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Abstract

In this paper we introduce a dynamic programming algorithm which performs linear text seg-

mentation by global minimization of a segmentation cost function which incorporates two factors:

(a) within-segment word similarity and (b) prior information about segment length. We evaluate

segmentation accuracy of the algorithm by precision, recall and Beeferman's segmentation metric.

On a segmentation task which involves Choi's text collection, the algorithm achieves the best seg-

mentation accuracy so far reported in the literature. The algorithm also achieves high accuracy on

a second task which involves previously unused texts.

Keywords: Text Segmentation, Information Retrieval, Document Retrieval, Machine Learning.

1 INTRODUCTION

An important problem in information retrieval is text segmentation. The goal is to divide a text into

homogeneous segments, so that each segment deals with a particular subject while contiguous segments

deal with di�erent subjects. In this manner documents relevant to a query can be retrieved from a

large database of unformatted (or loosely formatted) text.

In this paper we propose a dynamic programming algorithm which performs linear segmentation1

by global minimization of segmentation cost. We use a segmentation cost function which incorporates

two factors: (a) within-segment word similarity and (b) prior information about segment length.

Two main versions of the text segmentation problem appear in the literature. The �rst version

concerns segmentation of a single large text into its constituent parts (e.g. to segment an article into

sections); the second version concerns segmentation of a stream of independent, concatenated texts

(e.g. to segment a transcript of a TV news program into separate stories). The algorithm we present

here can be applied to either of these problems, but the experiments we present only deal with texts

of the second type.

A major issue in text segmentation is the choice of segment homogeneity (and heterogeneity)

criteria. Some segmentation algorithms use linguistic criteria such as cue phrases, punctuation marks,

prosodic features, reference, syntax and lexical attraction [1, 2, 3, 15, 24, 25]. Another approach utilizes

statistical similarity measures such as word cooccurrence (according to Halliday and Hasan [8] parts

of a text which have similar vocabulary are likely to belong to a coherent topic segment). Several

researchers have used the statistical approach in the past.

For example, Morris and Hirst [22, 23] introduced a linear discourse segmentation algorithm based

on lexical cohesion relations determined by use of Roget's thesaurus [31, 32]. Similarly, Kozima [18,

19, 20] has proposed a method which computes the semantic similarity between words using a semantic

network constructed from a subset of the Longman Dictionary of Contemporary English. Spreading

activation on the network is used to compute the similarity between two words and represents the

1As opposed to hierarchical segmentation [35].
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strength of lexical cohesion; it also provides information about similarity and coherence which can be

used for linear text segmentation: local minima of the similarity scores correspond to the positions of

topic boundaries in the text.

Consider a sliding window of text and plot the number of �rst-used words in the window as a function

of the window position within the text. In this plot segment boundaries correspond to deep valleys

followed by sharp upturns (this is in accordance to the previously mentioned hypothesis that shifts in

topic are likely to be accompanied by changes in word usage). This approach to text segmentation

was introduced by Youmans [38, 39] and has also been used by Hearst [9, 10, 11, 12, 13] and by Kan

[16, 17] (who combined word-usage with visual layout information).

The works of the previous paragraph utilize the similarity between adjacent parts of the text. A

more general approach involves the similarity between all parts of a text. This similarity can be

represented graphically by a dotplot (see Section 2.1). Dotplots in conjunction with divisive clustering

have been used by Reynar [28, 29, 30] and by Choi [5, 6] to perform linear text segmentation. Divisive

/ agglomerative clustering has also been used by Yaari [35, 36] to perform hierarchical segmentation.

Clustering can be seen as a form of approximate and local optimization; a more sophisticated

approach to segmentation can be obtained by use of dynamic programming to perform exact and

global optimization. This has been used by Ponte and Croft [26, 34], Heinonen [14], Utiyama and

Isahara [33] and others.

Finally, probabilistically motivated approaches to text segmentation include the use of hidden

Markov models [4, 21, 37] and Beeferman's work [1, 2] which utilizes word usage statistics, cue words

and several other features to construct a probability distribution on segment boundaries.

2 THE SEGMENTATION ALGORITHM

2.1 Representation

Suppose that a text contains T sentences and has a vocabulary of L distinct words. Now consider a

T � L matrix F de�ned as follows: for t = 1; 2; :::; T and l = 1; 2; :::; L we set

Ft;l =

�
1 i� the l-th word appears in the t-th sentence;

0 else.

Next we de�ne the sentence similarity matrix of the text as follows. It is a T � T matrix D where for

s; t = 1; 2; :::; T we set

Ds;t =

(
1 if

PL
l=1 Fs;lFt;l > 0;

0 if
PL

l=1 Fs;lFt;l = 0:

Hence Ds;t = 1 if the s-th and t-th sentence have at least one word in common. In Figure 1 we give a

dotplot of a D matrix (this particular matrix corresponds to a 91-sentence text which belongs to the

collection of Section 3.2). Ones are plotted as black squares and zeros as white squares.

Figure 1

Assuming that segment boundaries occur at the ends of sentences, a segmentation of the text is a

partition of the set f1; 2; :::; Tg into K subsets (i.e. segments) of the form f1; 2; :::; t1g, ft1 + 1; t1 +

2; :::; t2g, ..., ftK�1 + 1; tK�1 + 2; :::; Tg. A shorter representation of the segmentation can be given in

terms of a vector t = (t0; t1; :::; tK), where t0; t1; :::; tK are the segment boundaries and must satisfy:

0 = t0 < t1 < ::: < tK�1 < tK = T:

Note thatK, the length of the vector, is variable; hence t can describe any number of segments (however

we must have K � T , the number of sentences).
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2.2 The Cost Function

Every part of the original text corresponds to a submatrix of D. It can be expected that submatrices

which correspond to actual segments will contain many 1's, since the respective segments will have

many sentences with words in common (indeed, in Figure 1 we see several \high-density" regions

which we expect to correspond to actual segments). Hence a \good" segmentation should maximize

the density of 1's in the submatrices of D which correspond to segments. On the other hand, in

many situations we have additional information regarding the length of the segments. For example,

we may know that the average segment length is �. This information should be used to improve the

segmentation accuracy.

The above considerations can be formalized by de�ning the segmentation cost function J(t;�; �; r; )

(here t is the independent variable and �; �; r;  are parameters) as follows

J(t;�; �; r; ) =

KX
k=1

 
 �

(tk � tk�1 � �)2

2 � �2
� (1� ) �

Ptk
t=tk�1+1

Ptk
t=tk�1+1

Ds;t

(tk � tk�1)
r

!
: (1)

Hence the total segmentation cost is the sum of the costs of the K segments; the cost of each segment is

the sum of two terms (with their relative importance weighted by the parameter ). The interpretation

of the two terms is as follows.

1. The term
(tk�tk�1��)

2

2��2
corresponds to length information; in particular it measures deviation

from the average segment length. Indeed, � and � can be interpreted as the mean and standard

deviation of segment length which can be estimated from training data. Small values of this term

indicate agreement with the expected segment length2.

2. The term

Ptk
t=tk�1+1

Ptk
t=tk�1+1

Ds;t

(tk�tk�1)
r corresponds to (word) similarity between sentences. Note thatPtk

t=tk�1+1

Ptk
t=tk�1+1

Ds;t is the total number of ones in the D submatrix corresponding to the

k-th segment; also, when then the parameter r is equal to 2 then (tk � tk�1)
r is the area of sub-

matrix. Hence, when r = 2; the term

Ptk
t=tk�1+1

Ptk
t=tk�1+1

Ds;t

(tk�tk�1)
r corresponds to \segment density".

When r 6= 2 we obtain a \generalized density". Irrespective of the exact value of r, large values

of

Ptk
t=tk�1+1

Ptk
t=tk�1+1

Ds;t

(tk�tk�1)
r indicate strong intra-segment similarity (as measured by the number

of words which are common between sentences belonging to the segment).

A \good" segmentation vector t gives segments with high density and small deviation from average

segment length and hence the corresponding J(t;�; �; r; ) takes a small value3. The optimal segmen-

tation bt gives the global minimum of J(t;�; �; r; ). Note that the optimal bt speci�es both the optimal

number of segments K and the optimal positions of the segment boundaries t0; t1; :::; tK .

2.3 Dynamic Programming

Hence the task is to obtain the segmentation vector t which minimizes J(t;�; �; r; ). Following the

approach of [14] we use a dynamic programming algorithm which �nds the globally optimal bt. The

input to the algorithm is the similarity matrix D and the parameters �, �, r, ; the output is bt,
computed in time O(T 2) (where T is the number of sentences).

2Experiments not reported in this paper indicate that segmentation is more accurate when segment length is measured

in terms of sentences than in terms of words. The reason for this is probably that the number of words appearing in a
segment has larger variation than the number of sentences.

3Small in the algebraic sense; note that J(t;�; �; r; ) can take both positive and negative values.
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|||||||||||||||||||

Dynamic Programming for Text Segmentation

Input: The T � T similarity matrix D; the parameters �, �, r, :

Initilization

For t = 1; 2; ::T

Sum = 0

For s = 1; 2; :::; t � 1

Sum = Sum+ Ds;t

End

Ss;t =
Sum
(t�s)r

End

Minimization

C0 = 0; Z0 = 0

For t = 1; 2; ; T

Ct = 1

For s = 1; 2; :::; t � 1

If Ct �
(t�s��)2

2�2

Break out of this loop

EndIf

If Cs + Ss;t+
(t�s��)2

2�2
� Ct

Ct = Cs + Ss;t +
(t�s��)2

2�2

Zt = s

EndIf

End

End

BackTracking

K = 0

sk = T

While Zsk > 0

k = k + 1

sk = Zsk�1
End

K = K + 1

Zk = 0bt0 = 0

For k = 1; 2; :::;Kbtk = sK�k

End

Output: The optimal segmentation vector bt = (bt0;bt1; :::;btK):
|||||||||||||||||||
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3 EXPERIMENTS

3.1 Measures of Segmentation Accuracy

In the following experiments, we evaluate the performance of our algorithm by three indices: precision,

recall and Beeferman's Pk metric.

Precision and recall measure segmentation accuracy ; they are de�ned as follows:

precision =
no. of estimated segment boundaries which are actual segment boundaries

no. of estimated segment boundaries
;

recall =
no. of estimated segment boundaries which are actual segment boundaries

no. of true segment boundaries
:

Precision and recall take values in the range 0% to 100%. High values of both precision and recall

indicate high segmentation accuracy. However, a shortcoming of these two indices is that high precision

can be obtained at the expense of low recall and conversely. A further shortcoming is that every

inaccurately estimated segment boundary is penalized equally whether it is near or far from a true

segment boundary.

To overcome the shortcomings of precision and recall, Beeferman et al. have recently [2, 3] intro-

duced Pk, a measure of segmentation inaccuracy. Intuitively, Pk measures the proportion of sentences

which are wrongly predicted to belong to the same segment (while actually they belong in di�erent

segments) or sentences which are wrongly predicted to belong to di�erent segments (while actually

they belong to the same segment). Pk is formally de�ned as follows. Given a document of T sentences,

�rst de�ne for every s; t = 1; 2; :::; T the quantities Æ0(s; t) and Æ1(s; t) as follows

Æ0(s; t) =

�
1 i� sentences s and t belong to the same segment in the true segmentation;

0 else.

Æ1(s; t) =

�
1 i� sentences s and t belong to the same segment in the hypothetical segmentation;

0 else.

Next introduce a function d(s; t) (s; t = 1; 2; :::; T ) which is a distance probability distribution over the

set of possible distances between sentences randomly chosen from the document. Finally, de�ne

Pk =
X

1�s�t�T

d(s; t)1 (Æ0(s; t) = Æ1(s; t))

where 1(a = b) is the indicator function (equal to 1 when a = b and to 0 otherwise). It can be

shown that for appropriate choices of d, Pk takes values in the range 0% to 100% and is a measure

of how well the true and hypothetical segmentations agree (with a low value of Pk indicating high

accuracy). Appropriate choices of d and methods for the computation of Pk are given in [2, 3], where

it is also shown that Pk penalizes near-boundary errors less than far-boundary errors, hence evaluating

segmentation accuracy more accurately than precision and recall.

3.2 Experiment Group no.1

In this group of experiments we use Choi's publicly available text collection [5, 6]. This collection

consists of 700 texts, each text being a concatenation of ten text segments. Each segment consists of

\the �rst n sentences of a randomly selected document from the Brown Corpus [7]. (News articles

ca**.pos and the informative text cj**.pos)"4. The 700 texts can be divided into four datasets Set0,

Set1, Set2, Set3, according to the range of n as listed in Table 1.

4It follows that segment boundaries will always appear at the end of sentences.

5



Set0 Set1 Set2 Set3

Range of n (number of sentences in a document) 3-11 3-5 6-8 9-11

no. of texts 400 100 100 100

Table 1

The texts were preprocessed by removing punctuation marks and stop-words (determined by a stoplist)

and stemming the remaining words by Porter's algorithm [27].

We next present two suites of experiments. The di�erence of the two suites lies in the selection

of parameter values. Recall that the segmentation algorithm uses four parameters: �; �;  and r. As

already mentioned, � and � can be interpreted as the average and standard deviation of segment length;

it is not immediately obvious how to choose values for  and r.

In the �rst suite of experiments the goal is to determine the inuence of  and r on segmentation

accuracy (as measured by Beeferman's Pk) The following procedure is repeated for Set0, Set1, Set2,

Set3.

1. We determine appropriate � and � values using all the texts of the dataset (using the standard

statistical estimates).

2. We let  take the values 0.00, 0.01, 0.02, ... , 0.09, 0.1, 0.2, 0.3, ... , 1.0 and r take the values

0.33, 0.5, 0.66, 1. This yields 20�4=80 possible combinations of  and r values.

3. For each (, r) combination we run the segmentation algorithm.

The inuence of  and r on Pk can be observed in Figures 2-5 (corresponding to Set0, Set1, Set2, Set3).

Figures 2-5 here.

It can be seen from Figures 2-5 that the best achieved values of Pk are the ones listed in Table

2. These results are better than any other published in the literature [5, 6, 33] regarding Choi's text

collection.

Group Pk

Set0 (3-11) 7.00%

Set1 (3-5) 4.75%

Set2 (6-8) 2.40%

Set3 (9-11) 1.00%

All Sets 5.16%

Table 2

However, the results of Table 2 can be obtained only if the optimal values for ; r as well as

the values of �; � are known in advance. In a practical application none of these values will be a

priori available. A more realistic evaluation of our algorithm must include a procedure for determining

appropriate values of �; �; ; r.

In the second suite of experiments we �rst use training data and a parameter validation procedure

to determine appropriate �; �; ; r values. Then we evaluate the algorithm on (previously unseen) test

data. More speci�cally, the following procedure is performed for each of the datasets Set0, Set1, Set2,

Set3.
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1. We choose randomly half of the texts in the dataset to be used as training texts; the rest of the

samples are set aside to be used as test texts.

2. We determine appopriate � and � values using all the training texts and the standard statistical

estimators.

3. We determine appropriate  and r values by running the segmentation algorithm on all the

training texts with the 80 possible combinations of  and r values; the optimal (, r) combination

is the one which yields the minimum Pk value.

4. We apply the algorithm to the test texts using previously estimated ; r; � and � values.

The above procedure is repeated �ve times for each of the four datasets and the resulting values of

precision, recall and Pk are averaged. The average values are listed in Table 3.

Group Precision Recall Pk

Set0 (3-11) 82.66% 82.78% 7.00%

Set1 (3-5) 88.17% 87.70% 5.45%

Set2 (6-8) 88.68% 88.71% 3.00%

Set3 (9-11) 92.37% 92.44% 1.33%

All Sets 85.70% 85.73% 5.39%

Table 3

While the Pk values of Table 3 are slightly worse than the ones of Table 2, they still are better than

any previously reported on Choi's dataset. In Table 4 we list the Pk values achieved by our algorithm

to the ones obtained by various other segmentation algorithms operating on Choi's dataset [5, 6, 33].

The �rst row lists the algorithm used, the second row lists the publication in which the result appears;

the next four rows list Pk for Set0, Set1, Set2, Set3; the �nal row lists the Pk value averaged over

all samples5. The results of our segmentation algorithm appear in the last row. It can be seen that

our algorithm performs considerably better than all the remaining ones. Let us note that the best

performance has been achieved for  in the range [0.08, 0.4] and for r equal to either 0.5 or 0.66.

Method CWM1 CWM2 CWM3 C99b C99 C99b,-r U00b U00 Ours

Publication [6] [6] [6] [5] [5] [5] [33] [33]

Set0 9.00% 14.00% 12.00% 12.00% 13.00% 23.00% 10.00% 11.00% 7.00%

Set1 10.00% 10.00% 10.00% 11.00% 18.00% 19.00% 9.00% 13.00% 5.45%

Set2 7.00% 11.00% 9.00% 10.00% 10.00% 21.00% 7.00% 6.00% 3.00%

Set3 5.00% 12.00% 8.00% 9.00% 10.00% 20.00% 5.00% 6.00% 1.33%

All Sets 8.00% 13.00% 11.00% 11.00% 13.00% 22.00% 9.00% 10.00% 5.39%

Table 4

3.3 Experiment Group no.2

In the second group of experiments, we use a text collection compiled from the \Press: Reporting"

group of Brown Corpus documents. Our collection consists of ten datasets: Set0, Set1, Set2, ... , Set9.

Each dataset contains ten texts and each text is generated according to the following procedure (which

guarantees that each text contains ten segments).
5Only Pk results are listed, since precision and recall results are not given in [5, 6, 33].
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1. Integers Lmin; Lmax are chosen; as will be seen in the next step, Lmin is the minimum and Lmax

is the maximum number of lines in the segment.

2. For i = 1; 2; :::; 10 a random integer Li is generated under a uniform distribution in the set fLmin,

Lmin+1,..., Lmaxg.

3. The i-th segment is formed by extracting Li consecutive lines from a randomly selected Brown

Corpus document (starting at the �rst line of the document).

4. The ten segments are concatenated to form the text.

Each of the ten datasets uses di�erent Lmin and Lmax values; the 10 di�erent (Lmin; Lmax) pairs are

listed in Table 5.

Set0 Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9

Lmin 15 15 15 15 20 20 20 25 25 30

Lmax 20 25 30 35 25 30 35 30 35 35

Table 5

Similarly to Experiment Group no.1, we conduct two suites of experiments. In the �rst suite our

aim is to �nd the best possible segmentation performance (i.e. using the optimal values of  and r).

In Figures 6-9 we plot Pk as a function of  and r (for datasets Set4, Set7, Set8 and Set9).

Figures 6-9 here.

In the second suite of experiments we compute �; � and optimal  and r values by the previously

described validation procedure. In Table 6 we list the segmentation accuracy indices for each of the

ten datasets (as obtained by the validated parameter values).

Group Precision Recall Beeferman

Set0 67.22% 68.89% 9.92%

Set1 59.47% 60.00% 8.93%

Set2 66.64% 67.78% 13.59%

Set3 63.63% 68.89% 11.50%

Set4 79.72% 78.89% 5.13%

Set5 71.84% 75.56% 7.56%

Set6 68.06% 70.00% 8.63%

Set7 72.33% 75.56% 6.84%

Set8 63.13% 70.00% 8.62%

Set9 70.89% 74.45% 5.87%

All Sets 68.30% 71.00% 8.60%

Table 6

Since the above collection has not been previously used in the literature, we cannot provide a

comparative assesment. However, let us note that this collection furnishes a harder problem than the

one used in Experiment Group no.1, because both the vocabulary and the number of lines / sentences

contained in each segment are larger.
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3.4 Discussion

The application of our segmentation algorithm on Choi's text collection yields signi�cantly better results

than the ones previously reported [5, 6, 33]. Our algorithm also performs quite well on the previously

untested text collection of Experiment Group no.2. The computational complexity of our algorithm is

comparable to that of the other methods (namely O(T 2) where T is the number of sentences). In Table

7 we give execution times (for segmenting a single text) of our algorithm and some of the algorithms

of [5, 6, 33]. Note that our algorithm was executed on a Pentium III 600Mhz computer with 256Mbyte

RAM; it is possible that the remaining algorithms of Table 7 were executed on slower machines.

Algorithm U00b U00 C99b C99 Our Algo

Avg Exec. Time in sec 1.37 1.36 1.45 1.49 0.91

Table 7

Finally, an additional attractive feature of our algorithm is the automatic determination of optimal

number of segments.

Let us now point out what we consider to be the reasons for the good performance of our algorithm.

1. The use of a segment length term in the cost function improves segmentation accuracy signif-

icantly. This can be seen in Figures 2-9. In these �gures the Pk value computed for  = 0

corresponds to segmentation without any length information. It can be seen that in this case the

Pk values are signi�cantly worse than the optimal ones. We also stress that measuring segment

length in sentences rather than words signi�cantly improves segmentation accuracy.

2. In addition, the use of \generalized density" (r 6= 2) signi�cantly improves performance. While

the use of \true density" (r = 2) appears more natural, it can be seen in Figures 2-9 that the

best segmentation performance (minimum value of Pk) is achieved for signi�cantly smaller values

of r.The use of \generalized density" allows us to better control the inuence of segment area in

proportion to the \information contained in the segment".

3. However, segment length information and \generalized density" will only yield improved seg-

mentation if used with appropriate values of �; �;  and r. This becomes possible by the use of

training data and parameter validation.

4. Finally, let us note that our approach is \global" in two respects. First, sentence similarity is

computed globally through the use of the D matrix and dotplot. Second, this global similarity in-

formation is also optimized globally by the use of the dynamic programming algorithm. Compare

this to the local optimization of global information (for instance Choi uses divisive clustering,

which performs local optimization, to segment a global similarity matrix) as well as to the global

optimization of local information (for instance Heinonen uses dynamic programming to globally

optimize local, adjacent sentences similarity).

4 CONCLUSION

We have presented a dynamic programming algorithm which performs text segmentation by global

minimization of a segmentation cost consisting of two terms: within-segment word similarity and prior

information about segment length. The performance of our algorithm is quite satisfactory; in particular

it yields the best results reported so far on the segmentation of Choi's text collection. In the future

we plan to apply our algorithm to a wide spectrum of text segmentation tasks. We are interested in
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segmentation of long texts, change-of-topic detection in newsfeeds and segmentation of non-English

(particularly Greek) texts6. Also, we want to examine the interplay between the length and similarity

terms from a theoretical point of view (for instance by introducing appropriate probabilistic models

which allow for a Maximum Likelihood interpretation of the cost function).
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Table Captions

Table 1: Range of n (number of sentences) and number of documents for the datasets Set0, Set1,

Set2, Set3 (Choi's text collection).

Table 2: The best Pk values for the datasets Set0, Set1, Set2, Set3 and the entire dataset (Choi's text

collection) obtained with optimal , r values.

Table 3: The precision, recall and Pk values for the datasets Set0, Set1, Set2, Set3 and the entire

dataset (Choi's text collection) obtained with validated , r values.

Table 4: Comparison of several algorithms with respect to the Pk values obtained for the datasets

Set0, Set1, Set2, Set3 and the entire dataset (Choi's text collection).

Table 5: Lmin and Lmax (minimum and maximum number of lines) for datasets Set0, Set1, ... , Set9

(our new text collection).

Table 6: Precision, recall and Pk for datasets Set0, Set1, ... , Set9 (our new text collection) using

validated parameter values.

Table 7: Comparison of our algorithm and the algorithms of [5, 6, 33] with respect to average execution

times for segmenting a single text.

Figure Captions

Figure 1: Plot of the sentence similarity matrix D for a text with 91 sentences. 1's are plotted as

black squares and 0's are plotted as white squares.

Figure 2: Pk plotted as a function of  and r for the texts of Set0 (Choi's text collection).

Figure 3: Pk plotted as a function of  and r for the texts of Set1 (Choi's text collection).

Figure 4: Pk plotted as a function of  and r for the texts of Set2 (Choi's text collection).

Figure 5: Pk plotted as a function of  and r for the texts of Set3 (Choi's text collection).

Figure 6: Pk plotted as a function of  and r for the texts of Set4 (our new text collection).

Figure 7: Pk plotted as a function of  and r for the texts of Set7 (our new text collection).

Figure 8: Pk plotted as a function of  and r for the texts of Set8 (our new text collection).

Figure 9: Pk plotted as a function of  and r for the texts of Set9 (our new text collection).
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Footnotes

1As opposed to hierarchical segmentation [35].
2Experiments not reported in this paper indicate that segmentation is more accurate when segment

length is measured in terms of sentences than in terms of words. The reason for this is probably that

the number of words appearing in a segment has larger variation than the number of sentences.
3Small in the algebraic sense; note that J(t;�; �; r; ) can take both positive and negative values.
4It follows that segment boundaries will always appear at the end of sentences.
5Only Pk results are listed, since precision and recall results are not given in [5, 6, 33].
6Compare the following remarks in [33]: \it is important to assess the performance of systems by

using real texts. These texts should also be domain independent. They should also be multi-lingual if

we want to test the multilinguality of systems".
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Figure 3

Figure 4
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Figure 5

Figure 6
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Figure 7

Figure 8
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Figure 9
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