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Abstract

In this paper we use Barry and Hartigan’s Product Partition Models to formulate text segmen-
tation as an optimization problem, which we solve by a fast dynamic programming algorithm. We
test the algorithm on Choi’s segmentation benchmark and achieve the best segmentation results so
far reported in the literature.
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1 Introduction

Text segmentation is a problem of great practical significance. The goal is to divide a text into ho-
mogeneous segments, so that each segment deals with a particular subject while contiguous segments
deal with different subjects. In this manner documents relevant to a query can be retrieved from a
large database of unformatted (or loosely formatted) text. For an overview of the problem and various

methods for its solution see [3, 4, 7, 8, 12, 13, 15, 18, 19, 20].
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A Product Partition Model (PPM) is a Bayesian inference procedure for segmentation of a sequence
of random variables, based on the heterogeneity of the sequence. PPM’s were introduced by Barry and
Hartigan [1, 2] (see also [9, 14]) to identify multiple change points in the mean and variance of a sequence
of normally distributed random variables. The model assumes that the random segmentation produced
by the change points has a probability distribution proportional to a product of prior cohesions, one for
each segment. Given the observations, a new product partition model holds, with posterior cohesions
for the segments.

In this paper we use the PPM framework to identify text segments. To this end we obtain the
posterior joint probability of an observed text and its segmentation as a product of two terms: (a)
the probability of the segmentation, described by appropriate prior cohesions, and (b) the conditional
(given the segmentation) probability of the sentence similarity matriz, described by an appropriate
homogeneity function. Note that we use PPM’s to assign probabilities to two-dimensional structures
(the sentence similarity matrices) rather than to one-dimensional sequences. The negative logarithm
of the joint probability is the segmentation cost, which is minimized by a fast dynamic programming
algorithm (compare to the use of computationally demanding Markov Chain Monte Carlo algorithms
in [1, 2]). The homogeneity function we use depends on some parameters which are estimated from
training data; as far as we know, this approach has not been previously used in conjunction with
PPM’s.

In Section 2 we describe the PPM’s we use to tackle the text segmentation problem; in Section
3 we present a dynamic programming algorithm to solve the problem; in Section 4 we present some
experiments to evaluate our algorithm; finally, in Section 5 we discuss our results, review some work

related to our own and present future research directions.



2 Problem Formulation

2.1 Representation

Consider a text with 7' sentences. A segmentation of the text is a partition of {1,2,...,T} into K
contiguous segments: {1,2,....,t1}, {t1 + 1,41 +2, ..., ta}, o, {tx—1 + 1, tg1+2,....,T}; and to,t1, ..., tx

are the segment boundaries' which satisfy:

O=ti<t1 <.<tg_1 <tg=T.

A concise representation of the segmentation is given by the vector t = (¢p,t1, ..., tx ); note that vector
length K (i.e. the number of segments) is variable but it satisfies K < T'. We will denote the set of all
possible segmentations of {1,2,...,T'} by ®p.

Assume that the text has a vocabulary of L distinct words (common uninformative words such as
“and”, “the” etc. are not included). The text can be represented by a T x L matrix ¢ where (for

t=1,2,..,Tand [ =1,2,...,L):

1 iff the I-th word appears in the ¢-th sentence;
Ctl =

0 else.
The sentence similarity matriz of the text is a T' x T matrix d where:

1 if S eoey > 0;
diy =0for 1 <t<T and d,; = for 1 <s#t<T.

. L
0 if > csucey =0.

In other words ds; = 1 when the s-th and #-th sentence have at least one word in common. We will

denote the set of all possible sentence similarity matrices (of dimension 7' x T') by ¥p. The resulting

1We assume that segment boundaries always appear at the ends of sentences.



matrix d has 0’s and 1’s arranged in a characteristic pattern which corresponds to the structure of the
text. In Figure 1 we give a dotplot [7, 8, 18] of a matrix d corresponding to a 101-sentence text (the

diagonal elements have been set to 0). Ones are plotted as black squares and zeros as white squares.

Figure 1 to appear here

In the following we will use the notation d(s,t) to denote the square submatrix of d defined by
positions (s 4+ 1,s 4+ 1) and (¢,t). For every s =0,1,....T —1 and t = 1,2, ...,T we obtain a submatrix
d(s,t), which corresponds to the segment {s+1,s+2,...,¢}. If it is assumed that sentences belonging
to the same segment will have many words in common, then submatrices which correspond to actual
segments must contain many 1’s. Indeed, in Figure 1 we see several “high-density” regions which we
expect to correspond to actual segments. Hence a “good” segmentation should maximize the density

of 1’s in the submatrices of d which correspond to actual segments.

2.2 Product Partition Models

In the rest of the discussion we will consider T', the number of sentences, to be fixed. Let us define two
random variables. The segmentation variable T takes values in ®1 and the sentence similarity variable
D takes values in Up. Each of these variables is specified by its (discrete) probability function. In
what follows, probability functions will be denoted by the letter f (with appropriate subscripts). For

example

fT(tg,tl, ...,tK) = PI‘(T :(tg,tl, ...,tK)),

fD|T(d|t0,t1, ...,tK) = PI‘(D = d|T :(to,tl, ...,tK)).

In [1, 2] PPM’s are introduced to describe probabilistically the generation of inhomogeneous time

series. The same formalism can be applied (with a few modifications) to text segmentation. Modifying



the definition of [1, 2] we define a PPM to be a pair of random variables (D, T) which have a particular
type of joint probability distribution fp . In particular, a pair (D,T) is a PPM if the following

conditions are satisfied.

1. The probability of a particular segmentation (g, 1, ...,tx) has the form:

fr(to,t1, .., tx) = G1 - c(to, t1) - c(t1,t2) - oo - c(tk—1,tK) (1)

where the cohesion function c(s,t) (associated with the segment {s + 1,s + 2,...,T}) is defined
for all integers s,t € {1,2,...,T}. G is a normalizing constant and K in (1) can take any value

between 1 and 7.2

2. Conditional on T = (tg,t1,...,tx), the probability density of the submatrix D(¢;_1, %), has the

form (for £k =1,2,..., K):

fowe 100k, tr)[to, t1, - tx) = Go(th—1,tx) - g (d(tr_1,1x)) (2)

where g¢(-) is a homogeneity function and Ga(tx—1,%x) is a normalizing constant.

Then the joint probability of D and T has the form

K

for(d,to, by, eestie) = Gy [ lelteor, te) - Galtior, ti) - g(d(tk—1, k)] - (3)
k=1

It can be seen that a PPM is characterized by the cohesion function (which assigns probabilities
to segmentations (tg,t1, ..., tx ), independently of sentence similarities d) and the homogeneity function

(which assigns a probability to each segment, given a segmentation).

2Note that (1) does not imply that the segment lengths t> — t1, t3 —to2, ..., tx —tx—1 are independent.



We now present the specific forms of cohesion and homogeneity which we use in this paper. For

cohesion we use (with 0 < s <t <T)

c(s,t) = exp [—7- (’S_}T;“ﬂ (4)

(where p, 0,7 are tuning parameters). For homogeneity we use

g(d(s, ) = exp [(1 —)- (Z”“ Zizsh1 d)] (5)

(t—s)

(where 7,7y are parameters). The significance of the above functions (and the associated parameters)

is as follows.

1. The cohesion of (4) is used to incorporate some information regarding segment length (for exam-
ple, if segmented training data are available, they may be used to estimate the mean value p and

standard deviation o of segment length).

2. The homogeneity of (5) assigns high probability to segments with large (Zgzs 41 Z;Zs 41 di,j> /
(t — s)" values. The term 25:34-1 E;:s-i—l d; j is the total number of ones in the submatrix of
d(s,t) which corresponds to the segment {s + 1,s + 2, .., t}. When the parameter r is equal
to 2 then (¢t — s)" is the “area” of the corresponding submatrix. Hence, when r = 2, the term
(ELSH Z;ZSH di,j) / (t — s)" corresponds to “segment density” (of 1’s). When r # 2 we obtain
a “generalized density”. Irrespective of the exact value of r, large values of (Ef: sl Z;Z sl di,j) /
(t — s)" indicate strong intra-segment similarity (as measured by the number of words which are

common between sentences belonging to the segment).
3. Finally, the parameter v is used to control the relative importance of cohesion and homogeneity.

Many other choices of cohesion and homogeneity functions are possible but they will not be discussed



in this paper. With the choices indicated above, we define the segmentation cost to be the negative

logarithm of the joint probability:

S =t — )

g —

J(t;,u,a, T77) = E , <7 ’ 9. g2 — log GZ(tk—latk) - (]- - 7)
k=1

ty 173
Zt:tk,lﬂ Zt:tk,lﬂ ds,t)

(tg — tk—1)"

(6)
Hence the total segmentation cost is the sum of the costs of the K segments; the cost of the k-th
segment is the sum of two terms®, both of which depend only on data from the k-th segment. Note
that K in (6) is variable; but it does not appear as an argument of J because it is determined by t.
A “good” segmentation vector t gives segments with high density and small deviation from av-
erage segment length and hence the corresponding J(t;u,0,7,v) takes a small value*. The optimal
segmentation t gives the global minimum of J (t; p,0,7,7)

t=arg min J(t; o7, 7y). (7)
t=(to,l1,...,tx)EPT

Note that t specifies both the optimal number of segments K and the optimal positions of the segment
boundaries ;f\o,tAl, ,?K

Before concluding this section, let us emphasize that, despite the formal similarity of (4) with the
normal distribution, segment length is not a Gaussian random variable. The key point is that (4)

defines a probability distribution on segmentations, not on segment lengths. °

3The term log G2(tx—1,tx) can be subsumed in the cohesion part of the cost.

4Small in the algebraic sense; note that J(t; u, o,7r,7y) can take both positive and negative values.

SWe can obtain the probability distribution of segment length from (4) by appropriate summations over segmentations;
the resulting probability will be conditioned on the total segment length being equal to the (given number) T. If one
performs this (tedious) calculation it will be seen that segment length does not have a normal distribution.



3 The Segmentation Algorithm

Hence the problem of text segmentation has been reduced to the minimization of segmentation cost
J(t; u,o,7,7y) as given by (6). We now present a dynamic programming algorithm which, given the
sentence similarity matrix d, and the parameters u, o, 7,y computes the optimal segmentation t (the

choice of values for p, o, r,v will be discussed in Section 4).

Text Segmentation Algorithm

Input: The sentence similarity matrix d; the parameters y, o, 7,7 .

Minimization
Co=0
zZ0 — 0

For s =0,1,....,t -1

t 123 .
Zi:s+1 Zj:tk_l+1 di j

If O+ - U5 — log Ga(s,1) = (1 =) - o <C
Cr= Oty 5 log Gy(s ) — (1— ) - 22 %ks;’:—l“ o
2t = 8
End
End
End
Backtracking
K=0
sg =T



While z,,. > 0
K=K+1

SK = 254

End
K=K+1
SKZO

For k =0,1,...,. K
?k: = SK—k
End

Output: The optimal segmentation t= (?0,%\1, ,%\K)

It can be shown easily (by standard dynamic programming arguments [6]) that the minimization
phase computes the global minimimum of (6). The actual t which minimizes segmentation cost is

obtained in the backtracking phase. The algorithm runs in O(7?) time®.

4 Experiments

In this section we evaluate our algorithm using a text collection which has been first presented by Choi
in [7]. Several researchers have used this collection as a benchmark for text segmentation algorithms
[7, 8, 19]. Choi’s collection consists of 700 texts, each text being a concatenation of ten text segments.
Each segment consists of “the first n sentences of a randomly selected document from the Brown Corpus

[11]. (News articles ca**.pos and the informative text c¢j**.pos)””. The 700 texts can be divided into

SA form of pruning can be employed by choosing some integer Si,., and restricting the inner loop to run for s =
T — Siow +1, T — Siow + 2, ..., T; in this case the algorithm runs in O(T") time.
It follows that segment boundaries will always appear at the end of sentences.



four datasets: SetO has 400 texts with n in the range 3-11, Setl has 100 texts with n in the range
3-5, Set2 has 100 texts with n in the range 6-8 and Set3 has 100 texts with n in the range 9-11. We
preprocess the texts by removing punctuation marks and stop-words (determined by a stoplist) and
stemming the remaining words by Porter’s algorithm [16].

In the experiments reported below we measure segmentation accuracy using Beeferman’s P, metric
[3, 4] which is used widely for text segmentation tasks. P takes values between 0% and 100%, with
high values indicating low segmentation accuracy. More details on Py can be found in [3, 4] .

We use some of Choi’s text as training data to determine appropriate p, o, v and r values by a
parameter validation procedure. Then we evaluate our algorithm on (previously unused) test data.

More specifically, we perform the following procedure for each of the datasets Set0, Setl, Set2, Set3.

1. We choose randomly half of the texts in the dataset to be used as training texts; the rest of the

samples are set aside to be used as test texts.

2. We determine p and o values using the training texts and standard statistical estimators.

3. We determine appropriate v and r values by running the segmentation algorithm on all the
training texts with the 80 possible combinations of v €{0.00, 0.01, 0.02, ..., 0.09, 0.1, 0.2, 0.3,
..., 1.0} and r €{0.33, 0.50, 0.66, 1.00} values; the optimal (v, r) combination is the one which

yields the minimum P, value®.

4. We apply the algorithm to the test texts using previously estimated u, o, v and r values.

The above procedure is repeated five times for each of the four datasets and the resulting values of
P, are averaged. The results are considerably better than any previously reported on Choi’s dataset.

In Table 1 we list the P, values achieved by our algorithm to the ones obtained by various other

8In this and the next step we omit computation of the term G2 (s,t) from our algorithm. This simplifies the algorithm
and, we have found, does not degrade performance.

10



segmentation algorithms operating on Choi’s dataset [7, 8, 19]. The first row lists the algorithm used,
the second row lists the publication in which the result appears; the next four rows list P, for Set0, Set1,
Set2, Set3; the final row lists the Pj value averaged over all samples. The results of our segmentation
algorithm appear in the last column. It can be seen that our algorithm performs considerably better
than all the remaining ones. Let us note that the best performance has been achieved for v in the

range [0.08, 0.4] and for r equal to either 0.5 or 0.66.

Method | CWM1 | CWM2 | CWM3 | C99b C99 | C99b,-r | UOOb U00 | Our Algo.
Paper (8] 8] 8] [7] [7] [7] [19] [19]

Set0 9.00% | 14.00% | 12.00% | 12.00% | 13.00% | 23.00% | 10.00% | 11.00% 7.00%
Set1 10.00% | 10.00% | 10.00% | 11.00% | 18.00% 19.00% | 9.00% | 13.00% 5.45%
Set2 7.00% | 11.00% 9.00% | 10.00% | 10.00% | 21.00% 7.00% | 6.00% 3.00%
Set3 5.00% | 12.00% 8.00% 9.00% | 10.00% | 20.00% 5.00% | 6.00% 1.33%
All Sets 8.00% | 13.00% | 11.00% | 11.00% | 13.00% | 22.00% | 9.00% | 10.00% 5.39%

Table 1

In Table 2 we give execution times (for segmenting a single text) of our algorithm and some of the

algorithms of [7, 8, 19]. Our algorithm was executed on a Pentium IIT 600Mhz computer with 256 Mbyte

RAMY.

Algorithm Uoob | U00 | C99b | C99 | Our Algo

Avg Exec. Time insec | 1.37 | 1.36 | 1.45 | 1.49 | 0.91

Table 2

%It is possible that the remaining algorithms of Table 1 were executed on slower machines
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5 Discussion

Using a variation of Product Partition Models we have formulated text segmentation as an optimization
problem which we have solved by a fast dynamic programming algorithm. On Choi’s segmentation
benchmark we achieve the best results so far reported in the literature.

Our approach has several features which have not been previously combined. Several authors
[13, 15, 18, 19] have used dynamic programming for text segmentation; most notably our algorithm
is very similar to the one used by Heinonen [13]. However, Heinonen uses a different homogeneity
function which takes into account only the similarity of adjacent sentences; our function takes into
account the homogeneity of all sentence pairs within a segment. Also note that, as far as we know,
PPM’s have not been previously applied to two-dimensional structures (such as the sentence similarity
matrix); the use of training data to estimate the parameters of the homogeneity function also appears
to be new.

It is interesting to compare PPM’s to Hidden Markov Models (HMM’s), which have been widely
applied to time series segmentation tasks [5, 17]. While our segmentation algorithm is related to
the Viterbi algorithm (used for HMM-based segmentation), there is an important difference between
HMM'’s and PPM’s. Namely, in the HMM framework each observation within a segment depends only
on the current state; in the PPM framework one specifies a probability distribution for the entire set
of observations within a segment. In this sense, the PPM appears as a more natural model of text
generation.

In this paper we have assumed that segmented training data are available to train the algorithm
parameters. If this is not the case, a useful approach for parameter training can be adopted from
the HMM literature. Namely, one can use an EM-style algorithm [10], alternating segmentation and
parameter estimation steps. We are currently investigating the use of this approach within the PPM

framework; our results will be reported in a future publication.

12



In this paper we have examined an offline segmentation problem. In other words, we assume that the

entire text is available to be processed by the segmentation algorithm. An online problem would require

the segmentation of a continuous incoming text-stream. The algorithm we have presented here cannot

solve this type of problem. However, it is not too difficult to adapt a dynamic programming algorithm

for online operation; hence in the future we plan to investigate online versions of our segmentation

algorithm.
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