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Abstract

In this paper we study relations which are congruences with respect to A and U, where U,is
the p-cut of the L-fuzzy hyperoperation LI. The main idea is to start from an equivalence relation
Ry which is a congruence with respect to A and Ljand, for each p € X, construct an equivalence
relation R, which is a congruence with respect to A and Ll,. Furthermore, for each x € R, we
construct a quotient hyperoperation LI, and we show that the hyperalgebra (X / Rp,gp) is a join
space and the hyperalgebra (X /Ry, U, Ap) is a hyperlattice.
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1 Introduction

In a previous paper [8] we have constructed the L-fuzzy Nakano hyperoperation U in terms of its
p-cuts. Our construction can be summarized as follows'. Consider a generalized de Morgan lattice
(X,<,V,A)) and for every z,y,p € X define

sUpy={z:avyvil =avzvy =yvavy}. 1)

Hence, for every z,y,p € X we obtain a crisp? set = Uy, y; i.e. Uy, is a crisp hyperoperation which maps
the pair z,y to the set x L, y. In [8] we have also shown how to define (for every z,y € X) the L-fuzzy
set x Uy in such a manner that for every p € X the p-cut (z L y)p is equal to x L, y. Hence we obtain
an L-fuzzy hyperoperation LI which maps the pair z,y to the L-fuzzy set = LI y.

In the current paper we study equivalences on X which are congruences with respect to A and
Up. The work presented here can be seen as a continuation of [8] in conjunction to previous work on
congruences with respect to U; [9]. The main idea is to start from an equivalence relation R; which
is a congruence with respect to A and Lljand, for each p € X, construct an equivalence relation R,
which is a congruence with respect to A and U,. Furthermore, for each p € X we will construct a
quotient hyperoperation L, and we will show that the hyperalgebra (X / Rp,gp) is a join space and the
hyperalgebra (X / Ry, U, Ap) is a hyperlattice.

In addition to our already mentioned earlier work, the current paper is related to work on join
spaces [15, 10|, hyperlattices [1, 6, 11, 16, 17, 12|, L-fuzzy hyperoperations [4, 7, 20] and the Nakano
hyperoperations [14, 2]. This is only a partial list of relevant work; further references appear in [8].

'For details and background material, see [8].
2«Crisp” is used here in contradistinction to “fuzzy” [8].



2 Preliminaries

In this section we present some basic definitions, notations and propositions which will be used in the
sequel. Further related material can be found in [8].

Throughout this paper we use a structure (X, <,V,A,) which we assume to be a generalized
deMorgan lattice, i.e. a structure satisfying the following.

Definition 2.1 A generalized deMorgan lattice is a structure (X,<,V,A,), where (X,<,V,A) is a
complete distributive lattice with minimum element 0 and maximum element 1; the symbol’ denotes a
unary operation (“complement”); and the following properties are satisfied.

1. Forallz € X,Y C X we have z A (Vyeyy) = Vyey (TAY), 2V (Ayevy) = Ayey (xVy). (Complete
distributivity).

2. For all x € X we have: (2')) = x. (Negation is involutory).
3. For all x,y € X we have: x <y =y < z'. (Negation is order reversing).

4. For allY C X we have (Vyeyy) = Nyevy', (Ayevy) = Vyeyy' (Complete deMorgan laws).

The reader will recall that a crisp hyperoperation * is a mapping of pairs x,y € X to crisp sets
z*xy C X; the set X endowed with one or more hyperoperations forms a hyperalgebra. 3. The following
notation is standard in the literature of hyperalgebras.

Definition 2.2 Forz € X, A C X and a hyperoperation x, we define x * A = UgcaT * y.

We have already defined the hyperoperation LI, by (1); it is the main hyperoperation of interest in
this paper. Let us also note that setting p = 1 we obtain

zhhy={z:xVy=xzVz=yVz};

this is the classical Nakano hyperoperation which has been the object of much study [9, 2, 14]
The notion of an equivalence relationship R on X is well-known. Let us recall the following definition
of the classes of an equivalence.

Definition 2.3 Given an equivalence R on X and an element © € X, we denote the class of x (with
respect to R) by R(x) and we define it by

R(z) ={y: (z,y) € R};

The quotient of X with respect to R is denoted by X/R and defined by

X/R={R(2)},ex

finally, for A C X we define
R(A) ={R(2)},e4-

3Clearly, a hyperoperation is a generalization of the concept of an operation, since an operation - maps a pair of
elements z,y € X to an element x-y € X. A further generalization is that of an L-fuzzy hyperoperation, which maps pairs
z,y € X to L-fuzzy sets x xy C X. For details on hyperoperations and hyperalgebras see the books [3, 5]; for details on
L-fuzzy hyperoperations see [8, ?].




The following proposition is simply a restatement of some set theoretic properties following from
Definition 2.3.

Proposition 2.4 Given an equivalence R on X, for every B C X and every family { A, } with A, C X
(for every u € B) we have: R(UyepAy) = UuepR(Ay).

Proof. First, Q € R(UyepAy) © (3z: 2 € UyepAy, R(2)= Q) & (Ju,z:u e B, x € Ay, R(x)=
Q). Second, @ € UyepR(Ay) & (Fu:ue B, Q € R(A,)) < (Fu,xz:ue B,z e A, Rz)=Q) &
(Ju,z:ue B,z € Ay, R(z) = Q). Hence Q € R(UyepAy) © Q € UyepRy(Ay). =

We can extend the well known definition of “congruence with respect to an operation” to “con-
gruence with respect to an hyperoperation” as follows.

Definition 2.5 Let R be an equivalence on X, let - be an operation and * an hyperoperation.

1. We say that R is a congruence with respect to - iff the following holds for every z,y,z € X:

R(z) = R(y) = R(z-2) = R(y- 2). (2)

2. We say that R is a congruence with respect to * iff the following holds for every z,y,z € X:

R(z)=R(y) = R(x*z) = R(y * 2). (3)

Note that R(z - z) and R(y - z) in (2) are sets, while R (z * z) and R(y * 2) in (3) are families of
sets. Hence R(x * z) = R(y * z) is equivalent to

Vuex*z Jweyxz: Ru)=R(w)
Vweyxz Juexxz: Ru)=R(w).

Regarding (2), let us also remark that in the context of “classical” lattice theory we simply say that
“R is a congruence” meaning that it is a congruence with respect to V and A, i.e. that (2) specializes
to

R(zx)=R(y) = (R(xVz)=R(yVz)and R(zNz)=R(yAz)).
3 The Family of Nakano Congruences

3.1 The “Generating” Congruence R;

We start with an arbitrary crisp equivalence R;. In the rest of the paper we assume that R; is
a congruence with respect to A and U;. The following propositions describe well-known (classical)
properties of Ry which can be obtained using only congruence with respect to A.

Proposition 3.1 The classes of Ry are convex.
Definition 3.2 We write Ri(x) =1 R1(y) iff Ri(x Ay) = Ri(x).
Proposition 3.3 = is an order on X/R; and for all x,y € X we have: v <y = Ry(z) 21 Ri(y).

If we also use the fact that R; is a congruence with respect to Llywe can show that R; is also a
congruence with respect to V (hence R; is a congruence in the “classical” sense).



Proposition 3.4 R; is a congruence with respect to V.

Proof. Choose any z,y, z € X such that Ry(z) = R;(y). Then we also have R; (zU; z)= R;(yL 2).
Since z V z € x L z there exists some u such that v € yU; z and Ry(u) = R1(zV z). Now u € ylU; z =
u<uVz=yVz= Ri(u) =1 Ri(yVz) = Ri(xVz) <1 Ri(yVz). Similarly we show R;(yVz) <1 Ri(xVz)
and so we conclude R(yVz) =R(zVz). ®

Since R; is a congruence with respect to V, A, the following propositions (well known properties of
classical congruences) also hold.

Proposition 3.5 For every z,y € X: Ri(z) =1 Ri1(y) & Ri(y) = R1(z Vy).
Proposition 3.6 The classes of Ry are convex sublattices.
Proposition 3.7 For all A, B € X/R; such that A <1 B we have:

Ya€e A dbe€ B such that a < b,
Vbe B da € A such that a <b.

The next proposition will prove quite useful in the sequel. Its proof makes essential use of the fact
that R; is a congruence with respect to L.

Proposition 3.8 Let A € X/Ry and x,y € A with x <y. Then there exists no (nonempty) B € X/R;
such that Vz € B we have z < x.

Proof. Suppose there exists some (nonempty) B € X/R; such that Vz € B we have z < z. Then
z€B= zVrx=axVe= z€zlhxz= B=Ri(z) € Ri(rUjz). In short we have shown

z€B= BeRi(xUz)=Ri(zUy). (4)
On the other hand
rVz=x
z€EB=<( yVz=y#uz
yvr=y

hence z ¢ x U y. In short we have shown
zeEB=z¢xlhy. (5)

But (5) implies that B ¢ Ry(xU;y). Indeed, if B € Ry(zL1y) then exists some w such that Ry (w) = B
(i.e. w € B) and w € xl; y and this contradicts (5) which states that w € B = w ¢ xU; y. Hence the
assumption that a (nonempty) B exists with the property (z € B = z < z) leads to both B € R;(xUyy)
and B ¢ R;(x U; y) which is absurd. m

Using Proposition 3.8 we will now show that in certain cases the classes of R; can be obtained from
“pointwise” operations.

Proposition 3.9 Suppose that for some x,y € X we have Ri(z) = [z1,22], Ri(y) = [y1,y2] and
Ri(xVy)=la,b]. Then Ri(xVy)= Ri(z)V Ri(y).



Proof. (i) We have

Rl(l‘l) = Rl(IL‘)
Ri(y1) = Ra(y)

Also z < zVy = Ri(x) =1 Ri(x Vy) = [a,b] which implies that there exists some xy such that
zo € Ri(z) and 1 < o < a. Similarly y < zVy = Ri(y) < Ri(zVy) = [a,b] which implies that there
exists some yp such that yp € Ri(y) and y1 < yp < a. Hence z1 V y; < a. In short z1 V y1 = a.

(ii.1) If Ry(x) = Ri(y) then

}:>R1(x1\/y1):R1(a:\/y): [a,b] = 1 Vy1 € [a,b] = a <z Vyp.

[a,b] = Ri(zVy)=Ri(yVy) =Ri(y) = [y1,y2] = b=y2 = x2 V 12

(ii.2) If Ri(x) # Ri(y) then either Ry(z) # Ri(x V y) or Ri(y) # Ri(z Vy) or both. Assume
(withour loss of generality) that R;(x) # Ri(x V y). Now

Ri(xaVy2) = Ri(zVy) =[a,b] = x2 Vys € [a,b] = x2 Vys <D.
If o Vyo = b we are done. Assume on the other hand, that xo V yo < b. Also

T € Rl(l')
xaVys € Ri(xVy) = X9 #£ T2V ys = x9 < T2V ys <D
Ri(z) # Ri(x Vy)

But then we have
zERI(x) = 2<mx2Vys<b

which contradicts Proposition 3.8 (if one takes B to be Ri(x), x to be x2 V y2 and y to be b). Hence
we must have x2 V ya = b.

(iii) We have concluded that Ri(z Vy) = [a,b] = [x1 V y1,22 V y2]. But also Ri(z) = [z1,x2],
Ri(y) = [y1,y2] and Ry(x) V Ri(y) = [z1,22] V [y1,y2] = [x1 V y1, 22 V y2], since (X, <) is a distributive
lattice. Hence the proof is complete. m

3.2 The Family of Congruences Rz,

Now we will use Ry to construct a family of relations Iz, one for every p € X. These will be constructed
in such a manner that, for every p € X, R, will be a congruence with respect to A, V, L.

Definition 3.10 For all p € X we define the relation R, by:
(z,y) € Ry, iff (:1: \/p',y\/p') € Ry.

It is clear that if we set p = 1 in the above definition, then R, becomes the original ;. Furthermore,
from congruence with respect to V the following proposition is obvious.

Proposition 3.11 For all p € X, R, is an equivalence and R, 2O R;.

The following properties of R, classes are immediate consequences of Definition 3.10 (hence their
proofs are omitted).

Proposition 3.12 For all z,y,p € X we have:

1. Ri(z) = Ruily) = Ry(x) = Ry(y).



2. Rp(xz) = Rp(y) © Ri(zVp')=Ri(y VD).

3. Ri(z) C Ry(x).

4. Ri(xVp') CRy(x) = Ry(z VD).

Now we can prove that R, is a congruence with respect to V, A, L, (for every p € X).

Proposition 3.13 For all z,y,z,p € X we have:

Ry(zV z) = Ry(yV 2)
Ry(z) = Rp(y) = Rp(z ANz)=Ry(yA=z)
Rp(xUp 2) = Rp(y Up 2)

Proof. Since R; is a congruence with respect to V. we have Ry(z) = Rp(y) = Ri(z Vp')=
Ri(yVp')= Ri(xVp Vz)= Ri(yVp' Vz)= Ry(zVz)= Ry(y V z). Similarly we can show R,(z)=
Ry(y) = Rp(x A z) = Rp(y A 2).

To show the last implication, take any A € R,(x U, z). Then there exists a such that a € z L, z
and Ry(a) = A. Hence

:):\/z\/p’:a\/x\/p':a\/z\/p’é
a\/p’G (J:Vp’) Ly (z\/p’) =
Ri(aVvyp') € Ri((zVvp) U (2VD)).

Also Ri(xz) = Ri(y) = Ri(z VvV p') = Ri(y V p'), hence by congruence of R; with respect to L; we get
Ri(avyp') € Ri((y Vo)t (2V )
and so there exists some b such that b € (y Vp') Uy (2 Vp') and Ry(b) = Ri(aV p'). But
Ri(aVp')=Ri(b) = Ri(aVp VD) =Ri(bVD)= Ri(aVp)=Ri(bVp)= Ryla) = Ry(b).

Since b € y U, z and R,(b) = A it follows that A € R,(y U, z). Hence Ry(z U, z) € Ry(y Uy 2). In
similar manner we show R,(y U, z) C Ry(z U, ) and conclude that R,(x U, z) = Ry(y LU, 2). =
Since R, is a congruence with respect to V, A the following propositions are immediate.

Proposition 3.14 For all p € X the classes of R, are convex sublattices.
Definition 3.15 For every p € X we write Ry(z) =p Rp(y) iff Rp(x) = Rp(z N y).
Proposition 3.16 For every p € X the relation =, is an order on X/R,,.
Proposition 3.17 For all p,x,y € X we have:

1. xVvp <yVvp' = Ry(z) 2 By(y).

2. Ry(x) =p Rp(y) < Rp(y) = Bp(z V).

5. Ri(x) <1 Rily) & Ryl) =, Ry(y).



Proposition 3.18 For every p and all A, B € X/R,, such that A <, B we have:

VYa € A db€ B such that a < b,
Vbe B da € A such that a <b.

and
(ae A,be B)=(anbe A,avbe B).

Proposition 3.19 Suppose that for some p,x € X we have Ry(x) = [x1,x2]. Then p' < xs.

Proof. z3 € Ry(x) = [z1,22] = Ry(x2) = Rp(x2 Vp') S22 Vp'. Hence o Vp' <z = p <z9. m
Next we prove the generalizations of Propositions 3.8, 3.9 for arbitrary p.

Proposition 3.20 Let A € X/R, and x,y € A with xV p' <yVp'. Then there exists no B € X/R,
such that Vz € B we have z < x.

Proof. Suppose there exists some B € X/R, such that Vz € B we have z < x. Then z € B =
zVaVp =xzVaVp = zexU,xz= B=R,(z)€ Ry(xU,x). In short we have shown

z€ B= BeR,(xUyz)=Ry(zUy,y). (6)
However
xVzVp =xzVvyp

2€B=<( yVzVvp =yVvp £xzVyp
yVaVvyp =yVvy

hence z ¢ x L, y. In short we have shown
z€B=z¢axlyuy. (7)

But (7) implies that B ¢ R,(z Uy, v). Indeed

o zexllpy o zexlhpy
BERp(xI_Ipy):{Hz. LB }:{32. zgéxl_lpy.}

hence we have a contradiction. So we have
z€ B= B ¢ R,(xUy,vy). (8)

But (8) contradicts (6) so we have wrongly assumed that there exists some B € H/R,, such that Vz € B
we have 2 < z. =

Proposition 3.21 Suppose that for some p,x,y we have Ry(x) = [z1,x2], Rp(y) = [y1,y2] and Ry(xzV
y) = [a,b]. Then Ry(xVy)= Ry(x)V Rp(y).

Proof. (i) We show that a = x; V y; in exactly the same maner as in Proposition 3.9.

(ii.1) If R,(z) = R,(y) we show that b = 2 V y2 in exactly the same manner as in Proposition 3.9.

(ii.2) Now suppose R,(z) # Rp(y). Then we can assume (without loss of generality) that R,(x) #
Ry(z Vy). Also

Ry(z2Vy2) = Ry(z Vy) =[a,b] = x2Vys € [a,b] = 22 Vy2a < b= a3 Vya V' <bVp.



If 2o Vyo Vp' = bV p' then we are done, because by Proposition 3.19,we also have p’ < x9, p’ < 4o,
p < b;hence zoVys = 2o Vya2 Vp =bVp =0b. If, on the other hand o Vys V' < bV p/, then

za Vp' € Ry(x)
TaVya Vp ERY(xVY) p = aaVp #xaVyaVp =z Vp <zaVy VP <bVyp.
Ry(z) # Ry(z Vy)

But then we have
z€Ry(z)=>2z<z:2Vy2 VP <bVy

which contradicts Proposition 3.20 (if one takes B to be R,(x), x to be z2 V y2 and y to be b). Hence
we must have 2o V yo V p' = bV p/. But, by Proposition 3.19, p’ < x5 V yo and p’ < b, hence finally
To Vys =b.

(ili) Hence we have concluded that R,(z Vy) = [a,b] = [z1 V y1,22 V y2]. But also Ry(z) = [z1, z2],
Ry(y) = [y1,y2] and Ry(z) V Ry(y) = [x1,22] V [y1,y2] = [21 VY1, 22 V 32], since (X, <) is a distributive
lattice. Hence the proof is complete.

Proposition 3.21 can be applied immediately in case X is finite: since the classes of X are finite
convex sublattices, they are intervals. Hence we have the following corollary.

Corollary 3.22 If X is finite, then for all p,xz,y € X we have Ry(x Vy)= R,(x)V Ry(y).

In Section 3.3 we will present another application of Proposition 3.21.
Next we show that both the family of relations {R} . i and the family of classes {Rj(2)}
the p-cut properties [8].

pEX have

Proposition 3.23 For all p,q € X, P C X we have the following:

1. Ry = X x X.

2. p<q= Ry CR,.

3. Rypyq = Ry, N Ry; more generally, NpepR, = Ryp.

Proof. 1 is obvious. For 2, take p and ¢ with p < ¢ (hence ¢’ < p’). Then

(x,y) € Ry = (x\/q',y\/q') e Ry
= Ri(z V) =Ri(yV{)
= Ri(zVqg Vp)=Ri(yVqVp)
= Ri(z V') = Ri(y V)
= Ry(x) = Rp(y)
= (z,y) € R,.

For 3, we will prove directly the second part which is more general. Take some P C X. Set s = VP. For
every p € P we have p < s = R, C R,. Since this is true for every p € P, we have R, C N,ecpR,;.On



the other hand, take any py € P. We have py < s = pj > s'. Also

(z,y) € Ry,
= Rp, (z) = Ry, (y)
= Ri(zVpy) = Ri(y V pp)
= Ri((zVpy) A(zvs))=Ri((yVpy) A(zVs))
= Ri(zV (py A s') = Ri(y V (po A 8))
= Ri(zVs)=Ri(yVs)
= Ry(x) = Rs(y)
= (x,y) € Rs.

Hence Npep R, C Ry, € R, and so we see that NpepRy, = Ry = Ryp. W
Proposition 3.24 For all p,q,x € X, P C X we have the following:
1. Ry(z) =X x X.
2. p<q= Ry(z) C Ry(x).
3. Rpvq(x) = Rp(x) N Ry(x); more generally, NpepRp(z) = Ryp(z).

Proof. In fact all of the above 1 — 3 are restatements of results 1-3 of Proposition 3.23, based on
the equivalence x € R,(a) < (z,a) € R,. ®

In light of Propositions 3.23 and 3.24, both ({Rp}pEX ) ﬂ) and <{Rp(a)}pEX ,ﬂ) are closure sys-
tems. Hence the following propositions are immediate.

Proposition 3.25 The structure ({R,} U,N, C) is a complete lattice (where RPURq = Ns:R,CR,,R,CR. s )-

peX

Proposition 3.26 For every x € X the structure ({Ry(z)} U,N, C) is a complete lattice (where

Rp(x) U Rq<x) = ms:Rp(:c)gRs(x),Rq(x)QRS(:p)Rs(w))-

peX?

3.3 The Family of Congruences Derived from the Identity
We now turn to a special relation, namely the identity relation, which we denote by p;.
Definition 3.27 We define p1 as follows: (z,y) € p1 iff v = y.

It is obvious that p; is an equivalence and a congruence with respect to V, A and Ll;. Let us define
(for all p € X) the family of relations p, in the usual manner.

Definition 3.28 For every p € X we define py as follows: (z,y) € pp iff (xV ',y V') € p.
Definition 3.29 For every p,z,y € X we define =, as follows: py(x) =, pp(y) iff pp(z Ny) = pp(x).

We will also write z =, y when vV p' =y V p' ; similarly we will write <, y when z VvV p' <y V p'
(these notations have been introduced in [8]). Obviously, for all z,y,p € X we have:

pp(x) = pp(y) & = =p v, pp(x) =p pp(y) & & <p y.

Since pp is a special case of R; all the results of Sections 3.2 hold for this special case as well; in
particular for every p € X, p, is a congruence with respect to V, A, Ll,. Some special properties follow
from the fact that p; is the identity relation.



Proposition 3.30 For every x,a,b,p € X we have: x € all, b= py(x) C allybd.

Proof. Choose any a,b,z,p € X. Suppose that z € a U, b. Now take any y € p, (x). Then we

have:
realyb=aVvVbVvp =aVaVp =bVvzVy

pp(x) = pply) =z Vp' =y Vyp'
hence a VbV =aVyVp =bVyVvp andsoycall,b. =

Corollary 3.31 For every x,a,b,p € X we have: ally b = Uzcar,p pp(T).
Proof. Straightforward. m
Proposition 3.32 For every x,p € X we have py(z) = [a,z V p'].
Proof. Choose any z,p € X. Define a = App(z) and b = Vp,(x). Le.
a=My:azVvp =yVvypl, b=V{y:zVvp =yVvpl
Then

Vy € pp(z):zVvp =yvyp =
VP = Nyepy) (y V) =
x \/p’ = (/\yepp(z)y) \/p' =a \/p’ =
a € pp()

Similarly we show that b € p,(x). Since pp(z) is also a convex sublattice, we have p,(z) = [a, b]. Now
z € pp(x) = pp(z V) =2V €la,b = xVp <b. On the other hand, b < bV p' =z Vp'. Hence
b=zVp . m

Since every class of p, is an interval, the following corollary of Proposition 3.21 is immediate.

Corollary 3.33 For all p,z,y € X we have pp(zV y)= pp(x) V pp(y).

Given some z € X, we say that an element y € X is an opposite of z iff 0 € z U, y. In general an
element will have more than one opposites. It is easy to see that every x € X is an opposite of itself
(auto-opposite, see [8]). The following proposition shows that all opposites of = are contained in the
class of one such opposite, in particular in the class of x.

Proposition 3.34 For every z,p € X we have: 0 € x U,y = y € pp(z).

Proof. ez Upyy=aVyVp =zVOVp =yVvVOVp =azVp =yVp =yepy(z).

4 Families of Quotient Hyperalgebras

Since R, is a congruence with respect to V, A, L, it is straightforward to define corresponding oper-
ations/ hyperoperations on classes, which will be denoted by Vo, Aps Uy,. As will turn out, L, can be
associated with some interesting quotient hyperalgebras.

Definition 4.1 For every z,y,p € X we define

Rp(m)MpRp(y) = Rp(x Vy), Rp(x)ApRp(y) = Rp(z Ny), Rp(x)QpRp(y) = Rp(z Up y).
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The following are immediate consequences of the corresponding properties of L.
Proposition 4.2 For every p,x,y,z € X we have:

1. Ry(2) € Ry(x)U,Rp(y) < Ry (2) V RRp(p) € Ry(w)L, Rp(y).

2. Ry(x)U,Rp(y) = Rp(x Vv p' )U,R, (y Vp').

Proof. For 1, note that R,(z) = Ry(2V p')= Rp(2)V,Rp(p'). Similarly, to prove 2 we use R)(z) =
Ry(xVp')and Ry(y) = Ry(yVyp'). m
Also, in certain circumstances, V,, and U, can be obtained from “pointwise” operations.

Proposition 4.3 If for some p € X every A € X/R,, is an interval, then for every x,y we have:
1. Rp(m!pRp(y) = Rp(@ \ Rp(y)-
2. Rp(x)U,Rp(y) = {Rp(2) : Bp(x) V Ry(y) = Rp(x) V Ry(2) = Ry(y) V Rp(2) }.

Proof. 1 is simply a restatement of Proposition 3.21. Regarding 2, let us tentatively define a
hyperoperation U,by

Rp(a:)ngp(y) ={Ry(2) : Ry(z) V Ry(y) = Rp(z) V Rp(2) = Rp(y) V Rp(2) }.

We note the following.
(i) A € Rp(x)U,Rp(y) = Ry(z Up y) implies that there exists some 2o such that zp € A and
20 € v Uy y. Hence

x\/y\/p’:zo\/x\/p’:zo\/y\/plé
Ri(zvyVvyp) =R (zo\/x\/p') =R (zo\/y\/p’) =
Ry(zVy)=Ry(z0 V)= Ry(20Vy) =
Ry(2) V Rp(y) = Rp(20) V Rp(x) = Rp(20) V Rp(y).
Hence A = Ry(%)) € Rp(x)ngp(y), Le. Ry(z)U,Rp(y) C Rp(m)ngp(y).
(ii) On the other hand, take some A € Rp(x)ngp(y). Then there exists some zp such that zp € A

and
Rp(x) V Rp(y) = Rp(20) V Rp(x) = Ry(20) V Rp(y)

Now 2oV € Rp(20V ) and so there exist 21 € R,(20), y1 € Rp(y) such that 2oV = 2z Vy;. Similarly,
ther exist 2 € Ry(x), y2 € Ry(y) such that 2o Vo = z2 Vy2. Now:

2wVex=z1Vy1=z2VeVzr=z11Vy1Vzr =21 VY = T2V yo (9)

and
2wVr=z1Vyr=2VaeVz=21Vy1Vzyg=2 VraVys =3V (10)

(in the last step we have used that zp < zp Vz = x2 V y2.) Now, (9) implies
2o0VIVzi=xoVys=20VITVzVires==1xIViys (11)

and (10) implies
2oVy1Vzr=22Vys =20V VzVys =x2Vys. (12)
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Butz <zgVax=x2Vysand y; < 21 Vy1 = a2V yz imply
xVy1 <zaoVys = w2Vys =2 Vy VareVys. (13)

Hence (11) and (13) imply
zoVeVzi1Vaee=xVy1VaaViy =

(oVz1)V(zVa)Vp = (xVa)V(yVyz) Vs (14)
similarly (12) and (13) imply
2VyiVaiVy=zVyi Ve Vy =

(20V21) V(g Vo) VP = (zVa) V(i V) VD' (15)
From (14) and (15) we see that 2o V z1 € (2 V 22) Up (y1 V y2). Then it follows that

Ry(zV 21) € RBp((z V 22) Up (11 V 12)) = Rp(x V 2)U, Ry (y1 V 112). (16)
Finally
20,21 € Rp(20) = 20 V 21 € Rp(20) = Rp(20 V 21) = Rp(20) (17)
x,x9 € Ry (v) =2V € Ry(z) = Ry (zVa2) = Ry() (18)
Y1,Y2 € Rp(y) = y1 Vy2 € Rp(y) = Ry (1 V y2) = Ry(y) (19)

and (17), (18), (19) in conjunction with (16) imply that R, (20) € Rp(x)U,R, (y) and hence Rp(:c)gp
Rp(y)p € Rp(w) U, Rp(y). This, in conjunction with the conclusion of (i.1) means that

R, (fc)ngp (Y)p = Ry (CU)QpRp (v)

and so
Rp(x)QpRp(y) ={Ry(2) : Ry(x) V Rp(y) = Ry(x) V Rp(2) = Rp(y) V Ry(2) }.

]
Now we turn to the hyperalgebras associated with L. First, for every value of p, the resulting
quotient hyperalgebra is a hypergroup.

Proposition 4.4 For all p € X, (X/Rp,U,) is a commutative hypergroup, with neutral element
R,(0), i.e. for all x,y,z € X the following hold.

1. Rp(a:)ng/R = X/Rp.
2. Rp(x>QpRP(y) - Rp(y>QpRP(x)'
3. (Rp(w)QpRp(y)) QpRp(z) = Ry (z) L, (Rp(y)QpRp(Z)) .

4. Ry(x) € Ry (x) U,R, (0).
5. Ry (0) € Ry (v) U, Ry ().
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Proof. Regarding 1:
Rp(w)QpX/R = UzeXRp(SU)QpRp(Z) = Usex Rp(z Up 2) = Ry(z Up X) = Ry(X) = X/ Ry,

where we have used Proposition 2.4. As for 2, it is immediate. Regarding 3, first note that for every
z,y,z € X we have: R, (Uueyupzx Ly, u) = Uyeyu, =Ry (2 Up u) where we have used again Proposition
2.4. Now

Ry (@), (Rp(y)U,Rp(2)) = Rp(2)Uy, Rp(y Up 2) = Uueyus, = By (2 Up u) = Ry (Uueyu, 22 Up u)
=Ry (xUpyly2).

Similarly we can show (R, (z)U,R,(y)) U,Ry(2)= R, (x U,y L, z) and this completes the proof of 3.
Finally, regarding 4, z € x 1, 0 = R, (z) € R (v U, 0) = R}, (v) U, R, (0); 5 is proved similarly. m

In fact, (X/Ry,U,) is not simply a hypergroup, but a join space. To show this we will prove a
sequence of propositions.

Proposition 4.5 For all z,y,z,p € X we have
Ry (2) € Ry () QpRp (y) & Ry (x) € Ry (y) QpRp (2) & Ry (y) € Ry (2) QpRp ().

Proof. We only show the first equivalence (the second is proved in identical manner). We

have R, (2) € R, (x)U,R,(y) < <E|u: Q;%pe( 5“:101?{2}0(2) ) = (Elu: ’éjg)“j I}sz(z) > & R, (z) €

Ry (y)U,Ryp (), where we have used the property z € x Ly y < 2 € y Ly z, established in [8]. =

In the standard manner of join spaces we can define for every p € X the extension hyperoperation
/p by: z/py = {z:2 € zU, y} (this definition actually appears in [8]). Then we can also define the
corresponding extension hyperoperation on the quotient X/R,,.

Definition 4.6 For every z,y,p € X we define R, (z) //pRp (y) = Rp(z/py).
The extension hyperoperation //, is identical to L,.
Proposition 4.7 For every x,y,p € X we have Ry, (z) //p Ry (y) = Ry (z) U, Ry (y)-

Proof. As already shown in [8], for every z,y,p € X we have z/,y = z U, y, from which the
required result follows immediately. m

Proposition 4.8 For all z,y,z,u,p € X, the following holds.
(Bp(@)/ [pRp(y) N (By(w)/ [pBy(2)) # 0 = (Rp(2)U, Ry (2)) N (Rp (y) LRy (w)) # 0.

Proof. We already know that (R,(z)//pRp(y))N(Rp(w)//pRp(2)) = (Rp(l’)QpRp(y))m(Rp(u)QpRp(Z))
= (Rp(x)U, By ()) N (Rp(2), Ry(w)). Now

vexlyy
(Rp(x)U,Rp(1)) N (Rp(2)U,Rp(u)) 0= [ Fo,w: wezlUyu
Rp(v) = Ry(w)

Now
vexlpy=ycxllpv=

R,(y) € Ry (x Upv) = R, (z Uy w). (20)
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Also, since w € z U, u it follows that
Ry (zUpv) € Ry (xUp (2Upu) = Ry (xUp 2 Uy u) = Ry ((z Uy 2) Up u) (21)

From (20) and (21) follows that R,(y) € R, ((z Uy, z) Up u) and hence there exist a and b such that

acxlyz (22)
bcal,u (23)
Ry(b) = Ry(y) (24)

From (22) follows that R,(a
hence (from Proposition 4.5)

0. m

) € Ry (x Uy 2); from (23) and (24) follows that R,(y) € R, (a Ly u) and
that Ry(a) € Ry (y Up u). Inshort (R, (z) u,Ry, (z)) N (Rp(y)U, Ry (v)) #

Corollary 4.9 For everyp € X, (X/R),U,) is a join space.

Finally, we will show that the quotient hyperoperation L, in conjunction with the quotient opera-
tion A, generates a hyperlattice. To establish this fact, let us present some order-related properies of

U,

Proposition 4.10 For all ,y,z,p € X we have the following:
1. Rp(z) € Ry(x)J, Ry ()
2. Ry(x)U,Rp(y) = Ry(y)4,,

3. (Rp(2)UpRp(y)) Uy Ry(2) = Ry () U, (Rp(y)LpRy(2)) -

4. Rp(x) € (Ry(2)U,Ry(y)) ApRp(x), Rp(x) € (Ry(2)A,Ry(y)) Uy Rp().

9. Ry(x) € Rp(x)U,Ry(y) & Ryp(y) =p Rp(2).

Ry(x).

Proof. Regarding 1 we have x € L,z and so Rp(x) € Ry(zUpx) = Rp(x)U,Rp(x). Parts 2 and 3
have already been proved in Proposition 4.4. Regarding part 4, since  Vy € x U, y, it follows that =
(zVy) Az e (Ry(x)U,Ry(y)) ApRp(x). Also (Ry(z)A,Rp(y)) U,Rp(z) = (Ry(z Ay))U,Ry(x) which
contains (x Ay) Vx = z. Finally, regarding 5, if Ry(z) € Ry(z)U,R,(y) then there exists some u such
that Ry(z) = Rp(u) and zVyVp'=xVuVp'=yVuVy. From this follows that

Ry (xVy) =Ry (xVu) € Ry(zlpu) = Ry (z) U, Ry (u) = Ry (x) U, Ry (2) = Rp ()
hence R,(y) <p Rp(z). Conversely, R,(y) <, Rp(x) = Ry(z) = Ry(x Vy) € Rp(zUpy). =
Corollary 4.11 For every p € X, (X/Rp,U,, A,) is a hyperlattice.

From the above corollary we see that, in particular, (X/p,, U, Ay, =p) is a hyperlattice. Recall that
in [8] we had mentioned that the hyperalgebra (X,U,, A, <,) closely resembles a hyperlattice except
for the fact that <, is not an order but a preorder. Now we see that if we use the relationship p,
(which is the natural equivalence generated from <,) we obtain in a “natural” manner the hyperlattice
(X/pp; Uy, Ay, =p) which can be seen as the “quotient hyperlattice” which corresponds to (X, Ly, A, <p)
under p,,.
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