## The L-Fuzzy Corsini Join Hyperoperation

K. Serafimidis, Ath. Kehagias and M. Konstantinidou

## Abstract

Corsini has defined a hyperoperation  $\cdot$  through a fuzzy set and has shown  $\cdot$  to be a *join* hyperoperation. This hyperoperation can be generalized so that it can be defined in terms of an L-fuzzy set. We explore the generalized hyperoperation and give sufficient conditions for the resulting hyperstructure to be a hypergroup and / or a join space.

AMS Classification: 06B99, 06D30, 08A72, 20N20.

In [3] Corsini used a fuzzy set to define a hyperoperation  $\cdot$  and showed that it is a *join* hyperoperation. This hyperoperation was further studied by Corsini in [4] and by Ameri and Zahedi in [1]. It is easy to generalize Corsini's hyperoperation so that it can be defined in terms of an L-fuzzy set. In this paper we explore the generalized hyperoperation and give sufficient conditions for the resulting hyperstructure to be a hypergroup and / or a join space.

For the purposes of this paper, an L-fuzzy set is a function from any set to a complete lattice (for more details on L-fuzzy sets see [7]). The notions of hypergroup and join space is described in [2]. The following will remain fixed for the remainder of the paper: X is a set;  $\mathbf{P}(X)$  denotes the power set of X;  $(L, \leq)$  is a complete lattice;  $M: X \to L$  is an L-fuzzy set; M(X) is the image of X under M.

**Definition 1** We define the relationship  $J_M \subseteq X \times X$  by:  $(x, y) \in J_M$  iff M(x) = M(y).

**Proposition 2**  $J_M$  is an equivalence relation.

```
Proof. (i) M(x) = M(x) \Rightarrow (x, x) \in J_M.

(ii) (x, y) \in J_M \Rightarrow M(x) = M(y) \Rightarrow (y, x) \in J_M.

(iii) ((x, y) \in J_M, (y, z) \in J_M) \Rightarrow (M(x) = M(y), M(y) = M(z)) \Rightarrow (M(x) = M(z)) \Rightarrow (x, z) \in J_M.
```

**Definition 3** The classes of  $J_M$  are denoted by  $\overline{x}$  and defined by  $\overline{x} \doteq \{y : M(x) = M(y)\}$ .

**Definition 4** The quotient of X with respect to  $J_M$  is denoted by X/M and defined by  $X/M \doteq \{\overline{x}\}_{x \in X}$ .

We now use the L-fuzzy set M to introduce a hyperoperation on X, and an associated hyperoperation on the quotient X/M.

**Definition 5** We define the hyperoperation  $\cdot: X \times X \to \mathbf{P}(X)$  by  $x \cdot y = \{z : M(x) \land M(y) \leq M(z) \leq M(x) \lor M(y)\}.$ 

**Definition 6** We define the hyperoperation  $\circ: X/M \times X/M \to \mathbf{P}(X/M)$  by  $\overline{x} \circ \overline{y} \doteq \{\overline{z}: M(x) \land M(y) \leq M(z) \leq M(x) \lor M(y)\} = \{\overline{z}: z \in x \cdot y\}.$ 

The two hyperoperations are "equivalent" as can be seen by the following.

**Proposition 7** For all  $x, y, z \in X$  we have  $\overline{z} \in \overline{x} \circ \overline{y} \Leftrightarrow z \in x \cdot y$ .

**Proof.** The  $\Leftarrow$  implication is immediate. For the  $\Rightarrow$  implication:

$$\overline{z} \in \overline{x} \circ \overline{y} \Rightarrow \left(\exists u : \begin{array}{c} \overline{z} = \overline{u} \\ u \in x \cdot y \end{array}\right) \Rightarrow \left(\exists u : \begin{array}{c} M(z) = M(u) \\ M(x) \wedge M(y) \leq M(u) \leq M(x) \vee M(y) \end{array}\right) \Rightarrow$$

$$M(x) \wedge M(y) \leq M(z) \leq M(x) \vee M(y) \Rightarrow z \in x \cdot y.$$

**Proposition 8** For every  $x, y \in X$  we have: (i)  $\overline{x} = \overline{y} \Rightarrow x \cdot y = \overline{x}$ , (ii)  $x \cdot x = \overline{x}$ .

**Proof.** For (i) note that  $\overline{x} = \overline{y} \Rightarrow M(x) = M(y)$ . Then  $z \in x \cdot y \Leftrightarrow M(x) \land M(y) \leq M(z) \leq M(x) \lor M(y) \Leftrightarrow M(x) \leq M(z) \leq M(x) \Leftrightarrow M(x) = M(z) \Leftrightarrow z \in \overline{x}$ . Hence  $x \cdot y = \overline{x}$ . (ii) follows from (i) taking y = x

The next proposition shows that  $J_M$  is a congruence with respect to  $\circ$ .

**Proposition 9** For all  $x, y, z \in X$  we have  $\overline{x} = \overline{y} \Rightarrow \overline{x} \circ \overline{z} = \overline{y} \circ \overline{z}$ .

**Proof.** For all  $x, y, z \in X$  we have  $\overline{x} = \overline{y} \Rightarrow M(x) = M(y)$ . Take any  $\overline{u} \in \overline{x} \circ \overline{z}$ . Then

$$M(x) \land M(z) \le M(u) \le M(x) \lor M(z) \Rightarrow$$
  
 $M(y) \land M(z) \le M(u) \le M(y) \lor M(z) \Rightarrow \overline{u} \in \overline{y} \circ \overline{z}.$ 

So we have shown  $\overline{u} \in \overline{x} \circ \overline{z} \Rightarrow \overline{u} \in \overline{y} \circ \overline{z}$ . Similarly we can show the converse and we are done.

**Definition 10** For all  $A \in \mathbf{P}(X)$ ,  $\overline{A} \doteq \{\overline{x}\}_{x \in A}$ .

**Remark**. It follows from the above definition that  $\overline{x \cdot y} = \{\overline{z} : z \in x \cdot y\} = \overline{x} \circ \overline{y}$ .

**Definition 11**  $\overline{M}: X/M \to L$  is defined by  $\overline{M}(\overline{x}) \doteq M(x)$ .

**Proposition 12**  $\overline{M}$  is well defined and 1-1, onto M(X).

**Proof.** It is well defined and 1-1 because  $\overline{x} = \overline{y} \Leftrightarrow M(x) = M(y) \Leftrightarrow \overline{M}(\overline{x}) = \overline{M}(\overline{y})$ . It is onto M(X) because:  $a \in M(X) \Rightarrow \exists x \in X : a = M(x) \Rightarrow \exists \overline{x} \in X/M : a = \overline{M}(\overline{x})$ .

We now introduce one more hyperoperation, which is the *restriction* of a join hyperoperation introduced in [6].

**Definition 13** We define the hyperoperation  $*: M(X) \times M(X) \to \mathbf{P}(M(X))$  by  $a * b = [a \land b, a \lor b] \cap M(X)$  (where  $a, b \in M(X)$ , i.e.  $\exists x, y \in X$  such that a = M(x), b = M(y)).

Let us now establish the connection between  $\cdot$ ,  $\circ$  and \*.

**Proposition 14** The following are equivalent for all  $x, y, z \in X$ .

- (i)  $z \in x \cdot y$ ;
- (ii)  $\overline{z} \in \overline{x} \circ \overline{y}$ ;

(iii) 
$$M(z) \in M(x) * M(y)$$
;

(iv) 
$$\overline{M}(\overline{z}) \in \overline{M}(\overline{x}) * \overline{M}(\overline{y}).$$

**Proof.** (i) is equivalent to (ii) by Proposition 7; (iii) is equivalent to (iv) by Definition 11. Let us show that (i) is equivalent to (iii). We have

$$z \in x \cdot y \Leftrightarrow \left( \begin{array}{c} M(z) \in [M(x) \land M(y), M(x) \lor M(y)] \\ M(z) \in M(X) \end{array} \right)$$

$$\Leftrightarrow M(z) \in [M(x) \land M(y), M(x) \lor M(y)] \cap M(X)$$
  
 
$$\Leftrightarrow M(z) \in M(x) * M(y).$$

We now introduce an order on X/M and then use it to establish an isomorphism between the domain and range of  $\overline{M}$ .

**Definition 15** We define  $\sqsubseteq$  on X/M by:  $\overline{x} \sqsubseteq \overline{y} \Leftrightarrow M(x) \leq M(y)$ .

**Proposition 16**  $\sqsubseteq$  is an order on X/M.

**Proof.** Clearly  $\overline{x} \sqsubseteq \overline{y} \Leftrightarrow \overline{M}(\overline{x}) \leq \overline{M}(\overline{y})$ . Also,  $\overline{M}$  is 1-1 from X/M onto M(X). Finally, since  $\leq$  is an order on L it is also an order on  $M(X) \subseteq L$ .

**Remark.** One could define  $\leq$  on X by  $x \leq y$  iff  $M(x) \leq M(y)$ . In this case,  $\leq$  is a preorder on X and the classes generated by this preorder are exactly the elements of X/M.

**Proposition 17**  $(X/M, \sqsubseteq, \cdot) \xrightarrow{\overline{M}} (M(X), \leq, *)$  is an order isomorphism, i.e.:

- (i)  $\overline{M}$  is 1-1, onto;
- (ii)  $\overline{x} \sqsubseteq \overline{y} \Leftrightarrow M(x) \leq M(y)$ ;
- (iii)  $\overline{M}(\overline{x} \circ \overline{y}) = M(x) * M(y).$

**Proof.** (i) follows from Proposition 12. (ii) follows from Definition 15. For (iii) note the following. First, from Proposition 14.(iv) for all  $z \in \overline{x} \circ \overline{y}$  we have  $\overline{M}(\overline{z}) \in \overline{M}(\overline{x}) * \overline{M}(\overline{y})$ . Since  $\overline{M}(\overline{x} \circ \overline{y}) = \{\overline{M}(\overline{z})\}_{\overline{z} \in \overline{x} \circ \overline{y}}$ , it follows that

$$\overline{M}(\overline{x} \circ \overline{y}) \subseteq M(x) * M(y). \tag{1}$$

Second,

$$a \in M(x) * M(y) = [M(x) \land M(y), M(x) \lor M(y)] \cap M(X) \Rightarrow$$

$$\exists z : a = M(z) \in [M(x) \land M(y), M(x) \lor M(y)] \Rightarrow$$

$$z \in x \cdot y \Rightarrow \overline{z} \in \overline{x} \circ \overline{y} \Rightarrow a = M(\overline{z}) \in M(\overline{x} \circ \overline{y}) \Rightarrow$$

$$M(x) * M(y) \subseteq \overline{M}(\overline{x} \circ \overline{y}). \tag{2}$$

From (1) and (2) follows that  $M(x) * M(y) = \overline{M}(\overline{x} \circ \overline{y})$ .

**Proposition 18**  $(X/M, \sqsubseteq)$  is a (modular, distributive) lattice iff  $(M(X), \leq)$  is a (modular, distributive) lattice.

**Proof.** This is obvious, since  $\overline{M}$  is an order isomorphism between  $(X/M, \sqsubseteq)$  and  $(M(X), \leq)$ .  $\blacksquare$  We also define *extension* hyperoperations obtained from the respective join hyperoperations.

**Definition 19** We define the hyperoperation  $/: X \times X \to \mathbf{P}(X)$  by  $x/y = \{z : x \in y \cdot z\}$ .

**Definition 20** We define the hyperoperation  $//: X/M \times X/M \to \mathbf{P}(X/M)$  by  $\overline{x}//\overline{y} \doteq \{\overline{z} : \overline{x} \in \overline{y} \circ \overline{z}\}.$ 

**Definition 21** We define the hyperoperation  $l: M(X) \times M(X) \to \mathbf{P}(M(X))$  by  $a l b = \{c \in M(X): a \in b * c\}.$ 

We are now ready to present conditions for  $\cdot$ ,  $\circ$  and \* to be join hyperoperations.

**Proposition 22**  $(X/M, \circ)$  is a hypergroup (join space) iff (M(X), \*) is a hypergroup (join space).

**Proof.** This follows from the isomorphism between  $\circ$  and \*.

(i) If  $(X/M, \circ)$  is a join space, then for all  $\overline{x}, \overline{y}, \overline{z}, \overline{u}, \overline{w} \in X/M$  we have

**A1**  $\overline{x} \circ \overline{x} = \overline{x}$ .

**A2**  $\overline{x} \circ \overline{y} = \overline{y} \circ \overline{x}$ .

**A3**  $(\overline{x} \circ \overline{y}) \circ \overline{z} = \overline{x} \circ (\overline{y} \circ \overline{z})$ .

**A4**  $\overline{x} \circ (X/M) = X/M$ .

**A5**  $\overline{x}//\overline{y} \sim \overline{u}//\overline{w} \Rightarrow \overline{x} \circ \overline{w} \sim \overline{y} \circ \overline{u}$ .

(ii) Similarly, if (M(X), \*) is a join space, then for all  $a, b, c, d \in M(X)$  we have

**B1** a \* a = a.

**B2** a \* b = b \* a.

**B3** (a\*b)\*c = a\*(b\*c).

**B4** a \* M(X) = M(X).

**B5**  $a/b \sim c/d \Rightarrow a*d \sim b*c$ 

(iii) A1, A2, A4 are always true; similarly for B1, B2, B4. We will next show that A3 is equivalent to B3. First we need to show that

$$\overline{M}(\overline{x} \circ \overline{y}) * \overline{M}(\overline{z}) = \overline{M}((\overline{x} \circ \overline{y}) \circ \overline{z}).$$

Note that  $a \in M(X)$  implies (for some  $w \in X$ ) that a = M(w). Then, for any  $a \in \overline{M}(\overline{x} \circ \overline{y}) * \overline{M}(\overline{z})$  we have

Hence we have  $\overline{M}(\overline{x}\circ \overline{y})*\overline{M}(\overline{z})=\overline{M}((\overline{x}\circ \overline{y})\circ \overline{z})$ . Now:

$$(\overline{M}(\overline{x}) * \overline{M}(\overline{y})) * \overline{M}(\overline{z}) = \overline{M}(\overline{x} \circ \overline{y}) * \overline{M}(\overline{z}) = \overline{M}((\overline{x} \circ \overline{y}) \circ \overline{z})$$

$$(3)$$

is equivalent (since  $\overline{M}$  is 1-1) to

$$\overline{M}^{-1}\left(\overline{M}(\overline{x})*\overline{M}(\overline{y})\right)*\overline{M}(\overline{z})\right) = (\overline{x}\circ\overline{y})\circ\overline{z} \tag{4}$$

Similarly we can show that

$$\overline{M}(\overline{x}) * (\overline{M}(\overline{y}) * \overline{M}(\overline{z})) = \overline{M}(\overline{x}) * \overline{M}(\overline{y} \circ \overline{z}) = \overline{M}(\overline{x} \circ (\overline{y} \circ \overline{z}))$$

$$(5)$$

and

$$\overline{M}^{-1}\left(\overline{M}(\overline{x})*\left(\overline{M}(\overline{y})*\overline{M}(\overline{z})\right)\right) = \overline{x}\circ(\overline{y}\circ\overline{z}) \tag{6}$$

are equivalent. From A3, (3) and (5) follows B3; and from B3, (4) and (6) follows A3. Hence  $A3 \Leftrightarrow B3$ . Similarly we can show  $A5 \Leftrightarrow B5$  and the proof is complete.

**Proposition 23**  $(X/M, \circ)$  is a hypergroup (join space) iff  $(X, \cdot)$  is a hypergroup (join space).

**Proof.** If  $(X/M, \circ)$  is a join space, then the conditions  $\mathbf{A1} - \mathbf{A5}$  presented previously hold for all  $\overline{x}, \overline{y}, \overline{z}, \overline{u}, \overline{w} \in X/M$ . Also, if  $(X, \cdot)$  is a join space, then for all  $x, y, z, u, w \in X$  we have

C1  $x \cdot x = x$ .

C2  $x \cdot y = y \cdot x$ .

C3  $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ .

C4  $x \cdot X = X$ .

C5  $x/y \sim u/w \Rightarrow x \cdot w \sim y \cdot u$ .

Now, A1, A2, A4 are always true; similarly for C1, C2, C4. We will next show that A3 and C3 are equivalent. On the one hand we have

$$\overline{u} \in (\overline{x} \circ \overline{y}) \circ \overline{z} \Leftrightarrow \left(\exists w : \frac{\overline{w} \in \overline{x} \circ \overline{y}}{\overline{u} \in \overline{w} \circ \overline{z}}\right) \Leftrightarrow \left(\exists w : \frac{w \in x \cdot y}{u \in w \cdot z}\right) \Leftrightarrow u \in (x \cdot y) \cdot z. \tag{7}$$

On the other hand

$$\overline{u} \in \overline{x} \circ (\overline{y} \circ \overline{z}) \Leftrightarrow \left(\exists p : \ \overline{p} \in \overline{y} \circ \overline{z} \atop \overline{u} \in \overline{x} \circ \overline{p} \right) \Leftrightarrow \left(\exists p : \ p \in y \cdot z \atop u \in x \cdot p \right) \Leftrightarrow u \in x \cdot (y \cdot z).$$
 (8)

Now, if **C3** holds, then  $x \cdot (y \cdot z) = (x \cdot y) \cdot z$  and from (7), (8) follows that  $\overline{x} \circ (\overline{y} \circ \overline{z}) = (\overline{x} \circ \overline{y}) \circ \overline{z}$ , i.e. **A3** holds too. The converse is also immediate, hence **A3**  $\Leftrightarrow$  **C3**. Similarly we can show **A5**  $\Leftrightarrow$  **C5** and we are done.

**Proposition 24** If M(X) is a distributive sublattice of  $(L, \leq)$  then:  $(M(X), *), (X/M, \circ)$  and  $(X, \cdot)$  are all join spaces.

**Proof.** The proof that (M(X), \*) is a join space has been given in [6]; that  $(X/M, \circ)$  is a join space follows from Proposition 22; that  $(X, \cdot)$  is a join space follows from Proposition 23.

Now we can interpret the Corsini result. Corsini takes  $L = [0, 1] \subseteq \mathbf{R}$ . But then  $M(X) \subseteq [0, 1]$  is a chain and so a distributive sublattice of  $([0, 1], \leq)$ . Hence  $(X, \cdot)$  will be a join space by Proposition 23. We can also give a condition for (M(X), \*),  $(X/M, \circ)$  and  $(X, \cdot)$  to be hypergroups.

**Proposition 25**  $(M(X), *), (X/M, \circ)$  and  $(X, \cdot)$  are hypergroups iff  $\forall p, q, r \in M(X),$  exist  $a, b \in M(X)$  such that  $r * [p \land q, p \lor q] = [a, b].$ 

**Proof.** In [5] we have shown that the  $\cdot$  hyperoperation is associative iff  $\forall p, q, r \in M(X)$ , exist  $a, b \in M(X)$  such that  $r * [p \land q, p \lor q] = [a, b]$ . This, in conjunction with Proposition 24 completes the proof.  $\blacksquare$ 

In the future we plan to extend our investigation in case L and/or M have additional properties. For example, it will be interesting to explore the case where  $(L, \leq)$  is a Boolean or deMorgan lattice. It is also interesting to explore the case where X is equipped with an order. For instance, suppose that  $(X, \preceq)$  is a lattice. When are  $\preceq$  and  $\sqsubseteq$  compatible? A more general direction for future research concerns the case where  $(M(X), \leq)$  is a lattice but not a sublattice of  $(L, \leq)$  and find out if in this case  $\cdot$  is a join hyperoperation.

## References

- [1] R. Ameri and M.M. Zahedi. "Hypergroup and join space induced by a fuzzy subset". *Pure Math. Appl.*, vol.8, pp.155–168, 1997.
- [2] P. Corsini. Prolegomena of Hypergroup Theory, Udine: Aviani, 1993.
- [3] P. Corsini. "Join spaces, power sets, fuzzy sets". In Algebraic Hyperstructures and Applications, Ed. M. Stefanescu, pp.45-52, Palm Harbor: Hadronic Press, 1994.
- [4] P. Corsini and V. Leoreanu. "Join spaces associated with fuzzy sets". J. of Comb., Inf. and System Sci., vol. 20, p.293-303, 1995.
- [5] Ath. Kehagias and M. Konstantinidou. "Convexity in Lattices and an Isotone Hyperoperation". In the Proceedings of the *Conference on Constantine Caratheodory in his Origins*, pp.137-146, Palm Harbor: Hadronic Press, 2001.
- [6] Ath. Kehagias and M. Konstantinidou. "Lattice-ordered Join Space: an Applications-oriented Example". To appear in *Italian Journal of Pure and Applied Mathematics*.
- [7] H.T. Nguyen and E.A. Walker. A First Course on Fuzzy Logic, Boca Raton: CRC Press, 1997.

## 1 Further Issues

- 1. Introduce counterexamples: a Tepavcevic counterexample using the Boole<sup>2</sup> as L. Also the [Keh+Kon] nonmodular, nonjoin lattice (to show that (X, \*) can fail to be a hypergroup.
- 2. Properties of Corsini join using the [Keh+Kon] results.
- 3. Relate to other results about Corsini fuzzy join.
- 4. Corsini Join on deMorgan L-fuzzy sets, on Boolean L-fuzzy sets. This essentially means to study  $J_M$  for special L and M.
- 5. Extend the Caratheodory result: show that it yields not only hypergroup but also join space.
- 6. Suppose  $(X, \preceq)$  is a lattice. When are  $\preceq$  and  $\sqsubseteq$  compatible? (Use Tevacevska).
- 7. What happens if we define  $a * b = [a \land b, a \lor b]$  (i.e. without the  $\cap M(X)$  restriction)?
- 8. What happens if  $(M(X), \leq)$  is a lattice but not a sublattice of  $(L, \leq)$ ?