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Abstract

In this paper we present a procedure for the segmentation of hydrological and enviromental time

series. We consider the segmentation problem from a purely computational point of view which

involves the minimization of Hubert’s segmentation cost; in addition this least squares segmenta-

tion is equivalent to Maximum Likelihood segmentation. Our segmentation procedure maximizes

Likelihood and minimizes Hubert’s least squares criterion using a hidden Markov model (HMM)

segmentation algorithm. This algorithm is guaranteed to achieve a local maximum of the Likeli-

hood. We evaluate the segmentation procedure with numerical experiments which involve artificial,

temperature and river discharge time series. In all experiments, the procedure actually achieves the

global minimum of the Likelihood; furthermore execution time is only a few seconds, even for time

series with over a thousand terms.

Keywords: Hidden Markov model, time series, segmentation, Maximum Likelihood, river discharge.

1 Introduction

In this paper we consider the following time series segmentation problem: a given time series must be

divided into several segments (i.e. blocks of contiguous data) so that each segment is homogeneous,
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while contiguous segments are heterogeneous (with homogeneity being defined in terms of some ap-

propriate segment statistics). This problem falls within the framework of change point detection and

estimation. Such problems appear often in hydrology and environmetrics. For example, in climate

change studies it is sometimes required to test a river flow, rainfall or temperature time series for

sudden changes of its mean value.

Our starting point is the use of a hidden Markov model (HMM) to formulate time series segmen-

tation as a maximum likelihood (ML) problem. We use the HMM formulation to derive a procedure

which yields the “optimal segmentation”. Optimality can be understood in two senses. From the prob-

abilistic point of view, our procedure yields the Maximum Likelihood (ML) segmentation. On the other

hand, from a purely numerical point of view, our procedure minimizes the total square distance be-

tween within-segment samples and the corresponding segment means. This least-squares segmentation

criterion has been previously used by Hubert in [17, 18].

Indeed, the major goal of the current paper is to improve (with respect to speed of execution and

to the length of time series examined) Hubert’s procedure for the segmentation of time series with

multiple change points. Our HMM-based procedure is quite fast and can handle longer time series

than the ones treated by Hubert (specifically, it segments time series with over a thousand samples

in a few seconds). Let us stress at this point that our main concern is computational efficiency, not

hydrological realism. In other words, the HMM should be understood as a computational aid, not as

a physically plausible model.

Many types of hidden Markov models appear in the literature of pattern recognition, engineering,

econometrics, biology and also in the hydrological literature. The particular type of HMM used in this

paper is a pair of stochastic processes with the following properties.

1. The unobservable (“hidden”) state process is Markovian and can take a finite number of values:

1, 2, ..., K.

2. At every time step, the state process can either remain unchanged or increase by one.

3. At every time step the observable process generates a sample from a normal distribution with

mean value depending on the current state.

Now assume that the time series x1, x2, ..., xT is a realization of the observable process, and corre-

spond one segment to every time interval during which the state process does not change value. Under

2



this correspondence, the segmentation problem is reduced to estimating the underlying state sequence

z1, z2, ..., zT .

Many variations of HMM’s appear in the literature, but the abovementioned connection between

state estimation and time series segmentation is always valid. Indeed, the first major application of

HMM’s was in speech recognition, where the goal was to divide a speech waveform into segments, each

segment corresponding to a phoneme. Early papers such as [2, 3, 4, 28] deal with discrete valued time

series; extensions to continuous valued time series have also been used (for instance [22, 23, 24]). An

often cited review of HMM’s is [36]; a more recent review is [5].

Let us now turn to the hydrological segmentation literature. An extensive introduction to sequential

segmentation methods appears in [15, pp.655-733]. Regarding nonsequential methods, important early

papers are [27], [9] and [7, 8]. Some examples of recent work include [16, 26] and [31, 40] and (from

the Bayesian point of view) [32, 33, 34, 35] and [37] (these are just a few samples of the very extensive

literature).

The references of the previous paragraph deal with a single change point. As already mentioned,

a computational segmentation procedure which can handle multiple change points has been presented

by Hubert [17, 18]. As far as we know there are few other explicit references to the multiple change

point problem in the hydrological literature.

Many hydrologists have used HMM’s as realistic models of hydrological processes. A recent and

extensive review of stochastic models of climate time series is [41] which cites many papers that use

HMM’s. In fact, an early model of this type appears in [38]; this model can handle multiple change

points, is very much related to our approach and has been used in a Bayesian setting in [13] (the

possibility of using HMM’s for hydrological time series segmentation was mentioned earlier in [35]). A

related approach appears in [42, 43, 44]. Other HMM-based models appear in [1], [14], [19], [20, 21]

and (in combination with AR models) in [29, 45]. According to the previously mentioned association

of segments with HMM states, these papers are implicitly connected to multiple change point segmen-

tation. However, the main goal of these papers is modelling the precipitation process, predicting rain

levels etc. Hence their point of view is rather different from ours.

This paper is organized as follows. In Section 2 Hubert’s formulation of the time series segmentation

problem is reviewed. In Section 3 the segmentation problem is formulated in terms of hidden Markov

models and Maximum Likelihood estimation. The segmentation procedure is presented in 4. Some
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segmentation experiments are presented in Section 5. In Section 6 our results are summarized and some

future research directions proposed. Finally, some technical points are presented in two Appendices.

2 Segmentation as Optimization

The formulation and notation introduced in this section is essentially the one used in [17, 18]. Given

a time series x = (x1, x2, ... , xT ), a segmentation is a sequence of times t = (t0, t1, ... , tK) which

satisfy 0 = t0 < t1 < ... < tK−1 < tK = T . The intervals of integers [t0 + 1, t1], [t1 + 1, ..., t2], ... ,

[tK−1 +1, tK ] are called segments, the times t0, t1, ... , tK are called change points and K, the number

of segments, is called the order of the segmentation. The cost of segmentation t = (t0, ..., tK) is defined

by

DK(t) =
K∑

k=1

tk∑
t=tk−1+1

(xt − µ̂k)
2 . (1)

where

Tk = tk − tk−1, µ̂k =

∑tk
t=tk−1+1 xt

Tk
, k = 1, 2, ...,K. (2)

When DK has a small value, the segments are homogeneous in the sense that the xt’s are close to µ̂k

(for k = 1, 2, ...,K and t = tk−1 + 1, ..., tk ). The minimum segmentation cost is denoted by D̂K =

DK (̂t), where t̂ is the optimal K-th order segmentation. As observed in [17] we have

D̂1 ≥ D̂2 ≥ ... ≥ D̂T = 0 (3)

(in fact there is only one segmentation of order T , with every segment including a single time step).

In [17] it is noted that the number of possible segmentations grows exponentially with T . Hubert

uses a branch-and-bound approach to search efficiently the set of all possible segmentations. In [18,

p.299] is stated that this approach currently (in 2000) can segment time series with several tens of

terms but is not able “... to tackle series of much more than a hundred terms ...” because of the

combinatorial increase of computational burden.
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3 Hidden Markov Models and Maximum Likelihood Segmentation

Now the time series segmentation problem will be formulated as a problem of Maximum Likelihood

(ML) estimation. The connection of this to Hubert’s approach will be discussed in Section 4.3.3.

We represent a time series with change points as a hidden Markov model (HMM). The term “hidden

Markov model” denotes a broad class of stochastic processes; here a particular and somewhat restricted

type of HMM is used, as illustrated by the following example.

The annual flow of a river is denoted by Xt. Assume that, for the years t = 1, 2, ..., t1, Xt is a

normally distributed random variable with mean µ1 and standard deviation σ. In year t1 a transition

takes place and, for the years t = t1 + 1, t1 + 2, ..., t2, Xt is normally distributed with mean µ2 and

standard deviation σ. This process continues with transitions taking place in years t2, t3, ... , tK−1.

This process is illustrated in Figure 1. The (unobservable) states of the river flow are indicated by

circles and the possible transitions from state to state by arrows; the observable time series is indicated

by the double arrows emanating from the states.

Figure 1 to appear here

The above mechanism (which can be applied not only to river flows, but to a variety of time series)

can be described by a pair of stochastic processes (Zt,Xt) (with t = 0, 1, 2, ...) defined as follows.

1. The state process Zt is a finite state Markov chain with K states; it has initial probability vector

π and transition probability matrix P . We assume that Z0 = 1 with certainty. Hence, for any T ,

the joint probability function of Z1, Z2, ..., ZT is

Pr(Z1 = z1, Z2 = z2, ..., ZT = zT ) = πz0 · Pz0,z1 · Pz1,z2 · ... · PzT−1,zT
, (4)

where π1 = 1, πk = 0 for k = 2, 3, ...,K and Pk,j = 0 for k = 1, 2, ...,K and all j other than k,

k + 1. The parameters of this process are K and P .

2. The observation process Xt is a sequence of conditionally independent, normally distributed ran-

dom variables with mean µZt and standard deviation σ. More precisely, for every t, the joint
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probability density of X1,X2, ...,Xt conditioned on Z1, Z2, ..., Zt is

fX1,X2,...,Xt|Z1,Z2,...,Zt
(x1, x2, ..., xt|z1, z2, ..., zt) = 1(√

2πσ
)t t∏

i=1

e−(xi−µzi)
2
/2σ2

. (5)

The parameters of this process are µ1, µ2, ... , µK and σ. We will use the notation M = [µ1, µ2,

... , µK ].

The (Zt,Xt) pair presented above and used throughout this paper is a left-to-right continuous

HMM [36]. “Left-to-right” refers to the structure of state transitions (as depicted in Figure 1) and

“continuous” refers to the fact that the observation process is continuous-valued. The model parameters

are K, P, M, σ.

There is a one-to-one correspondence between state sequences z= (z1, z2, ... , zT ) and segmentations

t = (t0, t1, ..., tK ′). Given a z, the corresponding t is obtained by locating the times tk such that

ztk �= ztk+1, for k = 1, 2, ...,K ′ − 1 (and t0 = 0, tK ′ = T ). The Markov chain described above allows

only left-to-right transitions, hence K ′ ≤ K, i.e. there will be at most K segments, and every segment

will be uniquely associated with a state.

Assuming that the observations x = (x1, x2, ... , xT ) are generated by a HMM (specified by K,

P, M, σ) the likelihood (i.e. the conditional probability) of every state sequence z (given x) can be

computed. In this manner, the ML state sequence ẑ and the ML segmentation t̂ can be obtained.

Some additional notation is required. The conditional likelihood of a state sequence z (given an

observation sequence x) is denoted by L1
K,T (z|x;P,M,σ) or, equivalently, by

L1
K,T (z1, z2, ..., zT |x1, x2, ..., xT ;P,M,σ) (6)

and the joint likelihood of a state sequence z and an observation sequence x is denoted by L2
K,T (z, x;

P , M, σ) or, equivalently, by

L2
K,T (z1, z2, ..., zT , x1, x2, ..., xT ;P,M,σ). (7)

L1
K,T and L2

K,T are understood as functions of z = (z1, z2, ..., zT ); the observations x = (x1, x2, ..., xT ),

the number of segments K, and the length of the time series T , as well as the parameters P, M, σ are
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assumed fixed. In place of T any t can be used; for instance

L2
K,t(z1, z2, ..., zt, x1, x2, ..., xt;P,M,σ). (8)

denotes the joint likelihood of the subsequences (z1, z2, ..., zt), (x1, x2, ..., xt) etc. Finally note that,

from (4), (5) follows

L2
K,T (z,x;P,M,σ) =

1(√
2πσ

)T T∏
t=1

(
Pzt−1,zt · e−(xt−µzt)

2
/2σ2

)
, (9)

where z0 = 1, according to the previously stated assumption.

Given a time series x , the ML state sequence ẑ is the one which maximizes L1
K,T (z|x;P,M,σ) as

a function of z. It is easy to see that

L1
K,T (z|x;P,M,σ) =

L2
K,T (z|x;P,M,σ)

A (x,K, T, P,M, σ)
(10)

where A (x,K, T, P,M, σ) is the marginal density of x1, x2, ... , xT and is independent of z. Hence ẑ

also maximizes L2
K,T (z,x;P,M,σ) (as a function of z only!).

4 The Segmentation Procedure

To obtain the ML estimation of z discussed above, two problems must be solved. First, assuming that

the parameters K, P, M, σ are known, an efficient algorithm is required to compute ẑ; this is the state

estimation step. Second, since usually K, P, M, σ will be unknown, a method for their estimation is

required; this is the parameter estimation step. The standard approach used in HMM problems is to

perform a parameter estimation step followed by a state estimation step, and to repeat this process

until convergence.

4.1 State Estimation

Assume first that the observations x and the parameters K, P , M, σ are fixed. Then the ẑ =

(ẑ1, ẑ2, ..., ẑT ) which maximizes L1
K,T (z|x;P,M,σ) as a function of z can be found by the Viterbi algo-
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rithm [12], a computationally efficient dynamic programming approach. From (10) follows

(ẑ1, ẑ2, ..., ẑT ) = arg max
z1,z2,...,zT

L2
K,T (z1, z2, ..., zT , x1, x2, ..., xT ;P,M,σ). (11)

Define

qk,t = max
z1,z2,...,zt−1

L2
K,t(z1, z2, ..., zt−1, k, x1, x2, ..., xt;P,M,σ), t = 1, 2, ..., T, k = 1, 2, ...,K (12)

By standard dynamic programming arguments [6], both ẑ = (ẑ1, ẑ2, ..., ẑT ) and the qk,t’s of (12) can

be computed recursively by the following algorithm; it takes as input the time series x1, x2, ..., xT and

the parameters K, P , M and σ and produces as output the optimal segmentation ẑ = (ẑ1, ẑ2, ...,

ẑT ) (with x1, x2, ..., xT and K, P , M, σ given).

Viterbi Algorithm

Forward Recursion

Set q1,0 = 1, q2,0 = q3,0 = ... = qk,0 = 0.

For t = 1, 2, ..., T

For k = 1, 2, ...,K

qk,t = max
1≤j≤K

(
qj,t−1 · Pj,k · e

−(xt−µk)2/2σ2

√
2πσ

)

rk,t = arg max
1≤j≤K

(
qj,t−1 · Pj,k · e

−(xt−µk)2/2σ2

√
2πσ

)
.

End

End

Backward Recursion

L̂2
K,T = max1≤k≤K (qk,T )

ẑT = argmax1≤k≤K (qk,T ).

For t = T, T − 1, ..., 2

ẑt−1 = rẑt,t.
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End

L̂2
K,T (the maximum value of L2

K,T , given x1, x2, ..., xT and K, P , M and σ) is obtained upon

completion of the forward recursion; the state sequence ẑ which achieves L̂2
K,T is obtained by the

backward recursion. According to the previous remarks, ẑ also maximizes L1
K,T . The execution time

of the algorithm has order O(T · K2), i.e. it is linear (rather than exponential) in the length of the

time series T . This makes the algorithm computationally feasible even for long time series.

4.2 Parameter Estimation

Next, we turn to the problem of estimating the parameters P , M, σ, assuming that a state sequence

z (and the corresponding segmentation t = (t0, t1,..., tK)) is given. A reasonable estimate for the

components of M = [µ1, µ2, ..., µK ] is:

µ̂k =

∑tk
t=tk−1+1 xt

Tk
, k = 1, 2, ...,K. (13)

One could estimate a separate σk for each segment as follows:

σ̂k =

√∑tk
t=tk−1+1 (xt − µ̂k)

2

Tk − 1
, k = 1, 2, ...,K. (14)

A simpler approach (which maintains compatibility with Hubert’s procedure) is to assume that

σ1 = σ2 = ... = σK = σ (15)

and use the following estimate:

σ̂ =

√∑T
t=1 (xt − µ̂)2
T − 1

=

√∑K
k=1

∑tk
t=tk−1+1 (xt − µ̂)2
T − 1

, (16)

where

µ̂ =
∑T

t=1 xt

T
. (17)
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Note that the estimate (16) is segmentation-independent, while the estimate (13) is segmentation-

dependent. The practical implication of this observation is that σ̂ is estimated once, while the µ̂k’s

must be reestimated every time a new estimate ẑ of the state sequence is computed.

We now turn to the estimation of the transition probability matrix P . The transition probabilities

are important parameters of the HMM because they control the length of the segments. In a left-to-

right HMM one has Pk,k+1 = 1 − Pk,k (for k = 1, 2, ...,K − 1), PK,K = 1 and Pk,j = 0 (for j different

from k and k + 1). Hence P has K − 1 free parameters, namely P1,1, P2,2, ... , PK−1,K−1. Several

estimates of the Pk,k are possible.

1. The simplest possible approach is to assume equal transition probabilities:

P1,1 = P2,2 = ... = PK−1,K−1 = p (18)

and (assuming that every state is traversed at least once) estimate p by

p̂ =
T −K
T

. (19)

In other words, p̂ is the number of time steps during which zt did not change, divided by the

total number of time steps.

2. A more sophisticated estimate of p makes use of the so-called forward probabilities ak,t and the

backward probabilities βk,t to obtain a recursive estimate p(i+1) in terms of a previous estimate

p(i), as follows

p(i+1) =

∑T
t=1

∑K
k=1 αk,t · p(i) · 1√

2πσ
· e−(xt+1−µzt+1)

2
/2σ2 · βk,t+1

T
. (20)

The significance of the α and β variables appearing in (20) is explained in Appendix A; they
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depend on the previous estimate p(i) and are computed by

α1,1 = 0, αk,1 = 0, k = 2, 3, ...,K; (21)

αk,t+1 =
K∑

n=1

αn,tP
(i)
n,k · e

−(xt+1−µzt+1)
2
/2σ2

√
2πσ

, k = 1, 2, ...,K, t = 1, 2, ..., T − 1; (22)

βk,t = 1, k = 1, 2, ...,K; (23)

βk,t =
K∑

n=1

P
(i)
k,n · e

−(xt+1−µzt+1)
2
/2σ2

√
2πσ

· βn,t+1, k = 1, 2, ...,K, t = T − 1, T − 2, ..., 1; (24)

(where P (i)
k,k = p(i), P (i)

k,k+1 = 1− p(i) and all the remaining P (i)
k,n equal zero).

3. It is possible to assume that every state has a different transition probability: Pk,k = pk. In this

case a simple estimate is

p̂k =
Tk − 1
Tk

, (25)

where t = (t0, t1,..., tK) is the segmentation associated with the state sequence z and Tk =

tk − tk−1.

4. α, β estimates of the pk’s can also be used, but we did not use this approach here.

At any rate, in the experiments of Section 5 we have found that using any one of the estimates (19),

(20) and (25) gives practically identical segmentations. Note that (20) and (25) are segmentation-

dependent, while (19) is segmentation-independent (provided that the corresponding state sequence

traverses all states).

The important issue of selecting K will be discussed in Section 4.4.

4.3 HMM Segmentation with Fixed Number of Segments

Now we combine the parameter and state estimation steps into a HMM segmentation algorithm. We

first present a “basic” version of the HMM algorithm and then discuss some variants.

4.3.1 The Basic Algorithm

In this algorithm we assume all transition probabilities to be equal (hence P is determined by p). The

algorithm works as follows. The input is the time series x = (x1, x2, ..., xT ), the number of segments
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K and a termination variable ε. An initial state sequence is chosen randomly and used to estimate

the HMM parameters. Then, in every iteration of the algorithm, the HMM parameters are estimated

from the current state sequence and a new state sequence is computed from the newly estimated HMM

parameters. The algorithm converges to an optimal state sequence ẑ (and a corresponding segmentation

t̂); convergence and optimality will be discussed more extensively in Section 4.3.3. The details of the

algorithm are as follows.

Basic HMM Segmentation Algorithm

Choose randomly a state sequence z(0) = (z(0)1 , z
(0)
1 ,..., z(0)T ).

Compute σ̂ from (16).

Compute p̂ (hence also P̂ ) from (19).

Main

For i = 1, 2, ...

Parameter Estimation

Compute t(i) from z(i−1).

Compute M(i) from t(i) and (13).

State Estimation

Compute z(i) by the Viterbi algorithm using x, K, P , M(i) and σ̂.

Termination Criterion

If
∣∣∣L2

K,T (z
(i),x; P̂ ,M(i), σ̂)− L2

K,T (z
(i−1),x; P̂ ,M(i−1), σ̂)

∣∣∣ < ε.
ẑ = z(i).

M̂ = M(i).

Exit the loop

EndIf

Compute t̂ from ẑ.

End

One pass of the i loop in the above algorithm has execution time O(T ·K2). In all the examples of

Section 5 the algorithm converges in very few iterations (typically 2, 3 or 4 iterations).
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4.3.2 Variants of the Basic Algorithm

Several variants of the HMM segmentation algorithm can be used. For example, in place of (19) one

can use the estimate of p given by (20); or the pk estimates given by (25). Similarly, the σ̂k estimates

of (14) could be used in place of (16).

Another family of variants is connected to the measure of homogeneity. The use of segment means

follows from the assumption regarding the normal distribution of the observations. Other probability

distributions can be used in (9). Also, an autoregressive model can be incorporated in the HMM

segmentation algorithm. Assume that (for k = 1, 2, ...,K and t = tk−1 + 1, tk−1 + 2, ..., tk ) we have

xt = a0,k + a1,kxt−1 + a2,kxt−2 + ...+ al,kxt−l + εt, (26)

where εt is a white noise term. Our segmentation algorithm can easily handle this assumption by

a modification of the parameter estimation step. In other words, rather than reestimating M, the

algorithm reestimates the AR coefficients a0,k, a1,k, ... , al,k, using the data xtk−1+1, xtk−1+2
, ... , xtk

and a least squares algorithm. This approach is used in Section 5.3 to fit a HMM autoregressive model

to global temperature data. A similar approach can be used if it is assumed that the observations are

generated by a polynomial regression of the form (for t = tk−1 + 1, tk−1 + 2, ..., tk and k = 1, 2, ...,K)

xt = a0,k + a1,k · (t− tk−1) + ...+ al,k · (t− tk−1)l + εt (27)

Again, the regression coefficients a0,k, a1,k, ..., al,k can be computed by least squares fitting; in this

case some constraints to enforce continuity across segments can also be used. In the case of first

order polynomials it is only required to compute a0,k, a1,k, which are determined by the continuity

constraints. This case may be of interest for detection of trends in the observable time series

4.3.3 Convergence and Optimality

We now discuss convergence and optimality issues. We only give the main results here; the details are

presented in Appendix B. We start with the “basic algorithm” of Section 4.3.1. After some algebra,
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the log-likelihood is found to be

logL2
K,T (z,x;P,M, σ) = −

T∑
t=1

(xt − µzt)
2

2σ2
−K log

(
p

1− p
)
− T log

(√
2πσ
p

)
. (28)

In a particular run of the algorithm T,x and K, P̂ , σ̂ will be fixed. Hence, suppressing the dependence

on these variables, we define

JK(z,M) = − logL2
K,T (z,x; P̂ ,M, σ̂). (29)

In Appendix B we show that: if each of z(0), z(1), ... traverses all states, then we have

JK(z(0),M(0)) ≥ JK(z(1),M(1)) ≥ JK(z(2),M(2)) ≥ ... ≥ 0. (30)

Hence, for i = 0, 1, 2, ..., the sequence JK(z(i),M(i)) converges to a value ĴK which is a local minimum

of JK(z,M). This is sufficient to ensure termination of the HMM segmentation algorithm. Upon

termination the algorithm outputs a state estimate ẑ and a means estimate M̂ and we have ĴK =

JK(ẑ,M̂). It is easy to see that ẑ,M̂ also maximize L2
K,T (z,x;P,M, σ̂) and L1

K,T (z|x;P,M, σ̂) (both

viewed as functions of z,M). Furthermore, if JK(ẑ,M̂) is a global minimum of JK(z,M) and t̂ is the

segmentation associated with ẑ, then from (1) and (28) we see that DK (̂t) = D̂K . However, note that

D̂K �= ĴK , since JK(z,M) has additional terms depending on T,K,P and σ.

4.4 The Full Segmentation Procedure – Selecting the Number of Segments

The last element required to complete our segmentation procedure is a method for choosing the best

value of K. This is actually rather straightforward. From (28) we see that the log likelihood contains

the term −K log
(

p
1−p

)
. If p > 0.5, then log

(
p

1−p

)
is positive, hence segmentations with large K are

penalized. Consequently, it is reasonable and effective to take the “correct” value of K to be the one

which makes L2
K,T maximum1.

1It is interesting to compare with Hubert’s approach. Unlike L2
K,T , Hubert’s D̂K is a decreasing function of K. To

avoid the trivial segmentation of T segments, Hubert must penalize segmentations with a large number of segments (since

D̂K is a decreasing function of K). This is achieved by the use of Scheffe’s contrast criterion [17, 39] which checks for

every K the statistical significance of the optimal segmentation. Incidentally, the Scheffe criterion could also be used in
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In short, the full segmentation procedure consists in running the HMM algorithm of Section 4.3.1

(or one of the variants) for K = 1, 2, ...,Kmax and selecting the segmentation which maximizes L2
K,T .

It is also possible to base the selection of K on human judgement. Hubert [18, p.299] mentions

the possibility of using his procedure with several values of K and choosing the K which looks “most

reasonable”. This type of “interactive segmentation” is even easier with our procedure, due to the

short execution time of the HMM algorithm.

4.5 Some Additional Remarks

The HMM segmentation algorithm of Section 4.3.1 is an approximate EM algorithm [10]. It uses the

basic EM idea of alternating Expectation (parameter estimation) and M aximization (state estimation)

steps. It is approximate because the p,M and σ estimates we use are rather crude approximations of

the conditional expectations of these quantities. For example, to estimate the means µk we use (13),

while in a “complete” EM algorithm one would use µ̂k = E(µk|z). Note that the use of fixed p and

σ values renders ML segmentation equivalent to Hubert’s least-squares segmentation; this equivalence

does not hold if p and σ are reestimated after every segmentation. As a practical matter, it will be seen

in Section 5 that the segmentation algorithm is quite robust with respect to the exact value of p (similar

results have been obtained with respect to M and σ but are omitted because of space limitations).

While the HMM algorithm (used for a specific value of K) is quite robust with respect to the p

value, p is quite important for the overall segmentation procedure, in particular for the selection of

the correct K value. As mentioned previously, K is selected so as to maximize likelihood; it can be

seen from (28) that the likelihood depends on K through the term −K log
(

p
1−p

)
. Hence the choice of

the correct K depends on p. However, it will be seen in Section 5 that the simple estimate (19) gives

very similar likelihood values to the ones obtained by using (20) and (25), hence the use of (19) again

appears preferrable for reasons of simplicity.

conjunction with our HMM algorithm; this may be useful from the practical point of view but is not theoretically justified

(we are grateful to the anonymous referee who pointed this out). In fact, even in the context of Hubert’s procedure, the

use of Scheffe’s criterion is not entirely justified [18, p.300].
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5 Segmentation Experiments

5.1 Annual Discharge of the Senegal River

This experiment uses the time series of the Senegal river annual discharge data, measured at the

Bakel station for the years 1903-19882 . The length of the time series is 86. Hubert has applied his

segmentation procedure on the same data set [17, 18] to find the segmentation which is optimal with

respect to total deviation from segment means.

Three variants of the segmentation algorithm are run for K= 2, 3, 4, 5, 6. These variants only

differ in the determination of the transition probability, according to the remarks of Section 4.3.2. I.e.

the first variant uses the p estimate (19); results for this variant are presented in Table 1. The second

variant uses the pk estimates (25); results for this variant are presented in Table 2. The third variant

uses the backward/forward p estimate (20); results for this variant are presented in Table 3.

Table 1 to appear here

Table 2 to appear here

Table 3 to appear here

For every value of K convergence is achieved by 2, 3 or, at most, 4 iterations of the algorithm.

The maximum log likelihood achieved for each value of K is listed in the last column of Tables 1, 2,

3. It can be seen that the optimal value of K (i.e. the value which yields the maximum likelihood) is

always 5. While the value of the log likelihood varies slightly in each table (reflecting its dependence

on the exact value of the transition probabilities), the actual optimal segmentation is identical for all

three variants, with segments [1903,1921], [1922,1936], [1937,1949], [1950,1967], [1967,1988]; these are

the segments obtained by Hubert [17, 18] as well and indeed are the segments which yield the globally

minimum total square error3. A plot of the time series, indicating the 5 segments and the respective

means appears in Figure 2.

Figure 2 to appear here

2These data are available from Hubert’s home page at http://www.cig.ensmp.fr/~hubert.
3The global optimality was checked with a dynamic programming algorithm (presented in [25]) which computes exactly

the globally optimal segmentation (but it is slower than the HMM algorithm presented here).
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The experiment was run with a MATLAB implementation of the HMM segmentation algorithm;

the total execution time (i.e. obtaining the HMM segmentations of all orders) is between 0.72 and 1.20

sec (depending on the variant) on a Pentium III 1 GHz personal computer; it can be expected that a

FORTRAN or C implementation would take about 10% to 20% of this time. For comparison purposes,

Hubert reports execution time around 1 minute (but this is probably on a slower machine).

5.2 Annual Mean Global Temperature

This experiment uses the time series of annual mean global temperature for the years 1700 – 1981.

Only the temperatures for the period 1902 – 1981 come from actual measurements; the remaining

temperatures were reconstructed according to a procedure described in [30] and also at the Internet

address http://www.ngdc.noaa.gov/paleo/ei/ei intro.html. The length of the time series is 282.

The three segmentation variants mentioned in Section 4.3.2 are run forK= 2, 3, 4, 5, 6. Convergence

is achieved in at most 4 iterations of the algorithm, for every value of K. The maximum log likelihood

achieved for each value of K is reported in the last column of Tables 4, 5, 6.

Table 4 to appear here

Table 5 to appear here

Table 6 to appear here

The optimal value of K is always 4. While the actual value of the log likelihood varies slightly

in each table (reflecting its dependence on the exact value of the transition probabilities), the actual

optimal segmentation is almost identical for all three variants, with segments [1700,1720], [1721,1812],

[1813,1930], [1931,1981] (the only difference appears in Table 5, where one segment boundary is 1718

rather than 1720). Once again it has been checked that these are the globally optimal segments. The

total execution time for the experiment is is between 2.64 and 5.88 sec (depending on the variant). A

plot of the time series, indicating the 4 segments and the respective means appears in Figure 3.

Figure 3 to appear here

5.3 Annual Mean Global Temperature with AR model

This experiment again uses the annual mean global temperature time series. The difference from the

previous experiment is in the assumption regarding the data generation mechanism. Specifically, a
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model of the following form is assumed:

xt = a0,k + a1,kxt−1 + a2,kxt−2 + a3,kxt−3 + εt, (31)

for k = 1, 2, ...,K and t = tk−1+1, tk−1 +2, ..., tk. The HMM segmentation algorithm can be modified

to obtain the optimal segmentation with respect to the model of (31), as mentioned in Section 4.3.2.

As previously, the three segmentation variants are run with K = 2, 3, ..., 6; results are presented in

Tables 7, 8 and 9.

Table 7 to appear here

Table 8 to appear here

Table 9 to appear here

The optimal value of K is always 4 and the three variants yield identical segmentations with

segments [1700,1770], [1771,1835], [1836,1923], [1924,1981]. Once again it has been checked that these

are the globally optimal segments. The total execution time for the experiment is between 2.80 and

6.17 sec (depending on the algorithm variant). A plot of the time series, indicating the 4 segments and

the respective autoregressions appears in Figure 4.

Figure 4 to appear here

Recall that the means-based segmentation of the same time series yielded the segments [1700,1720],

[1721,1812], [1813,1930], [1931,1981]. This seems in reasonable agreement with the AR-based segmen-

tation, excepting the discrepancy of change points 1720 and 1770. From a numerical point of view,

there is no a priori reason to expect that the AR-based segmentation and means-based segmentation

should give the same results. The fact that the two segmentations are in relatively good agreement sup-

ports the hypothesis that actual climate changes have occurred approximately at the times indicated

by both segmentation methods.

5.4 Artificial Time Series

Our next goal is to investigate the dependence of the segmentations on the value of the transition

probabilities. To this end we perform several segmentation experiments where the value of p is fixed.

Hence in Table 10 we give segementations of the Senegal river time series with fixed K = 5 and various
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values of p (in every case p is taken the same for all states and is held fixed). It can be seen that

the same (optimal) segmentation is obtained for all p values in the range [0.7, 0.99]. Similar results

are presented for the global temperature time series in Table 11 (segmentation obtained by the means

criterion) and Table 12 (segmentation obtained by the AR criterion). Hence it is reasonable to conclude

that the segmentation algorithm is quite robust with respect to the p value.

Table 10 to appear here

Table 11 to appear here

Table 12 to appear here

5.5 Artificial Time Series

The goal of the final experiment is to investigate the scaling properties of the algorithm, specifically

the scaling of execution time with respect to time series length T and the scaling of accuracy with

respect to noise in the observations. To obtain better control over these factors, artificial time series

are used, which have been generated by the following mechanism.

The time series are generated by a HMM with 5 states. Every time series is generated by running

the HMM from state no.1 until state no.5. Hence, every time series involves 5 state transitions and,

for the purposes of this experiment, this is assumed to be known a priori. On the other hand, it can be

seen that the length of the time series is variable. With a slight change of notation, in this section T

will denote the expected length of the time series, which can be controlled by choice of the probability

p. The values of p were chosen to generate time series of average lengths 200, 250, 500, 750, 1000, 1250,

1500.

The observations are generated by a normal distribution with mean µk (k= 1, 2, ..., 5) and standard

deviation σ. In all experiments the values µ1= µ3= µ5= 1, µ2= µ4= −1 were used (hence the difference

of two successive means is always 2). Several values of σ were used, namely σ= 0.00, 0.10, 0.20, 0.30,

0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00.

For each combination of T and σ, 20 time series were generated and the HMM segmentation algo-

rithm was run on each one. For each run two quantities were computed: c, accuracy of segmentation,

and Te, execution time. Segmentation accuracy is computed by the formula

c =
∑T

t=1 1(zt = ẑt)
T

(32)
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where the indicator function 1(zt = ẑt) is equal to 1 when zt = ẑt and equal to 0 otherwise.

From these data two tables are compiled. Table 13 lists Te (in seconds) as a function of T (i.e. Te

is averaged over all time series of the same T ). Table 14 lists average segmentation accuracy c as a

function of T and σ (i.e. c is averaged over the 20 time series with the same T and σ). As expected,

segmentation accuracy is generally a decreasing function of σ, however it remains very close to 1 even

for values σ comparable to the difference between successive means µk and µk+1 (e.g. for σ = 1.25).

Table 13 to appear here

Table 14 to appear here

6 Conclusion

In this paper our goal was to develop a computational procedure for the segmentation of multiple-

change point time series. Using as starting points Hubert’s pioneering work and some HMM methods

(first used in the context of speech recognition) we have obtained a segmentation procedure which is

faster and can handle longer time series than the one introduced by Hubert. Furthermore our procedure

can incorporate various models of the observable time series (e.g. normal probability distribution with

segment-specific means, autoregressive model with segment-specific AR coefficients etc.) and several

different estimates of the important parameter p. We have demonstrated the local optimality of the

K-th order segmentation and also given a simple method for the selection of the optimal K.

Our procedure also has some limitations. We have shown that the HMM segmentation algorithm

produces a sequence of segmentations with increasing likelihood. This suffices to prove convergence

to a local maximum of the likelihood but does not guarantee convergence to the global maximum.

However, in all the experiments presented in this paper we have checked that the global maximum is

actually achieved. Note that Hubert’s procedure would always achieve the global optimum if pruning

were not used – in the presence of pruning global optimality is not guaranteed.

Another possible drawback of our approach concerns the distribution of state residence times, i.e.

the length of segments. Under the HMM, the residence time in any given state follows a geometric

distribution. For example, assuming a common probability p for all states, for every k and n we have

Pr (tk − tk−1 = n) = pn−1 · (1− p) . (33)
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This is a drawback from the hydrological modelling point of view (since hydrological time series with

change points do not appear to obey the above probability law). However, it is a peripheral issue when

considered from our computational point of view, since it does not affect the computational efficiency

of HMM’s4.

Indeed, throughout this paper we have adopted what we call a “computational approach”. We have

already stressed that our hidden Markov “model” is not intended as a realistic model of a hydrological

or enviromental time series but as a computational tool.

This computational approach is often used by patter recognition practitioners and may have wider

application to hydrological problems. Indeed, time series segmentation can be considered as a particular

type of clustering, namely clustering under the constraint that clusters must respect the linear order

of the samples. A vast number of clustering techniques has been reported in the Pattern Recognition

literature. It would be interesting to apply some of these techniques to the problem of hydrological

segmentation. The present paper can be understood as an example of this approach; an additional

example is the dynamic programming segmentation algorithm which we have mentioned in footnote

3. Other examples of pattern recognition techniques which may be useful for hydrological time series

segmentation are hierarchical clustering, k-means clustering etc.

A Forward/BackWard Estimation of the Transition Probabilities

In Section 4.2 we have presented an iterative estimate of p given by eqs.(20)–(24). In this Appendix

we justify these formulas. The arguments are standard and can be found in [36].

The i-th estimate of p is denoted by p(i). We also write P (i), keeping in mind that

P
(i)
k,k = p(i), P

(i)
k,k+1 = 1− p(i), P

(i)
k,n = 0 when n is different from k, k + 1. (34)

4The geometric distribution of HMM residence times has been discussed often in the engineering and pattern recognition

literature [11] and has been accepted as a reasonable price to pay for the computational efficiency of HMM’s.
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Now, for k = 1, 2, ...,K and t = 1, 2, ..., T we define

αk,t = Pr (X1 = x1,X2 = x2, ...,Xt = xt, Zt = k) , (35)

βk,t = Pr (Xt+1 = xt+1,Xt+2 = xt+2, ...,XT = xT |Zt = k) . (36)

It is easily checked that the following recursive formulas hold

α1,1 = 0, αk,1 = 0, k = 2, 3, ...,K; (37)

αk,t+1 =
K∑

n=1

αn,t · P (i)
n,k · e

−(xt+1−µzt+1)
2
/2σ2

√
2πσ

, k = 1, 2, ...,K, t = 1, 2, ..., T − 1; (38)

βk,t = 1, k = 1, 2, ...,K; (39)

βk,t =
K∑

n=1

P
(i)
k,n · e

−(xt+1−µzt+1)
2
/2σ2

√
2πσ

· βn,t+1, k = 1, 2, ...,K, t = T − 1, T − 2, ..., 1; (40)

In what follows E (·) denotes mathematical expectation and 1 (·) is the indicator function. We denote

the expected number of transitions from state k to state n at time t by γt,k,n, i.e.

γt,k,n = E (1 (Zt = k,Zt+1 = n)) = Pr (X1 = x1,X2 = x2, ...,XT = xT , Zt = k,Zt = n) . (41)

Then we have

γt,k,n = αk,t · P (i)
k,n · 1√

2πσ
e−(xt+1−µzt+1)

2
/2σ2 · βn,t+1. (42)

Now, given an estimate p(i), a reasonable reestimate p(i+1) is

p(i+1) =
E (“number of k to k transitions, for any k and any t”)

T

=
∑T

t=1

∑K
k=1E (“number of k to k transitions at time t”)

T

=
∑T

t=1

∑K
k=1 γt,k,k

T

=

∑T
t=1

∑K
k=1 αk,t · P (i)

k,k · 1√
2πσ

· e−(xt+1−µzt+1)
2
/2σ2 · βk,t+1

T

=

∑T
t=1

∑K
k=1 αk,t · p(i) · 1√

2πσ
· e−(xt+1−µzt+1)

2
/2σ2 · βk,t+1

T
(43)

where the last equality follows from the fact that P (i+1)
k,k = p(i+1).
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B Proof of Convergence

In this appendix we will justify the claim of eq.(30). We need some notation: we denote the set of all

possible state sequences by Φ, the set of all state sequences with K transitions by ΦK and the set

of all K-dimensional real vectors by RK . We define φ(z) to be the number of transitions in the state

sequence z (i.e. φ(z) = “number of times zt−1 �= zt”) . If z ∈ ΦK , then φ(z) = K.

Consider a single run of the basic HMM segmentation algorithm. During this run T,K, P̂ ,M and

σ̂ are fixed. Taking the negative logarithm of (9) we obtain

− logL2
K,T (z,x;P,M, σ̂) = −

T∑
t=1

log
(
Pzt−1,zt

)
+

T∑
t=1

(xt − µzt)
2

2σ2
+ T log

(√
2πσ

)
=

T∑
t=1

(xt − µzt)
2

2σ2
− (T − φ(z)) log (p)− φ(z) log (1− p) + T log

(√
2πσ

)
=

T∑
t=1

(xt − µzt)
2

2σ2
+ φ(z) log

(
p

1− p
)
+ T log

(√
2πσ
p

)
. (44)

Let us define

JK(z,M) =
T∑

t=1

(xt − µzt)
2

2σ2
+K log

(
p

1− p
)
+ T log

(√
2πσ
p

)
. (45)

Now suppose that for i = 0, 1, 2, ... the state sequence z(i) traverses all states. In other words,

we assume that for i = 0, 1, 2, ... we have φ
(
z(i)
)
= K. Consider the sequence JK(z(0),M(0)),

JK(z(0),M(0)), ... produced by a run of the basic HMM algorithm. Since M(i) is estimated by (13), it

follows that :

∀M ∈ RK : J(z(i−1);M) ≥ J(z(i−1);M(i)). (46)

Also, since z(i) (as computed by the Viterbi algorithm) yields the global maximum of the likelihood as

a function of z, we have:

∀z ∈ ΦK : J(z;M(i)) ≥ J(z(i);M(i)). (47)

Using first (46) and then (47) yields (for every i):

J(z(i−1);M(i−1)) ≥ J(z(i−1);M(i)) ≥ J(z(i);M(i)). (48)
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Hence

JK(z(0),M(0)) ≥ JK(z(1),M(1)) ≥ JK(z(2),M(2)) ≥ ... ≥ 0. (49)

This establishes eq.(30), under the condition that z(i) ∈ ΦK for every i. This latter condition is easy

to check and is usually satisfied. In fact, it can be enforced by choosing the parameter p to be not too

close to 1 (if p 
 1, then the high cost of state transitions may result to φ
(
z(i)
)
< K for some i).
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Figure 1. A diagrammatic representation of a hidden Markov model. Each circle denotes a state.
Single line arrows denote state transitions; the transition from state i to state j has probability Pi,j.
Double arrows denote the emission of state-dependent observations. The state process
is Zt and the observation process is Xt.

Figure 2. Plot of the Senegal river annual discharge and the segment means. This figure was
obtained from the optimal 5-th order segmentation

Figure 3. Plot of the annual mean global temperature and the segment means. This 
figure corresponds to the optimal fourth order segmentation.
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K Segment Boundaries (Change Points) LogLikelihood
1 1902 1988 -41.500
2 1902 1967 1988 -31.836
3 1902 1949 1967 1988 -31.839
4 1902 1917 1953 1967 1988 -33.461
5 1902 1921 1936 1949 1967 1988 -30.556
6 1902 1921 1936 1949 1967 1971 1988 -31.668

Table 1: Optimal segmentation of the Senegal river annual discharge time series for various values of K. 
The value which maximizes log likelihood is indicated in bold. Classification is based on homogeneity
of segment means. The transition probability p (common for all states) is estimated by (T--K)/T. Total
execution time (for K=1,2,…,6) is 0.77 sec

K Segment Boundaries (Change Points) LogLikelihood
1 1902 1988 -41.500
2 1902 1967 1988 -31.728
3 1902 1949 1967 1988 -31.580
4 1902 1917 1953 1967 1988 -33.172
5 1902 1921 1936 1949 1967 1988 -30.501
6 1902 1921 1936 1949 1967 1969 1988 -30.619

Table 2: Optimal segmentation of the Senegal river annual discharge time series for various values of K. 
The value which maximizes log likelihood is indicated in bold. Classification is based on homogeneity
of segment means. The transition probability (of the k-th state) pk is estimated by (Tk--1)/Tk. Total
execution time (for K=1,2,…,6) is 0.72 sec

K LogLikelihood
1 1902 1988 -41.500
2 1902 1967 1988 -31.728
3 1902 1949 1967 -31.818
4 1902 1917 1953 1967 -33.461
5 1902 1921 1936 1949 1967 1988 -30.553
6 1902 1921 1936 1949 1967 1971 1988 -31.669

Table 3: Optimal segmentation of the Senegal river annual discharge time series for various values of K. 
The value which maximizes log likelihood is indicated in bold. Classification is based on homogeneity
of segment means. The transition probability p (common for all states) is estimated by the
forward/backward formula (20). Total execution time (for K=1,2,…,6) is 1.20 sec



K Segment Boundaries (Change Points) LogLikelihood
1 1699 1981 -139.000
2 1699 1930 1981 -69.024
3 1699 1812 1930 1981 -67.732
4 1699 1720 1812 1930 1981 -66.834
5 1699 1748 1812 1890 1926 1981 -70.605
6 1699 1748 1777 1812 1890 1930 1981 -71.621

Table 4: Optimal segmentation of the annual mean global temperature time series for various values of K. 
The value which maximizes log likelihood is indicated in bold. Classification is based on homogeneity
of segment means. The transition probability p (common for all states) is estimated by (T--K)/T. Total
execution time (for K=1,2,…,6) is 2.64 sec

K Segment Boundaries (Change Points) LogLikelihood
1 1699 1981 -139.000
2 1699 1930 1981 -68.877
3 1699 1812 1930 1981 -67.684
4 1699 1718 1812 1930 1981 -66.052
5 1699 1748 1812 1929 1930 1981 -66.724
6 1699 1748 1777 1812 1929 1930 1981 -67.907

Table 5: Optimal segmentation of the the annual mean global temp. time series for various values of K. 
The value which maximizes log likelihood is indicated in bold. Classification is based on homogeneity
of segment means. The transition probability (of the k-th state) pk is estimated by (Tk--1)/Tk. Total
execution time (for K=1,2,…,6) is 2.85 sec

K Segment Boundaries (Change Points) LogLikelihood
1 1699 1981 -139.000
2 1699 1930 1981 -68.877
3 1699 1812 1930 1981 -67.684
4 1699 1720 1812 1930 1981 -66.821
5 1699 1748 1812 1890 1926 1981 -70.605
6 1699 1748 1777 1812 1890 1930 1981 -71.621

Table 6: Optimal segmentation of the the annual mean global temp.  time series for various values of K. 
The value which maximizes log likelihood is indicated in bold. Classification is based on homogeneity
of segment means. The transition probability p (common for all states) is estimated by the
forward/backward formula (20). Total execution time (for K=1,2,…,6) is 5.88 sec



K Segment Boundaries (Change Points) LogLikelihood
1 1699 1981 -139.500
2 1699 1930 1981 -72.623
3 1699 1835 1926 1981 -65.651
4 1699 1770 1835 1923 1981 -64.105
5 1699 1747 1812 1869 1923 1981 -76.466
6 1699 1748 1774 1835 1893 1926 1981 -76.907

Table 7: Optimal segmentation of the annual mean global temperature time series for various values of K. 
The value which maximizes log likelihood is indicated in bold. Classification is based on AR error
The transition probability p (common for all states) is estimated by (T--K)/T. Total
execution time (for K=1,2,…,6) is 2.80 sec

K Segment Boundaries (Change Points) LogLikelihood
1 1699 1981 -139.500
2 1699 1930 1981 -72.475
3 1699 1835 1926 1981 -65.571
4 1699 1770 1835 1923 1981 -63.503
5 1699 1747 1812 1869 1923 1981 -76.435
6 1699 1748 1774 1835 1893 1923 1981 -76.883

Table 8: Optimal segmentation of the the annual mean global temp. time series for various values of K. 
The value which maximizes log likelihood is indicated in bold. Classification is based on AR error
The transition probability (of the k-th state) pk is estimated by (Tk--1)/Tk. Total
execution time (for K=1,2,…,6) is 2.97 sec

K Segment Boundaries (Change Points) LogLikelihood
1 1699 1981 -139.500
2 1699 1930 1981 -72.475
3 1699 1835 1926 1981 -65.612
4 1699 1770 1835 1923 1981 -64.103
5 1699 1747 1812 1869 1923 1981 -76.460
6 1699 1748 1774 1835 1893 1926 1981 -76.907

Table 9: Optimal segmentation of the the annual mean global temp.  time series for various values of K. 
The value which maximizes log likelihood is indicated in bold. Classification is based on AR error
The transition probability p (common for all states) is estimated by the forward/backward formula (20). 
Total execution time (for K=1,2,…,6) is 6.17 sec



p Segment Boundaries (Change Points)
0.6000 1902 1921 1936 1949 1967
0.7000 1902 1921 1936 1949 1967 1988
0.8000 1902 1921 1936 1949 1967 1988
0.9000 1902 1921 1936 1949 1967 1988
0.9100 1902 1921 1936 1949 1967 1988
0.9200 1902 1921 1936 1949 1967 1988
0.9300 1902 1921 1936 1949 1967 1988
0.9400 1902 1921 1936 1949 1967 1988
0.9500 1902 1921 1936 1949 1967 1988
0.9600 1902 1921 1936 1949 1967 1988
0.9700 1902 1921 1936 1949 1967 1988
0.9800 1902 1921 1936 1949 1967 1988
0.9900 1902 1921 1936 1949 1967 1988
0.9950 1902 1949 1967 1988
0.9990 1902 1988
0.9999 1902 1988

Table 10: Dependence of segmentation on the value of p. The above segmentations of the
Senegal time series have been obtained in the same manner as the ones of Table 1, except that
K is fixed at 5 and the value of p is the one indicated in the first column.

p Segment Boundaries (Change Points)
0.70000 1700 1720 1810 1930 1981
0.80000 1700 1720 1810 1930 1981
0.90000 1700 1720 1810 1930 1981
0.95000 1700 1720 1810 1930 1981
0.99000 1700 1720 1810 1930 1981
0.99900 1700 1720 1810 1930 1981
0.99990 1700 1812 1930 1981
0.99999 1700 1930 1981

Table 11: Dependence of segmentation on the value of p. The above segmentations of the
global temperature time series have been obtained in the same manner as the ones of Table 4, 
except that K is fixed at 4 and the value of p is the one indicated in the first column.

p Segment Boundaries (Change Points)
0.70000 1700 1770 1835 1923 1981
0.80000 1700 1770 1835 1923 1981
0.90000 1700 1770 1835 1923 1981
0.95000 1700 1770 1835 1923 1981
0.97000 1700 1770 1835 1923 1981
0.99000 1700 1770 1835 1923 1981
0.99900 1700 1770 1835 1923 1981
0.99950 1700 1835 1923 1981
0.99990 1700 1923 1981

Table 12: Dependence of segmentation on the value of p. The above segmentations of the
global temperature time series have been obtained in the same manner as the ones of Table 7, 
except that K is fixed at 4 and the value of p is the one indicated in the first column.



T 200 250 500 750 1000 1250 1500
Te 0.193 0.249 0.585 1.024 1.845 3.026 4.600

Table 13: Scaling of execution time as a function of the time series length. In this table
T is the length of the time series and Te is execution time.

T 200 250 500 750 1000 1250 1500
σ c (Classification Accuracy)

0.00 1.0000 1.0000 1.0000 0.9692 1.0000 1.0000 0.9902
0.10 1.0000 1.0000 1.0000 0.9814 1.0000 1.0000 1.0000
0.20 1.0000 0.9806 1.0000 1.0000 1.0000 0.9716 1.0000
0.30 1.0000 1.0000 0.9999 0.9792 1.0000 0.9807 1.0000
0.50 0.9989 0.9993 0.9994 0.9997 1.0000 0.9997 1.0000
0.75 0.9945 0.9979 0.9663 0.9521 0.9988 0.9992 0.9991
1.00 0.9881 0.9880 0.9863 0.9974 0.9517 0.9981 0.9711
1.25 0.9778 0.9710 0.9762 0.9924 0.9965 0.9843 0.9781
1.50 0.9561 0.9701 0.9874 0.9341 0.9507 0.9362 0.9956
1.75 0.9337 0.8985 0.9494 0.9341 0.9708 0.9272 0.9942
2.00 0.8628 0.8617 0.8255 0.9141 0.8600 0.9523 0.8297

Table 14: Scaling of classification accuracy as a function of the time series length. In the
above table T is the length of the time series and σ is the standard deviation of the observations.



Figure 4. Plot of the annual mean global temperature and the AR estimate. This figure corrsponds
to the optimal fourth order segmentation.
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