The Structure of the (P, Q)-Superlattice and Order Related Properties

K. Serafimidis, Ath. Kehagias and M. Konstantinidou

Abstract

In a previous work we have introduced the (P,Q)-superlattice, a hyperstructure of the form $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$. Here (L, \vee, \wedge) is a lattice and the hyperoperations $\stackrel{P}{\vee}, \stackrel{Q}{\wedge}$ are defined by $a \stackrel{P}{\vee} b \doteq a \vee b \vee P, \ a \stackrel{Q}{\wedge} b \doteq a \wedge b \wedge Q;$ when the sets $P,Q \subseteq L$ satisfy appropriate conditions $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is a superlattice. In this work we continue the investigation of (P,Q)-superlattice and consider the structure of the sets $a \stackrel{P}{\vee} b, a \stackrel{Q}{\wedge} b$ as well assome "order-like" relationships between such sets.

AMS classification number: 06B99.

1 Introduction

The (P,Q)-superlattice has been introduced in [5], and its properties studied in [7]. Starting from a lattice (L,\vee,\wedge) , one can define a hyperstructure of the form (L,\vee,\wedge) ; if P,Q are chosen appropriately, then (L,\vee,\wedge) is a superlattice.

In this paper we examine the structure of the sets $a \ ^P b$ and $a \ ^Q b$ in connection to the properties of P,Q. Furthermore we consider certain "order-like" relationships between such sets.

2 The (P,Q)-Superlattice and Some of Its Properties

Let us first give the definition of a general superlattice, as given in [6]. In what follows $\mathbf{P}(L)$ will denote the power set of a reference set L.

Definition 2.1 A superlattice is a partially ordered set (L, \leq) with two hyperoperations Υ, \curlywedge , where $\Upsilon: L \times L \to \mathbf{P}(L)$, $\curlywedge: L \times L \to \mathbf{P}(L)$, and the following properties are satisfied for all $a, b, c \in L$.

S1
$$a \in (a \lor a) \cap (a \curlywedge a)$$

S2
$$a
ightharpoonup b = b
ightharpoonup a, a
ightharpoonup b = b
ightharpoonup a$$

S3
$$(a \lor b) \lor c = a \lor (b \lor c), (a \curlywedge b) \curlywedge c = a \curlywedge (b \curlywedge c)$$

S4
$$a \in [(a \lor b) \land a] \cap [(a \land b) \lor a]$$

S5a
$$a \le b \Rightarrow (b \in a \lor b \text{ and } a \in a \curlywedge b)$$

S5b
$$(b \in a \land b \text{ or } a \in a \land b) \Rightarrow a \leq b.$$

As has been shown in [6], the following definition is equivalent to Definition 2.1,

Definition 2.2 A superlattice is a hyperstructure $(L, \curlyvee, \curlywedge)$, where $\curlyvee: L \times L \to \mathbf{P}(L)$, $\&L \times L \to \mathbf{P}(L)$, and the following properties are satisfied for all $a, b, c \in L$.

S1
$$a \in (a \lor a) \cap (a \curlywedge a)$$

S2
$$a \lor b = b \lor a, a \curlywedge b = b \curlywedge a$$

S3
$$(a \lor b) \lor c = a \lor (b \lor c), (a \lor b) \lor c = a \lor (b \lor c)$$

S4
$$a \in [(a \lor b) \land a] \cap [(a \land b) \lor a]$$

S6
$$b \in a \land b \Leftrightarrow a \in a \land b$$

S7
$$a, b \in a \land b \Rightarrow a = b$$

S8
$$b \in a \lor b$$
 et $c \in b \lor c \Rightarrow c \in a \lor c$.

Definition 2.3 A superlattice $(L, \curlyvee, \curlywedge)$ will be called proper iff there exist pairs $(a,b), (c,d) \in L \times L$, such that $card(a \curlyvee b) \ge 2$ and $card(c \curlywedge d) \ge 2$.

Definition 2.4 A superlattice $(L, \curlyvee, \curlywedge)$ will be called strictly strong iff: (a) the corresponding ordered set (L, \leq) is a lattice with sup operation \lor and inf operation \land and (b) for all $a, b \in L$ we have: $a \lor b \in a \curlyvee b$ and $a \land b \in a \curlywedge b$.

Finally, let us mention the manner in which a hyperlattice and a dual hyperlattice¹ can be obtained from a superlattice.

Proposition 2.5 Suppose $(L, \curlyvee, \curlywedge)$ is a strictly strong superlattice with corresponding order \leq and that (L, \leq) is a lattice with sup operation denoted by \lor and inf operation denoted by \land . Then: (i) (L, \curlyvee, \land) is a hyperlattice; (ii) (L, \lor, \curlywedge) is a dual hyperlattice.

Proof. (i) Suppose that (L, Υ, λ) is a superlattice; then S1–S8 hold. Now, the hyperlattice axioms H1-H3 [2] are identical with the superlattice axioms S1-S3. Also, if (L, Υ, λ) is a strictly strong superlattice then $a \wedge b \in a \wedge b$ and $a \vee b \in a \Upsilon b$. Thus

$$a = (a \wedge b) \vee a \in (a \wedge b) \vee a$$
 and $a = (a \vee b) \wedge a \in (a \vee b) \wedge a$

which is the hyperlattice axiom H4 (see [2]). Finally, recall that S5 is

$$(a \in a \land b \text{ or } b \in a \land b) \Rightarrow b \leq a.$$

(ii) is proved dually. ■

We now turn to the study of the (P,Q)-superlattice, which has been introduced in [5]. It is a special kind of superlattice, which can be considered as a generalization of either the P-hyperlattice [3, 4] or the dual Q-hyperlattice. A (P,Q)-superlattice is constructed on a lattice (L,\vee,\wedge) in a manner analogous to the construction of P-hypergroups [1, 9, 10] and P-hyperrings [8].

In what follows, (L, \vee, \wedge) will always denote a lattice (with $L \neq \emptyset$) and \leq will denote the order of (L, \vee, \wedge) . If L possesses a minimum (respectively maximum) element, this will be denoted by 0 (respectively 1).

Given a lattice (L, \vee, \wedge) let us select two sets $P, Q \in \mathbf{P}(L)$ and define the following hyperoperations.

Definition 2.6 For all $a, b \in L$ we define $a \overset{P}{\lor} b \doteq a \lor b \lor P = \{a \lor b \lor p : p \in P\}.$

Definition 2.7 For all $a, b \in L$ we define $a \wedge b \doteq a \wedge b \wedge Q = \{a \wedge b \wedge q : q \in Q\}.$

¹A dual hyperlattice can be defined as a hyperstructure (L, \vee, \curlywedge) ; here \vee is the classical sup operation and \curlywedge is a hyperoperation which generalizes the classical \wedge (inf) operation. As the name suggests, it is dual to the hyperlattice (L, \curlyvee, \land) .

Remark. A $(L, \overset{P}{\vee}, \overset{Q}{\wedge})$ structure (with arbitrary choice of P, Q) is not necessarily a superlattice [7].

The necessary and sufficient conditions on P, Q for $(L, \overset{P}{\vee}, \overset{Q}{\wedge})$ to be a superlattice are easily stated in terms of the following two collections of sets.

Definition 2.8 $\mathbf{A}(L) \doteq \{A \in \mathbf{P}(L) : \forall x \in L \mid \exists a \in A \text{ such that } a \leq x\}.$

Definition 2.9 $\mathbf{B}(L) \doteq \{B \in \mathbf{P}(L) : \forall y \in L \mid \exists b \in B \text{ such that } y \leq b\}.$

It is clear that $L \in \mathbf{A}(L) \cap \mathbf{B}(L)$. Also, clearly, if (L, \vee, \wedge) has a 0, then $P \in \mathbf{A}(L) \Leftrightarrow 0 \in P$; if (L, \vee, \wedge) has a 1, then $Q \in \mathbf{B}(L) \Leftrightarrow 1 \in Q$. Furthermore, we have the following:

 $(P \in \mathbf{A}(L) \text{ and } P \text{ is an interval}) \Rightarrow L \text{ has } 0;$

 $(Q \in \mathbf{B}(L) \text{ and } Q \text{ is an interval}) \Rightarrow L \text{ has } 1.$

The following proposition yields a necessary and sufficient condition for (L, \vee, \wedge) to be a superlattice.

Proposition 2.10 $(L, \overset{P}{\vee}, \overset{Q}{\wedge})$ is a superlattice $\Leftrightarrow (P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$.

Proof. The proof appears in [5].

Remark. Given a lattice (L, \vee, \wedge) and $P \in \mathbf{A}(L)$, $Q \in \mathbf{B}(L)$ we construct the associated superlattice (L, \vee, \wedge) . Now, the hyperoperations \vee, \wedge induce an order \leq on L; it is easy to see that \leq is identical with the \leq order of the original (L, \vee, \wedge) lattice.

Remark. In the sequel we will assume (unless explicitly stated otherwise) that $(P,Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$; hence $(L, \overset{P}{\vee}, \overset{Q}{\wedge})$ will be a superlattice.

Proposition 2.11 For all $(P,Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$ and all $a,b \in L$ we have: (i) $a \vee b = \min(a \vee b)$, (ii) $a \wedge b = \max(a \wedge b)$.

Proof. See [7]. ■

Remark. It follows that for all $(P,Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$ we have that (L, \vee, \wedge) is a *strictly strong* superlattice.

Let us now introduce the concept of a sub-superlattice of a (P,Q)-superlattice.

Definition 2.12 Let $(L, \overset{P}{\vee}, \overset{Q}{\wedge})$ be a (P, Q)-superlattice and $S \in \mathbf{P}(L)$. We say that $(S, \overset{P}{\vee}, \overset{Q}{\wedge})$ is a sub-superlattice of $(L, \overset{P}{\vee}, \overset{Q}{\wedge})$ iff $\forall a, b \in S$ we have $a \overset{P}{\vee} b \subseteq S$, $a \overset{Q}{\wedge} b \subseteq S$.

The next proposition gives necessary and sufficient condition for a subset of L to be a sub-superlattice of (L, \vee, \wedge) .

Proposition 2.13 Let (L, \vee, \wedge) be a lattice and $(P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$ (hence (L, \vee, \wedge) is (P, Q)-superlattice). Let S be such that $P \cup Q \subseteq S \subseteq L$. Then

 $(S, \overset{P}{\vee}, \overset{Q}{\wedge})$ is subsuperlattice of $(L, \overset{P}{\vee}, \overset{Q}{\wedge}) \Leftrightarrow (S, \overset{\vee}{\vee}, \wedge)$ is sublattice of $(L, \overset{P}{\vee}, \wedge)$.

- **Proof.** (i) Assume that $(S, \overset{P}{\vee}, \overset{Q}{\wedge})$ is a sub-superlattice of $(L, \overset{P}{\vee}, \overset{Q}{\wedge})$. Choose any $a, b \in S$. Then $a \vee b \in a \overset{P}{\vee} b \subseteq S$; similarly we show that $a \wedge b \in S$ and so we conclude that S is a sublattice.
- (ii) Assume that (S, \vee, \wedge) is a sublattice of (L, \vee, \wedge) . Then for all $a, b \in S$ we have $a \vee b \in S$; since also $P \subseteq S$, we have for all $a, b \in S$ and for all $p \in P$ that $a \vee b \vee p \in S$. Then we have for all $a, b \in S : \cup_{p \in P} a \vee b \vee p \subseteq S$, which implies that for all $a, b \in S : a \vee b \subseteq S$. Similarly we prove that for all $a, b \in S : a \wedge b \subseteq S$. Hence we conclude that (S, \vee, \wedge) is a sub-superlattice of (L, \vee, \wedge) .

Proposition 2.14 For all $a, b \in L$ we have: (i) $a \lor b = \{x : a \lor b \le x\}$, (ii) $a \land b = \{x : x \le a \land b\}$.

Proof. (i) has been proved in [3]; (ii) can be proved dually. \blacksquare **Remark.** Given (L, \vee, \wedge) with minimum element 0 and maximum element 1, we have $0 \vee 0 = P$, $1 \wedge 1 = Q$.

Proposition 2.15 For all $(P,Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$ we have: $P \vee Q \in \mathbf{B}(L)$ and $P \wedge Q \in \mathbf{A}(L)$.

Proof. For every $a \in L$ there is some $q \in Q$ such that $a \leq q$. But $Q \subseteq P \vee Q \Rightarrow q \in P \vee Q$. In short, for every $a \in L$ there is some $q \in P \vee Q$ such that $a \leq q$ and so $P \vee Q \in \mathbf{B}(L)$; $P \wedge Q \in \mathbf{A}(L)$ is proved dually.

3 The Structure of $a \stackrel{P}{\vee} b$ and $a \stackrel{Q}{\wedge} b$

In this section we examine the structure of $a \overset{P}{\vee} b$ and $a \overset{Q}{\wedge} b$ under various conditions on P and Q. For the rest of the paper we *always* assume that $(P,Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$, unless explicitly stated otherwise.

Proposition 3.1 For all $a, b \in L$ we have: $x \in a \stackrel{P}{\vee} b, y \in a \stackrel{Q}{\wedge} b \Rightarrow y \leq x$.

Proof. $x \in a \lor b \Rightarrow x = a \lor b \lor p; y \in a \land b \Rightarrow y = a \land b \land q$ (for approxiate $p \in P, q \in Q$). Obviously $y = a \land b \land q \leq a \lor b \lor p = x$.

Proposition 3.2 For all $a, b \in L$ we have: $(a \lor b) \cap (a \land b) \neq \emptyset \Rightarrow a = b$.

Proof. Suppose there exists $z \in (a \lor b) \cap (a \land b)$. Then exists $p \in P$, $q \in Q$ such that $z = a \lor b \lor p = a \land b \land q$. Then we have

$$z = a \land b \land q \le a \land b \le a \lor b \le a \lor b \lor p = z$$

from which follows immediately that a = b.

Proposition 3.3 (i) If (L, \vee, \wedge) is distributive, then:

$$(P \ is \ a \ sublattice) \Rightarrow \ (\forall a,b \in L \quad a \overset{P}{\vee} b \ is \ a \ sublattice).$$

(ii) If (L, \vee, \wedge) is distributive, then:

$$(Q \ is \ a \ sublattice) \Rightarrow \bigg(\forall a,b \in L \quad a \overset{Q}{\wedge} b \ is \ a \ sublattice \bigg) \, .$$

(iii) If (L, \vee, \wedge) has a minimum element 0, then:

$$(\forall a, b \in L \quad a \overset{P}{\lor} b \text{ is a sublattice}) \Rightarrow (P \text{ is a sublattice}).$$

(iv) If (L, \vee, \wedge) has a maximum element 1, then:

$$\left(\forall a,b \in L \quad a \overset{Q}{\wedge} b \text{ is a sublattice}\right) \Rightarrow (Q \text{ is a sublattice}).$$

Proof. For (i) assume that P is a sublattice of L. Take any $a, b \in L$. For any $x_1, x_2 \in a \lor b$ there exist $p_1, p_2 \in P$ such that $x_1 = a \lor b \lor p_1$ and $x_2 = a \lor b \lor p_2$. Furthermore, $p_1 \lor p_2 = p_3 \in P$, $p_1 \land p_2 = p_4 \in P$. Hence $x_1 \lor x_2 = a \lor b \lor p_3 \in a \lor b$ and $x_1 \land x_2 = (a \lor b \lor p_1) \land (a \lor b \lor p_2) = (a \lor b) \lor (p_1 \land p_2) = (a \lor b) \lor p_4 \in a \lor b$. Part (ii) is proved dually to (i). Part (iii) is obvious, since $0 \lor 0 = 0 \lor P = P$; (iv) is proved dually to (iii).

Proposition 3.4 (i) If (L, \vee, \wedge) is distributive, then: (P is convex sublattice) $\Rightarrow (\forall a, b \in L : a \vee b \text{ is convex sublattice}).$ (ii) If (L, \vee, \wedge) is distributive, then: (Q is convex sublattice) $\Rightarrow (\forall a, b \in L)$

- (ii) If (L, \vee, \wedge) is distributive, then: (Q is convex sublattice) \Rightarrow $(\forall a, b \in L : a \land b \text{ is convex sublattice}).$
- (iii) If (L, \vee, \wedge) has minimum element 0, then: $(\forall a, b \in L : a \overset{P}{\vee} b \text{ is convex sublattice}) \Rightarrow (P \text{ is convex sublattice}).$
- (iv) If (L, \vee, \wedge) has maximum element 1, then $(\forall a, b \in L : a \wedge b \text{ is convex sublattice})$ $\Rightarrow (Q \text{ is convex sublattice}).$

Proof. For part (i) assume P is a convex sublattice. Choose any $a, b \in L$ and any $x, y \in a \lor b$; i.e. exist p_1 and p_2 such that $x = a \lor b \lor p_1$ and $y = a \lor b \lor p_2$. By Proposition 3.3, $x \lor y \in a \lor b$ and $x \land y \in a \lor b$. Now take any $z \in [x \land y, x \lor y] = a \lor b \lor [p_1 \land p_2, p_1 \lor p_2] \subseteq a \lor b$ (the equality holds because of distributivity, and the inclusion because $[p_1 \land p_2, p_1 \lor p_2] \subseteq P$, since P is a convex sublattice). Now part (ii) is proved dually; for (iii) just take a = b = 0; for (iv) just take a = b = 1.

Proposition 3.5 (i) If (L, \vee, \wedge) is distributive, then:

$$(P \text{ is an ideal}) \Rightarrow (\forall a, b \in L : a \overset{P}{\lor} b \text{ is a convex sublattice}).$$

(ii) If (L, \vee, \wedge) is distributive, then:

$$(Q \text{ is a filter}) \Rightarrow (\forall a, b \in L : a \wedge b \text{ is a convex sublattice}).$$

(iii) If (L, \vee, \wedge) has a minimum element 0, then:

$$\left(\forall a,b \in L : a \overset{P}{\vee} b \text{ is an ideal} \right) \Rightarrow (P \text{ is an ideal}).$$

(iv) If (L, \vee, \wedge) has a maximum element 1, then:

$$\left(\forall a,b \in L: a \overset{Q}{\wedge} b \text{ is a filter}\right) \Rightarrow Q \text{ is a filter}).$$

Proof. Part (i) is proved using the fact that an ideal is a convex sublattice and Proposition 3.4; part (ii) is proved using the fact that a filter is a convex sublattice and Proposition 3.4; part (iii) is proved setting a = b = 0; part (iv) is proved setting a = b = 1.

Remark. If (L, \vee, \wedge) is not distributive, then parts (ii), (iv) of Proposition 3.4 do not necessarily hold. Consider the lattice of Figure 1 and take $P = \{c, d\}$. Then $a \overset{P}{\vee} c = a \vee P = a \vee \{c, d\} = \{a, e\}$ which is not convex.

Figure 1

Proposition 3.6 (i) If (L, \vee, \wedge) is distributive, then we have: $(P \text{ is an interval}) \Rightarrow (\forall a, b \in L : a \vee b \text{ is an interval});$ (ii) If (L, \vee, \wedge) is distributive, then we have: $(Q \text{ is an interval}) \Rightarrow$

- (ii) If (L, \vee, \wedge) is distributive, then we have: $(Q \text{ is an interval}) \Rightarrow (\forall a, b \in L : a \wedge b \text{ is an interval}).$
- (iii) If $(L, \overset{P}{\lor}, \overset{Q}{\land})$ has minimum element 0, then: $(\forall a, b \in L : a \overset{P}{\lor} b \text{ is an interval}) \Rightarrow (P \text{ is an interval});$
- (iv) If (L, \vee, \wedge) has maximum element 1, then: $(\forall a, b \in L : a \wedge b \text{ is an interval}) \Rightarrow (Q \text{ is an interval}).$

Proof. For part (i) assume P = [x, y], then (using distributivity) $a \overset{P}{\vee} b = a \vee b \vee [x, y] = [a \vee b \vee x, a \vee b \vee y] = [a \vee b, a \vee b \vee y]$, since $\min(a \overset{P}{\vee} b) = a \vee b$. Part (ii) is proved dually; for part (iii) take a = b = 0; for part (iv) take a = b = 1.

Proposition 3.7 If (L, \vee, \wedge) is a distributive lattice then:

- (i) (P is an interval) \Rightarrow $(\forall a, b \in L \text{ such that } a \leq b : (a \lor c) \lor (b \lor c) = b \lor c);$
- (ii) (P is an interval) \Rightarrow $(\forall a, b \in L \text{ such that } a \leq b : (a \lor c) \lor (b \lor c) = b \lor c);$
- (iii) (Q is an interval) \Rightarrow $(\forall a, b \in L \text{ such that } a \leq b : (a \wedge c) \wedge (b \wedge c) = a \wedge c);$
- (iv) (Q is an interval) \Rightarrow $(\forall a, b \in L \text{ such that } a \leq b : (a \wedge c) \wedge (b \wedge c) = a \wedge c$.
- **Proof.** (i) Assume P = [x,y], then, since L is distributive, $a \overset{P}{\vee} c = [a \vee c \vee x, a \vee c \vee y]$ and $b \overset{P}{\vee} c = [b \vee c \vee x, b \vee c \vee y]$. Again by distributivity, we have

$$(a \overset{P}{\lor} c) \lor (b \overset{P}{\lor} c) = [a \lor c \lor x, a \lor c \lor y] \lor [b \lor c \lor x, b \lor c \lor y] = [a \lor b \lor c \lor x, a \lor b \lor c \lor y] = [b \lor c \lor x, b \lor c \lor y] = b \overset{P}{\lor} c.$$

- (ii) is proved similarly.
- (iii) is proved dually to (i) and (iv) is proved dually to (ii).

The next two propositions give additional information on the structure of \bigvee^P and \bigwedge^Q .

Proposition 3.8 If $(L, \overset{P}{\vee}, \overset{Q}{\wedge})$ is a superlattice, then

$$\left(\forall a \in L : a \overset{P}{\vee} x = a \overset{P}{\vee} a\right) \Leftrightarrow x \leq a; \quad \left(\forall a \in L : a \overset{Q}{\wedge} x = a \overset{Q}{\wedge} a\right) \Leftrightarrow a \leq x.$$

Proof. Pick any $a \in L$. Pick some $x \in L$ such that $a \vee x = a \vee a \Rightarrow \min(a \vee x) = \min(a \vee a) \Rightarrow a \vee x = a \vee a = a \Rightarrow x \leq a$. Conversely, assume

 $x \leq a$; then $a \vee x = \bigcup_{p \in P} a \vee x \vee p = \bigcup_{p \in P} a \vee p = \bigcup_{p \in P} a \vee a \vee p = a \vee a$. So we have proved the first equivalence; the second equivalence is proved dually.

Proposition 3.9 $((L, \vee, \wedge) \text{ is distributive}) \Leftrightarrow$

$$\left(For \ all \ a, x, y \in L \ we \ have: \begin{array}{c} a \stackrel{P}{\vee} x = a \stackrel{P}{\vee} y \\ a \stackrel{Q}{\wedge} x = a \stackrel{Q}{\wedge} y \end{array} \right) \Rightarrow x = y \quad . \tag{1}$$

Proof. See [7]. ■

Remark. Note that if (1) holds for *some* pair $(P_1, Q_1) \in \mathbf{A}(L) \times \mathbf{B}(L)$, then (L, \vee, \wedge) is distributive and so (1) holds for *every* pair $(P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$.

Remark. One would expect that the above relations imply that (L, \vee, \wedge) is distributive. However, we have shown in [7] that this is not the case.

4 Properties Related to Order

4.1 Some Order-like Relationships

We now introduce the relations \leq , \lesssim , \sqsubseteq between elements of $\mathbf{P}(L)$.

Definition 4.1 Take any $A, B \in \mathbf{P}(L)$; we write $A \leq B$ iff

(i)
$$\forall a \in A \quad \exists b_1 \in B : a \leq b_1$$
, (ii) $\forall b \in B \quad \exists a_1 \in A : a_1 \leq b$.

Definition 4.2 Take any $A, B \in \mathbf{P}(L)$; we write $A \subseteq B$ iff

(i)
$$\exists b_1 \in B : \forall a \in A : a \leq b_1$$
, (ii) $\exists a_1 \in A : \forall b \in B : a_1 \leq b$.

Definition 4.3 Take any $A, B \in \mathbf{P}(L)$; we write $A \preceq B$ iff $\forall a \in A, \forall b \in B$: $a \land b \in A, a \lor b \in B$.

Proposition 4.4 For all $A, B \in \mathbf{P}(L)$ we have: $A \lesssim B \Rightarrow A \leq B$.

Proof. Choose any $a \in A$ and any $b \in B$. Then $a \wedge b \in A$ and also $a \wedge b \leq b$. Similarly, $a \vee b \in B$ and also $a \leq a \vee b$.

Remark. The converse is not necessarily true. Consider the lattice of Figure 2 with $A = \{a_1, a_2\}$ and $B = \{b_1, b_2\}$. Here for all $a \in A$ exists some $b \in B$ such that $a \leq b$, and for all $b \in B$ exists some $a \in A$ such that $a \leq b$. Hence $A \leq B$. However, $a_2 \wedge b_1 = b_1 \in B$, so $A \npreceq B$.

Figure 2

Proposition 4.5 For all $A, B \in \mathbf{P}(L)$ we have: $A \subseteq B \Rightarrow A \leq B$.

Proof. This is obvious.

Remark. The converse is not necessarily true. Consider the lattice of of integers, with the natural order. Take $A = \{..., -1, 1, 3, ...\}$ and $B = \{..., 0, 2, 4, ...\}$; clearly $A \leq B$ but $A \not\sqsubseteq B$.

Remark. The relations \leq , \lesssim , \sqsubseteq defined above, generally are *not* order relations on $\mathbf{P}(L)$. We now explore situations where each of the above is an order relationship. This generally happens if we restrict ourselves to a subset of $\mathbf{P}(L)$.

Proposition 4.6 If **S** is a collection of intervals of (L, \vee, \wedge) , then \preceq , \lesssim , \sqsubseteq are orders on **S**.

Proof. (i) Let us first show that \leq is an order on **S**.

- (i.1) Obviously, for all $A \in \mathbf{S}$ we have $A \leq A$.
- (i.2) Choose any $A = [a_1, a_2]$, $B = [b_1, b_2] \in \mathbf{S}$ such that $A \leq B$ and $B \leq A$. From $A \leq B$ we have that $\exists b_3 \in B$ such that $a_2 \leq b_3 \leq b_2$ and $\exists a_3 \in A$ such that $a_1 \leq a_3 \leq b_1$. From $B \leq A$ we have that $\exists b_4 \in B$ such that $b_1 \leq b_4 \leq a_1$ and $\exists a_4 \in A$ such that $b_2 \leq a_4 \leq a_2$. From these follows that $a_1 \leq b_1 \leq a_1 \Rightarrow a_1 = b_1$ and $b_2 \leq a_2 \leq b_2 \Rightarrow a_2 = b_2$; hence A = B.

(i.3) Choose any $A = [a_1, a_2], B = [b_1, b_2], C = [c_1, c_2] \in \mathbf{S}$ such that $A \leq B$ and $B \leq C$. Now we have $a_1 \leq b_1$ and $b_1 \leq c_1$, so $a_1 \leq c_1$; and $a_2 \leq b_2$ and $b_2 \leq c_2$, so $a_2 \leq c_2$. This means that: for all $a \in A$ we have $a \leq a_2 \leq c_2 \in C$; and for all $c \in C$ we have $A \ni a_1 \leq c_1 \leq c \in C$. Hence $A \leq C$.

From (i.1), (i.2), (i.3) follows that \leq is an order on **S**.

(ii) Next we show that \sqsubseteq is an order on **S**. For this it suffices to show that: when **S** is a class of intervals we have $A \subseteq B \Leftrightarrow A \sqsubseteq B$. Obviously, we have $A \sqsubseteq B \Rightarrow A \preceq B$. To show the converse, recall that $[a_1, a_2] = A \preceq B$ $= [b_1, b_2] \Rightarrow (a_1 \leq b_1 \text{ and } a_2 \leq b_2)$. From this follows immediately that: $\forall b \in B$ we have $a_1 \leq b_1 \leq b$; and $\forall a \in A$ we have $a \leq a_2 \leq b_2$. Hence $A \sqsubseteq B$. In short, we have shown that \preceq and \sqsubseteq are equivalent on **S** and, since \preceq is an order, so is \sqsubseteq .

From (ii.1), (ii.2), (ii.3) follows that \sqsubseteq is an order on **S**.

- (iii) Last we show that \lesssim is an order on **S**.
- (iii.1) Choose any $A = [a_1, a_2] \in \mathbf{S}$ and any $x, y \in [a_1, a_2]$. I.e.

$$\begin{vmatrix} a_1 \le x \le a_2 \\ a_1 \le y \le a_2 \end{vmatrix} \Rightarrow a_1 \le \left\{ \begin{array}{c} x \lor y \\ x \land y \end{array} \right\} \le a_2.$$

Hence $x \land y, x \lor y \in A$ and so $A \lesssim A$.

(iii.2) Choose any $A = [a_1, a_2], B = [b_1, b_2] \in \mathbf{S}$ such that $A \lesssim B$ and $B \lesssim A$. Then we have $a_1 \wedge b_1 \in A$ and $a_1 \wedge b_1 \in B$. But then $a_1 = a_1 \wedge b_1 = b_1$. Similarly $a_2 = a_2 \vee b_2 = b_2$ and so A = B.

(iii.3) Choose any $A = [a_1, a_2]$, $B = [b_1, b_2]$, $C = [c_1, c_2] \in \mathbf{S}$ such that $A \preceq B$ and $B \preceq C$. Now we have $a_1 \wedge b_1 \in A = [a_1, a_2]$ and so $a_1 \wedge b_1 = a_1 \Rightarrow a_1 \leq b_1$; similarly $b_1 \wedge c_1 \in B \Rightarrow b_1 \leq c_1$; and so we get that $a_1 \leq c_1$. Similarly we get $a_2 \leq c_2$. Now choose any $a \in A$ and any $c \in C$; then we have

$$\begin{vmatrix} a_1 \le a \le a_2 \\ c_1 \le c \le c_2 \end{vmatrix} \Rightarrow \begin{cases} a_1 = a_1 \land c_1 \le a \land c \le a_2 \land c_2 \le a_2 \\ c_1 \le a_1 \lor c_1 \le a \lor c \le a_2 \lor c_2 = c_2 \end{cases} \Rightarrow \begin{cases} a \land c \in A \\ a \lor c \in C \end{cases} .$$

Hence $A \preceq C$.

From (iii.1), (iii.2), (iii.3) follows that \lesssim is an order on **S** and the proof of the proposition is complete. \blacksquare

Proposition 4.7 If **S** is a collection of convex sublattices of (L, \vee, \wedge) , then \preceq is an order on **S**.

Proof. (i) Choose any $A \in \mathbf{S}$. Obviously, for all $x, y \in A$ we have $x \wedge y \in A$ and $x \vee y \in A$. Hence $A \lesssim A$.

(ii) Choose any $A, B \in \mathbf{S}$ such that $A \preceq B$ and $B \preceq A$; choose any $a \in A$, $b \in B$. Then, $a \land b \in A$ but also $a \land b \in B$; similarly, $a \lor b \in A$ but also $a \lor b \in B$. From:

$$a \land b, a \lor b \in B, \quad a \land b \le a \le a \lor b$$

and convexity, we obtain $a \in B$. Hence $A \subseteq B$. But similarly we get $B \subseteq A$ and so A = B.

- (iii) Choose any $A, B, C \in \mathbf{S}$ such that $A \preceq B$ and $B \preceq C$. Choose any $a \in A, b \in B, c \in C$. Then $a \lor b \in B$ and so $a \lor b \lor c \in C$. Then $a \lor c \in [c, a \lor b \lor c] \subseteq C$. Similarly, $b \land c \in B$ and so $a \land b \land c \in A$. Then $a \land c \in [a \land b \land c, a] \subseteq A$. Hence $A \preceq C$.
- From (i), (ii), (iii) follows that \lesssim is an order on **S** and the proof of the proposition is complete \blacksquare

Corollary 4.8 (i) If **S** is a collection of ideals of (L, \vee, \wedge) , then \lesssim is an order on **S**.

- (ii) If **S** is a collection of filters of (L, \vee, \wedge) , then \lesssim is an order on **S**.
- **Proof.** (i) This follows from the fact that every ideal is a convex sublattice and from Proposition 4.7.
- (ii) This follows from the fact that every filter is a convex sublattice and from Proposition 4.7. \blacksquare

From Propositions 4.6 and 4.7 one infers the following propositions.

Proposition 4.9 *Let* (L, \vee, \wedge) *be distributive. Then:*

- (i) if P is an interval, then \preceq , \lesssim , \sqsubseteq are orders on $\{a \overset{P}{\vee} b\}_{a,b \in L}$;
- (ii) if Q is an interval, then \preceq , \lesssim , \sqsubseteq are orders on $\{a \wedge^Q b\}_{a,b \in L}$.

Proof. (i) follows immediately from Propositions 3.6 and 4.6; (ii) is proved dually. \blacksquare

Proposition 4.10 *Let* (L, \vee, \wedge) *be distributive. Then:*

- (i) if P is an ideal, then \lesssim is an order on $\{a \overset{P}{\vee} b\}_{a,b \in L}$;
- (ii) if Q is a filter, then \lesssim is an order on $\{a \wedge b\}_{a,b \in L}$.

Proof. (i) follows immediately from Propositions 3.5 and 4.7; (ii) is proved dually. \blacksquare

4.2 Properties of \leq

Proposition 4.11 For all $a, b \in L$ we have: (i) $P \preceq a \overset{P}{\vee} b$, (ii) $a \overset{Q}{\wedge} b \preceq Q$.

Proof. Take any $p \in P$; there exists some $x = a \lor b \lor p \in a \lor b$ and we obviously have $p \le x$. Take any $x \in a \lor b$; there exists some $p \in P$ such that $x = a \lor b \lor p \in a \lor b$ and we obviously have $p \le x$. (ii) is proved dually.

Proposition 4.12 (i) If $A, B \in \mathbf{P}(L)$ have minimum elements, then: $A \leq B \Rightarrow \min(A) \leq \min(B)$.

(ii) If $A, B \in \mathbf{P}(L)$ have maximum elements and $A \leq B$, then $\max(A) \leq \max(B)$.

Proof. (i) Since $\underline{b} = \min(B) \in B$, then exists some $a \in A$ such that $a \leq \underline{b}$; also $\underline{a} = \min(A) \leq a$; hence $\underline{a} \leq \underline{b}$. (ii) is proved dually.

Proposition 4.13 For all $a, b \in L$ the following conditions are equivalent. (i) $a \leq b$.

- (ii) For all $c \in L$ we have: $a \lor c \preceq b \lor c$
- (iii) For all $c \in L$ we have: $a \wedge c \leq b \wedge c$.

Proof. We will show (i) \Rightarrow (ii), (i) \Rightarrow (iii), (ii) \Rightarrow (i), (iii) \Rightarrow (i)

(i) \Rightarrow (ii) If $x \in a \lor c$ then exists some $p_1 \in P$ such that $x = a \lor c \lor p_1 \le b \lor c \lor p_1 = y \in b \lor c$. Similarly, if $z \in b \lor c$ then exists some $p_2 \in P$ such that $z = b \lor c \lor p_2 \ge a \lor c \lor p_2 = w \in a \lor c$. Hence $a \lor c \le b \lor c$.

(i)⇒(iii) It is proved dually to the previous.

 $\underbrace{(\mathrm{ii}) \Rightarrow (\mathrm{i})}_{P} \text{ Set } c = b. \text{ Then } a \overset{P}{\vee} b \preceq b \overset{P}{\vee} b. \text{ From Proposition 4.12 we get } a \vee b \\ = \min(a \vee b) \leq \min(b \vee b) = b \vee b = b. \text{ Hence } a \vee b \leq b \ \Rightarrow b = a \vee b \Rightarrow a \leq b. \\ (\mathrm{iii}) \Rightarrow (\mathrm{i}) \text{ It is proved dually to the previous.} \quad \blacksquare$

Remark. Note that in general $a \overset{P}{\lor} c$ and $b \overset{P}{\lor} c$ will *not* be intervals, hence it is *not* necessary that $a \overset{P}{\lor} c \preceq b \overset{P}{\lor} c$ denotes an order relationship.

4.3 Properties of \sqsubseteq

Proposition 4.14 (i) If (L, \vee, \wedge) is distributive and P is an interval, then for all $a, b \in L$ we have: $P \sqsubseteq a \lor b$.

- (ii) If (L, \vee, \wedge) is distributive and Q is an interval, then for all $a, b \in L$ we have: $a \wedge b \sqsubseteq Q$.
- **Proof.** (i) In the proof of Proposition 4.6 we have seen that, for A, B intervals, we have $A \sqsubseteq B \Leftrightarrow A \preceq B$. Also, from Proposition 3.6 we know that when P is an interval, $a \lor b$ is also an interval. So $P \sqsubseteq a \lor b \Leftrightarrow P \preceq a \lor b$, which is true by Proposition 4.11.
 - (ii) is proved dually. ■

Proposition 4.15 (i) If $A, B \in \mathbf{P}(L)$ have minimum elements, then: $A \subseteq B \Rightarrow \min(A) \leq \min(B)$,

- (ii) If $A, B \in \mathbf{P}(L)$ have maximum elements, then: $A \sqsubseteq B \Rightarrow \max(A) \le \max(B)$.
- **Proof.** (i) There exists some \underline{a} such that for all $b \in B$ we have $\underline{a} \leq b$. Also, $\min(A) \leq \underline{a}$. Hence, for all $b \in B$ we have $\min(A) \leq b$; since $\min(B) \in B$, we then get $\min(A) \leq \min(B)$; (ii) is proved dually.

Proposition 4.16 Assume (L, \vee, \wedge) is distributive and P, Q are intervals. Then the following conditions are equivalent.

- (i) $a \leq b$.
- (ii) For all $c \in L$ we have: $a \overset{P}{\vee} c \sqsubseteq b \overset{P}{\vee} c$.
- (iii) For all $c \in L$ we have: $a \wedge c \sqsubseteq b \wedge c$.

Proof. We will show (i) \Rightarrow (ii), (i) \Rightarrow (iii), (ii) \Rightarrow (i), (iii) \Rightarrow (i)

- $\underline{\text{(i)}\Rightarrow\text{(ii)}}$ This is obvious if we use the fact that for A,B intervals we have $A\sqsubseteq B\Leftrightarrow A\preceq B$ and then use Proposition 4.13.
 - (i) \Rightarrow (iii) It is proved dually to the previous.
- $\underbrace{\text{(ii)} \Rightarrow \text{(i)}}_{P} \text{ Set } c = b. \text{ Then } a \overset{P}{\vee} b \preceq b \overset{P}{\vee} b. \text{ From Proposition 4.15 we get } a \vee b \\ = \min(a \overset{P}{\vee} b) \leq \min(b \overset{P}{\vee} b) = b \vee b = b. \text{ Hence } a \leq a \vee b = b.$
 - (iii)⇒(i) It is proved dually to the previous. ■

Remark. In the above proposition note that, since (L, \vee, \wedge) has been assumed distributive and P, Q have been assumed intervals, $a \vee c$ and $b \vee c$ will also be intervals (by Proposition 3.6). Hence $a \vee c \sqsubseteq b \vee c$ will be an order relationship.

4.4 Properties of \lesssim

Proposition 4.17 (i) If P is an ideal, then for all $a, b \in L$ we have: $P \preceq a \lor b$.

- (ii) If Q is a filter, then for all $a, b \in L$ we have: $a \stackrel{Q}{\wedge} b \preceq Q$.
- **Proof.** (i) Take $x \in a \ \lor b$, i.e. $x = a \lor b \lor p_1$, for some $p_1 \in P$. Take any $p \in P$. Then $x \lor p = a \lor b \lor (p_1 \lor p)$. Since $p_1 \lor p \in P$, it follows that $x \lor p \in a \ \lor b$. On the other hand, $x \land p = (a \lor b \lor p_1) \land p \le p$. Since $p \in P$, it follows that $x \land p \in P$. Hence $P \preceq a \ \lor b$.
 - (ii) is proved dually to (i).

Proposition 4.18 (i) If $A, B \in \mathbf{P}(L)$ have minimum elements, then: $A \preceq B \Rightarrow \min(A) \leq \min(B)$.

- (ii) If $A, B \in \mathbf{P}(L)$ have maximum elements, then: $A \lesssim B \Rightarrow \max(A) \leq \max(B)$.
- **Proof.** (i) Set $\underline{a} = \min(A)$, $\underline{b} = \min(B)$. Now $A \preceq B \Rightarrow c = \underline{a} \land \underline{b} \in A$. But, since $\underline{a} = \min(A)$ it follows that $\underline{a} \leq c = \underline{a} \land \underline{b} \leq \underline{a}$. In short, $\underline{a} = \underline{a} \land \underline{b} \Rightarrow \underline{a} \leq \underline{b}$ and the proof of (i) is complete; (ii) is proved dually. \blacksquare

Proposition 4.19 . The following are true.

- (i) Assume (L, \vee, \wedge) is distributive, P is an ideal and $a, b \in L$ satisfy $a \leq b$; then for all $c \in L$ we have: $a \overset{P}{\vee} c \lesssim b \overset{P}{\vee} c$;
- (ii) Assume (L, \vee, \wedge) is distributive, Q is a filter and $a, b \in L$ satisfy $a \leq b$; then for all $c \in L$ we have: $a \stackrel{Q}{\wedge} c \stackrel{Q}{\sim} b \stackrel{Q}{\wedge} c$.
- (iii) Assume $a, b \in L$ are such that for all $c \in L$ we have $a \overset{P}{\lor} c \lesssim b \overset{P}{\lor} c$; then $a \leq b$.
- (iv) Assume $a, b \in L$ are such that for all $c \in L$ we have $a \wedge c \preceq b \wedge c$; then $a \leq b$.
- **Proof.** (i) Take any $x \in a \lor c$, and any $y \in b \lor c$; i.e. $x = a \lor c \lor p_1$, $p_1 \in P$ and $y = b \lor c \lor p_2$, $p_2 \in P$. Now we have $x \lor y = a \lor c \lor p_1 \lor b \lor c \lor p_2 = (a \lor b) \lor c \lor (p_1 \lor p_2) = b \lor c \lor (p_1 \lor p_2) \in b \lor c$. Also, $x \land y = (a \lor c \lor p_1) \land (b \lor c \lor p_2) = ((a \lor p_1) \land (b \lor p_2)) \lor c = ((a \land b) \lor (p_1 \land b) \lor (a \land p_2) \lor (p_1 \land p_2)) \lor c = a \lor (p_1 \land b) \lor (p_2 \land a) \lor (p_1 \land p_2) \lor c = a \lor (p_1 \land b) \lor (p_1 \land p_2) \lor c = a \lor c \lor p$,

where $p = (p_1 \land b) \lor (p_1 \land p_2) \in P$. Hence $x \land y = a \lor c \lor p \in a \lor c$. In short we have shown $a \lor c \lesssim b \lor c$; (ii) is proved dually.

(iii) From Proposition 4.4 we get $a \overset{P}{\vee} c \preceq b \overset{P}{\vee} c \Rightarrow a \overset{P}{\vee} c \preceq b \overset{P}{\vee} c$. Hence, for all $c \in L$ we have $a \overset{P}{\vee} c \preceq b \overset{P}{\vee} c$, which by Proposition 4.13 implies $a \leq b$; (iv) is proved dually. \blacksquare

Corollary 4.20 Assume (L, \vee, \wedge) is distributive, P is an ideal and Q is a filter. Then the following conditions are equivalent.

- (i) $a \leq b$.
- (ii) For all $c \in L$ we have: $a \overset{P}{\vee} c \lesssim b \overset{P}{\vee} c$.
- (iii) For all $c \in L$ we have: $a \wedge c \preceq b \wedge c$.

Proof. Follows immediately from Proposition 4.19.

Remark. Note that in the above proposition (L, \vee, \wedge) has been assumed distributive, P has been assumed an ideal and Q has been assumed a filter. Hence, by Proposition 4.10 we have that \lesssim is an order on both $\{a \vee b\}_{a,b \in L}$ and $\{a \wedge b\}_{a,b \in L}$. Hence both $a \vee c \lesssim b \vee c$ and $a \wedge c \lesssim b \wedge c$ are order relationships.

References

- [1] L. Koguetsof and Th. Vougiouklis. "Constructions d'hyperanneaux à partir d'anneaux". *Acta Univ. Carolin. Math. Phys.*, vol. 28, pp.9–13, 1987.
- [2] M. Konstantinidou and J. Mittas. "An introduction to the theory of hyperlattices." *Math. Balkanica*, vol. 7, pp.187–193, 1987.
- [3] M. Konstantinidou. "On *P*-hyperlattices and their distributivity." *Rend. Circ. Mat. Palermo*, vol. 42, pp.391–403, 1994.
- [4] M. Konstantinidou. "A representation theorem for *P*-hyperlattices". *Riv. Mat. Pura Appl.*, vol. 18, pp. 63–69, 1996.
- [5] M. Konstantinidou and K. Serafimidis. "Sur les P-supertreillis". In New frontiers in hyperstructures (Molise, 1995), pp.139–148, Ser. New Front. Adv. Math. Ist. Ric. Base, Hadronic Press, Palm Harbor, FL, 1996.

- [6] J. Mittas and M. Konstantinidou, "Sur une nouvelle génération de la notion de treillis. Les supertreillis et certaines de leurs propriétés générales". Ann. Sci. Univ. Blaise Pascal, Ser. Math., vol.25, pp.61-83, 1989.
- [7] K. Serafimidis and M. Konstantinidou. "Some properties and the distributivity of the (P,Q)-superlattice. To appear in *Proc. of 2001 Conference on Applied Differential Geometry, Lie Algebras and General Relativity, Thessaloniki*, 2001.
- [8] S. Spartalis. "Quotients of P- H_V -rings". New frontiers in hyperstructures (Molise, 1995), pp. 167–176, Ser. New Front. Adv. Math. Ist. Ric. Base, Hadronic Press, Palm Harbor, FL, 1996.
- [9] Th. Vougiouklis. "Isomorphisms on *P*-hypergroups and cyclicity". *Ars Combin.*, vol. 29, Ser. A, pp.241–245, 1990.
- [10] Th. Vougiouklis and L. Koguetsof. "P-hypergroupes". Acta Univ. Carolin. Math. Phys., vol.28, pp.15–20, 1987.

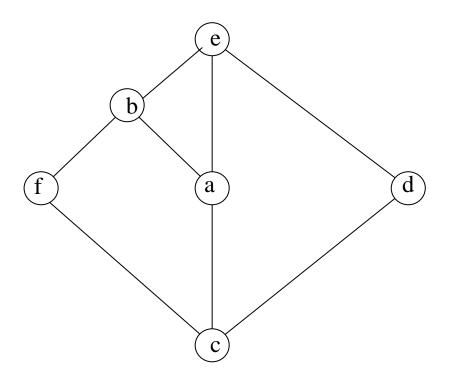


Figure 1

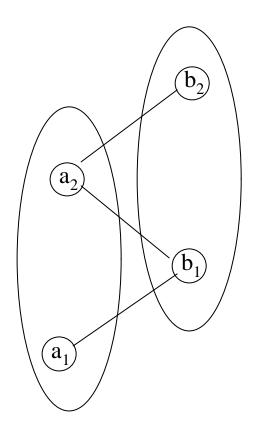


Figure 2