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Abstract
In a previous work we have introduced the (P, Q)-superlattice, a

P Q
hyperstructure of the form (L, V, A). Here (L, V, A) is a lattice and the
P Q P Q
hyperoperations V, A are defined by aVb =aVbV P, aANb=aAbAQ;

P Q
when the sets P, C L satisfy appropriate conditions (L, V, A) is
a superlattice. In this work we continue the investigation of (P, Q)-

P Q
superlattice and consider the structure of the sets a V b, a A b as well
assome “order-like” relationships between such sets.

AMS classification number: 06B99.

1 Introduction

The (P, Q)-superlattice has been introduced in [5], and its properties studied
in [7]. Starting from a lattice (L,V,A), one can define a hyperstructure of

P Q P Q
the form (L,V, A); if P,Q are chosen appropriately, then (L,V, A) is a
superlattice.

P Q
In this paper we examine the structure of the sets aVb and aAb in connec-
tion to the properties of P, ). Furthermore we consider certain “order-like”
relationships between such sets.

2 The (P,Q)-Superlattice and Some of Its Proper-
ties

Let us first give the definition of a general superlattice, as given in [6]. In
what follows P(L) will denote the power set of a reference set L.



Definition 2.1 A superlattice is a partially ordered set (L, <) with two hy-
peroperations Y, A, where Y : L x L — P(L), A\ : L x L — P(L), and the
following properties are satisfied for all a,b,c € L.

Slac(aya)n(aia)

S2 ayb=bYa,arb=bAa

S3 (ayb)Yec=avY(bYec),(arb)Ac=aA(bAic)
S4 ac(aYb) LalN[(a Ab)Y al
Ssaa<b=(bcaYbandacaAb)

S5b (beaYboracaib)=a<b.

As has been shown in [6], the following definition is equivalent to Defi-
nition 2.1,

Definition 2.2 A superlattice is a hyperstructure (L, Y, ), where Y : L X
L—P(L), A: LxL— P(L), and the following properties are satisfied for
all a,b,c € L.

Slac(aya)n(aia)
S2ayb=bYa,arb=bia

S3 (aYb)Yec=aY (bYec),(arb) Ac=aAi(bAic)
S4 aclaYb) LalNn[(aAb)Ydal

S6 bcaybsacaib

S7 a,bcaYb=a=5b

S8 becavybetcebYye=ce€aYec.

Definition 2.3 A superlattice (L, Y, A) will be called proper iff there erist
pairs (a,b), (¢,d) € L x L, such that card(a Y b) > 2 and card(c A d) >2 .

Definition 2.4 A superlattice (L, Y, A) will be called strictly strong iff: (a)
the corresponding ordered set (L, <) is a lattice with sup operation V and inf
operation A\ and (b) for all a,b € L we have: aVb € aY b andaAbe€ aAb.



Finally, let us mention the manner in which a hyperlattice and a dual
hyperlattice! can be obtained from a superlattice.

Proposition 2.5 Suppose (L, Y, \) is a strictly strong superlattice with cor-
responding order < and that (L, <) is a lattice with sup operation denoted
by V and inf operation denoted by N. Then: (i) (L,Y,A) is a hyperlattice;
(ii) (L,V, \) is a dual hyperlattice.

Proof. (i) Suppose that (L, Y, A) is a superlattice; then S1-S8 hold.
Now, the hyperlattice axioms H1-H3 [2] are identical with the superlattice
axioms S1-S3. Also, if (L, Y, A) is a strictly strong superlattice then a Ab €
alband aVbeaYyhbd Thus

a=(aAb)Vae (aAb)Yaanda=(aVb)Aa€ (aYb)Aa
which is the hyperlattice axiom H4 (see [2]). Finally, recall that S5 is
(a€avborbeaibd)=b<a.

and hence: a € a Y b= b < a = b= 0bA a, which is hyperlattice axiom H5.
In short, (S1-S8) = (H1-H5) and so (L, Y, A) is a hyperlattice.

(ii) is proved dually. m

We now turn to the study of the (P, Q)-superlattice, which has been
introduced in [5]. It is a special kind of superlattice, which can be con-
sidered as a generalization of either the P-hyperlattice [3, 4] or the dual
Q-hyperlattice. A (P, Q)-superlattice is constructed on a lattice (L, V,A)
in a manner analogous to the construction of P-hypergroups [1, 9, 10] and
P-hyperrings [8].

In what follows, (L, V,A) will always denote a lattice (with L # ()) and
< will denote the order of (L, V,A). If L possesses a minimum (respectively
maximum) element, this will be denoted by 0 (respectively 1).

Given a lattice (L,V,A) let us select two sets P,Q € P(L) and define
the following hyperoperations.

P
Definition 2.6 For all a,b € L we defineaVb=aVbVP={aVbVp:
p € P}.

. Q. .
Definition 2.7 For all a,b € L we defineaANb=aANbANQ ={aAbAq:
q € Q}.
YA dual hyperlattice can be defined as a hyperstructure (L,V, A) ; here V is the classical

sup operation and A is a hyperoperation which generalizes the classical A (inf) operation.
As the name suggests, it is dual to the hyperlattice (L, Y, A).




P Q
Remark. A (L, V, A) structure (with arbitrary choice of P, Q) is not neces-
sarily a superlattice [7].

P Q
The necessary and sufficient conditions on P, Q@ for (L, V,A) to be a super-
lattice are easily stated in terms of the following two collections of sets.
Definition 2.8 A(L) ={A€P(L):Vz € L Fa € A such that a < x}.
Definition 2.9 B(L) ={B € P(L):Vy € L 3b € B such that y < b}.

It is clear that L € A(L) N B(L). Also, clearly, if (L,V,A) has a 0,
then P € A(L) & 0 € P;if (L,V,A) hasa 1, then Q € B(L) & 1 € Q.
Furthermore, we have the following:

(P € A(L) and P is an interval) = L has 0;

(Q € B(L) and @ is an interval) = L has 1.
The following proposition yields a necessary and sufficient condition for
P Q
(L, V,A) to be a superlattice.
P Q
A

Proposition 2.10 (L,V,A) is a superlattice < (P,Q) € A(L) x B(L).

Proof. The proof appears in [5]. ®
Remark. Given a lattice (L,V,A) and P € A(L), ,Q € B(L) we construct

the associated superlattice (L, \I;, %) Now, the hyperoperations \Ij,% induce
an order < on L; it is easy to see that < is identical with the < order of the
original (L, V, A) lattice.

Remark. In the sequel we will assume (unless explicitly stated otherwise)

P Q
that (P,Q) € A(L) x B(L); hence (L, V, A) will be a superlattice.

Proposition 2.11 For all (P,Q) € A(L) x B(L) and all a,b € L we have:
P Q
(i) aVb=min(aVb), (i) a Nb=max(aAb).

Proof. See [7]. =

Remark. It follows that for all (P, Q) € A(L)xB(L) we have that (L, \1;, ?\)
is a strictly strong superlattice.

Let us now introduce the concept of a sub-superlattice of a (P,Q)-
superlattice.



P Q
Definition 2.12 Let (L,V,A) be a (P,Q)-superlattice and S € P(L). We
P Q P Q
say that (S,V,A) is a sub-superlattice of (L,V,A) iff Ya,b € S we have
P Q
avVbC S, aNnbCS.

The next proposition gives necessary and sufficient condition for a subset

P Q
of L to be a sub-superlattice of (L, V, A).

Proposition 2.13 Let (L,V,A) be a lattice and (P,Q) € A(L) x B(L)

P Q
(hence (L,V,A) is (P, Q)-superlattice). Let S be such that PUQ C S C L.
Then

P Q Q
(S, V, A) is subsuperlattice of (L,V,\) < (S,V,A) is sublattice of (L,V,N).

9
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P P Q
Proof. (i) Assume that (S, V, A) is a sub-superlattice of (L, VV, A). Choose

any a,b€ S. ThenaVb e a\F/)b C S; similarly we show that a Ab € S and
so we conclude that S is a sublattice.

(ii) Assume that (S, V, A) is a sublattice of (L, V, A). Then for all a,b € S
we have a Vb € S; since also P C S, we have for all a,b € S and for all
p € Pthat avVbVvype S. Then we have for all a,b € S : UpyepaVbVpC S,

P
which implies that for all a,b € S : aVb C S. Similarly we prove that for all
Q P Q
a,be S:aAbC S. Hence we conclude that (S,V,A) is a sub-superlattice
P Q
of (L,V,A). m

L
Proposition 2.14 For all a,b € L we have: (i) aVb={x:aVb <z}, (ii)
L
anNb={zx:z <aAb}.

Proof. (i) has been proved in [3]; (ii) can be proved dually. m
P Q
Remark. Given (L,V,A) with minimum element 0 and maximum element
P Q
1, wehave OVO=P, 1A 1=Q.

Proposition 2.15 For all (P,Q) € A(L) x B(L) we have: PV Q € B(L)
and PANQ € A(L).

Proof. For every a € L there is some ¢ € @ such that a < ¢. But
QCPVQ=qe PVQ. In short, for every a € L there is some ¢ € PV
such that a < gand so PV Q € B(L); PAQ € A(L) is proved dually. m



P
3 The Structure of a Vb and « ?\ b

P Q
In this section we examine the structure of a V b and a A b under various
conditions on P and (). For the rest of the paper we always assume that
(P,Q) € A(L) x B(L), unless explicitly stated otherwise.

P Q
Proposition 3.1 For all a,b € L we have: x €aVb, yceaAb=y<x.

P Q
Proof. z € aVb=x=aVbVp;y € aAb =y = aAbAq (for approriate
pEP,qgeQ). Obviously y=aAbAg<aVbVp=2z. =m

P
Proposition 3.2 For all a,b € L we have: (aV b) N (a /Ci b)£0)=a=0b.

P Q
Proof. Suppose there exists z € (a V b) N (a Ab). Then exists p € P,
q € Qsuch that z=aVbVp=aAbAg. Then we have

z=aANbAg<anb<aVvVb<aVbVp=z
from which follows immediately that a = 0. m

Proposition 3.3 (i) If (L,V,A) is distributive, then:

P
(P is a sublattice) = (Va,b€ L a Vb is a sublattice).

(i) If (L, V, ) is distributive, then:
: . Q. :
(Q is a sublattice) = <Va, beL aAbisa sublattzce) )
(11i) If (L,V,\) has a minimum element 0, then:
P
(Va, beL aVbisa sublattice) = (P is a sublattice).
() If (L,V,A\) has a maximum element 1, then:

Q
(Va, beL aAbisa sublattz’ce) = (Q 1is a sublattice).



Proof. For (i) assume that P is a sublattice of L. Take any a,b € L.

P
For any x1,22 € a V b there exist p1,ps € P such that x1 =a VbV p; and
T2 = a VbV py. Furthermore, p1 Vps =p3s € P, p1 Aps = py € P. Hence

P
ryVay=aVbVps €aVband x1 Axa = (aVbVp)A(aVbVpr) =
P
(@Vb)V(pi Ap2) = (aVb)Vps €aVb Part (ii) is proved duallly to (i).
P
Part (iii) is obvious, since 0V 0 =0V P =P; (iv) is proved dually to (iii). m

Proposition 3.4 (i) If (L,V, N\) is distributive, then: (P is convex sublattice)

P
= (Va,b € L:aVbis convex sublattice).
(i) If (L, V, N\) is distributive, then: (Q is conver sublattice) = (Va,b €

L :aAbis convexr sublattice).

P
(i1i) If (L,V,A) has minimum element 0, then: (Va,b € L : a Vb is
convex sublattice) = (P is conver sublattice).

Q
() If (L,V,\) has mazximum element 1, then (Va,b € L : aAb is convex
sublattice) = (Q is convex sublattice).

Proof. For part (i) assume P is a convex sublattice. Choose any a,b € L
P
and any x,y € a V b; i.e. exist p; and p such that z = a V bV p; and
P P
y=aVbVpy. By Proposition 3.3, tVy €aVband z Ay € aVb. Now take

any z € [t Ay,zVy] =a VbV [pr Ap2,p1 V2] Ca \I; b (the equality holds
because of distributivity, and the inclusion because [p; A pa2,p1 V p2] C P,
since P is a convex sublattice). Now part (ii) is proved dually; for (iii) just
take a = b = 0; for (iv) just takea=b=1. m

Proposition 3.5 (i) If (L,V, ) is distributive, then:

P
(P is an ideal) = (Va,b € L : a Vb is a convex sublattice).

(ii) If (L,V, ) is distributive, then:

Q
(Q is a filter) = (Va,b € L:aAbis a convexr sublattice).

(11i) If (L,V,\) has a minimum element 0, then:

P
(Va, beL:aVbisan ideal) = (P is an ideal).



() If (L,V, ) has a mazimum element 1, then:
Q .
(Va,b eL:aANbis aﬁlter) = Q is a filter).

Proof. Part (i) is proved using the fact that an ideal is a convex sublat-
tice and Proposition 3.4; part (ii) is proved using the fact that a filter is a
convex sublattice and Proposition 3.4; part (iii) is proved setting a = b = 0;
part (iv) is proved settinga=b=1. =
Remark. If (L, V,A) is not distributive, then parts (ii), (iv) of Proposition
3.4 do not necessarily hold. Consider the lattice of Figure 1 and take P =

P
{¢,d}. ThenaVe=aV P =aV{cd} ={a,e} which is not convex.

Figure 1

Proposition 3.6 (i) If (L,V,\) is distributive, then we have: (P is an

P
interval) = (Ya,b € L: aVb is an interval);
(i1) If (L,V,N) is distributive, then we have: (Q is an interval) =

(Va,be L:a % b is an interval).

P Q P
(111) If (L,V,A) has minimum element 0, then: (Ya,b € L: aV b is an
interval) = (P is an interval);

P Q Q
(iv) If (L,V,A\) has mazimum element 1, then: (Va,b € L :a Ab is an
interval) = (Q is an interval).



P
Proof. For part (i) assume P = [z,y], then (using distributivity) a V b
P
=aVbVir,yl=[avVbVz,aVbVy] =laVbaVbVyl, since min(aVb) =
a V b. Part (ii) is proved dually; for part (iii) take a = b = 0; for part (iv)
takea=b=1. =m
Proposition 3.7 If (L,V,A) is a distributive lattice then:
P P
(i) (P is an interval) = (Ya,b € L such thata <b: (aVec)V (bVe)=
P
bV e);
P P P
(ii) (P is an interval) = (Ya,b € L such thata <b: (aVe)V(bVe)=
P
bV e);
Q Q
(iii) (Q is an interval) = (VYa,b € L such thata <b: (aAc)A(bAc) =
Q
a Al c);

Q  Q Q
(iv) (Q is an interval) = (Ya,b € L such thata <b: (aAc)A(bAc)=
Q
alc).
P
Proof. (i) Assume P = [z,y], then, since L is distributive, a V ¢ =

P
[aVeVz,aVeVyland bVe=[bVeVa,bVeVy|. Again by distributivity,
we have

P P
(aVe)V(bVe) = [aVeVe, aVeVy|V[bVeVe, bVeVy] = [aVbVeVve, aVbVeVy| =
P
bVeva,bVeVy=bVeVzr,y=bVe

(ii) is proved similarly.
(iii) is proved dually to (i) and (iv) is proved dually to (ii). m
The next two propositions give additional information on the structure
P Q
of V and A.
P Q
A

Proposition 3.8 If (L,V,A) is a superlattice, then

P P Q Q
(VaEL:a\/:E:a\/a><:>x§a; <VaEL:a/\x:a/\a><:>a§:E.

P P
Proof. Pick any a € L. Pick some « € L such that aVz =aVa =

P P
min(a Vz) =min(aVa) = aVar=aVa=a= z < a. Conversely, assume



P P
x < a;then aVx =UpcpaVaVp= UpcpaVp=UypcpaVaVp=aVa. So we
have proved the first equivalence; the second equivalence is proved dually.
]

Proposition 3.9 ((L,V,A) is distributive) <

P P
Vz=aV
For all a,z,y € L we have: an aQy sx=y]. (1)
aNT=alNy

Proof. See [7]. m
Remark. Note that if (1) holds for some pair (P;,Q1) € A(L) x B(L),
then (L, V, A) is distributive and so (1) holds for every pair (P, Q) € A(L) x
B(L).
P Q
Remark. One would expect that the above relations imply that (L, V, A
is distributive. However, we have shown in [7] that this is not the case.

)

4 Properties Related to Order
4.1 Some Order-like Relationships
We now introduce the relations <, X, C between elements of P(L).
Definition 4.1 Take any A, B € P(L); we write A < B iff
(i)Vae A FbyeB:a<b, (ii)VbeB 3Jaze€A:a <b.
Definition 4.2 Take any A, B € P(L); we write A C B iff
(i) 3by € B: Ya€e A:a<by, (ii)Jag € A:YbeB :a3<b.

Definition 4.3 Take any A, B € P(L); we write A 3 B iff Va € A,Vb € B:
anNbe A,aVbeB.

Proposition 4.4 For all A,B € P(L) we have: A3 B = A < B.

Proof. Choose any a € A and any b € B. Then a Ab € A and also
aAb<b. Similarly,aVb e Band alsoa<aVb =n
Remark. The converse is not necessarily true. Consider the lattice of
Figure 2 with A = {a1,a2} and B = {b1,by}. Here for all a € A exists some
b € B such that a < b, and for all b € B exists some a € A such that a < b.
Hence A < B. However, as Ab; = by € B, so A £ B.

10



Figure 2
Proposition 4.5 For all A,B € P(L) we have: AC B = A< B.

Proof. This is obvious. =
Remark. The converse is not necessarily true. Consider the lattice of
of integers, with the natural order. Take A = {...,—1,1,3,...} and B =
{..,0,2,4,...}; clearly A < B but A LB.
Remark. The relations <, =, C defined above, generally are not order
relations on P(L). We now explore situations where each of the above is
an order relationship. This generally happens if we restrict ourselves to a

subset of P(L).

Proposition 4.6 If S is a collection of intervals of (L,V,N), then =, X, C
are orders on S.

Proof. (i) Let us first show that < is an order on S.

(i.1) Obviously, for all A € S we have A < A.

(i.2) Choose any A = [a1,a2], B = [b1,be] € S such that A < B and
B <X A. From A < B we have that 3b3 € B such that as < b3 < by and
Jas € A such that a1 < as < b;. From B < A we have that Jby € B such
that b7 < by < a7 and Jdag € A such that by < ag < as. From these follows
that a1 < b1 < a1 = a1 = by and by < ag < by = a9 = by; hence A = B.

11



(i.3) Choose any A = [a1,a9], B = [b1,b2], C = [c1,c2] € S such that
A < B and B < C. Now we have a1 < by and b1 < ¢, so a1 < ¢1; and
as < by and by < 9, 80 as < co. This means that: for all a € A we have
a<ag <c€C;andforallce C wehave A>a; < ¢ <ce C. Hence
A=C.

From (i.1), (i.2), (i.3) follows that < is an order on S.

(ii) Next we show that C is an order on S. For this it suffices to show
that: when S is a class of intervals we have A < B < A C B. Obviously, we
have A C B = A < B. To show the converse, recall that [a1,a2] = A < B
= [b1,b2] = (a1 < by and ay < by). From this follows immediately that:
Vb € B we have a; < b; < b; and Va € A we have a < as < by. Hence
A C B. In short, we have shown that < and C are equivalent on S and,
since < is an order, so is C.

From (ii.1), (ii.2), (ii.3) follows that C is an order on S.

(iii) Last we show that = is an order on S.

(iii.1) Choose any A = [a1,az2] € S and any z,y € [a1,az2]. Le.

<z<
a1 <z < a o < zVy < ao.
a1 <y < as TAY

Hence z Ay,zVy € A and so A 3 A.

(iii.2) Choose any A = [a1,a2], B = [b1,b2] € S such that A X B and
B = A. Then we have a1 Ab; € A and a; A by € B. But then a; = a3 A b=
b1. Similarly as = as V by= by and so A = B.

(iii.3) Choose any A = [a1,az2], B = [b1,ba], C = [c1,¢2] € S such that
A 2 B and B 2 C. Now we have a; Aby € A = [a1,a2] and so a; Aby = a3
= a1 < by; similarly by Acg € B = b1 < ¢1; and so we get that a; < c1.
Similarly we get as < ca. Now choose any a € A and any ¢ € C'; then we
have

a1 <a<ay N ai=aiNcit<aNc<aysNca < ag aNce A
ca<c<e ca<aiVer<aVe<ayaVey=cy aVeceC

Hence A X C.
From (iii.1), (iii.2), (iii.3) follows that = is an order on S and the proof
of the proposition is complete. m

Proposition 4.7 If S is a collection of convex sublattices of (L,V, ), then
= is an order on S.

Proof. (i) Choose any A € S. Obviously, for all z,y € A we have
zAy € Aand zVy € A. Hence A X A.

12



(ii) Choose any A, B € S such that A = B and B 3 A; choose any a €
A, b€ B. Then, aAb € A but also a Ab € B; similarly, a Vb € A but also
aVbe B. From:

aNbavbe B, aANb<a<aVbd

and convexity, we obtain a € B. Hence A C B. But similarly we get B C A
and so A = B.

(iii) Choose any A, B, C € S such that A 3 B and B 3 C. Choose
any a € A, be B,ce C. ThenaVvbée BandsoaVbVeée C. Then
aVe€le,aVbVe CC. Similarly, bAc € B and soa AbAc € A. Then
aNc€laNbAc,al C A Hence A ZC.

From (i), (ii), (iii) follows that 3 is an order on S and the proof of the
proposition is complete m

Corollary 4.8 (i) If S is a collection of ideals of (L,V,N), then = is an
order on S.
(ii) If S is a collection of filters of (L,V,N), then = is an order on S.

Proof. (i) This follows from the fact that every ideal is a convex sub-
lattice and from Proposition 4.7.

(ii) This follows from the fact that every filter is a convex sublattice and
from Proposition 4.7. =

From Propositions 4.6 and 4.7 one infers the following propositions.

Proposition 4.9 Let (L,V,A) be distributive. Then:
P
(i) if P is an interval, then =, 3, T are orders on {aV b}aper;

) o~ —

Q
(it) if Q is an interval, then =, 3, T are orders on {a A b}qper-

Proof. (i) follows immediately from Propositions 3.6 and 4.6; (i) is
proved dually. =

Proposition 4.10 Let (L,V,A) be distributive. Then:
P
(i) if P is an ideal, then 3 is an order on {aV b}q per;

Q
(it) if Q is a filter, then 3 is an order on {a A b}gper.

Proof. (i) follows immediately from Propositions 3.5 and 4.7; (i) is
proved dually. m

13



4.2 Properties of =<

P Q
Proposition 4.11 For all a,b € L we have: (i) P <aV b, (i) aANb= Q.

P
Proof. Take any p € P; there exists some xt =aVbVp €< aVband we
P
obviously have p < x. Take any x € a V b ; there exists some p € P such

P
that xt =aVbVp € aVband we obviously have p < z. (ii) is proved dually.
[ |

Proposition 4.12 (i) If A, B € P(L) have minimum elements, then: A <
B = min(A) < min(B).

(ii) If A, B € P(L) have mazimum elements and A < B, then max(A) <
max(B).

Proof. (i) Since b = min(B) € B, then exists some a € A such that
a < b; also a = min(A) < a; hence a< b. (ii) is proved dually. m

Proposition 4.13 For all a,b € L the following conditions are equivalent.
(i) a <b.
.. P P
(ii) For all ¢ € L we have: aVc¢=bVc
Q Q
(11i) For all ¢ € L we have: a Ac = bAc.

Proof. We will show (i)=-(ii), (i)=-(iii), (ii)=-(i), (iii)=-(i)
P
(i)=(ii) If € a V ¢ then exists some p; € P such that z =a V¢V p; <

P P
bVcVpr =y €bVec Similarly, if z € bV ¢ then exists some py € P such

P P P
that z=bVeVpya>aVeVpe=weaVe HenceaVe=bVec.
(i)=(iii) It is proved dually to the previous.

P P
(ii)=(i) Set ¢ =b. Then aVb =< bV b. From Proposition 4.12 we get a Vb

P P
=min(aVb) < min(bVvbd) =bVb=>. HenceaVb<b =b=aVb=a<0b.
(iii)=-(i) It is proved dually to the previous. m

P P
Remark. Note that in general a V ¢ and bV ¢ will not be intervals, hence

P P
it is mot necessary that a V¢ < bV ¢ denotes an order relationship.
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4.3 Properties of C
Proposition 4.14 (i) If (L,V, ) is distributive and P is an interval, then

P
for all a,b € L we have: PC aV b.
(ii) If (L,V, ) is distributive and Q is an interval, then for all a,b € L

Q
we have: a ANbC Q.

Proof. (i) In the proof of Proposition 4.6 we have seen that, for A, B
intervals, we have A C B & A < B. Also, from Proposition 3.6 we know

P P P
that when P is an interval, a Vb is also an interval. So P C aVb< P < aVb,
which is true by Proposition 4.11.

(ii) is proved dually. m

Proposition 4.15 (i) If A, B € P(L) have minimum elements, then: A C
B = min(A) < min(B),

(ii) If A, B € P(L) have maximum elements, then: AC B = max(A) <
max(B).

Proof. (i) There exists some a such that for all b € B we have a< b.
Also, min(A) < a. Hence, for all b € B we have min(A) < b; since min(B) €
B, we then get min(A) < min(B); (ii) is proved dually. m

Proposition 4.16 Assume (L,V,A) is distributive and P,Q are intervals.
Then the following conditions are equivalent.
(i) a <b.
. P P
(ii) For all ¢ € L we have: aV ¢ bV c.

Q Q
(11i) For all c € L we have: a AcC bAc.

Proof. We will show (i)=>(ii), (i)=(iii), (ii)=(), (iii)=()

(i)=-(ii) This is obvious if we use the fact that for A, B intervals we have
AC B A= B and then use Proposition 4.13.

( )=-(iii) It is proved dually to the previous.

(ii)= ()Setc—b Thena\/b<bvb From Proposition 4.15 we get a Vb

= min(a\/b) < min(b\/b) =bVb=>b. Hence a <aVb=>0.
(iii)=(i) It is proved dually to the previous. m
Remark. In the above proposition note that, since (L,V,A) has been

P P
assumed distributive and P, ) have been assumed intervals, a V¢ and bV ¢

P P
will also be intervals (by Proposition 3.6). Hence a V¢ C bV ¢ will be an
order relationship.
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4.4 Properties of =

Proposition 4.17 (i) If P is an ideal, then for all a,b € L we have: P 3
P
aVb. o
(i1) If Q is a filter, then for all a,b € L we have: a ANb 3 Q.

P
Proof. (i) Take z € aV b, i.e. x =a VbV py, for some p; € P. Take
any p € P. Then zVp =aVbV (p1Vp). Since p; Vp € P, it follows that

P
xVp€aVb. On the other hand, x Ap = (aVbVp;) Ap <p. Since p € P,

P
it follows that x Ap € P. Hence P 3 a V b.
(ii) is proved dually to (i). m

Proposition 4.18 (i) If A, B € P(L) have minimum elements, then: A 3
B = min(A4) < min(B).

(ii) If A, B € P(L) have mazimum elements, then: A 3 B = max(A) <
max(B).

Proof. (i) Set a= min(A), b= min(B). Now A 3 B = ¢ =aNbe A.
But, since a= min(A) it follows that a< ¢ =aAb<a. In short, a=aAb=a<b
and the proof of (i) is complete; (ii) is proved dually. m

Proposition 4.19 . The following are true.
(i) Assume (L,V,N) is distributive, P is an ideal and a,b € L satisfy

P P
a < b; then for all ¢ € L we have: aV ¢ X bV ¢;
(ii) Assume (L,V,N) is distributive, Q is a filter and a,b € L satisfy
Q Q
a < b; then for all ¢ € L we have: aAec3IbAc.

P P
(111) Assume a,b € L are such that for all ¢ € L we have aV ¢ 3 bV ¢;
then a < b.

Q Q
(iv) Assume a,b € L are such that for all ¢ € L we have a Ac 3 bAc¢;
then a < b.

P P
Proof. (i) Take any x € aV ¢, and any y € bV ¢; ie. z =aVeVpy,
p1 € Pandy =bVeVps, po € P. Now we have xVy = aVeVpr VbVeVpy =
P
(aVb)VeV(p1Vp2) =bVeV(piVpse) € bVe. Also, Ay = (aVeVpr)A(BVeVps)

= ((aVp) A(bVp2))Ve=((anb)V (pr Ab)V (a Ap2)V (p1 Ap2)) Ve =
aV (p1 Ab)V (p2 Aa)V (p1 Ap2)V c=aV (p1 Ab)V (p1 Ap2)V c=aVcVp,
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P
where p= (p1 AD)V (p1 Ap2) € P. Hence z Ay=aVcVp € aV e In short
P P
we have shown a V ¢ 3 bV ¢ (ii) is proved dually.
P P P P
(iii) From Proposition 4.4 we get a Vc 2 bV e = aVc <bVec Hence,

P P
for all ¢ € L we have a V ¢ < bV ¢, which by Proposition 4.13 implies a < b;
(iv) is proved dually. =

Corollary 4.20 Assume (L,V,A) is distributive, P is an ideal and Q is a
filter. Then the following conditions are equivalent.

(i) a <b.
P P
(ii) For all ¢ € L we have: aV ¢ 3 bV e.

~

Q Q
(11i) For all ¢ € L we have: a Ac 3 bAc.

~

Proof. Follows immediately from Proposition 4.19. =
Remark. Note that in the above proposition (L, V,A) has been assumed
distributive, P has been assumed an ideal and @) has been assumed a filter.

P
Hence, by Proposition 4.10 we have that = is an order on both {a V b}4 per,

Q P P Q Q
and {a A b}, per. Hence both a Ve T bV eand aAc 3 bAc are order
relationships.
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