The L-Fuzzy Nakano Hypergroup

Ath. Kehagias and K. Serafimidis

May 26, 2003

Abstract

In this paper we start with a lattice (X, \vee, \wedge) and define, in terms of \vee , a family of crisp hyperoperations \sqcup_p (one hyperoperation for each $p \in X$). We show that, for every p, the hyperalgebra (X, \sqcup_p) is a join space and the hyperalgebra (X, \sqcup_p, \wedge) is very similar to a hyperlattice. Then we use the hyperoperations \sqcup_p as p-cuts to introduce an L-fuzzy hyperoperation \sqcup and show that (X, \sqcup) is an L-fuzzy join space and the hyperalgebra (X, \sqcup_p, \wedge) is very similar to an L-fuzzy hyperlattice.

AMS Classification: 08A72, 03E72, 06B99, 06D30, 20N20.

1 Introduction

In this paper we study a family of *crisp hyperoperations*, each of which gives rise to a *join space*; then we use this family to synthesize a *fuzzy hyperoperation* which gives rise to a *fuzzy join space*. Let us explain each of these terms and also present some brief bibliographic remarks.

Given a reference set X, a crisp¹ hyperoperation maps each pair of elements of X to a nonempty subset of X. A hyperalgebra is a set X endowed with a hyperoperation. The most prominent example of a hyperalgebra is a hypergroup; an extensive account of hypergroup theory appears in [3]. A join space is a special type of hypergroup. Join spaces were introduced (with a geometric point of view) by Prenowitz; a comprehensive account appears in [8, 20, 21]. Two particular hyperoperations which have been the subject of extensive study are the so-called "Nakano hyperoperations". These were introduced in [2, 15, 18] and studied further in [1, 11, 14, 17]. The Nakano hyperoperations have many remarkable properties, not least of which is that each of them gives rise to a join space.

In recent years there has been considerable interest in the connections between hyperalgebras and fuzzy sets. One can distinguish two main approaches. The first approach defines *crisp* hyperoperations through fuzzy sets. Examples of this approach are [4, 5, 6, 9, 24]. However, this approach will not concern us here.

The second approach involves the definition and study of fuzzy hyperoperations. In analogy to a crisp hyperoperation, a fuzzy hyperoperation maps a pair of elements of a set X to a fuzzy subset of X. Corsini and Zahedi introduced some fuzzy algebraic hyperstructures in [7, 27, 28]. In particular, [7] gives a general definition of fuzzy hypergroups. Kehagias has studied a particular example of fuzzy join space in [10].

The rest of this paper is organized as follows. In Section 2 we summarize some basic concepts which will be used throughout the paper. In Section 3 we start with a lattice (X, \vee, \wedge) , introduce the family of crisp hyperoperations \sqcup_p (one hyperoperation for each $p \in X$) and show that for every p the hyperalgebra (X, \sqcup_p) is a fuzzy join space and the hyperalgebra (X, \sqcup_p, \wedge) is very similar to a hyperlattice [13, 22, 23]. In Section 4 we use the hyperoperations \sqcup_p as p-cuts to introduce a fuzzy

[&]quot;Cirsp" is used here in contradistinction to "fuzzy"; see below.

hyperoperation \sqcup and show (X, \sqcup) is a fuzzy join space and the hyperalgebra (X, \sqcup, \wedge) is very similar to a fuzzy hyperlattice. Finally, in Section 5 we present some future research directions.

2 Preliminaries

In this section we present some basic definitions, notations and propositions (without proofs) which will be used throughout this paper. In what follows $(X, \leq, \vee, \wedge, ')$ will always denote a *generalized deMorgan lattice*, defined as follows.

Definition 2.1 A generalized deMorgan lattice is a structure $(X, \leq, \vee, \wedge, ')$, where (X, \leq, \vee, \wedge) is a complete distributive lattice with minimum element 0 and maximum element 1; the symbol ' denotes a unary operation ("complement"); and the following properties are satisfied.

- 1. For all $x \in X$, $Y \subseteq X$ we have $x \land (\lor_{y \in Y} y) = \lor_{y \in Y} (x \land y)$, $x \lor (\land_{y \in Y} y) = \land_{y \in Y} (x \lor y)$. (Complete distributivity).
- 2. For all $x \in X$ we have: (x')' = x. (Negation is involutory).
- 3. For all $x, y \in X$ we have: $x \le y \Rightarrow y' \le x'$. (Negation is order reversing).
- 4. For all $Y \subseteq X$ we have $(\vee_{y \in Y} y)' = \wedge_{y \in Y} y'$, $(\wedge_{y \in Y} y)' = \vee_{y \in Y} y'$ (Complete deMorgan laws).

A "classical" set will often be called a *crisp set*, in contradistinction to a *fuzzy* or *L-fuzzy set* (these will be defined presently). Obviously there is a 1-to-1 correspondence between sets and their characteristic functions. We will use the following convention.

Notation 2.2 Given a crisp set $A \subseteq X$, its characteristic function will be denoted by $\widetilde{A}(x)$. $\widetilde{A}(x)$ takes values in $\{0,1\}$.

Definition 2.3 A fuzzy set is a function $\widetilde{A}: X \to [0,1]$, where [0,1] is an interval of real numbers.

Generally speaking an L-fuzzy set is a function $\widetilde{A}: X \to L$ where (L, \preceq) is some lattice. In the context of this paper (L, \preceq) will always be the original (X, \leq) deMorgan lattice. The fact that the domain and range of \widetilde{A} are the same lattice does not create any problems.

Definition 2.4 An L-fuzzy set is a function $\widetilde{A}: X \to X$.

Since in this paper we do not deal with fuzzy sets in the sense of Definition 2.3, we will sometimes use the shorter term "fuzzy set" in place of "L-fuzzy set". Note that a crisp set A or, more precisely, the corresponding characteristic function $\widetilde{A}(x)$ can be seen as a special case of L-fuzzy set, since $\widetilde{A}: X \to \{0,1\} \subseteq X$.

Notation 2.5 The collection of all crisp subsets of X is denoted by P(X) (the power set of X); the collection of all L-fuzzy sets (i.e. functions $\widetilde{A}: X \to X$) is denoted by F(X).

Definition 2.6 Given a L-fuzzy set $\widetilde{A}: X \to X$, the p-cut of \widetilde{A} is denoted by A_p and defined by $A_p \doteq \{x : \widetilde{A}(x) \geq p\}$.

For basic properties of p-cuts see [10, 19]. Two important facts are (for details see [19]):

1. a fuzzy set \widetilde{A} is uniquely specified by the collection of its p-cuts $\{A_p\}_{p\in X}$;

2. given a collection of sets that have the "p-cut properties", a fuzzy set can be synthesized from this family.

These facts are easily generalized to L-fuzzy sets and can be described by the following propositions.

Proposition 2.7 Suppose that the L-fuzzy sets $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ satisfy $A_p = B_p$ for every $p \in X$. Then $\widetilde{A} = \widetilde{B}$.

Proposition 2.8 Suppose that a family of crisp sets $\{M_p\}_{p\in X}\subseteq \mathbf{P}(X)$ is given which satisfies the following (p-cut properties).

- 1. $M_0 = X$.
- 2. Given $p, q \in X$ we have: $p \leq q \Rightarrow M_q \subseteq M_p$.
- 3. Given $P \subseteq X$ we have: $\cap_{p \in PMp} = M_{\vee P}$.

Now define the L-fuzzy set \widetilde{A} by its value for every $x \in X$: $\widetilde{A}(x) = \bigvee \{p : x \in M_p\}$. Then for every $p \in X$ we have $A_p = M_p$.

Definition 2.9 For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ define the L-fuzzy set $\widetilde{A} \cup \widetilde{B}$ by specifying its value for every $x \in X$:

$$(\widetilde{A} \cup \widetilde{B})(x) = \widetilde{A}(x) \vee \widetilde{B}(x);$$

define the L-fuzzy set $\widetilde{A} \cap \widetilde{B}$ by:

$$(\widetilde{A} \cap \widetilde{B})(x) = \widetilde{A}(x) \wedge \widetilde{B}(x);$$

define the L-fuzzy set \widetilde{A}' by:

$$\widetilde{A}'(x) = \left(\widetilde{A}(x)\right)'.$$

Notation 2.10 For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we write $\widetilde{A} \subseteq \widetilde{B}$ iff for all $x \in X$ we have $\widetilde{A}(x) \leq \widetilde{B}(x)$.

Proposition 2.11 For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$: $\widetilde{A} \subseteq \widetilde{B}$ iff for all $p \in X$ we have $A_p \subseteq B_p$.

Proposition 2.12 \subseteq is an order on $\mathbf{F}(X)$ and $(\mathbf{F}(X),\subseteq,\cup,\cap,')$ is a generalized deMorgan lattice.

Notation 2.13 For all $A, B \in \mathbf{P}(X)$ we write $A \sim B$ iff $A \cap B \neq \emptyset$. For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ and $p \in X$ we write $\widetilde{A} \sim_p \widetilde{B}$ iff $\exists x \in X : \widetilde{A}(x) \wedge \widetilde{B}(x) \geq p$.

It is clear that the symbols \cup , \cap , when applied to fuzzy sets play the same role (union, intersection, complement) as when applied (in the standard manner) to crisp sets; indeed if $A, B \in \mathbf{P}(X)$ then the characteristic functions $\widetilde{A}, \widetilde{B}$ are a special case of L-fuzzy set and $\widetilde{A} \cup \widetilde{B}, \widetilde{A} \cap \widetilde{B}, \widetilde{A}'$ correspond to the same sets as $A \cup B$, $A \cap B$, A'. In the fuzzy set literature it is usual to denote fuzzy-set union by $\widetilde{A} \vee \widetilde{B}$ and fuzzy-set intersection by $\widetilde{A} \wedge \widetilde{B}$. However, as will be explained now, in the current paper the interpretation of the symbols \vee , \wedge is quite different. Recall that

- 1. a (crisp) operation \circ maps a pair of elements to an element: $\circ: X \times X \rightarrow X$;
- 2. a (crisp) hyperoperation \circ maps a pair of elements to a crisp set: $\circ: X \times X \to \mathbf{P}(X)$;
- 3. an L-fuzzy hyperoperation \circ maps a pairs of elements to an L-fuzzy set: $\circ: X \times X \to \mathbf{F}(X)$.

Note that if \circ is an L-fuzzy hyperoperartion then $a \circ b$ is a function; we will often use the notation $(a \circ b)(x)$ (i.e. the value of $a \circ b$ at the point x).

The most general of the above concepts is that of L-fuzzy hyperoperation: a crisp hyperoperation can be seen as a special case where the L-fuzzy set becomes a crisp set; a crisp operation can be seen as an even more special case where the crisp set becomes a singleton. Now, given some \circ (crisp/fuzzy operation/hyperoperation) we will often need to apply \circ to sets rather than elements. The basic definition is the following.

Definition 2.14 Let $\circ: X \times X \to \mathbf{F}(X)$ be a L-fuzzy hyperoperation (hence $a \circ b$ is a fuzzy set, i.e. a function).

1. For all $x \in X$, $\widetilde{A} \in \mathbf{F}(X)$ we define the L-fuzzy set $x \circ \widetilde{A}$ by

$$(x \circ \widetilde{A})(z) \doteq \bigvee_{y \in X} \left(\widetilde{A}(y) \wedge [(x \circ y)(z)] \right)$$

2. For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we define the L-fuzzy set $\widetilde{A} \circ \widetilde{B}$ by

$$(\widetilde{A} \circ \widetilde{B})(z) \doteq \bigvee_{x \in X, y \in X} \left\{ \widetilde{A}(x) \wedge \widetilde{B}(y) \wedge [(x \circ y)(z)] \right\}.$$

As will be argued, the following definitions are special cases of Definition Definition 2.14.

Definition 2.15 *Let* \circ : $X \times X \to \mathbf{P}(X)$ *be a crisp operation.*

- 1. For all $x \in X$, $A \in \mathbf{P}(X)$ we define the crisp set $x \circ A = \bigcup_{y \in A} \{x \circ y\}$.
- 2. For all $A, B \in \mathbf{P}(X)$ we define the crisp set $A \circ B = \bigcup_{x \in A, y \in B} \{x \circ y\}$

Definition 2.16 Let $\circ: X \times X \to \mathbf{P}(X)$ be a crisp hyperoperation.

- 1. For all $x \in X$, $A \in \mathbf{P}(X)$ we define the crisp set $x \circ A = \bigcup_{y \in A} x \circ y$.
- 2. For all $A, B \in \mathbf{P}(X)$ we define the crisp set $A \circ B = \bigcup_{x \in A, y \in B} x \circ y$.

Definition 2.17 Let $\circ: X \times X \to \mathbf{P}(X)$ be a crisp hyperoperation.

1. For all $x \in X$, $\widetilde{A} \in \mathbf{F}(X)$ we define the L-fuzzy set $x \circ \widetilde{A}$ by

$$(x \circ \widetilde{A})(z) \doteq \vee_{y \in X} \left(\widetilde{A}(y) \wedge [(x \circ y)(z)] \right).$$

2. For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we define the L-fuzzy set $\widetilde{A} \circ \widetilde{B}$ by

$$(\widetilde{A} \circ \widetilde{B})(z) \doteq \bigvee_{x \in X, y \in X} \left\{ \widetilde{A}(x) \wedge \widetilde{B}(y) \wedge [(x \circ y)(z)] \right\}.$$

(Where $(x \circ y)(z)$ is the value of the characteristic function of $x \circ y$ at z.)

Definition 2.14 subsumes the remaining ones as special cases. For example, the case of a crisp hyperoperation \circ can be seen as a special case in Definition 2.14: i.e. for all $x, y, z \in X$ we have that $(x \circ y)(z)$ (the characteristic function of the crisp set $x \circ y = \{z : (x \circ y)(z) > 0\}$) is either 1 or 0. Similarly, if \widetilde{A} is the characteristic function of the *crisp* set A, then

$$\left(x\circ\widetilde{A}\right)(z)=\vee_{y\in X}\left(\widetilde{A}(y)\wedge[(x\circ y)(z)]\right)=\vee_{y:z\in x\circ y}\widetilde{A}(y)$$

is the characteristic function of the crisp set $x \circ A = \bigcup_{y \in A} x \circ y$.

3 A Family of Crisp Hyperoperations

3.1 Definition and Properties

We start our investigation by recalling the definition of the \sqcup_1 hyperoperation.

Definition 3.1 For every $p \in X$ we define the hyperoperation $\sqcup_1 : X \times X \to \mathbf{P}(X)$ as follows:

$$\forall x, y \in X : x \sqcup_1 y \doteq \{z : x \vee y = x \vee z = y \vee z\}$$

The above hyperoperation was first introduced by Comer in [2]. However, the dual hyperoperation defined by $x \sqcap_1 y \doteq \{x : x \land y = x \land z = y \land z\}$ was introduced earlier by Nakano [18]. Hence we refer to both \sqcup_1 and \sqcap_1 as the "Nakano hyperoperations". The reason for the use of the subscript 1 will become obvious in the sequel. The following properties of \sqcup_1 have been established by several authors.

Proposition 3.2 For all $x, y, z \in X$ the following hold.

- 1. $x \in x \sqcup_1 x$.
- 2. $x \sqcup_1 y = y \sqcup_1 x$.
- 3. $X = x \sqcup_1 X$.
- 4. $(x \sqcup_1 y) \sqcup_1 z = x \sqcup_1 (y \sqcup_1 z)$.
- 5. $x \in (x \sqcup_1 y) \land x, x \in (x \land y) \sqcup_1 x$.
- 6. $x \leq y \Leftrightarrow x \in x \sqcup_1 y$.

Proof. 1 and 2 are obvious; 3 follows from 1; 4 has been proved by Comer [2]; 5 and 6 have been proved by Mittas and Konstantinidou [16]. \blacksquare

Now we generalize \sqcup_1 by defining a *family* of hyperoperations \sqcup_p (one hyperoperation for each $p \in X$). Note that in the following definition using p = 1 we recover the \sqcup_1 hyperoperation of Definition 3.1.

Definition 3.3 For every $p \in X$ we define the hyperoperation $\sqcup_p : X \times X \to \mathbf{P}(X)$ as follows:

$$\forall x, y \in X : x \sqcup_p y \doteq \{z : x \vee y \vee p' = x \vee z \vee p' = y \vee z \vee p'\}$$

The following proposition gives two properties of \sqcup_p which will be very useful in the sequel. The proof is immediate, hence omitted.

Proposition 3.4 For every $p, x, y, z \in X$ we have:

- 1. $z \in x \sqcup_p y \Leftrightarrow z \vee p' \in x \sqcup_p y$.
- 2. $x \sqcup_p y = (x \vee p') \sqcup_p (y \vee p') = (x \vee p') \sqcup_1 (y \vee p')$.

The next proposition shows that $x \sqcup_p y$ is a closed interval.

Proposition 3.5 For all $x, y, p \in X$ there exists some $a \in X$ such that $x \sqcup_p y = [a, x \vee y \vee p']$.

Proof. Choose any $x, y, p \in X$. First let us show that $x \sqcup_p y$ is a convex sublattice. Indeed, taking any $z, u \in x \sqcup_p y$ we have

$$\begin{array}{c} x \vee y \vee p' = x \vee z \vee p' = y \vee z \vee p' \\ x \vee y \vee p' = x \vee u \vee p' = y \vee u \vee p' \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} x \vee y \vee p' = x \vee z \vee u \vee p' = y \vee z \vee u \vee p' \\ x \vee y \vee p' = x \vee (z \wedge u) \vee p' = y \vee (z \wedge u) \vee p' \end{array} \right.$$

which implies that $z \vee u \in x \sqcup_p y$ and $z \wedge u \in x \sqcup_p y$. Hence $x \sqcup_p y$ is a sublattice. To show convexity, take any z, u, w such that $z \leq u \leq w$ and $z, w \in x \sqcup_p y$. Then

$$x \lor y \lor p' = x \lor z \lor p' = y \lor z \lor p' \Rightarrow$$

$$x \lor y \lor u \lor p' = x \lor z \lor u \lor p' = y \lor z \lor u \lor p' \Rightarrow$$

$$x \lor y \lor u \lor p' = x \lor u \lor p' = y \lor u \lor p';$$
(1)

and

$$x \lor y \lor p' = x \lor w \lor p' = y \lor w \lor p' \Rightarrow$$

$$x \lor y \lor u \lor p' = x \lor y \lor w \lor u \lor p' = y \lor w \lor u \lor p' \Rightarrow$$

$$x \lor y \lor u \lor p' = x \lor w \lor p' = y \lor w \lor p' = x \lor y \lor p'.$$
(2)

Combining (1) and (2) we obtain $x \vee y \vee p' = x \vee u \vee p' = y \vee u \vee p'$ which shows that $u \in x \sqcup_p y$. Next we show that $x \sqcup_p y$ contains its infimum and supremum. We have

$$\forall z \in x \sqcup_p y : x \vee y \vee p' = z \vee x \vee p' = z \vee y \vee p' \Rightarrow x \vee y \vee p' = \wedge_{z \in x \sqcup_p y} (z \vee x \vee p') = \wedge_{z \in x \sqcup_p y} (z \vee y \vee p') \Rightarrow x \vee y \vee p' = (\wedge_{z \in x \sqcup_p y} z) \vee x \vee p' = (\wedge_{z \in x \sqcup_p y} z) \vee y \vee p' \Rightarrow \wedge_{z \in x \sqcup_p y} z \in x \sqcup_p y$$

Similarly we can show $\forall_{z \in x \sqcup_p y} z \in x \sqcup_p y$. Hence, letting $a = \land_{z \in x \sqcup_p y} z$, $b = \lor_{z \in x \sqcup_p y} z$, we have $x \sqcup_p y = [a, b]$. Now, since $x \vee y \vee p' \in x \sqcup_p y$, we have $x \vee y \vee p' \leq b$. On the other hand $b \in x \sqcup_p y$ and so $x \vee y \vee p' = x \vee b \vee p' = y \vee b \vee p' \geq b$. Hence $b = x \vee y \vee p'$.

Corollary 3.6 For all $x, y, z \in X$ we have: $x \leq y \Rightarrow (\forall w \in x \sqcup_p z : \exists u \in y \sqcup_p z \text{ such that } w \leq u)$.

In Definition 3.7 we introduce a family of relationships between elements of X; as stated in Proposition 3.8, each of these relations is a preorder (the proof is immediate and hence omitted).

Definition 3.7 For all $x, y, p \in X$ we write:

1.
$$x \leq_p y \ (and \ y \geq_p x) \ iff \ x \vee p' \leq y \vee p'$$
.

2.
$$x =_p y$$
 iff $x \vee p' = y \vee p'$.

Proposition 3.8 For all $p \in X$: \leq_p is a preorder on X and $=_p$ is the associated equivalence relation (i.e. $x =_p y \Leftrightarrow (x \leq_p y \text{ and } y \leq_p x)$).

Proposition 3.9 summarizes the basic properties of \sqcup_p and hence is analogous to Proposition 3.2.

Proposition 3.9 For all $x, y, z, p \in X$ we have:

1.
$$x \in x \sqcup_p x$$
;

- 2. $x \sqcup_p y = y \sqcup_p x$;
- 3. $X = x \sqcup_n X$;
- 4. $(x \sqcup_p y) \sqcup_p z = x \sqcup_p (y \sqcup_p z);$
- 5. $x \in (x \sqcup_p y) \land x, x \in (x \land y) \sqcup_p x;$
- 6. $y \leq_p x \Leftrightarrow x \in x \sqcup_p y$.

Proof. 1 and 2 are obvious. For 3, clearly we have $x \sqcup_p X \subseteq X$. On the other hand, take any $z \in X$. Then $x \vee (x \vee z) \vee p' = x \vee z \vee p' = (x \vee z) \vee z \vee p'$, hence $z \in x \sqcup_p (x \vee z) \subseteq x \sqcup_p X$.

For 4 take any $u \in (x \sqcup_p y) \sqcup_p z$; then there exists $w \in x \sqcup_p y$ such that $u \in w \sqcup_p z$. But $w \in x \sqcup_p y$ implies $w \vee p' \in (x \vee p') \sqcup_1 (y \vee p')$ and $u \in w \sqcup_p z$ implies $u \in (w \vee p') \sqcup_1 (z \vee p')$. Now

$$u \in (w \vee p') \sqcup_{1} (z \vee p')$$

$$\subseteq ((x \vee p') \sqcup_{1} (y \vee p')) \sqcup_{1} (z \vee p')$$

$$= (x \vee p') \sqcup_{1} ((y \vee p') \sqcup_{1} (z \vee p'))$$

$$= \cup_{v \in y \sqcup_{p} z} (x \vee p') \sqcup_{1} v$$

$$= \cup_{v \in y \sqcup_{p} z} (x \vee p') \sqcup_{1} (v \vee p')$$

$$= \cup_{v \in y \sqcup_{p} z} x \sqcup_{p} v = x \sqcup_{p} (y \sqcup_{p} z).$$

So we have shown $(x \sqcup_p y) \sqcup_p z \subseteq x \sqcup_p (y \sqcup_p z)$. Similarly we show $x \sqcup_p (y \sqcup_p z) \subseteq (x \sqcup_p y) \sqcup_p z$ and we have proved 4.

For 5 we have $x = ((x \lor p') \lor (y \lor p')) \land x \in ((x \lor p') \sqcup_1 (y \lor p')) \land x = (x \sqcup_n y) \land x$. Also

$$(x \wedge y) \vee x \vee p' = (x \wedge y) \vee x \vee p' = x \vee x \vee p'$$

and hence $x \in (x \land y) \sqcup_p x$. For 6, we have $x \in x \sqcup_p y \Leftrightarrow x \lor y \lor p' = x \lor x \lor p' = y \lor x \lor p' \Leftrightarrow y \lor p' \leq x \lor p' \Leftrightarrow y \leq_p x.^2$

Next we show that $x \sqcup_p y$ has (for every $x, y, p \in X$) the p-cut properties.

Proposition 3.10 The following properties hold for all $x, y, p, q \in X$, $P \subseteq X$.

- 1. $x \sqcup_0 y = [0,1]$.
- 2. $p \leq q \Rightarrow x \sqcup_q y \subseteq x \sqcup_p y$.
- 3. $x \sqcup_{p \vee q} y = (x \sqcup_p y) \cap (x \sqcup_q y)$; more generally $x \sqcup_{\vee P} y = \cap_{p \in P} (x \sqcup_p y)$.

Proof. 1 is obvious. For 2: $p \le q \Rightarrow q' \le p'$. Now

$$z \in x \sqcup_q y \Rightarrow$$

$$x \vee y \vee q' = x \vee z \vee q' = y \vee z \vee q' \Rightarrow$$

$$x \vee y \vee q' \vee p' = x \vee z \vee q' \vee p' = y \vee z \vee q' \vee p' \Rightarrow$$

$$x \vee y \vee p' = x \vee z \vee p' = y \vee z \vee p' \Rightarrow$$

$$z \in x \sqcup_p y.$$

²We have also: $y \le x \Rightarrow x \in x \sqcup_p y$; but the reverse implication generally does not hold.

Regarding 3 we will prove the (more general) part: $x \sqcup_{\vee P} y = \cap_{p \in P} (x \sqcup_p y)$. Take any $P \subseteq X$. Since for every $p \in P$ we have $p \leq \vee P$, it follows from 2 that: $\forall p \in P : x \sqcup_{\vee P} y \subseteq x \sqcup_p y$. Hence $x \sqcup_{\vee P} y \subseteq \cap_{p \in P} (x \sqcup_p y)$. On the other hand

$$z \in \cap_{p \in P} (x \sqcup_{p} y) \Rightarrow$$

$$\forall p \in P : z \in x \sqcup_{p} y \Rightarrow$$

$$\forall p \in P : x \vee y \vee p' = x \vee z \vee p' = y \vee z \vee p' \Rightarrow$$

$$\wedge_{p \in P} (x \vee y \vee p') = \wedge_{p \in P} (x \vee z \vee p') = \wedge_{p \in P} (y \vee z \vee p') \Rightarrow$$

$$x \vee y \vee (\wedge_{p \in P} p') = x \vee z \vee (\wedge_{p \in P} p') = y \vee z \vee (\wedge_{p \in P} p') \Rightarrow$$

$$x \vee y \vee (\vee_{p \in P} p)' = x \vee z \vee (\vee_{p \in P} p)' = y \vee z \vee (\vee_{p \in P} p)' \Rightarrow$$

$$z \in x \sqcup_{\vee P} y$$

(where we have used complete distributivity and the fact that $\land_{p \in P} p' = (\lor_{p \in P} p)' = (\lor P)'$). Hence $\cap_{p \in P} (x \sqcup_p y) \subseteq x \sqcup_{\lor P} y$ and the proof is complete. \blacksquare

Corollary 3.11 For all $x, y \in X$, $\{x \sqcup_p y\}_{p \in X}$ is a closure system and $(\{x \sqcup_p y\}_{p \in X}, \dot{\cup}, \cap, \subseteq)$ is a lattice (where $(x \sqcup_p y) \dot{\cup} (x \sqcup_q y) = \bigcap_{r: x \sqcup_p y \subseteq x \sqcup_r y, x \sqcup_p y \subseteq x \sqcup_r y} (x \sqcup_r y)$).

Distributivity between \sqcup_p , \wedge and \vee holds in a weak sense. We first cite Proposition 3.12 which regards \sqcup_1 and has been proved in [14]. Then, in Proposition 3.13 we generalize the weak distributivity properties to \sqcup_p .

Proposition 3.12 For all $x, y, z \in X$ the following properties hold.

- 1. $x \wedge (y \sqcup_1 z) \subseteq (x \wedge y) \sqcup_1 (x \wedge z)$.
- 2. $x \vee (y \sqcup_1 z) \subseteq (x \vee y) \sqcup_1 (x \vee z)$.
- 3. $(x \sqcup_1 y) \vee (x \sqcup_1 z) \subseteq x \sqcup_1 (y \vee z)$.

Proposition 3.13 For all $x, y, z, p \in X$ the following properties hold.

- 1. $x \wedge (y \sqcup_n z) \subset (x \wedge y) \sqcup_n (x \wedge z)$.
- 2. $x \vee (y \sqcup_p z) \subseteq (x \vee y) \sqcup_p (x \vee z)$.
- 3. $(x \sqcup_n y) \vee (x \sqcup_n z) \subseteq x \sqcup_n (y \vee z)$.

Proof. For 1:

$$x \wedge (y \sqcup_{p} z) = x \wedge ((y \vee p') \sqcup_{1} (z \vee p'))$$

$$\subseteq (x \wedge (y \vee p')) \sqcup_{1} (x \wedge (z \vee p'))$$

$$= ((x \wedge y) \vee (x \wedge p')) \sqcup_{1} ((x \wedge z) \vee (x \wedge p'))$$

$$= ((x \wedge y) \vee (x' \vee p)') \sqcup_{1} ((x \wedge z) \vee (x' \vee p)')$$

$$= (x \wedge y) \sqcup_{x' \vee p} (x \wedge z)$$

$$\subseteq (x \wedge y) \sqcup_{p} (x \wedge z).$$

Similarly, for 2:

$$x \vee (y \sqcup_p z) = x \vee ((y \vee p') \sqcup_1 (z \vee p'))$$

$$\subseteq (x \vee y \vee p') \sqcup_1 (x \vee z \vee p')$$

$$= (x \vee y) \sqcup_n (x \vee z).$$

Similarly, for 3:

$$(x \sqcup_{p} y) \vee (x \sqcup_{p} z)$$

$$= ((x \vee p') \sqcup_{1} (y \vee p')) \vee ((x \vee p') \sqcup_{1} (z \vee p'))$$

$$\subseteq (x \vee p') \sqcup_{1} ((y \vee p') \vee (z \vee p'))$$

$$= (x \vee p') \sqcup_{1} (y \vee z \vee p')$$

$$= x \sqcup_{p} (y \vee z).$$

Corollary 3.14 For all $x, y, z, p \in X$ we have: $y \leq z \Rightarrow (x \sqcup_p y) \lor (x \sqcup_p z) \subseteq x \sqcup_p z$.

3.2 A Family of Crisp Join Spaces

In this section we put together the results of Section 3.1 to show that for every $p \in X$ the hyperalgebra (X, \sqcup_p) is a join space in the sense of Prenowitz and Jantosciak [20, 21].

Proposition 3.15 For all $p \in X$, (X, \sqcup_p) is a commutative hypergroup with 0 being its neutral element. In other words, the following hold for all $x, y, z \in X$.

- 1. $x \sqcup_n X = X$.
- 2. $x \sqcup_p y = y \sqcup_p x$.
- 3. $(x \sqcup_p y) \sqcup_p z = x \sqcup_p (y \sqcup_p z)$.
- 4. $x \in x \sqcup_p 0, 0 \in x \sqcup_p x$.

Proof. 1, 2 and 3 have been proved in Proposition 3.9. To verify 4, simply note that $x \vee 0 \vee p' = x \vee x \vee p' = 0 \vee x \vee p'$ and that $x \vee x \vee p' = x \vee 0 \vee p' = x \vee 0 \vee p'$.

Remark. If we call the element y an *opposite* of x when $0 \in x \sqcup_p y$, then $0 \in x \sqcup_p x$ indicates that x is "auto-opposite". However, note that x has many opposite elements, i.e. in general there exist y's such that $0 \in x \sqcup_p y$ and $x \neq y$. In particular, we have $0 \in x \sqcup_p y \Leftrightarrow y \vee p' = x \vee p'$.

Proposition 3.16 For all $x, y, z, p \in X$ we have:

$$z \in x \sqcup_p y \Leftrightarrow x \in y \sqcup_p z \Leftrightarrow y \in z \sqcup_p x.$$

Proof. We only show that $z \in x \sqcup_p y \Leftrightarrow x \in y \sqcup_p z$. Indeed: $z \in x \sqcup_p y \Leftrightarrow x \vee y \vee p' = x \vee z \vee p' = y \vee z \vee p' \Leftrightarrow x \in y \sqcup_p z$.

If we consider \sqcup_p to be a *join* hyperoperation, then we can define the corresponding *extension* hyperoperation $/_p$ in the standard manner of the theory of *join spaces*.

Definition 3.17 For every $p \in X$ we define the hyperoperation $/_p : X \times X \to \mathbf{P}(X)$ as follows:

$$x/_p y \doteq \{z : x \in y \sqcup_p z\}.$$

Proposition 3.18 For all $x, y, p \in X$ we have $x/py = x \sqcup_p y$.

Proof. Obvious by Proposition 3.16.

The next proposition establishes that the pair \sqcup_p , $/_p$ is a *join-extension* pair in the sense of the theory of *join spaces*. (3) is the so-called *transposition* property.

Proposition 3.19 For all $x, y, z, u, p \in X$, we have

$$(x/_{p}y) \sim (z/_{p}u) \Rightarrow (x \sqcup_{p} u) \sim (z \sqcup_{p} y). \tag{3}$$

Proof. In light of Proposition 3.18, (3) is equivalent to

$$(x \sqcup_p y) \sim (z \sqcup_p u) \Rightarrow (x \sqcup_p u) \sim (z \sqcup_p y). \tag{4}$$

Choose any $x, y, z, u, p \in X$. If $(x \sqcup_p y) \sim (z \sqcup_p u)$ then there exists some w such that $w \in x \sqcup_p y$ and $w \in z \sqcup_p u$. Then

$$w \in x \sqcup_p y \Rightarrow y \in x \sqcup_p w \subseteq x \sqcup_p (z \sqcup_p u) = z \sqcup_p (x \sqcup_p u)$$

$$\Rightarrow (\exists v \in x \sqcup_p u : y \in z \sqcup_p v)$$

$$\Rightarrow (\exists v \in x \sqcup_p u : v \in z \sqcup_p y)$$

$$\Rightarrow v \in (x \sqcup_p u) \cap (z \sqcup_p y)$$

$$\Rightarrow (x \sqcup_p u) \cap (z \sqcup_p y) \neq \emptyset.$$

Hence $(x \sqcup_p u) \sim (z \sqcup_p y)$.

In light of Propositions 3.15 and 3.19, the next corollary follows immediately.

Corollary 3.20 For every $p \in X$, (X, \sqcup_p) is a join space.

Here are some additional propositions regarding the family of subhypergroups of (X, \sqcup_p) .

Proposition 3.21 *For every* $x, y, p \in X$ *we have:*

- 1. $z \in x \sqcup_p x \Rightarrow z \in (x \vee y) \sqcup_p (x \vee y)$.
- 2. $(x \sqcup_n x) \cap (y \sqcup_n y) \subseteq (x \vee y) \sqcup_n (x \vee y)$.

Proof. For 1 note that $z \in x \sqcup_p x \Rightarrow z \leq x \leq x \vee y \vee p' \Rightarrow z \in (x \vee y) \sqcup_p (x \vee y)$. For 2, take any $z \in (x \sqcup_p x) \cap (y \sqcup_p y)$. Then

$$\left. \begin{array}{l} z \leq x \vee p' \\ z \leq y \vee p' \end{array} \right\} \Rightarrow z \leq x \vee y \vee p' \Rightarrow z \in (x \vee y) \sqcup_p (x \vee y) \, .$$

Proposition 3.22 For every $x, y, p \in X$:

1. $(x \sqcup_p x) \cap (y \sqcup_p y)$ is a join subspace of (X, \sqcup_p) ;

2. $x \sqcup_p x$ is a join subspace of (X, \sqcup_p) .

Proof. We prove 1 (obviously 2 is a special case). Clearly $(x \sqcup_p y) \sim (x \sqcup_p y)$ hence (from Proposition 3.19) $(x \sqcup_p x) \sim (y \sqcup_p y)$ as well. Take any $z_1, z_2 \in (x \sqcup_p x) \cap (y \sqcup_p y)$. Then

$$z_1 \le x \lor p', z_1 \le y \lor p', z_2 \le x \lor p', z_2 \le y \lor p'.$$

Now take any $w \in z_1 \sqcup_p z_2$. We will have

$$z_{1} \lor z_{2} \lor p' = w \lor z_{1} \lor p' = w \lor z_{2} \lor p'$$

$$\Rightarrow \begin{cases} w \le z_{1} \lor z_{2} \lor p' \le x \lor p' \Rightarrow w \in x \sqcup_{p} x \\ w \le z_{1} \lor z_{2} \lor p' \le y \lor p' \Rightarrow w \in y \sqcup_{p} y \end{cases}$$

$$\Rightarrow w \in (x \sqcup_{p} x) \cap (y \sqcup_{p} y).$$

Hence $(x \sqcup_p x) \cap (y \sqcup_p y)$ is closed with respect to \sqcup_p .

Furthermore, for any $z \in (x \sqcup_p x) \cap (y \sqcup_p y)$ we will show

$$((x \sqcup_p x) \cap (y \sqcup_p y)) \sqcup_p z = (x \sqcup_p x) \cap (y \sqcup_p y). \tag{5}$$

Indeed, take any $w \in (x \sqcup_p x) \cap (y \sqcup_p y)$, then from closedness with respect to \sqcup_p we obtain

$$w \sqcup_{p} z \subseteq (x \sqcup_{p} x) \cap (y \sqcup_{p} y) \Rightarrow$$

$$((x \sqcup_{p} x) \cap (y \sqcup_{p} y)) \sqcup_{p} z = \bigcup_{w \in (x \sqcup_{p} x) \cap (y \sqcup_{p} y)} w \sqcup_{p} z \subseteq (x \sqcup_{p} x) \cap (y \sqcup_{p} y). \tag{6}$$

On the other hand, take any $u \in (x \sqcup_p x) \cap (y \sqcup_p y)$; we have

$$\left. \begin{array}{l} z \in (x \sqcup_p x) \cap (y \sqcup_p y) \\ u \in (x \sqcup_p x) \cap (y \sqcup_p y) \end{array} \right\} \Rightarrow z \vee u \in (x \sqcup_p x) \cap (y \sqcup_p y)$$

and $z \in (z \vee u) \sqcup_p z \subseteq ((x \sqcup_p x) \cap (y \sqcup_p y)) \sqcup_p z$. Hence

$$(x \sqcup_p x) \cap (y \sqcup_p y) \subseteq ((x \sqcup_p x) \cap (y \sqcup_p y)) \sqcup_p z. \tag{7}$$

From (6) and (7) we obtain (5) and we conclude that $(x \sqcup_p x) \cap (y \sqcup_p y)$ is a subhypergroup of (X, \sqcup_p) . It is also a join subspace, since $/_p = \sqcup_p$ possesses the transposition property and $(x \sqcup_p x) \cap (y \sqcup_p y)$ is closed with respect to $/_p$.

Proposition 3.23 For every $x, y, p \in X$ we have: $(x \sqcup_p x) \lor (y \sqcup_p y) \subseteq (x \lor y) \sqcup_p (x \lor y)$.

Proof. Take any $z \in (x \sqcup_p x) \vee (y \sqcup_p y)$, then there exists some $w \in x \sqcup_p x$ and some $u \in y \sqcup_p y$ such that $z = w \vee u$; since $w \leq x \vee p'$ and $u \leq y \vee p'$ it follows that $z = w \vee u \leq x \vee y \vee p'$ and so $z \in (x \vee y) \sqcup_p (x \vee y)$.

3.3 A Family of Crisp "Almost-HyperLattices"

Let us also make some brief remarks about the hyperalgebra $(X, \sqcup_p, \wedge, \leq_p)$. The following proposition summarizes its properties.

Proposition 3.24 For all $x, y, z, p \in X$ the following hold.

1.
$$x = x \wedge x, x \in x \sqcup_p x$$
.

- 2. $x \wedge y = y \wedge x$, $x \sqcup_p y = y \sqcup_p x$.
- 3. $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \sqcup_p y) \sqcup_p z = x \sqcup_p (y \sqcup_p z).$
- 4. $x \in (x \sqcup_p y) \land x, x \in (x \land y) \sqcup_p x,$
- 5. $y \le x \Leftrightarrow x = x \land y, \ y \le_p x \Leftrightarrow x \in x \sqcup_p y$.

Proof. The first parts of 1-3 and 5 are classical; 4 as well as the second parts of 1-3 and 5 have been proved in Proposition 3.9. ■

Mittas and Konstantinidou defined hyperlattices in [13] as hyperalgebras which satisfy five axioms³. Four of these axioms are identical to properties 1-4 of Proposition 3.24. The fifth axiom in [13] is similar to property 5 of Proposition 3.24, but involves an order relation. Hence $(X, \sqcup_p, \wedge, \leq_p)$ (which involves the preorder \leq_p) is "almost" a hyperlattice. Similarly to hyperlattices, $(X, \sqcup_p, \wedge, \leq_p)$ possesses many properties which are analogous to classical lattice properties. A complete study of $(X, \sqcup_p, \wedge, \leq_p)$ will be presented elsewhere; here we only give one property which is analogous to a classical property of distributive lattices.

Proposition 3.25 For all $x, y, z, p \in X$ we have

$$\left. \begin{array}{l} x \sqcup_p z = y \sqcup_p z \\ x \wedge z = y \wedge z \end{array} \right\} \Rightarrow x \vee p' = y \vee p'.$$

Proof. We have seen that there exist a, b such that $x \sqcup_p z = [a, x \vee z \vee p']$ and $y \sqcup_p z = [b, y \vee z \vee p']$. Hence $x \vee z \vee p' = y \vee z \vee p'$. Also, since $x \wedge z = y \wedge z$ we have $(x \wedge z) \vee p' = (y \wedge z) \vee p'$. Then we get

$$(x \lor p') \lor (z \lor p') = (y \lor p') \lor (z \lor p')$$
$$(x \lor p') \land (z \lor p') = (y \lor p') \land (z \lor p')$$

and so $x \vee p' = y \vee p'$ by distributivity. \blacksquare

4 The L-Fuzzy Nakano Hyperoperation

4.1 Definition and Properties

We now proceed to synthesize the L-fuzzy hyperoperation \sqcup using the crisp hyperoperations \sqcup_p as its p-cuts. We will use a form of the classical construction presented in Section 2.

Definition 4.1 For all $x, y \in X$ we define the L-fuzzy set $x \sqcup y$ by defining for every $z \in X$:

$$(x \sqcup y)(z) \doteq \vee \{q : z \in x \sqcup_q y\}. \tag{8}$$

Proposition 4.2 For all $x, y, p \in X$ we have: $(x \sqcup y)_p = x \sqcup_p y$.

Proof. This follows from Definition 4.1 and Proposition 2.8.

Proposition 4.3 For all $x, p \in X$, for all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we have:

1.
$$x \sqcup_p A_p \subseteq (x \sqcup \widetilde{A})_p$$
;

³This axiomatic definition was intended to generalize the classical lattice concept. Further work on hyperlattices appears in [22, 23] and several other places.

2.
$$A_p \sqcup_p B_p \subseteq \left(\widetilde{A} \sqcup \widetilde{B}\right)_n$$
.

Proof. For 1, suppose $y \in x \sqcup_p A_p$, then there exists some $z \in A_p$ such that $y \in x \sqcup_p z = (x \sqcup z)_p$. Hence $\widetilde{A}(z) \geq p$ and $(x \sqcup z)(y) \geq p$. Now

$$\left(x \sqcup \widetilde{A}\right)(y) = \vee_{a \in X} \left(\widetilde{A}\left(a\right) \wedge \left(a \sqcup x\right)(y)\right) \geq \widetilde{A}\left(z\right) \wedge \left(z \sqcup x\right)(y) \geq p \Rightarrow y \in \left(x \sqcup \widetilde{A}\right)_{p}$$

and we have proved 1.

For 2, suppose $y \in A_p \sqcup_p B_p$, then there exist $x \in A_p$ and $z \in B_p$ such that $y \in x \sqcup_p z = (x \sqcup z)_p$. Hence $\widetilde{A}(x) \geq p$, $\widetilde{B}(z) \geq p$ and $(x \sqcup z)(y) \geq p$. Now

$$\left(\widetilde{A}\sqcup\widetilde{B}\right)\left(y\right)=\vee_{a,b\in X}\left(\widetilde{A}\left(a\right)\wedge\widetilde{B}\left(b\right)\wedge\left(a\sqcup b\right)\left(y\right)\right)\geq\widetilde{A}\left(x\right)\wedge\widetilde{B}\left(z\right)\wedge\left(x\sqcup z\right)\left(y\right)\geq p\Rightarrow y\in\left(\widetilde{A}\sqcup\widetilde{B}\right)_{p}$$

and we have proved 2. \blacksquare

Proposition 4.4 For all $x, y, z, p \in X$ we have:

$$(x \sqcup y)(z) \ge p \Leftrightarrow (x \sqcup y)(z \vee p') \ge p \Leftrightarrow ((x \vee p') \sqcup (y \vee p'))(z) \ge p.$$

Proof. $(x \sqcup y)(z) \geq p \Leftrightarrow z \in x \sqcup_p y \Leftrightarrow z \vee p' \in x \sqcup_p y \Leftrightarrow (x \sqcup y)(z \vee p') \geq p$. Also, $(x \sqcup y)(z) \geq p \Leftrightarrow z \in x \sqcup_p y \Leftrightarrow z \in (x \vee p') \sqcup_p (y \vee p') \Leftrightarrow z \in ((x \vee p') \sqcup (y \vee p'))_p \Leftrightarrow ((x \vee p') \sqcup (y \vee p'))(z) \geq p$.

Proposition 4.5 For all $x, y, z, u \in X$ we have:

1.
$$u \in x \sqcup_1 y \Rightarrow (x \sqcup y)(u) = 1$$
.

2.
$$u \in (x \sqcup_1 y) \land z \Rightarrow ((x \sqcup y) \land z)(u) = 1$$

Proof. 1 is immediate. For 2, take any $u \in (x \sqcup_1 y) \wedge z$. Then there exists some w such that $w \in x \sqcup_1 y$ and $u = w \wedge z$. Then

$$\left(\left(x\sqcup y\right)\wedge z\right)\left(u\right)=\vee_{v\in X}\left(\left(x\sqcup y\right)\left(v\right)\wedge\left(v\wedge z\right)\left(u\right)\right)=\vee_{v:u=v\wedge z}\left(x\sqcup y\right)\left(v\right)\geq\left(x\sqcup y\right)\left(w\right)=1.$$

Proposition 4.6 For all $x, y, p \in X$ the following hold.

1.
$$(1 \sqcup x)(1) = 1$$
; $(0 \sqcup x)(x) = 1$; $(x \sqcup x)(x) = 1$.

2.
$$(x \sqcup y)(x \vee y) = 1$$
; $((x \wedge y) \sqcup x)(x) = 1$; $((x \sqcup y) \wedge x)(x) = 1$.

Proof. Regarding 1, by the first part of Proposition 4.5 we have: $(1 \sqcup x)(1) = 1$ (because $1 \in 1 \sqcup_1 x$); $(0 \sqcup x)(x) = 1$ (because $x \in 0 \sqcup_1 x$); $(x \sqcup x)(x) = 1$ (because $x \in x \sqcup_1 x$).

Regarding 2, by the first part of Proposition 4.5 we have: $(x \sqcup y)(x \vee y) = 1$ (because $x \vee y \in x \sqcup_1 y$); $((x \wedge y) \sqcup x)(x) = 1$ (because $x \in (x \wedge y) \sqcup_1 x$). Also, by the second part of Proposition 4.5 $((x \sqcup y) \wedge x)(x) = 1$, because $x \in (x \sqcup_1 y) \wedge x$.

Proposition 4.7 For all $x, y, z, p \in X$ the following hold.

1.
$$(x \sqcup x)(x) = 1$$
.

- 2. $x \sqcup y = y \sqcup x$
- 3. $x \sqcup \widetilde{X} = \widetilde{X}$.
- 4. $x \sqcup_p y \sqcup_p z \subseteq (x \sqcup (y \sqcup z))_p \cap ((x \sqcup y) \sqcup z)_p$.
- 5. $y \leq_p x \Leftrightarrow (x \sqcup y)(x) \geq p$.

Proof. 1 has been proved as part of Proposition 4.6. 2 is immediate. For 3, take any $u \in X$, then

$$\left(x \sqcup \widetilde{X}\right)(u) = \vee_{y \in X} \left(x \sqcup y\right)(u) \ge \left(x \sqcup \left(x \vee u\right)\right)(u) = 1$$

since $u \in x \sqcup_1 (x \vee u)$. Hence $(x \sqcup \widetilde{X})(u) = 1 = \widetilde{X}(u)$. For 4 take any $u \in x \sqcup_p y \sqcup_p z$. Then there exists some w such that $w \in y \sqcup_p z$ and $u \in x \sqcup_p w$. Now

$$u \in x \sqcup_p w \subseteq x \sqcup_p (y \sqcup_p z) = x \sqcup_p (y \sqcup z)_p \subseteq (x \sqcup (y \sqcup z))_p$$

(from part 1 of Proposition 4.3). Hence $x \sqcup_p y \sqcup_p z \subseteq (x \sqcup (y \sqcup z))_p$. In similar manner we show $x \sqcup_p y \sqcup_p z \subseteq ((x \sqcup y) \sqcup z)_p$ and we have proved 4. For 5: $y \leq_p x \Leftrightarrow x \in x \sqcup_p y = (x \sqcup y)_p \Leftrightarrow (x \sqcup y)(x) \geq p$.

Remark. Property 4 of the above proposition is similar to the weak associativity of H_v structures [12, 25, 26]. Indeed, for every $p \in X$ we have $(x \sqcup (y \sqcup z))_p \sim ((x \sqcup y) \sqcup z)_p$ and so $x \sqcup (y \sqcup z) \sim_p (x \sqcup y) \sqcup z$.

We continue with some distributivity properties.

Proposition 4.8 For all $x, y, z \in X$ the following properties hold.

- 1. $x \wedge (y \sqcup z) \subseteq (x \wedge y) \sqcup (x \wedge z)$.
- 2. $x \lor (y \sqcup z) \subset (x \lor y) \sqcup (x \lor z)$.
- 3. $(x \sqcup y) \cap (x \sqcup z) \subseteq x \sqcup (y \vee z)$.

Proof. To prove 1, take any $w \in X$ and define $s = (x \wedge (y \sqcup z))(w), t = ((x \wedge y) \sqcup (x \wedge z))(w)$. Then

$$s = \vee_{b \in X} \left(\left(y \sqcup z \right) \left(b \right) \wedge \left(x \wedge b \right) \left(w \right) \right) = \vee_{b \in B} \left(y \sqcup z \right) \left(b \right)$$

where $B = \{b : w = x \land b\}$. Now, for every $b \in B$ let $s_b = (y \sqcup z)(b)$. Then $s = \bigvee_{b \in B} s_b$. Hence

$$\forall b \in B : b \in y \sqcup_{s_b} z \Rightarrow$$

$$\forall b \in B : b \wedge x = w \in (y \sqcup_{s_b} z) \wedge x \subseteq (y \wedge x) \sqcup_{s_b} (z \wedge x) \Rightarrow$$

$$\forall b \in B : s_b \le ((y \wedge x) \sqcup (z \wedge x)) (w) = t \Rightarrow \forall_{b \in B} s_b \le t \Rightarrow$$

$$(x \wedge (y \sqcup z)) (w) \le ((x \wedge y) \sqcup (x \wedge z)) (w)$$

which completes the proof of 1.

Similarly, for 2,take any $w \in X$ and define $s = (x \vee (y \sqcup z))(w), t = ((x \vee y) \sqcup (x \vee z))(w)$. Then

$$s = \vee_{b \in X} ((y \sqcup z) (b) \land (x \lor b) (w)) = \vee_{b \in B} (y \sqcup z) (b)$$

where $B = \{b : w = x \vee b\}$. Now, for every $b \in B$ let $s_b = (y \sqcup z)(b)$. Then $s = \bigvee_{b \in B} s_b$. Hence

$$\forall b \in B : b \in y \sqcup_{s_b} z \Rightarrow$$

$$\forall b \in B : b \lor x = w \in (y \sqcup_{s_b} z) \lor x \subseteq (y \lor x) \sqcup_{s_b} (z \lor x) \Rightarrow$$

$$\forall b \in B : s_b \le ((y \lor x) \sqcup (z \lor x)) (w) = t \Rightarrow \lor_{b \in B} s_b \le t \Rightarrow$$

$$(x \lor (y \sqcup z)) (w) \le ((x \lor y) \sqcup (x \lor z)) (w)$$

which completes the proof of 2.

Finally, for 3 to be true we must have for every $w \in X$

$$(x \sqcup y) (w) \land (x \sqcup z) (w) \le (x \sqcup (y \lor z)) (w).$$

Define $r = (x \sqcup y)(w)$, $s = (x \sqcup z)(w)$, $t = (x \sqcup (y \vee z))(w)$. Then

$$w \in x \sqcup_r y \subseteq x \sqcup_{r \wedge s} y \Rightarrow y \in x \sqcup_{r \wedge s} w$$
$$w \in x \sqcup_r z \subseteq x \sqcup_{r \wedge s} z \Rightarrow z \in x \sqcup_{r \wedge s} w$$

hence $y \lor z \in x \sqcup_{r \land s} w$ which implies $w \in x \sqcup_{r \land s} (y \lor z)$. But then $t = (x \sqcup (y \lor z))(w) \ge r \land s$ and 3 has been proved.

4.2 An L-Fuzzy Join Space

Proposition 4.9 (X, \sqcup) is a L-fuzzy commutative hypergroup, with neutral element, i.e. for all $x, y, z \in X$ the following hold.

- 1. $x \sqcup \widetilde{X} = \widetilde{X}$.
- $2. x \sqcup y = y \sqcup x.$
- 3. $x \sqcup_p y \sqcup_p z \subseteq (x \sqcup (y \sqcup z))_p \cap ((x \sqcup y) \sqcup z)_p$.
- 4. $(x \sqcup 0)(x) = 1$.
- 5. $(x \sqcup x)(x) = 1$.

Proof. 1, 2 and 3 have been proved in Proposition 4.7. 4 and 5 have been proved in Proposition 4.6. ■

Proposition 4.10 For all $x, y, z \in X$ we have:

$$(x \sqcup y)(z) \ge p \Leftrightarrow (y \sqcup z)(x) \ge p \Leftrightarrow (z \sqcup x)(y) \ge p.$$

Proof. $(x \sqcup y)(z) \geq p \Leftrightarrow z \in x \sqcup_p y \Leftrightarrow x \in y \sqcup_p z \Leftrightarrow (y \sqcup z)(x) \geq p$. The second equivalence is proved similarly. \blacksquare

We can define the L-fuzzy hyperoperation / to be the one which has p-cuts the hyperoperations / $_p$. If we consider \sqcup to be a *join* hyperoperation, then / is the corresponding *extension* hyperoperation as usually defined in the theory of *join spaces*.

Definition 4.11 The L-fuzzy hyperoperation / is defined in terms of the $/_p$, hyperoperations, as follows: for all $x, y, z \in X$: we set

$$(x/y)(z) = \vee \{p : z \in x/_p y\}.$$

Proposition 4.12 For all $x, y, p \in X$ we have $(x/y)_p = x/_p y = x \sqcup_p y$.

Proof. That $(x/y)_p = x/py$ follows from Definition 4.11; that $x/py = x \sqcup_p y$ has been proved in Proposition 3.18. \blacksquare

Corollary 4.13 For all $x, y \in X$ we have $x/y = x \sqcup y$.

Proposition 4.14 For all $x, y, z, u, p \in X$, the following holds.

$$(x/y) \sim_p (z/u) \Rightarrow (x \sqcup u) \sim_p (y \sqcup z).$$
 (9)

Proof. Similarly to the crisp case, (9) is equivalent to

$$(x \sqcup y) \sim_p (z \sqcup u) \Rightarrow (x \sqcup u) \sim_p (y \sqcup z)$$
.

Now, if $(x \sqcup y) \sim_p (z \sqcup u)$ then $(x \sqcup y)_p \sim (z \sqcup u)_p$. Hence there exists some w such that $(x \sqcup y)(w) \geq p$ and $(z \sqcup u)(w) \geq p$, which means $w \in (x \sqcup_p y) \cap (z \sqcup_p u)$. Then

$$(x \sqcup_p y) \sim (z \sqcup_p u) \Rightarrow (x \sqcup_p u) \sim (y \sqcup_p z) \Rightarrow (x \sqcup u)_p \sim (y \sqcup z)_p.$$

and the proof is complete.

Let us now give the definition of an L-fuzzy p-join space. This definition is based on the previously mentioned definition of hypergroup [7] with the addition of a form of the extension property.

Definition 4.15 Given a L-fuzzy hyperoperation $\circ: X \times X \to \mathbf{F}(X)$, the hyperstructure (X, \circ) is called L-fuzzy p-join space if it is a commutative L-fuzzy hypergroup and also satisfies for all $x, y, z, u, p \in X$ the property:

$$x \wr y \sim_p z \wr u \Rightarrow x \circ u \sim_p y \circ z$$

where $x \wr y \doteq \{z : x \in z \circ y\}$.

In light of Propositions 4.9 and 4.14, the next proposition follows immediately.

Proposition 4.16 (X, \sqcup) is an L-fuzzy p-join space.

Here are some additional propositions regarding the family of subhypergroups of (X, \sqcup) .

Proposition 4.17 For every $x, y \in X$ we have:

- 1. $x \sqcup x \subseteq (x \vee y) \sqcup (x \vee y)$.
- 2. $(x \sqcup x) \cap (y \sqcup y) \subseteq (x \vee y) \sqcup (x \vee y)$.

Proof. Take any $p \in X$ and any $z \in x \sqcup_p x$, then $z \vee x \vee p' = x \vee p' \Rightarrow z \vee x \vee y \vee p' = x \vee y \vee p'$. Hence $z \in (x \vee y) \sqcup_p (x \vee y)$ and so

$$(x \sqcup x)_p = x \sqcup_p x \subseteq (x \vee y) \sqcup_p (x \vee y) = ((x \vee y) \sqcup (x \vee y))_p.$$

Since the above holds for every $p \in X$, we have proved 1. In similar manner we show $(y \sqcup y)_p \subseteq ((x \vee y) \sqcup (x \vee y))_p$. Hence for every $p \in X$ we have

$$\left(\left(x\sqcup x\right)\cap\left(y\sqcup y\right)\right)_{p}=\left(x\sqcup x\right)_{p}\cap\left(y\sqcup y\right)_{p}\subseteq\left(x\vee y\right)\sqcup_{p}\left(x\vee y\right)=\left(\left(x\vee y\right)\sqcup\left(x\vee y\right)\right)_{p};$$

since the above holds for every $p \in X$, we have proved 2.

Proposition 4.18 For every $x, y, p \in X$ we have: $(x \sqcup x) \lor (y \sqcup y) \subseteq (x \lor y) \sqcup (x \lor y)$.

Proof. Take any $z \in X$. From Proposition 4.17 we have $x \sqcup x \subseteq (x \vee y) \sqcup (x \vee y)$ and hence

$$(x \sqcup x) (z) \le ((x \lor y) \sqcup (x \lor y)) (z).$$

Similarly

$$(y \sqcup y)(z) \leq ((x \vee y) \sqcup (x \vee y))(z)$$
.

Hence

$$(x \sqcup x) (z) \lor (y \sqcup y) (z) \le ((x \lor y) \sqcup (x \lor y)) (z) \Rightarrow$$
$$((x \sqcup x) \cup (y \sqcup y)) (z) \le ((x \lor y) \sqcup (x \lor y)) (z)$$

and we are done. \blacksquare

4.3 An L-Fuzzy "Almost-Hyperlattice"

Similarly to the crisp case, the L-fuzzy hyperalgebra (X, \sqcup, \wedge) can be characterized as an *L-fuzzy* almost-hyperlattice. Its basic properties are given by the following proposition.

Proposition 4.19 For all $x, y, z \in X$ the following hold.

- 1. $(x \sqcup x)(x) = 1, x = x \land x$.
- 2. $x \sqcup y = y \sqcup x$, $x \wedge y = y \wedge x$.
- 3. $x \sqcup_p y \sqcup_p z \subseteq ((x \sqcup y) \sqcup z)_n \cap (x \sqcup (y \sqcup z))_n, (x \wedge y) \wedge z = x \wedge (y \wedge z).$
- 4. $((x \sqcup y) \land x)(x) = 1$, $((x \land y) \sqcup x)(x) = 1$,
- 5. $y \leq_p x \Leftrightarrow (x \sqcup y)(x) \geq p$.

Proof. 1, 2, 3 and 5 have been proved in Proposition 4.7. 4 follows immediately from $x \in (x \sqcup_p y) \land x$ and $x \in (x \land y) \sqcup_p x$, which have been proved in Proposition 3.9.

We see that properties 1-5 of Proposition 4.19 are L-fuzzy analogs of the hyperlattice axioms of Mittas and Konstantinidou [13]. The only difference from these axioms is that property 5 involves a preorder rather than an order. The study of (X, \sqcup, \wedge) will be presented in a future work, along with the study of (X, \sqcup_p, \wedge) mentioned in Section 3.3. We only give here the L-fuzzy analog of Proposition 3.25.

Proposition 4.20 For all $a, b, c \in X$ we have

$$\left. \begin{array}{l} x \sqcup z = y \sqcup z \\ x \wedge z = y \wedge z \end{array} \right\} \Rightarrow x = y.$$

Proof. From $x \sqcup z = y \sqcup z$ follows that, for every $p \in X$, $x \sqcup_p z = y \sqcup_p z$. Hence also $x \sqcup_1 z = y \sqcup_1 z$, i.e. $x \vee z = y \vee z$. Since also $x \wedge z = y \wedge z$, by distributivity we get x = y.

5 Discussion

We have presented a family of hyperoperations \sqcup_p which generalize the Nakano hyperoperation \sqcup_1 and used these as p-cuts to construct the L-fuzzy Nakano hyperoperation \sqcup . We have shown that (X, \sqcup_p) is a join space and (X, \sqcup_p) an L-fuzzy p-join space. Furthermore, we have seen that the hyperalgebra $(X, \sqcup_p, \wedge, \leq_p)$ is "almost" a hyperlattice and $(X, \sqcup, \wedge, \leq_p)$ is "almost" an L-fuzzy hyperlattice. Several topics suggest themselves for further investigation; let us conclude this work by briefly discussing some of them.

First, we have already mentioned that there is further scope for the study of the crisp hyperalgebra $(X, \sqcup_p, \wedge, \leq_p)$ and the L-fuzzy hyperalgebra $(X, \sqcup, \wedge, \leq_p)$.

Second, if we define the dual Nakano hyperoperations \sqcap_p by $x \sqcap_p y = \{z : x \land y \land p = x \land y \land p = x \land y \land p \}$, we can show that (X, \sqcap_p) is a join space; also, if we define $(x \sqcap y)(z) \doteq \forall \{q : z \in x \sqcap_q y\}$, then we can show that (X, \sqcap) is an L-fuzzy join space. In addition to properties which are exactly analogous to the ones obtained here, one could investigate the interrelationship of the \sqcup_p, \sqcap_p (for example their distributivity properties). Perhaps more interesting is the study of the hyperalgebra (X, \sqcup_p, \sqcap_p) which may turn out to be a Nakano superlattice similar to the one studied in [11].

Another topic of interest is the study of congruences with respect to \sqcup_p and/or \sqcap_p ; this would be a continuation of work on the congruences with respect to \sqcup_1 in [17] and for congruences with respect to both \sqcup_1 and \sqcap_1 in [11].

Finally, the study of the hyperalgebras (X, \sqcup_p) , $(X, \sqcup_p, \land, \leq_p)$ etc. may be particularly fruitful in the case when $(X, \leq, \lor, \land, ')$ is a *Boolean* rather than a deMorgan algebra.

References

- [1] G. Calugareanu and V. Leoreanu. "Hypergroups associated with lattices". *Ital. J. of Pure and Appl. Math.*, vol. 9, pp.165-173, 2001.
- [2] S.D. Comer, "Multi-Valued algebras and their graphical representations", preprint, Dep. of Mathematics and Computer Science, The Citadel, 1986.
- [3] P. Corsini, Prolegomena of Hypergroup Theory, Udine: Aviani, 1993.
- [4] P. Corsini. "Join spaces, power sets, fuzzy sets". In Algebraic Hyperstructures and Applications, Ed. M. Stefanescu, p.45-52, Palm Harbor: Hadronic Press, 1994.
- [5] P. Corsini and V. Leoreanu. "Join spaces associated with fuzzy sets". J. of Comb., Inf. and System Sci., vol. 20, p.293-303, 1995.
- [6] P. Corsini and V. Leoreanu. "Fuzzy sets and join spaces associated with rough sets". Rend. Circ. Mat. Palermo, vol. 51, pp. 527–536, 2002.
- [7] P. Corsini and I. Tofan. "On fuzzy hypergroups". PU.M.A. vol.8, pp.29-37, 1997.
- [8] J. Jantosciak, "Classical geometries as hypergroups", in Convegno su Ipergruppi, Altre Strutture Multivoche e loro Applicazioni, pp.93-104, Udine, 1985.
- [9] V. Leoreanu. "Direct limit and inverse limit of join spaces associated with fuzzy sets". Pure Math. and Appl., vol.11, pp.509-516, 2000.
- [10] Ath. Kehagias. "An example of L-fuzzy join space". Rend. Circ. Mat. Palermo, vol. 51, pp. 503–526, 2002.

- [11] Ath. Kehagias, K. Serafimidis and M. Konstantinidou. "A note on the congruences of the Nakano superlattice and some properties of the associated quotients". *Rend. Circ. Mat. Palermo*, vol. 51, pp. 333–354, 2002.
- [12] L. Konguetsof, T. Vougiouklis and S. Spartalis. "Sur les hyperstructures tres fines". Rend. Mat. Appl. vol.13, pp. 297–304, 1994.
- [13] M. Konstantinidou and J. Mittas. "An introduction to the theory of hyperlattices". *Math. Balkanica*, vol.7, pp.187-193, 1977.
- [14] M. Konstantinidou and K. Serafimidis. "Hyperstructures dérivées d'un trellis particulier". Rend. Mat. Appl. vol. 7, pp. 257–265, 1993.
- [15] R. Maddux. "Embedding modular lattices into relation algebras". *Algebra Uviv.*, vol.12, pp.242-246, 1981.
- [16] J. Mittas and M. Konstantinidou. "Introduction a l'hyperalgebre de Boole". *Math. Balk.*, vol.6, pp.314-320, 1976.
- [17] J. Mittas and M. Konstantinidou. "Contributions à la théorie des treillis avec des structures hypercompositionnelles y attachées". Riv. Mat. Pura Appl. vol. 14, pp.83–114, 1994.
- [18] T. Nakano, "Rings and partly ordered systems". Math. Zeitschrift, vol.99, pp.355-376, 1967.
- [19] H.T. Nguyen and E.A. Walker. A First Course on Fuzzy Logic, CRC Press, Boca Raton, 1997.
- [20] W. Prenowitz and J. Jantosciak. "Geometries and join spaces". J. Reine und Angew. Math., vol. 257, p.100-128, 1972.
- [21] W. Prenowitz and J. Jantosciak. Join Geometries, New York: Springer, 1979.
- [22] A. Rahnamai-Barghi. "The prime ideal theorem and semiprime ideals in meet-hyperlattices". *Ital. Journal of Pure and Applied Math.*, vol. 5, pp.53-60, 1999.
- [23] A. Rahnamai-Barghi. "The prime ideal theorem for distributive hyperlattices". *Ital. Journal of Pure and Applied Math.*, vol. 10, pp.75-78, 2001.
- [24] K. Serafimidis, Ath. Kehagias and M. Konstantinidou. "The L-fuzzy Corsini join hyperoperation". Ital. J. of Pure and Appl. Math., vol.12, pp.83-90, 2002.
- [25] S. Spartalis and T. Vougiouklis. "The fundamental relations of H_v -rings". Riv. Mat. Pura Appl., vol. 14, pp. 7–20, 1994.
- [26] T. Vougiouklis. Hyperstructures and Their Representations. Palm Harbor: Hadronic Press, 1994.
- [27] M.M. Zahedi and A. Hasankhani. "F-Polygroups". Int. J. Fuzzy Math., vol. 4, pp.533–548. 1996.
- [28] M.M. Zahedi and A. Hasankhani. "F-Polygroups (II)". Inf. Sciences, vol.89, pp.225-243, 1996.