rightarrow w \notin x \sqcup_1 y$. Hence the assumption that a (nonempty) B exists with the property $(z \in B \Rightarrow z \leq x)$ leads to both $B \in R_1(x \sqcup_1 y)$ and $B \notin R_1(x \sqcup_1 y)$ which is absurd. \blacksquare

Using Proposition 3.8 we will now show that in certain cases the classes of R_1 can be obtained from "pointwise" operations.

Proposition 3.9 Suppose that for some $x, y \in X$ we have $R_1(x) = [x_1, x_2]$, $R_1(y) = [y_1, y_2]$ and $R_1(x \vee y) = [a, b]$. Then $R_1(x \vee y) = R_1(x) \vee R_1(y)$.

Proof. (i) We have

$$\left. \begin{array}{l} R_1(x_1) = R_1(x) \\ R_1(y_1) = R_1(y) \end{array} \right\} \Rightarrow R_1(x_1 \vee y_1) = R_1(x \vee y) = [a, b] \Rightarrow x_1 \vee y_1 \in [a, b] \Rightarrow a \leq x_1 \vee y_1.$$

Also $x \leq x \vee y \Rightarrow R_1(x) \preceq_1 R_1(x \vee y) = [a, b]$ which implies that there exists some x_0 such that $x_0 \in R_1(x)$ and $x_1 \leq x_0 \leq a$. Similarly $y \leq x \vee y \Rightarrow R_1(y) \preceq R_1(x \vee y) = [a, b]$ which implies that there exists some y_0 such that $y_0 \in R_1(y)$ and $y_1 \leq y_0 \leq a$. Hence $x_1 \vee y_1 \leq a$. In short $x_1 \vee y_1 = a$.

(ii.1) If
$$R_1(x) = R_1(y)$$
 then

$$[a,b] = R_1(x \vee y) = R_1(y \vee y) = R_1(y) = [y_1, y_2] \Rightarrow b = y_2 = x_2 \vee y_2.$$

(ii.2) If $R_1(x) \neq R_1(y)$ then either $R_1(x) \neq R_1(x \vee y)$ or $R_1(y) \neq R_1(x \vee y)$ or both. Assume (without loss of generality) that $R_1(x) \neq R_1(x \vee y)$. Now

$$R_1(x_2 \vee y_2) = R_1(x \vee y) = [a, b] \Rightarrow x_2 \vee y_2 \in [a, b] \Rightarrow x_2 \vee y_2 \leq b.$$

If $x_2 \vee y_2 = b$ we are done. Assume on the other hand, that $x_2 \vee y_2 < b$. Also

$$\left. \begin{array}{l} x_2 \in R_1(x) \\ x_2 \vee y_2 \in R_1(x \vee y) \\ R_1(x) \neq R_1(x \vee y) \end{array} \right\} \Rightarrow x_2 \neq x_2 \vee y_2 \Rightarrow x_2 < x_2 \vee y_2 < b.$$

But then we have

$$z \in R_1(x) \Rightarrow z < x_2 \lor y_2 < b$$

which contradicts Proposition 3.8 (if one takes B to be $R_1(x)$, x to be $x_2 \vee y_2$ and y to be b). Hence we must have $x_2 \vee y_2 = b$.

(iii) We have concluded that $R_1(x \vee y) = [a,b] = [x_1 \vee y_1, x_2 \vee y_2]$. But also $R_1(x) = [x_1, x_2]$, $R_1(y) = [y_1, y_2]$ and $R_1(x) \vee R_1(y) = [x_1, x_2] \vee [y_1, y_2] = [x_1 \vee y_1, x_2 \vee y_2]$, since (X, \leq) is a distributive lattice. Hence the proof is complete.

3.2 The Family of Congruences R_p

Now we will use R_1 to construct a *family* of relations R_p , one for every $p \in X$. These will be constructed in such a manner that, for every $p \in X$, R_p will be a congruence with respect to \land, \lor, \sqcup_p .

Definition 3.10 For all $p \in X$ we define the relation R_p by:

$$(x,y) \in R_p \text{ iff } (x \vee p', y \vee p') \in R_1.$$

It is clear that if we set p = 1 in the above definition, then R_p becomes the original R_1 . Furthermore, from congruence with respect to \vee the following proposition is obvious.

Proposition 3.11 For all $p \in X$, R_p is an equivalence and $R_p \supseteq R_1$.

The following properties of R_p classes are immediate consequences of Definition 3.10 (hence their proofs are omitted).

Proposition 3.12 For all $x, y, p \in X$ we have:

1.
$$R_1(x) = R_1(y) \Rightarrow R_p(x) = R_p(y)$$
.

2.
$$R_p(x) = R_p(y) \Leftrightarrow R_1(x \vee p') = R_1(y \vee p')$$
.

- 3. $R_1(x) \subseteq R_p(x)$.
- 4. $R_1(x \vee p') \subseteq R_p(x) = R_p(x \vee p')$.

Now we can prove that R_p is a congruence with respect to \vee, \wedge, \sqcup_p (for every $p \in X$).

Proposition 3.13 For all $x, y, z, p \in X$ we have:

$$R_p(x) = R_p(y) \Rightarrow \begin{cases} R_p(x \lor z) = R_p(y \lor z) \\ R_p(x \land z) = R_p(y \land z) \\ R_p(x \sqcup_p z) = R_p(y \sqcup_p z) \end{cases}.$$

Proof. Since R_1 is a congruence with respect to \vee we have $R_p(x) = R_p(y) \Rightarrow R_1(x \vee p') = R_1(y \vee p') \Rightarrow R_1(x \vee p' \vee z) = R_1(y \vee p' \vee z) \Rightarrow R_p(x \vee z) = R_p(y \vee z)$. Similarly we can show $R_p(x) = R_p(y) \Rightarrow R_p(x \wedge z) = R_p(y \wedge z)$.

To show the last implication, take any $A \in R_p(x \sqcup_p z)$. Then there exists a such that $a \in x \sqcup_p z$ and $R_p(a) = A$. Hence

$$x \lor z \lor p' = a \lor x \lor p' = a \lor z \lor p' \Rightarrow$$
$$a \lor p' \in (x \lor p') \sqcup_1 (z \lor p') \Rightarrow$$
$$R_1(a \lor p') \in R_1((x \lor p') \sqcup_1 (z \lor p')).$$

Also $R_1(x) = R_1(y) \Rightarrow R_1(x \vee p') = R_1(y \vee p')$, hence by congruence of R_1 with respect to \sqcup_1 we get

$$R_1(a \vee p') \in R_1((y \vee p') \sqcup_1 (z \vee p'))$$

and so there exists some b such that $b \in (y \vee p') \sqcup_1 (z \vee p')$ and $R_1(b) = R_1(a \vee p')$. But

$$R_1(a \vee p') = R_1(b) \Rightarrow R_1(a \vee p' \vee p') = R_1(b \vee p') \Rightarrow R_1(a \vee p') = R_1(b \vee p') \Rightarrow R_p(a) = R_p(b).$$

Since $b \in y \sqcup_p z$ and $R_p(b) = A$ it follows that $A \in R_p(y \sqcup_p z)$. Hence $R_p(x \sqcup_p z) \subseteq R_p(y \sqcup_p z)$. In similar manner we show $R_p(y \sqcup_p z) \subseteq R_p(x \sqcup_p z)$ and conclude that $R_p(x \sqcup_p z) = R_p(y \sqcup_p z)$. \blacksquare Since R_p is a congruence with respect to \vee , \wedge the following propositions are immediate.

Proposition 3.14 For all $p \in X$ the classes of R_p are convex sublattices.

Definition 3.15 For every $p \in X$ we write $R_p(x) \leq_p R_p(y)$ iff $R_p(x) = R_p(x \wedge y)$.

Proposition 3.16 For every $p \in X$ the relation \leq_p is an order on X/R_p .

Proposition 3.17 For all $p, x, y \in X$ we have:

- 1. $x \lor p' \le y \lor p' \Rightarrow R_p(x) \le_p R_p(y)$.
- 2. $R_n(x) \leq_n R_n(y) \Leftrightarrow R_n(y) = R_n(x \vee y)$.
- 3. $R_1(x) \leq_1 R_1(y) \Leftrightarrow R_p(x) \leq_p R_p(y)$.

Proposition 3.18 For every p and all $A, B \in X/R_p$ such that $A \leq_p B$ we have:

$$\forall a \in A \quad \exists b \in B \text{ such that } a \leq b,$$

 $\forall b \in B \quad \exists a \in A \text{ such that } a \leq b.$

and

$$(a \in A, b \in B) \Rightarrow (a \land b \in A, a \lor b \in B)$$
.

Proposition 3.19 Suppose that for some $p, x \in X$ we have $R_p(x) = [x_1, x_2]$. Then $p' \leq x_2$.

Proof. $x_2 \in R_p(x) = [x_1, x_2] = R_p(x_2) = R_p(x_2 \lor p') \ni x_2 \lor p'$. Hence $x_2 \lor p' \le x_2 \Rightarrow p' \le x_2$. Next we prove the generalizations of Propositions 3.8, 3.9 for arbitrary p.

Proposition 3.20 Let $A \in X/R_p$ and $x, y \in A$ with $x \vee p' < y \vee p'$. Then there exists no $B \in X/R_p$ such that $\forall z \in B$ we have $z \leq x$.

Proof. Suppose there exists some $B \in X/R_p$ such that $\forall z \in B$ we have $z \leq x$. Then $z \in B \Rightarrow z \lor x \lor p' = x \lor x \lor p' \Rightarrow z \in x \sqcup_p x \Rightarrow B = R_p(z) \in R_p(x \sqcup_p x)$. In short we have shown

$$z \in B \Rightarrow B \in R_p(x \sqcup_p x) = R_p(x \sqcup_p y). \tag{6}$$

However

$$z \in B \Rightarrow \begin{cases} x \lor z \lor p' = x \lor p' \\ y \lor z \lor p' = y \lor p' \neq x \lor p' \\ y \lor x \lor p' = y \lor p' \end{cases}$$

hence $z \notin x \sqcup_p y$. In short we have shown

$$z \in B \Rightarrow z \notin x \sqcup_p y. \tag{7}$$

But (7) implies that $B \notin R_p(x \sqcup_p y)$. Indeed

$$B \in R_p(x \sqcup_p y) \Rightarrow \left\{ \exists z : \begin{array}{c} z \in x \sqcup_p y \\ z \in B \end{array} \right\} \Rightarrow \left\{ \exists z : \begin{array}{c} z \in x \sqcup_p y \\ z \notin x \sqcup_n y. \end{array} \right\}$$

hence we have a contradiction. So we have

$$z \in B \Rightarrow B \notin R_p(x \sqcup_p y). \tag{8}$$

But (8) contradicts (6) so we have wrongly assumed that there exists some $B \in H/R_p$ such that $\forall z \in B$ we have $z \leq x$.

Proposition 3.21 Suppose that for some p, x, y we have $R_p(x) = [x_1, x_2]$, $R_p(y) = [y_1, y_2]$ and $R_p(x \lor y) = [a, b]$. Then $R_p(x \lor y) = R_p(x) \lor R_p(y)$.

Proof. (i) We show that $a = x_1 \vee y_1$ in exactly the same maner as in Proposition 3.9.

- (ii.1) If $R_p(x) = R_p(y)$ we show that $b = x_2 \vee y_2$ in exactly the same manner as in Proposition 3.9.
- (ii.2) Now suppose $R_p(x) \neq R_p(y)$. Then we can assume (without loss of generality) that $R_p(x) \neq R_p(x \vee y)$. Also

$$R_p(x_2 \vee y_2) = R_p(x \vee y) = [a, b] \Rightarrow x_2 \vee y_2 \in [a, b] \Rightarrow x_2 \vee y_2 \leq b \Rightarrow x_2 \vee y_2 \vee p' \leq b \vee p'.$$

If $x_2 \vee y_2 \vee p' = b \vee p'$ then we are done, because by Proposition 3.19,we also have $p' \leq x_2$, $p' \leq y_2$, $p' \leq b$; hence $x_2 \vee y_2 = x_2 \vee y_2 \vee p' = b \vee p' = b$. If, on the other hand $x_2 \vee y_2 \vee p' < b \vee p'$, then

$$\left. \begin{array}{l} x_2 \lor p' \in R_p(x) \\ x_2 \lor y_2 \lor p' \in R_p(x \lor y) \\ R_p(x) \neq R_p(x \lor y) \end{array} \right\} \Rightarrow x_2 \lor p' \neq x_2 \lor y_2 \lor p' \Rightarrow x_2 \lor p' < x_2 \lor y_2 \lor p' < b \lor p'.$$

But then we have

$$z \in R_p(x) \Rightarrow z < x_2 \lor y_2 \lor p' < b \lor p'$$

which contradicts Proposition 3.20 (if one takes B to be $R_p(x)$, x to be $x_2 \vee y_2$ and y to be b). Hence we must have $x_2 \vee y_2 \vee p' = b \vee p'$. But, by Proposition 3.19, $p' \leq x_2 \vee y_2$ and $p' \leq b$, hence finally $x_2 \vee y_2 = b$.

(iii) Hence we have concluded that $R_p(x \vee y) = [a, b] = [x_1 \vee y_1, x_2 \vee y_2]$. But also $R_p(x) = [x_1, x_2]$, $R_p(y) = [y_1, y_2]$ and $R_p(x) \vee R_p(y) = [x_1, x_2] \vee [y_1, y_2] = [x_1 \vee y_1, x_2 \vee y_2]$, since (X, \leq) is a distributive lattice. Hence the proof is complete.

Proposition 3.21 can be applied immediately in case X is finite: since the classes of X are finite convex sublattices, they are intervals. Hence we have the following corollary.

Corollary 3.22 If X is finite, then for all $p, x, y \in X$ we have $R_p(x \vee y) = R_p(x) \vee R_p(y)$.

In Section 3.3 we will present another application of Proposition 3.21.

Next we show that both the family of relations $\{R_p\}_{p\in X}$ and the family of classes $\{R_p(x)\}_{p\in X}$ have the *p-cut properties* [8].

Proposition 3.23 For all $p, q \in X$, $P \subseteq X$ we have the following:

- 1. $R_0 = X \times X$.
- 2. $p \leq q \Rightarrow R_q \subseteq R_p$.
- 3. $R_{p\vee q}=R_p\cap R_q; more generally, \cap_{p\in P}R_p=R_{\vee P}.$

Proof. 1 is obvious. For 2, take p and q with $p \leq q$ (hence $q' \leq p'$). Then

$$(x,y) \in R_q \Rightarrow (x \lor q', y \lor q') \in R_1$$

$$\Rightarrow R_1(x \lor q') = R_1(y \lor q')$$

$$\Rightarrow R_1(x \lor q' \lor p') = R_1(y \lor q' \lor p')$$

$$\Rightarrow R_1(x \lor p') = R_1(y \lor p')$$

$$\Rightarrow R_p(x) = R_p(y)$$

$$\Rightarrow (x,y) \in R_p.$$

For 3, we will prove directly the second part which is more general. Take some $P \subseteq X$. Set $s = \forall P$. For every $p \in P$ we have $p \leq s \Rightarrow R_s \subseteq R_p$. Since this is true for every $p \in P$, we have $R_s \subseteq \cap_{p \in P} R_p$. On

the other hand, take any $p_0 \in P$. We have $p_0 \leq s \Rightarrow p_0' \geq s'$. Also

$$(x,y) \in R_{p_0}$$

$$\Rightarrow R_{p_0}(x) = R_{p_0}(y)$$

$$\Rightarrow R_1(x \vee p'_0) = R_1(y \vee p'_0)$$

$$\Rightarrow R_1((x \vee p'_0) \wedge (x \vee s')) = R_1((y \vee p'_0) \wedge (x \vee s'))$$

$$\Rightarrow R_1(x \vee (p'_0 \wedge s')) = R_1(y \vee (p'_0 \wedge s'))$$

$$\Rightarrow R_1(x \vee s') = R_1(y \vee s')$$

$$\Rightarrow R_s(x) = R_s(y)$$

$$\Rightarrow (x,y) \in R_s.$$

Hence $\cap_{p \in P} R_p \subseteq R_{p_0} \subseteq R_s$ and so we see that $\cap_{p \in P} R_p = R_s = R_{\vee P}$.

Proposition 3.24 For all $p, q, x \in X$, $P \subseteq X$ we have the following:

- 1. $R_0(x) = X \times X$.
- 2. $p \leq q \Rightarrow R_q(x) \subseteq R_p(x)$.
- 3. $R_{p\vee q}(x) = R_p(x) \cap R_q(x)$; more generally, $\cap_{p\in P} R_p(x) = R_{\vee P}(x)$.

Proof. In fact all of the above 1-3 are restatements of results 1–3 of Proposition 3.23, based on the equivalence $x \in R_p(a) \Leftrightarrow (x,a) \in R_p$.

In light of Propositions 3.23 and 3.24, both $(R_p)_{p\in X}, \cap$ and $(R_p(a))_{p\in X}, \cap$ are closure systems. Hence the following propositions are immediate.

Proposition 3.25 The structure $(\{R_p\}_{p\in X},\dot{\cup},\cap,\subseteq)$ is a complete lattice (where $R_p\dot{\cup}R_q\doteq\cap_{s:R_p\subseteq R_s,R_q\subseteq R_s}R_s)$.

Proposition 3.26 For every $x \in X$ the structure $(\{R_p(x)\}_{p \in X}, \dot{\cup}, \cap, \subseteq)$ is a complete lattice (where $R_p(x) \dot{\cup} R_q(x) \doteq \cap_{s:R_p(x) \subseteq R_s(x), R_q(x) \subseteq R_s(x)} R_s(x)$).

3.3 The Family of Congruences Derived from the Identity

We now turn to a special relation, namely the *identity* relation, which we denote by ρ_1 .

Definition 3.27 We define ρ_1 as follows: $(x, y) \in \rho_1$ iff x = y.

It is obvious that ρ_1 is an equivalence and a congruence with respect to \vee , \wedge and \sqcup_1 . Let us define (for all $p \in X$) the family of relations ρ_p in the usual manner.

Definition 3.28 For every $p \in X$ we define ρ_p as follows: $(x,y) \in \rho_p$ iff $(x \vee p', y \vee p') \in \rho$.

Definition 3.29 For every $p, x, y \in X$ we define \leq_p as follows: $\rho_p(x) \leq_p \rho_p(y)$ iff $\rho_p(x \wedge y) = \rho_p(x)$.

We will also write $x =_p y$ when $x \vee p' = y \vee p'$; similarly we will write $x \leq_p y$ when $x \vee p' \leq y \vee p'$ (these notations have been introduced in [8]). Obviously, for all $x, y, p \in X$ we have:

$$\rho_p(x) = \rho_p(y) \Leftrightarrow x =_p y, \qquad \rho_p(x) \leq_p \rho_p(y) \Leftrightarrow x \leq_p y.$$

Since ρ_1 is a special case of R_1 all the results of Sections 3.2 hold for this special case as well; in particular for every $p \in X$, ρ_p is a congruence with respect to \vee, \wedge, \sqcup_p . Some special properties follow from the fact that ρ_1 is the identity relation.

Proposition 3.30 For every $x, a, b, p \in X$ we have: $x \in a \sqcup_p b \Rightarrow \rho_p(x) \subseteq a \sqcup_p b$.

Proof. Choose any $a, b, x, p \in X$. Suppose that $x \in a \sqcup_p b$. Now take any $y \in \rho_p(x)$. Then we have:

$$x \in a \sqcup_p b \Rightarrow a \vee b \vee p' = a \vee x \vee p' = b \vee x \vee p'$$
$$\rho_p(x) = \rho_p(y) \Rightarrow x \vee p' = y \vee p'$$

hence $a \lor b \lor p' = a \lor y \lor p' = b \lor y \lor p'$ and so $y \in a \sqcup_p b$.

Corollary 3.31 For every $x, a, b, p \in X$ we have: $a \sqcup_p b = \cup_{x \in a \sqcup_p b} \rho_p(x)$.

Proof. Straightforward.

Proposition 3.32 For every $x, p \in X$ we have $\rho_p(x) = [a, x \vee p']$.

Proof. Choose any $x, p \in X$. Define $a = \wedge \rho_p(x)$ and $b = \vee \rho_p(x)$. I.e.

$$a = \land \{y : x \lor p' = y \lor p'\}, \qquad b = \lor \{y : x \lor p' = y \lor p'\}.$$

Then

$$\forall y \in \rho_p(x) : x \vee p' = y \vee p' \Rightarrow$$

$$x \vee p' = \wedge_{y \in \rho_p(x)} (y \vee p') \Rightarrow$$

$$x \vee p' = (\wedge_{y \in \rho_p(x)} y) \vee p' = a \vee p' \Rightarrow$$

$$a \in \rho_p(x)$$

Similarly we show that $b \in \rho_p(x)$. Since $\rho_p(x)$ is also a convex sublattice, we have $\rho_p(x) = [a, b]$. Now $x \in \rho_p(x) = \rho_p(x \vee p') \Rightarrow x \vee p' \in [a, b] \Rightarrow x \vee p' \leq b$. On the other hand, $b \leq b \vee p' = x \vee p'$. Hence $b = x \vee p'$.

Since every class of ρ_p is an interval, the following corollary of Proposition 3.21 is immediate.

Corollary 3.33 For all $p, x, y \in X$ we have $\rho_p(x \vee y) = \rho_p(x) \vee \rho_p(y)$.

Given some $x \in X$, we say that an element $y \in X$ is an opposite of x iff $0 \in x \sqcup_p y$. In general an element will have more than one opposites. It is easy to see that every $x \in X$ is an opposite of itself (auto-opposite, see [8]). The following proposition shows that all opposites of x are contained in the class of one such opposite, in particular in the class of x.

Proposition 3.34 For every $x, p \in X$ we have: $0 \in x \sqcup_p y \Rightarrow y \in \rho_p(x)$.

Proof.
$$0 \in x \sqcup_p y \Rightarrow x \vee y \vee p' = x \vee 0 \vee p' = y \vee 0 \vee p' \Rightarrow x \vee p' = y \vee p' \Rightarrow y \in \rho_p(x)$$
.

4 Families of Quotient Hyperalgebras

Since R_p is a congruence with respect to \vee, \wedge, \sqcup_p it is straightforward to define corresponding operations/ hyperoperations on classes, which will be denoted by $\underline{\vee}_p, \underline{\wedge}_p, \underline{\sqcup}_p$. As will turn out, $\underline{\sqcup}_p$ can be associated with some interesting quotient hyperalgebras.

Definition 4.1 For every $x, y, p \in X$ we define

$$R_p(x) \underline{\vee}_p R_p(y) = R_p(x \vee y), \quad R_p(x) \underline{\wedge}_p R_p(y) = R_p(x \wedge y), \quad R_p(x) \underline{\sqcup}_p R_p(y) = R_p(x \sqcup_p y).$$

The following are immediate consequences of the corresponding properties of \sqcup_p .

Proposition 4.2 For every $p, x, y, z \in X$ we have:

- 1. $R_p(z) \in R_p(x) \underline{\sqcup}_p R_p(y) \Leftrightarrow R_p(z) \underline{\vee}_p R_p(p') \in R_p(x) \underline{\sqcup}_p R_p(y)$.
- 2. $R_p(x) \underline{\sqcup}_p R_p(y) = R_p(x \vee p') \underline{\sqcup}_p R_p(y \vee p')$.

Proof. For 1, note that $R_p(z) = R_p(z \vee p') = R_p(z) \underline{\vee}_p R_p(p')$. Similarly, to prove 2 we use $R_p(x) = R_p(x \vee p')$ and $R_p(y) = R_p(y \vee p')$.

Also, in certain circumstances, $\underline{\vee}_p$ and $\underline{\sqcup}_p$ can be obtained from "pointwise" operations.

Proposition 4.3 If for some $p \in X$ every $A \in X/R_p$ is an interval, then for every x, y we have:

- 1. $R_p(x)\underline{\vee}_p R_p(y) = R_p(x) \vee R_p(y)$.
- 2. $R_p(x) \sqsubseteq_p R_p(y) = \{R_p(z) : R_p(x) \lor R_p(y) = R_p(x) \lor R_p(z) = R_p(y) \lor R_p(z) \}$.

Proof. 1 is simply a restatement of Proposition 3.21. Regarding 2, let us tentatively define a hyperoperation $\underline{\sqcup}_p$ by

$$R_p(x) \sqsubseteq_p R_p(y) = \left\{ R_p(z) : R_p(x) \vee R_p(y) = R_p(x) \vee R_p(z) = R_p(y) \vee R_p(z) \right\}.$$

We note the following.

(i) $A \in R_p(x) \coprod_p R_p(y) = R_p(x \sqcup_p y)$ implies that there exists some z_0 such that $z_0 \in A$ and $z_0 \in x \sqcup_p y$. Hence

$$x \vee y \vee p' = z_0 \vee x \vee p' = z_0 \vee y \vee p' \Rightarrow$$

$$R_1(x \vee y \vee p') = R_1 (z_0 \vee x \vee p') = R_1 (z_0 \vee y \vee p') \Rightarrow$$

$$R_p(x \vee y) = R_p(z_0 \vee x) = R_p(z_0 \vee y) \Rightarrow$$

$$R_p(x) \vee R_p(y) = R_p(z_0) \vee R_p(x) = R_p(z_0) \vee R_p(y).$$

Hence $A = R_p(z_0) \in R_p(x) \sqsubseteq_p R_p(y)$, i.e. $R_p(x) \sqsubseteq_p R_p(y) \subseteq R_p(x) \sqsubseteq_p R_p(y)$.

(ii) On the other hand, take some $A \in R_p(x) \sqsubseteq_p R_p(y)$. Then there exists some z_0 such that $z_0 \in A$ and

$$R_p(x) \vee R_p(y) = R_p(z_0) \vee R_p(x) = R_p(z_0) \vee R_p(y)$$

Now $z_0 \lor x \in R_p(z_0 \lor x)$ and so there exist $z_1 \in R_p(z_0)$, $y_1 \in R_p(y)$ such that $z_0 \lor x = z_1 \lor y_1$. Similarly, ther exist $x_2 \in R_p(x)$, $y_2 \in R_p(y)$ such that $z_0 \lor x = x_2 \lor y_2$. Now:

$$z_0 \lor x = z_1 \lor y_1 \Rightarrow z_0 \lor x \lor z_1 = z_1 \lor y_1 \lor z_1 = z_1 \lor y_1 = x_2 \lor y_2 \tag{9}$$

and

$$z_0 \lor x = z_1 \lor y_1 \Rightarrow z_0 \lor x \lor z_0 = z_1 \lor y_1 \lor z_0 = z_0 \lor x_2 \lor y_2 = x_2 \lor y_2 \tag{10}$$

(in the last step we have used that $z_0 \leq z_0 \vee x = x_2 \vee y_2$.) Now, (9) implies

$$z_0 \lor x \lor z_1 = x_2 \lor y_2 \Rightarrow z_0 \lor x \lor z_1 \lor x_2 = x_2 \lor y_2 \tag{11}$$

and (10) implies

$$z_0 \lor y_1 \lor z_1 = x_2 \lor y_2 \Rightarrow z_0 \lor x \lor z_1 \lor y_2 = x_2 \lor y_2. \tag{12}$$

But $x \leq z_0 \lor x = x_2 \lor y_2$ and $y_1 \leq z_1 \lor y_1 = x_2 \lor y_2$ imply

$$x \vee y_1 \le x_2 \vee y_2 \Rightarrow x_2 \vee y_2 = x \vee y_1 \vee x_2 \vee y_2. \tag{13}$$

Hence (11) and (13) imply

$$z_0 \lor x \lor z_1 \lor x_2 = x \lor y_1 \lor x_2 \lor y_2 \Rightarrow$$

$$(z_0 \lor z_1) \lor (x \lor x_2) \lor p' = (x \lor x_2) \lor (y_1 \lor y_2) \lor p'; \tag{14}$$

similarly (12) and (13) imply

$$z_0 \lor y_1 \lor z_1 \lor y_2 = x \lor y_1 \lor x_2 \lor y_2 \Rightarrow$$

$$(z_0 \lor z_1) \lor (y_1 \lor y_2) \lor p' = (x \lor x_2) \lor (y_1 \lor y_2) \lor p'. \tag{15}$$

From (14) and (15) we see that $z_0 \vee z_1 \in (x \vee x_2) \sqcup_p (y_1 \vee y_2)$. Then it follows that

$$R_p(z_0 \vee z_1) \in R_p((x \vee x_2) \sqcup_p (y_1 \vee y_2)) = R_p(x \vee x_2) \underline{\sqcup}_p R_p(y_1 \vee y_2). \tag{16}$$

Finally

$$z_0, z_1 \in R_p(z_0) \Rightarrow z_0 \lor z_1 \in R_p(z_0) \Rightarrow R_p(z_0 \lor z_1) = R_p(z_0) \tag{17}$$

$$x, x_2 \in R_p(x) \Rightarrow x \lor x_2 \in R_p(x) \Rightarrow R_p(x \lor x_2) = R_p(x) \tag{18}$$

$$y_1, y_2 \in R_p(y) \Rightarrow y_1 \lor y_2 \in R_p(y) \Rightarrow R_p(y_1 \lor y_2) = R_p(y)$$
 (19)

and (17), (18), (19) in conjunction with (16) imply that $R_p(z_0) \in R_p(x) \coprod_p R_p(y)$ and hence $R_p(x) \coprod_p R_p(y)_p \subseteq R_p(x) \coprod_p R_p(y)$. This, in conjunction with the conclusion of (i.1) means that

$$R_p(x) \sqsubseteq_p R_p(y)_p = R_p(x) \sqsubseteq_p R_p(y)$$

and so

$$R_p(x) \underline{\sqcup}_p R_p(y) = \left\{ R_p(z) : R_p(x) \vee R_p(y) = R_p(x) \vee R_p(z) = R_p(y) \vee R_p(z) \right\}.$$

Now we turn to the hyperalgebras associated with $\underline{\sqcup}_p$. First, for every value of p, the resulting quotient hyperalgebra is a hypergroup.

Proposition 4.4 For all $p \in X$, $(X/R_p, \sqsubseteq_p)$ is a commutative hypergroup, with neutral element $R_p(0)$, i.e. for all $x, y, z \in X$ the following hold.

- 1. $R_p(x) \underline{\sqcup}_p X/R_p = X/R_p$.
- 2. $R_p(x) \underline{\sqcup}_p R_p(y) = R_p(y) \underline{\sqcup}_p R_p(x)$.
- 3. $\left(R_p(x) \underline{\sqcup}_p R_p(y)\right) \underline{\sqcup}_p R_p(z) = R_p\left(x\right) \underline{\sqcup}_p \left(R_p(y) \underline{\sqcup}_p R_p(z)\right)$.
- 4. $R_p(x) \in R_p(x) \underline{\sqcup}_p R_p(0)$.
- 5. $R_{p}(0) \in R_{p}(x) \coprod_{p} R_{p}(x)$.

Proof. Regarding 1:

$$R_p(x) \underline{\sqcup}_p X / R_p = \bigcup_{z \in X} R_p(x) \underline{\sqcup}_p R_p(z) = \bigcup_{z \in X} R_p(x \sqcup_p z) = R_p(x \sqcup_p X) = R_p(X) = X / R_p,$$

where we have used Proposition 2.4. As for 2, it is immediate. Regarding 3, first note that for every $x, y, z \in X$ we have: $R_p\left(\bigcup_{u \in y \sqcup_p z} x \sqcup_p u\right) = \bigcup_{u \in y \sqcup_p z} R_p\left(x \sqcup_p u\right)$ where we have used again Proposition 2.4. Now

$$R_p(x) \underline{\sqcup}_p \left(R_p(y) \underline{\sqcup}_p R_p(z) \right) = R_p(x) \underline{\sqcup}_p R_p(y \sqcup_p z) = \bigcup_{u \in y \sqcup_p z} R_p \left(x \sqcup_p u \right) = R_p \left(\bigcup_{u \in y \sqcup_p z} x \sqcup_p u \right) = R_p \left(x \sqcup_p y \sqcup_p z \right).$$

Similarly we can show $(R_p(x) \underline{\sqcup}_p R_p(y)) \underline{\sqcup}_p R_p(z) = R_p(x \sqcup_p y \sqcup_p z)$ and this completes the proof of 3. Finally, regarding $4, x \in x \sqcup_p 0 \Rightarrow R_p(x) \in R_p(x \sqcup_p 0) = R_p(x) \underline{\sqcup}_p R_p(0)$; 5 is proved similarly.

In fact, $(X/R_p, \underline{\sqcup}_p)$ is not simply a hypergroup, but a join space. To show this we will prove a sequence of propositions.

Proposition 4.5 For all $x, y, z, p \in X$ we have

$$R_{p}\left(z\right)\in R_{p}\left(x\right)\underline{\sqcup}_{p}R_{p}\left(y\right)\Leftrightarrow R_{p}\left(x\right)\in R_{p}\left(y\right)\underline{\sqcup}_{p}R_{p}\left(z\right)\Leftrightarrow R_{p}\left(y\right)\in R_{p}\left(z\right)\underline{\sqcup}_{p}R_{p}\left(x\right).$$

Proof. We only show the first equivalence (the second is proved in identical manner). We have $R_p(z) \in R_p(x) \, \underline{\sqcup}_p R_p(y) \Leftrightarrow \left(\exists u : \begin{array}{c} u \in x \, \underline{\sqcup}_p \, y \\ R_p(u) = R_p(z) \end{array}\right) \Leftrightarrow \left(\exists u : \begin{array}{c} x \in y \, \underline{\sqcup}_p \, u \\ R_p(u) = R_p(z) \end{array}\right) \Leftrightarrow R_p(x) \in R_p(y) \, \underline{\sqcup}_p R_p(z),$ where we have used the property $z \in x \, \underline{\sqcup}_p \, y \Leftrightarrow x \in y \, \underline{\sqcup}_p \, z$, established in [8].

In the standard manner of join spaces we can define for every $p \in X$ the extension hyperoperation /p by: $x/py = \{z : x \in z \sqcup_p y\}$ (this definition actually appears in [8]). Then we can also define the corresponding extension hyperoperation on the quotient X/R_p .

Definition 4.6 For every $x, y, p \in X$ we define $R_p(x) //_p R_p(y) = R_p(x/_p y)$.

The extension hyperoperation //p is identical to $\underline{\sqcup}_p$.

Proposition 4.7 For every $x, y, p \in X$ we have $R_p(x) //_p R_p(y) = R_p(x) \sqcup_p R_p(y)$.

Proof. As already shown in [8], for every $x, y, p \in X$ we have $x/py = x \sqcup_p y$, from which the required result follows immediately.

Proposition 4.8 For all $x, y, z, u, p \in X$, the following holds.

$$\left(R_{p}(x)//_{p}R_{p}(y)\right)\cap\left(R_{p}(u)//_{p}R_{p}(z)\right)\neq\emptyset\Rightarrow\left(R_{p}(x)\underline{\sqcup}_{p}R_{p}\left(z\right)\right)\cap\left(R_{p}\left(y\right)\underline{\sqcup}_{p}R_{p}\left(u\right)\right)\neq\emptyset.$$

Proof. We already know that $(R_p(x)//_pR_p(y))\cap(R_p(u)//_pR_p(z))=(R_p(x)\sqcup_pR_p(y))\cap(R_p(u)\sqcup_pR_p(z))=(R_p(x)\sqcup_pR_p(y))\cap(R_p(z)\sqcup_pR_p(z))$. Now

$$(R_p(x) \underline{\sqcup}_p R_p(y)) \cap (R_p(z) \underline{\sqcup}_p R_p(u)) \neq \emptyset \Rightarrow \begin{pmatrix} v \in x \sqcup_p y \\ \exists v, w : w \in z \sqcup_p u \\ R_p(v) = R_p(w) \end{pmatrix}.$$

Now

$$v \in x \sqcup_p y \Rightarrow y \in x \sqcup_p v \Rightarrow$$

$$R_p(y) \in R_p(x \sqcup_p v) = R_p(x \sqcup_p w). \tag{20}$$

Also, since $w \in z \sqcup_p u$ it follows that

$$R_p(x \sqcup_p v) \subseteq R_p(x \sqcup_p (z \sqcup_p u)) = R_p(x \sqcup_p z \sqcup_p u) = R_p((x \sqcup_p z) \sqcup_p u) \tag{21}$$

From (20) and (21) follows that $R_p(y) \in R_p((x \sqcup_p z) \sqcup_p u)$ and hence there exist a and b such that

$$a \in x \sqcup_p z \tag{22}$$

$$b \in a \sqcup_p u \tag{23}$$

$$R_p(b) = R_p(y) \tag{24}$$

From (22) follows that $R_p(a) \in R_p(x \sqcup_p z)$; from (23) and (24) follows that $R_p(y) \in R_p(a \sqcup_p u)$ and hence (from Proposition 4.5) that $R_p(a) \in R_p(y \sqcup_p u)$. In short $(R_p(x) \sqcup_p R_p(z)) \cap (R_p(y) \sqcup_p R_p(u)) \neq \emptyset$

Corollary 4.9 For every $p \in X$, $(X/R_p, \underline{\sqcup}_p)$ is a join space.

Finally, we will show that the quotient hyperoperation $\underline{\sqcup}_p$, in conjunction with the quotient operation $\underline{\wedge}_p$, generates a hyperlattice. To establish this fact, let us present some order-related properies of $\underline{\sqcup}_p$.

Proposition 4.10 For all $x, y, z, p \in X$ we have the following:

- 1. $R_p(x) \in R_p(x) \underline{\sqcup}_n R_p(x)$
- 2. $R_p(x) \underline{\sqcup}_p R_p(y) = R_p(y) \underline{\sqcup}_p R_p(x)$.
- 3. $(R_p(x) \underline{\sqcup}_p R_p(y)) \underline{\sqcup}_p R_p(z) = R_p(x) \underline{\sqcup}_p (R_p(y) \underline{\sqcup}_p R_p(z))$.
- 4. $R_p(x) \in (R_p(x) \underline{\sqcup}_n R_p(y)) \underline{\wedge}_n R_p(x), R_p(x) \in (R_p(x) \underline{\wedge}_n R_p(y)) \underline{\sqcup}_n R_p(x).$
- 5. $R_p(x) \in R_p(x) \underline{\sqcup}_p R_p(y) \Leftrightarrow R_p(y) \preceq_p R_p(x)$.

Proof. Regarding 1 we have $x \in x \sqcup_p x$ and so $R_p(x) \in R_p(x \sqcup_p x) = R_p(x) \sqcup_p R_p(x)$. Parts 2 and 3 have already been proved in Proposition 4.4. Regarding part 4, since $x \vee y \in x \sqcup_p y$, it follows that $x = (x \vee y) \wedge x \in (R_p(x) \sqcup_p R_p(y)) \wedge_p R_p(x)$. Also $(R_p(x) \wedge_p R_p(y)) \sqcup_p R_p(x) = (R_p(x \wedge y)) \sqcup_p R_p(x)$ which contains $(x \wedge y) \vee x = x$. Finally, regarding 5, if $R_p(x) \in R_p(x) \sqcup_p R_p(y)$ then there exists some u such that $R_p(x) = R_p(u)$ and $x \vee y \vee p' = x \vee u \vee p' = y \vee u \vee p'$. From this follows that

$$R_{p}\left(x\vee y\right)=R_{p}\left(x\vee u\right)\in R_{p}\left(x\sqcup_{p}u\right)=R_{p}\left(x\right)\underline{\sqcup}_{p}R_{p}\left(u\right)=R_{p}\left(x\right)\underline{\sqcup}_{p}R_{p}\left(x\right)=R_{p}\left(x\right)$$

hence $R_p(y) \leq_p R_p(x)$. Conversely, $R_p(y) \leq_p R_p(x) \Rightarrow R_p(x) = R_p(x \vee y) \in R_p(x \sqcup_p y)$.

Corollary 4.11 For every $p \in X$, $(X/R_p, \sqsubseteq_p, \triangle_n)$ is a hyperlattice.

From the above corollary we see that, in particular, $(X/\rho_p, \sqsubseteq_p, \triangle_p, \preceq_p)$ is a hyperlattice. Recall that in [8] we had mentioned that the hyperalgebra $(X, \sqcup_p, \wedge, \leq_p)$ closely resembles a hyperlattice except for the fact that \leq_p is not an order but a *preorder*. Now we see that if we use the relationship ρ_p (which is the natural equivalence generated from \leq_p) we obtain in a "natural" manner the hyperlattice $(X/\rho_p, \sqsubseteq_p, \triangle_p, \preceq_p)$ which can be seen as the "quotient hyperlattice" which corresponds to $(X, \sqcup_p, \wedge, \leq_p)$ under ρ_p .

References

- [1] A.R. Ashrafi. "About some join spaces and hyperlattices". *Ital. J. Pure Appl. Math.*, vol. 10, pp.199–205, 2001.
- [2] G. Calugareanu and V. Leoreanu. "Hypergroups associated with lattices". *Ital. J. of Pure and Appl. Math.*, vol. 9, pp.165-173, 2001.
- [3] P. Corsini, Prolegomena of Hypergroup Theory, Udine: Aviani, 1993.
- [4] P. Corsini and I. Tofan. "On fuzzy hypergroups". PU.M.A. vol.8, pp.29-37, 1997.
- [5] P. Corsini and V. Leoreanu. Application of Hyperstructure Theory. Kluwer Academic, 2003.
- [6] C. Gutan. "Les hypertreillis tres fins". Ratio Math., vol. 12, pp. 3–18, 1997.
- [7] A. Hasankhani and M.M. Zahedi. "On F-polygroups and fuzzy sub-F-polygroups". J. Fuzzy Math., vol. 6, pp. 97–110. 1998.
- [8] Ath. Kehagias and K. Serafimidis. "The L-fuzzy Nakano hypergroup". Submitted.
- [9] Ath. Kehagias, K. Serafimidis and M. Konstantinidou. "A note on the congruences of the Nakano superlattice and some properties of the associated quotients". *Rend. Circ. Mat. Palermo*, vol. 51, pp. 333–354, 2002.
- [10] Ath. Kehagias. "An example of L-fuzzy join space". Rend. Circ. Mat. Palermo, vol. 51, pp. 503–526, 2002.
- [11] M. Konstantinidou and J. Mittas. "An introduction to the theory of hyperlattices". *Math. Balkanica*, vol.7, pp.187-193, 1977.
- [12] M. Konstantinidou and A. Synefaki. "A strong Boolean hyperalgebra of Boolean functions". *Ital. J. Pure Appl. Math*, vol. 2, pp.9–18, 1997.
- [13] W. Prenowitz and J. Jantosciak. Join Geometries, New York: Springer, 1979.
- [14] T. Nakano, "Rings and partly ordered systems". Math. Zeitschrift, vol.99, pp.355-376, 1967.
- [15] W. Prenowitz and J. Jantosciak. Join Geometries, New York: Springer, 1979.
- [16] A. Rahnamai-Barghi. "The prime ideal theorem and semiprime ideals in meet-hyperlattices". *Ital. Journal of Pure and Applied Math.*, vol. 5, pp.53-60, 1999.
- [17] A. Rahnamai-Barghi. "The prime ideal theorem for distributive hyperlattices". *Ital. Journal of Pure and Applied Math.*, vol. 10, pp.75-78, 2001.
- [18] S. Spartalis and T. Vougiouklis. "The fundamental relations of H_v -rings". Riv. Mat. Pura Appl., vol. 14, pp. 7–20, 1994.
- [19] T. Vougiouklis. Hyperstructures and Their Representations. Palm Harbor: Hadronic Press, 1994.
- [20] M.M. Zahedi and A. Hasankhani. "F-Polygroups (II)". Inf. Sciences, vol.89, pp.225-243, 1996.