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Abstract
In a previous work we have introduced the (P,Q)-superlattice, a

hyperstructure of the form (L,
P
∨,

Q
∧). Here (L,∨,∧) is a lattice and the

hyperoperations
P
∨,

Q
∧ are defined by a

P
∨b

.= a∨b∨P , a
Q
∧b

.= a∧b∧Q;

when the sets P,Q ⊆ L satisfy appropriate conditions (L,
P
∨,

Q
∧) is

a superlattice. In this work we continue the investigation of (P,Q)-

superlattice and consider the structure of the sets a
P
∨ b, a

Q
∧ b as well

assome “order-like” relationships between such sets.

AMS classification number: 06B99.

1 Introduction

The (P,Q)-superlattice has been introduced in [5], and its properties studied
in [7]. Starting from a lattice (L,∨,∧), one can define a hyperstructure of

the form (L,
P
∨,

Q
∧); if P,Q are chosen appropriately, then (L,

P
∨,

Q
∧) is a

superlattice.

In this paper we examine the structure of the sets a
P
∨b and a

Q
∧b in connec-

tion to the properties of P,Q. Furthermore we consider certain “order-like”
relationships between such sets.

2 The (P,Q)-Superlattice and Some of Its Proper-
ties

Let us first give the definition of a general superlattice, as given in [6]. In
what follows P(L) will denote the power set of a reference set L.
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Definition 2.1 A superlattice is a partially ordered set (L,≤) with two hy-
peroperations g,f, where g : L × L → P(L), f : L × L → P(L), and the
following properties are satisfied for all a, b, c ∈ L.

S1 a ∈ (a g a) ∩ (a f a)

S2 a g b = b g a, a f b = b f a

S3 (a g b) g c = a g (b g c) , (a f b) f c = a f (b f c)

S4 a ∈ [(a g b) f a] ∩ [(a f b) g a]

S5a a ≤ b ⇒ (b ∈ a g b and a ∈ a f b)

S5b (b ∈ a g b or a ∈ a f b) ⇒ a ≤ b.

As has been shown in [6], the following definition is equivalent to Defi-
nition 2.1,

Definition 2.2 A superlattice is a hyperstructure (L,g,f), where g : L×
L → P(L), f : L×L → P(L), and the following properties are satisfied for
all a, b, c ∈ L.

S1 a ∈ (a g a) ∩ (a f a)

S2 a g b = b g a, a f b = b f a

S3 (a g b) g c = a g (b g c) , (a f b) f c = a f (b f c)

S4 a ∈ [(a g b) f a] ∩ [(a f b) g a]

S6 b ∈ a g b ⇔ a ∈ a f b

S7 a, b ∈ a g b ⇒ a = b

S8 b ∈ a g b et c ∈ b g c ⇒ c ∈ a g c.

Definition 2.3 A superlattice (L,g,f) will be called proper iff there exist
pairs (a, b), (c, d) ∈ L×L, such that card(a g b) ≥ 2 and card(c f d) ≥ 2 .

Definition 2.4 A superlattice (L,g,f) will be called strictly strong iff: (a)
the corresponding ordered set (L,≤) is a lattice with sup operation ∨ and inf
operation ∧ and (b) for all a, b ∈ L we have: a∨ b ∈ a g b and a∧ b ∈ a f b.
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Finally, let us mention the manner in which a hyperlattice and a dual
hyperlattice1 can be obtained from a superlattice.

Proposition 2.5 Suppose (L,g,f) is a strictly strong superlattice with cor-
responding order ≤ and that (L,≤) is a lattice with sup operation denoted
by ∨ and inf operation denoted by ∧. Then: (i) (L,g,∧) is a hyperlattice;
(ii) (L,∨,f) is a dual hyperlattice.

Proof. (i) Suppose that (L,g,f) is a superlattice; then S1–S8 hold.
Now, the hyperlattice axioms H1-H3 [2] are identical with the superlattice
axioms S1-S3. Also, if (L,g,f) is a strictly strong superlattice then a∧ b ∈
a f b and a ∨ b ∈ a g b. Thus

a = (a ∧ b) ∨ a ∈ (a ∧ b) g a and a = (a ∨ b) ∧ a ∈ (a g b) ∧ a

which is the hyperlattice axiom H4 (see [2]). Finally, recall that S5 is

(a ∈ a g b or b ∈ a f b) ⇒ b ≤ a.

and hence: a ∈ a g b ⇒ b ≤ a ⇒ b = b ∧ a, which is hyperlattice axiom H5.
In short, (S1–S8) ⇒ (H1–H5) and so (L,g,∧) is a hyperlattice.

(ii) is proved dually.
We now turn to the study of the (P,Q)-superlattice, which has been

introduced in [5]. It is a special kind of superlattice, which can be con-
sidered as a generalization of either the P -hyperlattice [3, 4] or the dual
Q-hyperlattice. A (P,Q)-superlattice is constructed on a lattice (L,∨,∧)
in a manner analogous to the construction of P -hypergroups [1, 9, 10] and
P -hyperrings [8].

In what follows, (L,∨,∧) will always denote a lattice (with L 6= ∅) and
≤ will denote the order of (L,∨,∧). If L possesses a minimum (respectively
maximum) element, this will be denoted by 0 (respectively 1).

Given a lattice (L,∨,∧) let us select two sets P,Q ∈ P(L) and define
the following hyperoperations.

Definition 2.6 For all a, b ∈ L we define a
P
∨ b

.= a ∨ b ∨ P = {a ∨ b ∨ p :
p ∈ P}.

Definition 2.7 For all a, b ∈ L we define a
Q
∧ b

.= a ∧ b ∧ Q = {a ∧ b ∧ q :
q ∈ Q}.

1A dual hyperlattice can be defined as a hyperstructure (L,∨, f) ; here ∨ is the classical
sup operation and f is a hyperoperation which generalizes the classical ∧ (inf) operation.
As the name suggests, it is dual to the hyperlattice (L, g,∧).
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Remark. A (L,
P
∨,

Q
∧) structure (with arbitrary choice of P,Q) is not neces-

sarily a superlattice [7].

The necessary and sufficient conditions on P,Q for (L,
P
∨,

Q
∧) to be a super-

lattice are easily stated in terms of the following two collections of sets.

Definition 2.8 A(L) .= {A ∈ P(L) : ∀x ∈ L ∃a ∈ A such that a ≤ x}.

Definition 2.9 B(L) .= {B ∈ P(L) : ∀y ∈ L ∃b ∈ B such that y ≤ b}.

It is clear that L ∈ A(L) ∩ B(L). Also, clearly, if (L,∨,∧) has a 0,
then P ∈ A(L) ⇔ 0 ∈ P ; if (L,∨,∧) has a 1, then Q ∈ B(L) ⇔ 1 ∈ Q.
Furthermore, we have the following:

(P ∈ A(L) and P is an interval) ⇒ L has 0;

(Q ∈ B(L) and Q is an interval) ⇒ L has 1.

The following proposition yields a necessary and sufficient condition for

(L,
P
∨,

Q
∧) to be a superlattice.

Proposition 2.10 (L,
P
∨,

Q
∧) is a superlattice ⇔ (P,Q) ∈ A(L)×B(L).

Proof. The proof appears in [5].
Remark. Given a lattice (L,∨,∧) and P ∈ A(L), , Q ∈ B(L) we construct

the associated superlattice (L,
P
∨,

Q
∧). Now, the hyperoperations

P
∨,

Q
∧ induce

an order 6 on L; it is easy to see that 6 is identical with the ≤ order of the
original (L,∨,∧) lattice.
Remark. In the sequel we will assume (unless explicitly stated otherwise)

that (P,Q) ∈ A(L)×B(L); hence (L,
P
∨,

Q
∧) will be a superlattice.

Proposition 2.11 For all (P,Q) ∈ A(L)×B(L) and all a, b ∈ L we have:

(i) a ∨ b = min(a
P
∨ b), (ii) a ∧ b = max(a

Q
∧ b).

Proof. See [7].

Remark. It follows that for all (P,Q) ∈ A(L)×B(L) we have that (L,
P
∨,

Q
∧)

is a strictly strong superlattice.
Let us now introduce the concept of a sub-superlattice of a (P,Q)-

superlattice.
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Definition 2.12 Let (L,
P
∨,

Q
∧) be a (P,Q)-superlattice and S ∈ P(L). We

say that (S,
P
∨,

Q
∧) is a sub-superlattice of (L,

P
∨,

Q
∧) iff ∀a, b ∈ S we have

a
P
∨ b ⊆ S, a

Q
∧ b ⊆ S.

The next proposition gives necessary and sufficient condition for a subset

of L to be a sub-superlattice of (L,
P
∨,

Q
∧).

Proposition 2.13 Let (L,∨,∧) be a lattice and (P,Q) ∈ A(L) × B(L)

(hence (L,
P
∨,

Q
∧) is (P,Q)-superlattice). Let S be such that P ∪Q ⊆ S ⊆ L.

Then

(S,
P
∨,

Q
∧) is subsuperlattice of (L,

P
∨,

Q
∧) ⇔ (S,∨,∧) is sublattice of (L,∨,∧).

Proof. (i) Assume that (S,
P
∨,

Q
∧) is a sub-superlattice of (L,

P
∨,

Q
∧). Choose

any a, b ∈ S. Then a ∨ b ∈ a
P
∨ b ⊆ S; similarly we show that a ∧ b ∈ S and

so we conclude that S is a sublattice.
(ii) Assume that (S,∨,∧) is a sublattice of (L,∨,∧). Then for all a, b ∈ S

we have a ∨ b ∈ S; since also P ⊆ S, we have for all a, b ∈ S and for all
p ∈ P that a ∨ b ∨ p ∈ S. Then we have for all a, b ∈ S : ∪p∈P a ∨ b ∨ p ⊆ S,

which implies that for all a, b ∈ S : a
P
∨ b ⊆ S. Similarly we prove that for all

a, b ∈ S : a
Q
∧ b ⊆ S. Hence we conclude that (S,

P
∨,

Q
∧) is a sub-superlattice

of (L,
P
∨,

Q
∧).

Proposition 2.14 For all a, b ∈ L we have: (i) a
L
∨ b = {x : a∨ b ≤ x}, (ii)

a
L
∧ b = {x : x ≤ a ∧ b}.

Proof. (i) has been proved in [3]; (ii) can be proved dually.

Remark. Given (L,
P
∨,

Q
∧) with minimum element 0 and maximum element

1, we have 0
P
∨ 0 = P , 1

Q
∧ 1 = Q.

Proposition 2.15 For all (P,Q) ∈ A(L) ×B(L) we have: P ∨ Q ∈ B(L)
and P ∧Q ∈ A(L).

Proof. For every a ∈ L there is some q ∈ Q such that a ≤ q. But
Q ⊆ P ∨Q ⇒ q ∈ P ∨Q. In short, for every a ∈ L there is some q ∈ P ∨Q
such that a ≤ q and so P ∨Q ∈ B(L); P ∧Q ∈ A(L) is proved dually.
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3 The Structure of a
P
∨ b and a

Q
∧ b

In this section we examine the structure of a
P
∨ b and a

Q
∧ b under various

conditions on P and Q. For the rest of the paper we always assume that
(P,Q) ∈ A(L)×B(L), unless explicitly stated otherwise.

Proposition 3.1 For all a, b ∈ L we have: x ∈ a
P
∨ b, y ∈ a

Q
∧ b ⇒ y ≤ x.

Proof. x ∈ a
P
∨b ⇒ x = a∨b∨p; y ∈ a

Q
∧b ⇒ y = a∧b∧q (for approriate

p ∈ P , q ∈ Q). Obviously y = a ∧ b ∧ q ≤ a ∨ b ∨ p = x.

Proposition 3.2 For all a, b ∈ L we have: (a
P
∨ b) ∩ (a

Q
∧ b )6= ∅ ⇒ a = b.

Proof. Suppose there exists z ∈ (a
P
∨ b) ∩ (a

Q
∧ b). Then exists p ∈ P ,

q ∈ Q such that z = a ∨ b ∨ p = a ∧ b ∧ q. Then we have

z = a ∧ b ∧ q ≤ a ∧ b ≤ a ∨ b ≤ a ∨ b ∨ p = z

from which follows immediately that a = b.

Proposition 3.3 (i) If (L,∨,∧) is distributive, then:

(P is a sublattice) ⇒ (∀a, b ∈ L a
P
∨ b is a sublattice).

(ii) If (L,∨,∧) is distributive, then:

(Q is a sublattice) ⇒
(
∀a, b ∈ L a

Q
∧ b is a sublattice

)
.

(iii) If (L,∨,∧) has a minimum element 0, then:(
∀a, b ∈ L a

P
∨ b is a sublattice

)
⇒ (P is a sublattice).

(iv) If (L,∨,∧) has a maximum element 1, then:(
∀a, b ∈ L a

Q
∧ b is a sublattice

)
⇒ (Q is a sublattice).
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Proof. For (i) assume that P is a sublattice of L. Take any a, b ∈ L.

For any x1, x2 ∈ a
P
∨ b there exist p1, p2 ∈ P such that x1 = a ∨ b ∨ p1 and

x2 = a ∨ b ∨ p2. Furthermore, p1 ∨ p2 = p3 ∈ P , p1 ∧ p2 = p4 ∈ P. Hence

x1 ∨ x2 = a ∨ b ∨ p3 ∈ a
P
∨ b and x1 ∧ x2 = (a ∨ b ∨ p1) ∧ (a ∨ b ∨ p2) =

(a ∨ b) ∨ (p1 ∧ p2) = (a ∨ b) ∨ p4 ∈ a
P
∨ b. Part (ii) is proved duallly to (i).

Part (iii) is obvious, since 0
P
∨ 0 =0∨P =P ; (iv) is proved dually to (iii).

Proposition 3.4 (i) If (L,∨,∧) is distributive, then: (P is convex sublattice)

⇒ (∀a, b ∈ L : a
P
∨ b is convex sublattice).

(ii) If (L,∨,∧) is distributive, then: (Q is convex sublattice) ⇒ (∀a, b ∈

L : a
Q
∧ b is convex sublattice).

(iii) If (L,∨,∧) has minimum element 0, then: (∀a, b ∈ L : a
P
∨ b is

convex sublattice) ⇒ (P is convex sublattice).

(iv) If (L,∨,∧) has maximum element 1, then (∀a, b ∈ L : a
Q
∧b is convex

sublattice) ⇒ (Q is convex sublattice).

Proof. For part (i) assume P is a convex sublattice. Choose any a, b ∈ L

and any x, y ∈ a
P
∨ b; i.e. exist p1 and p2 such that x = a ∨ b ∨ p1 and

y = a∨ b∨ p2. By Proposition 3.3, x∨ y ∈ a
P
∨ b and x∧ y ∈ a

P
∨ b. Now take

any z ∈ [x ∧ y, x ∨ y] = a ∨ b∨ [p1 ∧ p2, p1 ∨ p2] ⊆ a
P
∨ b (the equality holds

because of distributivity, and the inclusion because [p1 ∧ p2, p1 ∨ p2] ⊆ P ,
since P is a convex sublattice). Now part (ii) is proved dually; for (iii) just
take a = b = 0; for (iv) just take a = b = 1.

Proposition 3.5 (i) If (L,∨,∧) is distributive, then:

(P is an ideal) ⇒ (∀a, b ∈ L : a
P
∨ b is a convex sublattice).

(ii) If (L,∨,∧) is distributive, then:

(Q is a filter) ⇒ (∀a, b ∈ L : a
Q
∧ b is a convex sublattice).

(iii) If (L,∨,∧) has a minimum element 0, then:(
∀a, b ∈ L : a

P
∨ b is an ideal

)
⇒ (P is an ideal).
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(iv) If (L,∨,∧) has a maximum element 1, then:(
∀a, b ∈ L : a

Q
∧ b is a filter

)
⇒ Q is a filter).

Proof. Part (i) is proved using the fact that an ideal is a convex sublat-
tice and Proposition 3.4; part (ii) is proved using the fact that a filter is a
convex sublattice and Proposition 3.4; part (iii) is proved setting a = b = 0;
part (iv) is proved setting a = b = 1.
Remark. If (L,∨,∧) is not distributive, then parts (ii), (iv) of Proposition
3.4 do not necessarily hold. Consider the lattice of Figure 1 and take P =

{c, d}. Then a
P
∨ c = a ∨ P = a ∨ {c, d} = {a, e} which is not convex.

Figure 1

Proposition 3.6 (i) If (L,∨,∧) is distributive, then we have: (P is an

interval) ⇒ (∀a, b ∈ L : a
P
∨ b is an interval);

(ii) If (L,∨,∧) is distributive, then we have: (Q is an interval) ⇒

(∀a, b ∈ L : a
Q
∧ b is an interval).

(iii) If (L,
P
∨,

Q
∧) has minimum element 0, then: (∀a, b ∈ L : a

P
∨ b is an

interval) ⇒ (P is an interval);

(iv) If (L,
P
∨,

Q
∧) has maximum element 1, then: (∀a, b ∈ L : a

Q
∧ b is an

interval) ⇒ (Q is an interval).
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Proof. For part (i) assume P = [x, y], then (using distributivity) a
P
∨ b

= a ∨ b ∨ [x, y] = [a ∨ b ∨ x, a ∨ b ∨ y] = [a ∨ b, a ∨ b ∨ y], since min(a
P
∨ b) =

a ∨ b. Part (ii) is proved dually; for part (iii) take a = b = 0; for part (iv)
take a = b = 1.

Proposition 3.7 If (L,∨,∧) is a distributive lattice then:

(i) (P is an interval) ⇒ (∀a, b ∈ L such that a ≤ b : (a
P
∨ c) ∨ (b

P
∨ c) =

b
P
∨ c);

(ii) (P is an interval) ⇒ (∀a, b ∈ L such that a ≤ b : (a
P
∨ c)

P
∨ (b

P
∨ c) =

b
P
∨ c);

(iii) (Q is an interval) ⇒ (∀a, b ∈ L such that a ≤ b : (a
Q
∧ c)∧ (b

Q
∧ c) =

a
Q
∧ c);

(iv) (Q is an interval) ⇒ (∀a, b ∈ L such that a ≤ b : (a
Q
∧ c)

Q
∧ (b

Q
∧ c) =

a
Q
∧ c).

Proof. (i) Assume P = [x, y], then, since L is distributive, a
P
∨ c =

[a∨ c∨ x, a∨ c∨ y] and b
P
∨ c = [b∨ c∨ x, b∨ c∨ y]. Again by distributivity,

we have

(a
P
∨c)∨(b

P
∨c) = [a∨c∨x, a∨c∨y]∨[b∨c∨x, b∨c∨y] = [a∨b∨c∨x, a∨b∨c∨y] =

[b ∨ c ∨ x, b ∨ c ∨ y] = b ∨ c ∨ [x, y] = b
P
∨ c.

(ii) is proved similarly.
(iii) is proved dually to (i) and (iv) is proved dually to (ii).
The next two propositions give additional information on the structure

of
P
∨ and

Q
∧.

Proposition 3.8 If (L,
P
∨,

Q
∧) is a superlattice, then(

∀a ∈ L : a
P
∨ x = a

P
∨ a

)
⇔ x ≤ a;

(
∀a ∈ L : a

Q
∧ x = a

Q
∧ a

)
⇔ a ≤ x.

Proof. Pick any a ∈ L. Pick some x ∈ L such that a
P
∨ x = a

P
∨ a ⇒

min(a
P
∨ x) = min(a

P
∨ a) ⇒ a ∨ x = a ∨ a = a ⇒ x ≤ a. Conversely, assume
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x ≤ a; then a
P
∨x = ∪p∈P a∨x∨ p= ∪p∈P a∨ p= ∪p∈P a∨ a∨ p= a

P
∨ a. So we

have proved the first equivalence; the second equivalence is proved dually.

Proposition 3.9 ((L,∨,∧) is distributive) ⇔For all a, x, y ∈ L we have:
a

P
∨ x = a

P
∨ y

a
Q
∧ x = a

Q
∧ y

 ⇒ x = y

 . (1)

Proof. See [7].
Remark. Note that if (1) holds for some pair (P1, Q1) ∈ A(L)×B(L),

then (L,∨,∧) is distributive and so (1) holds for every pair (P,Q) ∈ A(L)×
B(L).

Remark. One would expect that the above relations imply that (L,
P
∨,

Q
∧)

is distributive. However, we have shown in [7] that this is not the case.

4 Properties Related to Order

4.1 Some Order-like Relationships

We now introduce the relations �, -, v between elements of P(L).

Definition 4.1 Take any A,B ∈ P(L); we write A � B iff

(i) ∀a ∈ A ∃b1 ∈ B : a ≤ b1, (ii) ∀b ∈ B ∃a1 ∈ A : a1 ≤ b.

Definition 4.2 Take any A,B ∈ P(L); we write A v B iff

(i) ∃b1 ∈ B: ∀a ∈ A : a ≤ b1, (ii) ∃a1 ∈ A: ∀b ∈ B : a1 ≤ b.

Definition 4.3 Take any A,B ∈ P(L); we write A - B iff ∀a ∈ A,∀b ∈ B:
a ∧ b ∈ A, a ∨ b ∈ B.

Proposition 4.4 For all A,B ∈ P(L) we have: A - B ⇒ A � B.

Proof. Choose any a ∈ A and any b ∈ B. Then a ∧ b ∈ A and also
a ∧ b ≤ b. Similarly, a ∨ b ∈ B and also a ≤ a ∨ b.
Remark. The converse is not necessarily true. Consider the lattice of
Figure 2 with A = {a1, a2} and B = {b1, b2}. Here for all a ∈ A exists some
b ∈ B such that a ≤ b, and for all b ∈ B exists some a ∈ A such that a ≤ b.
Hence A � B. However, a2 ∧ b1 = b1 ∈ B, so A -/ B.
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Figure 2

Proposition 4.5 For all A,B ∈ P(L) we have: A v B ⇒ A � B.

Proof. This is obvious.
Remark. The converse is not necessarily true. Consider the lattice of
of integers, with the natural order. Take A = {...,−1, 1, 3, ...} and B =
{..., 0, 2, 4, ...}; clearly A � B but A v/ B.
Remark. The relations �, -, v defined above, generally are not order
relations on P(L). We now explore situations where each of the above is
an order relationship. This generally happens if we restrict ourselves to a
subset of P(L).

Proposition 4.6 If S is a collection of intervals of (L,∨,∧), then �, -, v
are orders on S.

Proof. (i) Let us first show that � is an order on S.
(i.1) Obviously, for all A ∈ S we have A � A.
(i.2) Choose any A = [a1, a2], B = [b1, b2] ∈ S such that A � B and

B � A. From A � B we have that ∃b3 ∈ B such that a2 ≤ b3 ≤ b2 and
∃a3 ∈ A such that a1 ≤ a3 ≤ b1. From B � A we have that ∃b4 ∈ B such
that b1 ≤ b4 ≤ a1 and ∃a4 ∈ A such that b2 ≤ a4 ≤ a2. From these follows
that a1 ≤ b1 ≤ a1 ⇒ a1 = b1 and b2 ≤ a2 ≤ b2 ⇒ a2 = b2; hence A = B.
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(i.3) Choose any A = [a1, a2], B = [b1, b2], C = [c1, c2] ∈ S such that
A � B and B � C. Now we have a1 ≤ b1 and b1 ≤ c1, so a1 ≤ c1; and
a2 ≤ b2 and b2 ≤ c2, so a2 ≤ c2. This means that: for all a ∈ A we have
a ≤ a2 ≤ c2 ∈ C; and for all c ∈ C we have A 3 a1 ≤ c1 ≤ c ∈ C. Hence
A � C.

From (i.1), (i.2), (i.3) follows that � is an order on S.
(ii) Next we show that v is an order on S. For this it suffices to show

that: when S is a class of intervals we have A � B ⇔ A v B. Obviously, we
have A v B ⇒ A � B. To show the converse, recall that [a1, a2] = A � B
= [b1, b2] ⇒ (a1 ≤ b1 and a2 ≤ b2). From this follows immediately that:
∀b ∈ B we have a1 ≤ b1 ≤ b; and ∀a ∈ A we have a ≤ a2 ≤ b2. Hence
A v B. In short, we have shown that � and v are equivalent on S and,
since � is an order, so is v.

From (ii.1), (ii.2), (ii.3) follows that v is an order on S.
(iii) Last we show that - is an order on S.
(iii.1) Choose any A = [a1, a2] ∈ S and any x, y ∈ [a1, a2]. I.e.

a1 ≤ x ≤ a2

a1 ≤ y ≤ a2

}
⇒ a1 ≤

{
x ∨ y
x ∧ y

}
≤ a2.

Hence x ∧ y, x ∨ y ∈ A and so A - A.
(iii.2) Choose any A = [a1, a2], B = [b1, b2] ∈ S such that A - B and

B - A. Then we have a1 ∧ b1 ∈ A and a1 ∧ b1 ∈ B. But then a1 = a1 ∧ b1=
b1. Similarly a2 = a2 ∨ b2= b2 and so A = B.

(iii.3) Choose any A = [a1, a2], B = [b1, b2], C = [c1, c2] ∈ S such that
A - B and B - C. Now we have a1 ∧ b1 ∈ A = [a1, a2] and so a1 ∧ b1 = a1

⇒ a1 ≤ b1; similarly b1 ∧ c1 ∈ B ⇒ b1 ≤ c1; and so we get that a1 ≤ c1.
Similarly we get a2 ≤ c2. Now choose any a ∈ A and any c ∈ C; then we
have

a1 ≤ a ≤ a2

c1 ≤ c ≤ c2

}
⇒

{
a1 = a1 ∧ c1 ≤ a ∧ c ≤ a2 ∧ c2 ≤ a2

c1 ≤ a1 ∨ c1 ≤ a ∨ c ≤ a2 ∨ c2 = c2

}
⇒

{
a ∧ c ∈ A
a ∨ c ∈ C

.

Hence A - C.
From (iii.1), (iii.2), (iii.3) follows that - is an order on S and the proof

of the proposition is complete.

Proposition 4.7 If S is a collection of convex sublattices of (L,∨,∧), then
- is an order on S.

Proof. (i) Choose any A ∈ S. Obviously, for all x, y ∈ A we have
x ∧ y ∈ A and x ∨ y ∈ A. Hence A - A.
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(ii) Choose any A, B ∈ S such that A - B and B - A; choose any a ∈
A, b ∈ B. Then, a ∧ b ∈ A but also a ∧ b ∈ B; similarly, a ∨ b ∈ A but also
a ∨ b ∈ B. From:

a ∧ b, a ∨ b ∈ B, a ∧ b ≤ a ≤ a ∨ b

and convexity, we obtain a ∈ B. Hence A ⊆ B. But similarly we get B ⊆ A
and so A = B.

(iii) Choose any A, B, C ∈ S such that A - B and B - C. Choose
any a ∈ A, b ∈ B, c ∈ C. Then a ∨ b ∈ B and so a ∨ b ∨ c ∈ C. Then
a ∨ c ∈ [c, a ∨ b ∨ c] ⊆ C. Similarly, b ∧ c ∈ B and so a ∧ b ∧ c ∈ A. Then
a ∧ c ∈ [a ∧ b ∧ c, a] ⊆ A. Hence A - C.

From (i), (ii), (iii) follows that - is an order on S and the proof of the
proposition is complete

Corollary 4.8 (i) If S is a collection of ideals of (L,∨,∧), then - is an
order on S.

(ii) If S is a collection of filters of (L,∨,∧), then - is an order on S.

Proof. (i) This follows from the fact that every ideal is a convex sub-
lattice and from Proposition 4.7.

(ii) This follows from the fact that every filter is a convex sublattice and
from Proposition 4.7.

From Propositions 4.6 and 4.7 one infers the following propositions.

Proposition 4.9 Let (L,∨,∧) be distributive. Then:

(i) if P is an interval, then �, -, v are orders on {a
P
∨ b}a,b∈L;

(ii) if Q is an interval, then �, -, v are orders on {a
Q
∧ b}a,b∈L.

Proof. (i) follows immediately from Propositions 3.6 and 4.6; (ii) is
proved dually.

Proposition 4.10 Let (L,∨,∧) be distributive. Then:

(i) if P is an ideal, then - is an order on {a
P
∨ b}a,b∈L;

(ii) if Q is a filter, then - is an order on {a
Q
∧ b}a,b∈L.

Proof. (i) follows immediately from Propositions 3.5 and 4.7; (ii) is
proved dually.
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4.2 Properties of �

Proposition 4.11 For all a, b ∈ L we have: (i) P � a
P
∨ b, (ii) a

Q
∧ b � Q.

Proof. Take any p ∈ P ; there exists some x = a ∨ b ∨ p ∈ a
P
∨ b and we

obviously have p ≤ x. Take any x ∈ a
P
∨ b ; there exists some p ∈ P such

that x = a∨ b∨ p ∈ a
P
∨ b and we obviously have p ≤ x. (ii) is proved dually.

Proposition 4.12 (i) If A,B ∈ P(L) have minimum elements, then: A �
B ⇒ min(A) ≤ min(B).

(ii) If A,B ∈ P(L) have maximum elements and A � B, then max(A) ≤
max(B).

Proof. (i) Since b = min(B) ∈ B, then exists some a ∈ A such that
a ≤ b; also a = min(A) ≤ a; hence a≤ b. (ii) is proved dually.

Proposition 4.13 For all a, b ∈ L the following conditions are equivalent.
(i) a ≤ b.

(ii) For all c ∈ L we have: a
P
∨ c � b

P
∨ c

(iii) For all c ∈ L we have: a
Q
∧ c � b

Q
∧ c.

Proof. We will show (i)⇒(ii), (i)⇒(iii), (ii)⇒(i), (iii)⇒(i)

(i)⇒(ii) If x ∈ a
P
∨ c then exists some p1 ∈ P such that x = a ∨ c ∨ p1 ≤

b ∨ c ∨ p1 = y ∈ b
P
∨ c. Similarly, if z ∈ b

P
∨ c then exists some p2 ∈ P such

that z = b ∨ c ∨ p2 ≥ a ∨ c ∨ p2 = w ∈ a
P
∨ c. Hence a

P
∨ c � b

P
∨ c.

(i)⇒(iii) It is proved dually to the previous.

(ii)⇒(i) Set c = b. Then a
P
∨ b � b

P
∨ b. From Proposition 4.12 we get a∨ b

= min(a
P
∨ b) ≤ min(b

P
∨ b) =b∨ b = b. Hence a∨ b ≤ b ⇒ b = a∨ b ⇒ a ≤ b.

(iii)⇒(i) It is proved dually to the previous.

Remark. Note that in general a
P
∨ c and b

P
∨ c will not be intervals, hence

it is not necessary that a
P
∨ c � b

P
∨ c denotes an order relationship.
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4.3 Properties of v

Proposition 4.14 (i) If (L,∨,∧) is distributive and P is an interval, then

for all a, b ∈ L we have: P v a
P
∨ b.

(ii) If (L,∨,∧) is distributive and Q is an interval, then for all a, b ∈ L

we have: a
Q
∧ b v Q.

Proof. (i) In the proof of Proposition 4.6 we have seen that, for A,B
intervals, we have A v B ⇔ A � B. Also, from Proposition 3.6 we know

that when P is an interval, a
P
∨b is also an interval. So P v a

P
∨b⇔ P � a

P
∨b,

which is true by Proposition 4.11.
(ii) is proved dually.

Proposition 4.15 (i) If A,B ∈ P(L) have minimum elements, then: A v
B ⇒ min(A) ≤ min(B),

(ii) If A,B ∈ P(L) have maximum elements, then: A v B ⇒ max(A) ≤
max(B).

Proof. (i) There exists some a such that for all b ∈ B we have a≤ b.
Also, min(A) ≤ a. Hence, for all b ∈ B we have min(A) ≤ b; since min(B) ∈
B, we then get min(A) ≤ min(B); (ii) is proved dually.

Proposition 4.16 Assume (L,∨,∧) is distributive and P,Q are intervals.
Then the following conditions are equivalent.

(i) a ≤ b.

(ii) For all c ∈ L we have: a
P
∨ c v b

P
∨ c.

(iii) For all c ∈ L we have: a
Q
∧ c v b

Q
∧ c.

Proof. We will show (i)⇒(ii), (i)⇒(iii), (ii)⇒(i), (iii)⇒(i)
(i)⇒(ii) This is obvious if we use the fact that for A,B intervals we have

A v B ⇔ A � B and then use Proposition 4.13.
(i)⇒(iii) It is proved dually to the previous.

(ii)⇒(i) Set c = b. Then a
P
∨ b � b

P
∨ b. From Proposition 4.15 we get a∨ b

= min(a
P
∨ b) ≤ min(b

P
∨ b) =b ∨ b = b. Hence a ≤ a ∨ b = b.

(iii)⇒(i) It is proved dually to the previous.
Remark. In the above proposition note that, since (L,∨,∧) has been

assumed distributive and P , Q have been assumed intervals, a
P
∨ c and b

P
∨ c

will also be intervals (by Proposition 3.6). Hence a
P
∨ c v b

P
∨ c will be an

order relationship.

15



4.4 Properties of -

Proposition 4.17 (i) If P is an ideal, then for all a, b ∈ L we have: P -

a
P
∨ b.

(ii) If Q is a filter, then for all a, b ∈ L we have: a
Q
∧ b - Q.

Proof. (i) Take x ∈ a
P
∨ b, i.e. x = a ∨ b ∨ p1, for some p1 ∈ P . Take

any p ∈ P . Then x ∨ p = a ∨ b ∨ (p1 ∨ p). Since p1 ∨ p ∈ P , it follows that

x ∨ p ∈ a
P
∨ b. On the other hand, x ∧ p = (a ∨ b ∨ p1) ∧ p ≤ p. Since p ∈ P,

it follows that x ∧ p ∈ P. Hence P - a
P
∨ b.

(ii) is proved dually to (i).

Proposition 4.18 (i) If A,B ∈ P(L) have minimum elements, then: A -
B ⇒ min(A) ≤ min(B).

(ii) If A,B ∈ P(L) have maximum elements, then: A - B ⇒ max(A) ≤
max(B).

Proof. (i) Set a= min(A), b= min(B). Now A - B ⇒ c =a∧b∈ A.
But, since a= min(A) it follows that a≤ c =a∧b≤a. In short, a=a∧b⇒a≤b
and the proof of (i) is complete; (ii) is proved dually.

Proposition 4.19 . The following are true.
(i) Assume (L,∨,∧) is distributive, P is an ideal and a, b ∈ L satisfy

a ≤ b; then for all c ∈ L we have: a
P
∨ c - b

P
∨ c;

(ii) Assume (L,∨,∧) is distributive, Q is a filter and a, b ∈ L satisfy

a ≤ b; then for all c ∈ L we have: a
Q
∧ c - b

Q
∧ c.

(iii) Assume a, b ∈ L are such that for all c ∈ L we have a
P
∨ c - b

P
∨ c;

then a ≤ b.

(iv) Assume a, b ∈ L are such that for all c ∈ L we have a
Q
∧ c - b

Q
∧ c;

then a ≤ b.

Proof. (i) Take any x ∈ a
P
∨ c, and any y ∈ b

P
∨ c; i.e. x = a ∨ c ∨ p1,

p1 ∈ P and y = b∨c∨p2, p2 ∈ P . Now we have x∨y = a∨c∨p1∨b∨c∨p2 =

(a∨b)∨c∨(p1∨p2) = b∨c∨(p1∨p2) ∈ b
P
∨c. Also, x∧y = (a∨c∨p1)∧(b∨c∨p2)

= ((a ∨ p1) ∧ (b ∨ p2)) ∨ c = ((a ∧ b)∨ (p1 ∧ b)∨ (a ∧ p2)∨ (p1 ∧ p2)) ∨ c =
a∨ (p1 ∧ b)∨ (p2 ∧ a)∨ (p1 ∧ p2)∨ c = a∨ (p1 ∧ b)∨ (p1 ∧ p2)∨ c =a ∨ c ∨ p,
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where p= (p1 ∧ b)∨ (p1 ∧ p2) ∈ P . Hence x ∧ y= a ∨ c ∨ p ∈ a
P
∨ c. In short

we have shown a
P
∨ c - b

P
∨ c; (ii) is proved dually.

(iii) From Proposition 4.4 we get a
P
∨ c - b

P
∨ c ⇒ a

P
∨ c � b

P
∨ c. Hence,

for all c ∈ L we have a
P
∨ c � b

P
∨ c, which by Proposition 4.13 implies a ≤ b;

(iv) is proved dually.

Corollary 4.20 Assume (L,∨,∧) is distributive, P is an ideal and Q is a
filter. Then the following conditions are equivalent.

(i) a ≤ b.

(ii) For all c ∈ L we have: a
P
∨ c - b

P
∨ c.

(iii) For all c ∈ L we have: a
Q
∧ c - b

Q
∧ c.

Proof. Follows immediately from Proposition 4.19.
Remark. Note that in the above proposition (L,∨,∧) has been assumed
distributive, P has been assumed an ideal and Q has been assumed a filter.

Hence, by Proposition 4.10 we have that - is an order on both {a
P
∨ b}a,b∈L

and {a
Q
∧ b}a,b∈L. Hence both a

P
∨ c - b

P
∨ c and a

Q
∧ c - b

Q
∧ c are order

relationships.
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