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Abstract

Corsini has defined a hyperoperation - through a fuzzy set and has shown - to be a join hyper-
operation. This hyperoperation can be generalized so that it can be defined in terms of an L-fuzzy
set. We explore the generalized hyperoperation and give sufficient conditions for the resulting hy-
perstructure to be a hypergroup and / or a join space.
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In [3] Corsini used a fuzzy set to define a hyperoperation - and showed that it is a join hyperop-
eration. This hyperoperation was further studied by Corsini in [4] and by Ameri and Zahedi in [1].
It is easy to generalize Corsini’s hyperoperation so that it can be defined in terms of an L-fuzzy set.
In this paper we explore the generalized hyperoperation and give sufficient conditions for the resulting
hyperstructure to be a hypergroup and / or a join space.

For the purposes of this paper, an L-fuzzy set is a function from any set to a complete lattice (for
more details on L-fuzzy sets see [7]). The notions of hypergroup and join space is described in [2]. The
following will remain fixed for the remainder of the paper: X is a set; P(X) denotes the power set of
X; (L, <) is a complete lattice; M : X — L is an L-fuzzy set; M(X) is the image of X under M.

Definition 1 We define the relationship Jyy € X x X by: (z,y) € Jyr iff M(z) = M (y).
Proposition 2 Jys is an equivalence relation.
Proof. (i) M(z) = M(z) = (z,z) € Ju.
(ii) (z,y) € J;r = M( (y) =
(iii) ((z, ) € Jar, (y, 2) € Jur) = (M(z) = M(y),M(y) = M(z)) = (M(z) = M(2)) = (z,2) € Ju-
[ |
Definition 3 The classes of Jy are denoted by T and defined by T = {y: M(z) = M(y)} .
Definition 4 The quotient of X with respect to Jys is denoted by X/M and defined by X/M = {T} .

We now use the L-fuzzy set M to introduce a hyperoperation on X, and an associated hyperoper-
ation on the quotient X /M.

Definition 5 We define the hyperoperation - : X x X - P(X) byz-y={z: M(z) A\M(y) < M(z) <
M(z) v M(y)}-

Definition 6 We define the hyperoperation o : X/ M x X/M — P(X/M) byToy ={z: M(z)A\M(y) <
M(z) < M(z) vV M(y)} = {7:2 € z-y}.



The two hyperoperations are “equivalent”

as can be seen by the following.
Proposition 7 For all z,y,z € X we have ZET oy S 2z €Ex - y.

Proof. The <« implication is immediate. For the = implication:

Z=T1 M(z) = M(u

ZEToY = <3u: wET-y ) - (31“ M(z) A M(y) < M(u) < M(z) V M(y) ) N

M(z) NM(y) < M(z) < M(z)VM(y) =z €x-y.
[ ]
Proposition 8 For every z,y € X we have: (i) T =9 =z -y=T,, (ii) -z =T.

Proof. For (i) note that T =y = M(x) = M(y). Then z € z -y & M(z) AM(y) < M(z) <
M(z)VM(y) & M(z) < M(z) < M(z) & M(z) = M(z) & z € Z. Hence z -y = T. (ii) follows
from (i) takingy =z =m

The next proposition shows that Jjs is a congruence with respect to o.

Proposition 9 For all z,y,z € X we have T =9y =T oZ =7y oZ.

Proof. For all z,y,z € X we have T =5 = M(z) = M(y). Take any u € T oZ. Then

M(z) NM(z) < M(u)
M(y) A M(z) < M(u)

So we have shown u € ToZ = u € g o z. Similarly we can show the converse and we are done. m
Definition 10 For all A € P(X), A= {T}yeca.
Remark. It follows from the above definition that T-g={Z: 2 €2 -y} =T oT7.
Definition 11 M : X/M — L is defined by M (%) = M(z).
Proposition 12 M is well defined and 1-1, onto M(X).

Proof. It is well defined and 1-1 because T = 7 & M(z) = M(y) & M(z) = M(y). It is onto

M(X) because:a € M(X) =z € X:a=M(z)=3IT € X/M:a=M(T). ®
We now introduce one more hyperoperation, which is the restriction of a join hyperoperation
introduced in [6].

Definition 13 We define the hyperoperation x : M(X) x M(X) - P(M(X)) by axb=[aAb,aVbN
M(X) (where a,b € M(X), i.e. z,y € X such that a = M(z), b= M(y)).

Let us now establish the connection between -, 0 and x.
Proposition 14 The following are equivalent for all x,y,z € X.

(i) z €z -y;

(ii)) Z € T oT;



(iv) M(z) € M(z) * M(7).

Proof. (i) is equivalent to (ii) by Proposition 7; (iii) is equivalent to (iv) by Definition 11. Let us
show that (i) is equivalent to (iii). We have

M(z) € [M(z) N M(y), M(x) vV M(y)]
Zexﬂ@( M(z)el\y/[(X) ! )

]
We now introduce an order on X/M and then use it to establish an isomorphism between the
domain and range of M.

Definition 15 We define T on X/M by: T Ty < M(x) < M(y).
Proposition 16 C is an order on X/M.

Proof. Clearly T C 5 < M (%) < M(y). Also, M is 1-1 from X/M onto M (X). Finally, since < is
an order on L it is also an order on M(X)C L. m

Remark. One could define < on X by z <y iff M(z) < M(y). In this case, < is a preorder on X
and the classes generated by this preorder are exactly the elements of X /M.

Proposition 17 (X/M,C,-) E (M(X),<,*) is an order isomorphism, i.e.:
(i) M is 1-1, onto;
(it) TCY & M(z) < M(y);

(iii) M(T o) = M(z) * M(y).

Proof. (i) follows from Proposition 12. (ii) follows from Definition 15. For (iii) note the following.
First, from Proposition 14.(iv) for all z € T o % we have M(Z) € M (%) * M(y). Since M(T o) =
{M (Z)}zez0y, it follows that

M(z oy) C M(z) « M(y). (1)
Second,

a € M(z) x M(y) = [M(z) A M(y), M(z) V M(y)] N M(X) =
dz:a=M(z) € [M(z) N M(y), M(z) vV M(y)] =
Z2€Ex-Yy=>zZE€EToy=>a=M(Z)EM(Toy) =

M(z) * M(y) € M(T o 7). (2)

From (1) and (2) follows that M(z) * M(y) = M(To7). m



Proposition 18 (X/M,C) is a (modular, distributive) lattice iff (M (X), <) is a (modular, distribu-
tive) lattice.

Proof. This is obvious, since M is an order isomorphism between (X/M,C) and (M(X),<). =
We also define eztension hyperoperations obtained from the respective join hyperoperations.

Definition 19 We define the hyperoperation [ : X x X - P(X) byx/y={z:z €y z}.
Definition 20 We define the hyperoperation [/ : X/M x X/M — P(X/M) byz//y={Z:T € o Z}.

Definition 21 We define the hyperoperation 1 : M(X) x M(X) - P(M(X)) by alb = {c € M(X):
a € bxc}.

We are now ready to present conditions for -, 0 and * to be join hyperoperations.
Proposition 22 (X/M,o) is a hypergroup (join space) iff (M (X),*) is a hypergroup (join space).

Proof. This follows from the isomorphism between o and .
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A3 (Zoy)ozZ=To(yoZ).
Ad To (X/M) = X/M.
A5 T//y~Tu//W=Tow~7you.
(ii) Similarly, if (M (X),*) is a join space, then for all a,b,c,d € M(X) we have
Bl axa=a.
B2 axb=0bxa.
B3 (axb)xc=ax(bxc).
B4 a+ M(X) = M(X).
B5 a/b~c/d=a*xd~bxc

(iii)) Al, A2, A4 are always true; similarly for B1, B2, B4. We will next show that A3 is
equivalent to B3. First we need to show that

M(z o) * M(Z) = M((Zo7) 0 Z).



Note that a € M(X) implies (for some w € X) that a = M(w). Then, for any a € M (T o ) * M (%)
we have

<3u€X:

M(@) € M(Zog) = M(z) * M(y) )
a€ M(@)«M(z
<

)
. M(x) AM(y) < M(u) = M(@) < M(x) vV M(y)
‘:’(HUEX' M(u) A M(2) < a = M(w) < M(u) v M(2) )
(:)(EIUEX: gi?g)

SweE (Toy)oz

S a=M(w) € M((Toy)oZ).
Hence we have M(Z o) * M(Z) = M((Z o) o Z). Now:

(M(Z) * M(y)) * M(Z) = M(ZT oY) «* M(Z) = M((T oY) 0 %) (3)
is equivalent (since M is 1-1) to

M (M@)«M@) «M®) = @7) 07 (4)

Similarly we can show that

M(Z) * (M(y)« M(z)) = M(T)* M(yoz) = M(ZTo (yoz)) (5)
and
M ' (M(@)+ (M(g) « M(2))) =T o (§o7) (6)

are equivalent. From A3, (3) and (5) follows B3; and from B3, (4) and (6) follows A3. Hence A3 &
B3. Similarly we can show A5 < B5 and the proof is complete. m

Proposition 23 (X/M,o) is a hypergroup (join space) iff (X,-) is a hypergroup (join space).

Proof. If (X/M,o) is a join space, then the conditions A1 — A5 presented previously hold for all
T,y,Z,u,w € X/M. Also, if (X,-) is a join space, then for all z,y, z,u,w € X we have

Cl z-z=ux.
C2z-y=y-x.
C3(z-y)-z=x-(y-2).
C4z-X=X.

C5 z/y~u/w=c-w~y-u.

Now, A1, A2, A4 are always true; similarly for C1, C2, C4. We will next show that A3 and C3
are equivalent. On the one hand we have

g)@(ﬂw: wex'y)@ue(x-y)-z. (7)

u€E(Toy)oz & <3w:
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On the other hand

gl 3l
8l <

2 i >@(3p: pEy'z)@uEx-(y-z). (8)

EEEO(QOE)@<3p: wEz D

N

Now, if C3 holds, then z - (y-2z) = (z -y) - z and from (7), (8) follows that To (o Zz) = (Toy) o Z,
i.e. A3 holds too. The converse is also immediate, hence A3 < C3. Similarly we can show A5 &
C5 and we are done. ®m

Proposition 24 If M(X) is a distributive sublattice of (L, <) then: (M(X),x), (X/M,0) and (X,-)
are all join spaces.

Proof. The proof that (M (X), ) is a join space has been given in [6]; that (X/M, o) is a join space
follows from Proposition 22; that (X, -) is a join space follows from Proposition 23. =

Now we can interpret the Corsini result. Corsini takes L = [0,1] C R. But then M(X) C [0,1] is a
chain and so a distributive sublattice of (][0, 1], <). Hence (X, -) will be a join space by Proposition 23.

We can also give a condition for (M (X), ), (X/M,o) and (X,-) to be hypergroups.

Proposition 25 (M(X),*), (X/M,o) and (X,-) are hypergroups iff Vp,q,v € M(X), exist a,b €
M (X) such that rx[p Aq,pV q] = [a,b)].

Proof. In [5] we have shown that the - hyperoperation is associative iff Vp,q,r € M(X), exist
a,b € M(X) such that r«[pAq,pV q] = [a,b]. This, in conjunction with Proposition 24 completes the
proof. m

In the future we plan to extend our investigation in case L and/or M have additional properties.
For example, it will be interesting to explore the case where (L, <) is a Boolean or deMorgan lattice.
It is also interesting to explore the case where X is equipped with an order. For instance, suppose
that (X, <) is a lattice. When are < and C compatible? A more general direction for future research
concerns the case where (M (X), <) is a lattice but not a sublattice of (L, <) and find out if in this
case - is a join hyperoperation.
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1 Further Issues

1. Introduce counterexamples: a Tepavcevic counterexample using the Boole? as L. Also the [Keh+Kon]
nonmodular, nonjoin lattice (to show that (X, ) can fail to be a hypergroup.

2. Properties of Corsini join using the [Keh+Kon] results.
3. Relate to other results about Corsini fuzzy join.

4. Corsini Join on deMorgan L-fuzzy sets, on Boolean L-fuzzy sets. This essentially means to study
Jyr for special L and M.

5. Extend the Caratheodory result: show that it yields not only hypergroup but also join space.
6. Suppose (X, =) is a lattice. When are < and C compatible? (Use Tevacevska).
7. What happens if we define a * b = [a A b,a V b] (i.e. without the NM (X)) restriction)?

8. What happens if (M (X), <) is a lattice but not a sublattice of (L, <)?



