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Abstract

Corsini has de�ned a hyperoperation � through a fuzzy set and has shown � to be a join hyper-
operation. This hyperoperation can be generalized so that it can be de�ned in terms of an L-fuzzy

set. We explore the generalized hyperoperation and give suÆcient conditions for the resulting hy-
perstructure to be a hypergroup and / or a join space.

AMS Classi�cation: 06B99, 06D30, 08A72, 20N20.

In [3] Corsini used a fuzzy set to de�ne a hyperoperation � and showed that it is a join hyperop-

eration. This hyperoperation was further studied by Corsini in [4] and by Ameri and Zahedi in [1].

It is easy to generalize Corsini's hyperoperation so that it can be de�ned in terms of an L-fuzzy set.

In this paper we explore the generalized hyperoperation and give suÆcient conditions for the resulting

hyperstructure to be a hypergroup and / or a join space.

For the purposes of this paper, an L-fuzzy set is a function from any set to a complete lattice (for

more details on L-fuzzy sets see [7]). The notions of hypergroup and join space is described in [2]. The

following will remain �xed for the remainder of the paper: X is a set; P(X) denotes the power set of

X; (L;�) is a complete lattice; M : X ! L is an L-fuzzy set; M(X) is the image of X under M .

De�nition 1 We de�ne the relationship JM � X �X by: (x; y) 2 JM i� M(x) = M(y):

Proposition 2 JM is an equivalence relation.

Proof. (i) M(x) = M(x)) (x; x) 2 JM .

(ii) (x; y) 2 JM ) M(x) = M(y)) (y; x) 2 JM .

(iii)((x; y) 2 JM ; (y; z) 2 JM )) (M(x) = M(y),M(y) = M(z)) ) (M(x) = M(z)) ) (x; z) 2 JM .

De�nition 3 The classes of JM are denoted by x and de�ned by x
:
= fy : M(x) = M(y)g :

De�nition 4 The quotient of X with respect to JM is denoted by X=M and de�ned by X=M
:
= fxgx2X .

We now use the L-fuzzy set M to introduce a hyperoperation on X, and an associated hyperoper-

ation on the quotient X=M .

De�nition 5 We de�ne the hyperoperation � : X �X ! P(X) by x � y = fz : M(x)^M(y) �M(z) �

M(x) _M(y)g:

De�nition 6 We de�ne the hyperoperation Æ : X=M�X=M ! P(X=M) by xÆy
:
= fz : M(x)^M(y) �

M(z) �M(x) _M(y)g = fz : z 2 x � yg.
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The two hyperoperations are \equivalent" as can be seen by the following.

Proposition 7 For all x; y; z 2 X we have z 2 x Æ y , z 2 x � y.

Proof. The ( implication is immediate. For the ) implication:

z 2 x Æ y )

�
9u :

z = u

u 2 x � y

�
)

�
9u :

M(z) = M(u)

M(x) ^M(y) �M(u) �M(x) _M(y)

�
)

M(x) ^M(y) �M(z) �M(x) _M(y)) z 2 x � y:

Proposition 8 For every x; y 2 X we have: (i) x = y ) x � y = x;, (ii) x � x = x:

Proof. For (i) note that x = y ) M(x) = M(y). Then z 2 x � y , M(x) ^M(y) � M(z) �

M(x) _M(y) , M(x) � M(z) � M(x) , M(x) = M(z) , z 2 x. Hence x � y = x. (ii) follows

from (i) taking y = x

The next proposition shows that JM is a congruence with respect to Æ.

Proposition 9 For all x; y; z 2 X we have x = y ) x Æ z = y Æ z:

Proof. For all x; y; z 2 X we have x = y ) M(x) = M(y). Take any u 2 x Æ z. Then

M(x) ^M(z) �M(u) �M(x) _M(z))

M(y) ^M(z) �M(u) �M(y) _M(z)) u 2 y Æ z:

So we have shown u 2 x Æ z ) u 2 y Æ z: Similarly we can show the converse and we are done.

De�nition 10 For all A 2 P(X), A
:
= fxgx2A.

Remark. It follows from the above de�nition that x � y = fz : z 2 x � yg = x Æ y:

De�nition 11 M : X=M ! L is de�ned by M(x)
:
= M(x):

Proposition 12 M is well de�ned and 1-1, onto M(X).

Proof. It is well de�ned and 1-1 because x = y , M(x) = M(y) , M(x) = M(y). It is onto

M(X) because: a 2M(X) ) 9x 2 X : a = M(x)) 9x 2 X=M : a = M(x):

We now introduce one more hyperoperation, which is the restriction of a join hyperoperation

introduced in [6].

De�nition 13 We de�ne the hyperoperation � : M(X)�M(X)! P(M(X)) by a � b = [a^ b; a_ b]\

M(X) (where a; b 2M(X), i.e. 9x; y 2 X such that a = M(x), b = M(y)).

Let us now establish the connection between �; Æ and �.

Proposition 14 The following are equivalent for all x; y; z 2 X.

(i) z 2 x � y;

(ii) z 2 x Æ y;
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(iii) M(z) 2M(x) �M(y);

(iv) M(z) 2M (x) �M(y):

Proof. (i) is equivalent to (ii) by Proposition 7; (iii) is equivalent to (iv) by De�nition 11. Let us

show that (i) is equivalent to (iii). We have

z 2 x � y ,

�
M(z) 2 [M(x) ^M(y);M(x) _M(y)]

M(z) 2M(X)

�

,M(z) 2 [M(x) ^M(y);M(x) _M(y)] \M(X)

,M(z) 2M(x) �M(y):

We now introduce an order on X=M and then use it to establish an isomorphism between the

domain and range of M .

De�nition 15 We de�ne v on X=M by: x v y ,M(x) �M(y).

Proposition 16 v is an order on X=M .

Proof. Clearly x v y ,M(x) �M(y). Also, M is 1-1 from X=M onto M(X). Finally, since � is

an order on L it is also an order on M(X) � L.

Remark. One could de�ne � on X by x � y i� M(x) �M(y). In this case, � is a preorder on X

and the classes generated by this preorder are exactly the elements of X=M:

Proposition 17 (X=M;v; �)
M
! (M(X);�; �) is an order isomorphism, i.e.:

(i) M is 1-1, onto;

(ii) x v y ,M(x) �M(y);

(iii) M(x Æ y) = M(x) �M(y):

Proof. (i) follows from Proposition 12. (ii) follows from De�nition 15. For (iii) note the following.

First, from Proposition 14.(iv) for all z 2 x Æ y we have M(z) 2 M(x) �M (y). Since M(x Æ y) =

fM (z)gz2xÆy, it follows that

M(x Æ y) �M(x) �M(y): (1)

Second,

a 2M(x) �M(y) = [M(x) ^M(y);M(x) _M(y)] \M(X))

9z : a = M(z) 2 [M(x) ^M(y);M(x) _M(y)])

z 2 x � y ) z 2 x Æ y ) a = M(z) 2M(x Æ y))

M(x) �M(y) �M(x Æ y): (2)

From (1) and (2) follows that M(x) �M(y) = M(x Æ y).
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Proposition 18 (X=M;v) is a (modular, distributive) lattice i� (M(X);�) is a (modular, distribu-

tive) lattice.

Proof. This is obvious, since M is an order isomorphism between (X=M;v) and (M(X);�):

We also de�ne extension hyperoperations obtained from the respective join hyperoperations.

De�nition 19 We de�ne the hyperoperation = : X �X ! P(X) by x=y = fz : x 2 y � zg:

De�nition 20 We de�ne the hyperoperation == : X=M �X=M ! P(X=M) by x==y
:
= fz : x 2 y Æ zg.

De�nition 21 We de�ne the hyperoperation o : M(X) �M(X) ! P(M(X)) by a o b = fc 2 M(X):

a 2 b � cg:

We are now ready to present conditions for �; Æ and � to be join hyperoperations.

Proposition 22 (X=M; Æ) is a hypergroup (join space) i� (M(X); �) is a hypergroup (join space).

Proof. This follows from the isomorphism between Æ and �.

(i) If (X=M; Æ) is a join space, then for all x; y; z; u; w 2 X=M we have

A1 x Æ x = x.

A2 x Æ y = y Æ x:

A3 (x Æ y) Æ z = x Æ (y Æ z) :

A4 x Æ (X=M) = X=M:

A5 x==y s u==w ) x Æ w s y Æ u:

(ii) Similarly, if (M(X); �) is a join space, then for all a; b; c; d 2M(X) we have

B1 a � a = a.

B2 a � b = b � a:

B3 (a � b) � c = a � (b � c) :

B4 a �M(X) =M(X):

B5 a=b s c=d) a � d s b � c

(iii) A1, A2, A4 are always true; similarly for B1, B2, B4. We will next show that A3 is

equivalent to B3. First we need to show that

M(x Æ y) �M(z) = M((x Æ y) Æ z):
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Note that a 2 M(X) implies (for some w 2 X) that a = M(w). Then, for any a 2 M(x Æ y) �M(z)

we have�
9u 2 X :

M(u) 2M(x Æ y) = M(x) �M(y)

a 2M(u) �M(z)

�

,

�
9u 2 X :

M(x) ^M(y) �M(u) = M(u) �M(x) _M(y)

M(u) ^M(z) � a = M(w) �M(u) _M(z)

�

,

�
9u 2 X :

u 2 x Æ y

w 2 u Æ z

�

, w 2 (x Æ y) Æ z

, a = M(w) 2M ((x Æ y) Æ z):

Hence we have M(x Æ y) �M(z) = M((x Æ y) Æ z). Now:

�
M(x) �M(y)

�
�M(z) = M(x Æ y) �M(z) = M((x Æ y) Æ z) (3)

is equivalent (since M is 1-1) to

M
�1 ��

M(x) �M(y)
�
�M(z)

�
= (x Æ y) Æ z (4)

Similarly we can show that

M(x) �
�
M(y) �M(z)

�
= M(x) �M(y Æ z) = M(x Æ (y Æ z)) (5)

and

M
�1 �

M(x) �
�
M(y) �M(z)

��
= x Æ (y Æ z) (6)

are equivalent. From A3, (3) and (5) follows B3; and from B3, (4) and (6) follows A3. Hence A3 ,

B3. Similarly we can show A5 , B5 and the proof is complete.

Proposition 23 (X=M; Æ) is a hypergroup (join space) i� (X; �) is a hypergroup (join space).

Proof. If (X=M; Æ) is a join space, then the conditions A1 { A5 presented previously hold for all

x; y; z; u; w 2 X=M . Also, if (X; �) is a join space, then for all x; y; z; u; w 2 X we have

C1 x � x = x.

C2 x � y = y � x:

C3 (x � y) � z = x � (y � z) :

C4 x �X = X:

C5 x=y s u=w ) x � w s y � u:

Now, A1, A2, A4 are always true; similarly for C1, C2, C4. We will next show that A3 and C3

are equivalent. On the one hand we have

u 2 (x Æ y) Æ z ,

�
9w :

w 2 x Æ y

u 2 w Æ z

�
,

�
9w :

w 2 x � y

u 2 w � z

�
, u 2 (x � y) � z: (7)
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On the other hand

u 2 x Æ (y Æ z),

�
9p :

p 2 y Æ z

u 2 x Æ p

�
,

�
9p :

p 2 y � z

u 2 x � p

�
, u 2 x � (y � z): (8)

Now, if C3 holds, then x � (y � z) = (x � y) � z and from (7), (8) follows that x Æ (y Æ z) = (x Æ y) Æ z,

i.e. A3 holds too. The converse is also immediate, hence A3 , C3. Similarly we can show A5 ,

C5 and we are done.

Proposition 24 If M(X) is a distributive sublattice of (L;�) then: (M(X); �), (X=M; Æ) and (X; �)

are all join spaces.

Proof. The proof that (M(X); �) is a join space has been given in [6]; that (X=M; Æ) is a join space

follows from Proposition 22; that (X; �) is a join space follows from Proposition 23.

Now we can interpret the Corsini result. Corsini takes L = [0; 1] � R. But then M(X) � [0; 1] is a

chain and so a distributive sublattice of ([0; 1];�). Hence (X; �) will be a join space by Proposition 23.

We can also give a condition for (M(X); �), (X=M; Æ) and (X; �) to be hypergroups.

Proposition 25 (M(X); �), (X=M; Æ) and (X; �) are hypergroups i� 8p; q; r 2 M(X), exist a; b 2

M(X) such that r � [p ^ q; p _ q] = [a; b].

Proof. In [5] we have shown that the � hyperoperation is associative i� 8p; q; r 2 M(X), exist

a; b 2M(X) such that r � [p^ q; p_ q] = [a; b]. This, in conjunction with Proposition 24 completes the

proof.

In the future we plan to extend our investigation in case L and/or M have additional properties.

For example, it will be interesting to explore the case where (L;�) is a Boolean or deMorgan lattice.

It is also interesting to explore the case where X is equipped with an order. For instance, suppose

that (X;�) is a lattice. When are � and v compatible? A more general direction for future research

concerns the case where (M(X);�) is a lattice but not a sublattice of (L;�) and �nd out if in this

case � is a join hyperoperation.
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1 Further Issues

1. Introduce counterexamples: a Tepavcevic counterexample using the Boole2 as L. Also the [Keh+Kon]

nonmodular, nonjoin lattice (to show that (X; �) can fail to be a hypergroup.

2. Properties of Corsini join using the [Keh+Kon] results.

3. Relate to other results about Corsini fuzzy join.

4. Corsini Join on deMorgan L-fuzzy sets, on Boolean L-fuzzy sets. This essentially means to study

JM for special L and M:

5. Extend the Caratheodory result: show that it yields not only hypergroup but also join space.

6. Suppose (X;�) is a lattice. When are � and v compatible? (Use Tevacevska).

7. What happens if we de�ne a � b = [a ^ b; a _ b] (i.e. without the \M(X) restriction)?

8. What happens if (M(X);�) is a lattice but not a sublattice of (L;�)?
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