The Structure of the (P, Q)-Superlattice and Order Related Properties

K. Serafimidis, Ath. Kehagias and M. Konstantinidou

Abstract

In a previous work we have introduced the (P, Q)-superlattice, a hyperstructure of the form $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$. Here (L, \vee, \wedge) is a lattice and the hyperoperations $\stackrel{P}{\vee}, \stackrel{Q}{\wedge}$ are defined by $a \stackrel{P}{\vee} b \doteq a \vee b \vee P, a \stackrel{Q}{\wedge} b \doteq a \wedge b \wedge Q$; when the sets $P, Q \subseteq L$ satisfy appropriate conditions $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is a superlattice. In this work we continue the investigation of (P, Q) superlattice and consider the structure of the sets $a \stackrel{P}{\vee} b, a \stackrel{Q}{\wedge} b$ as well assome "order-like" relationships between such sets.

AMS classification number: 06B99.

1 Introduction

The (P, Q)-superlattice has been introduced in [5], and its properties studied in [7]. Starting from a lattice (L, \vee, \wedge), one can define a hyperstructure of the form $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$; if P, Q are chosen appropriately, then $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is a superlattice.

In this paper we examine the structure of the sets $a \stackrel{P}{\vee} b$ and $a{ }^{Q} b$ in connection to the properties of P, Q. Furthermore we consider certain "order-like" relationships between such sets.

2 The (P,Q)-Superlattice and Some of Its Properties

Let us first give the definition of a general superlattice, as given in [6]. In what follows $\mathbf{P}(L)$ will denote the power set of a reference set L.

Definition 2.1 A superlattice is a partially ordered set (L, \leq) with two hyperoperations \curlyvee, , where $\curlyvee: L \times L \rightarrow \mathbf{P}(L)$, $\curlywedge: L \times L \rightarrow \mathbf{P}(L)$, and the following properties are satisfied for all $a, b, c \in L$.

S1 $a \in(a \curlyvee a) \cap(a \curlywedge a)$
S2 $a \curlyvee b=b \curlyvee a, a \curlywedge b=b \curlywedge a$
$\mathbf{S 3}(a \curlyvee b) \curlyvee c=a \curlyvee(b \curlyvee c),(a \curlywedge b) \curlywedge c=a \curlywedge(b \curlywedge c)$
$\mathbf{S 4} a \in[(a \curlyvee b) \curlywedge a] \cap[(a \curlywedge b) \curlyvee a]$
S5a $a \leq b \Rightarrow(b \in a \curlyvee b$ and $a \in a \curlywedge b)$
$\mathbf{S 5 b}(b \in a \curlyvee b$ or $a \in a \curlywedge b) \Rightarrow a \leq b$.
As has been shown in [6], the following definition is equivalent to Definition 2.1,

Definition 2.2 A superlattice is a hyperstructure ($L, \curlyvee, \curlywedge$), where $\curlyvee: L \times$ $L \rightarrow \mathbf{P}(L), \curlywedge: L \times L \rightarrow \mathbf{P}(L)$, and the following properties are satisfied for all $a, b, c \in L$.

S1 $a \in(a \curlyvee a) \cap(a \curlywedge a)$
S2 $a \curlyvee b=b \curlyvee a, a \curlywedge b=b \curlywedge a$
$\mathbf{S 3}(a \curlyvee b) \curlyvee c=a \curlyvee(b \curlyvee c),(a \curlywedge b) \curlywedge c=a \curlywedge(b \curlywedge c)$
$\mathbf{S 4} a \in[(a \curlyvee b) \curlywedge a] \cap[(a \curlywedge b) \curlyvee a]$
S6 $b \in a \curlyvee b \Leftrightarrow a \in a \curlywedge b$
$\mathbf{S 7} a, b \in a \curlyvee b \Rightarrow a=b$
$\mathbf{S 8} b \in a \curlyvee b$ et $c \in b \curlyvee c \Rightarrow c \in a \curlyvee c$.
Definition 2.3 A superlattice ($L, \curlyvee, \curlywedge$) will be called proper iff there exist pairs $(a, b),(c, d) \in L \times L$, such that $\operatorname{card}(a \curlyvee b) \geq 2$ and $\operatorname{card}(c \curlywedge d) \geq 2$.

Definition 2.4 A superlattice $(L, \curlyvee, \curlywedge)$ will be called strictly strong iff: (a) the corresponding ordered set (L, \leq) is a lattice with sup operation \vee and \inf operation \wedge and (b) for all $a, b \in L$ we have: $a \vee b \in a \curlyvee b$ and $a \wedge b \in a \curlywedge b$.

Finally, let us mention the manner in which a hyperlattice and a dual hyperlattice ${ }^{1}$ can be obtained from a superlattice.

Proposition 2.5 Suppose ($L, \curlyvee, \curlywedge$) is a strictly strong superlattice with corresponding order \leq and that (L, \leq) is a lattice with sup operation denoted by \vee and \inf operation denoted by \wedge. Then: (i) (L, \curlyvee, \wedge) is a hyperlattice; (ii) (L, \vee, \curlywedge) is a dual hyperlattice.

Proof. (i) Suppose that $(L, \curlyvee, \curlywedge)$ is a superlattice; then $\mathrm{S} 1-\mathrm{S} 8$ hold. Now, the hyperlattice axioms $\mathrm{H} 1-\mathrm{H} 3$ [2] are identical with the superlattice axioms S1-S3. Also, if $(L, \curlyvee, \curlywedge)$ is a strictly strong superlattice then $a \wedge b \in$ $a \curlywedge b$ and $a \vee b \in a \curlyvee b$. Thus

$$
a=(a \wedge b) \vee a \in(a \wedge b) \curlyvee a \text { and } a=(a \vee b) \wedge a \in(a \curlyvee b) \wedge a
$$

which is the hyperlattice axiom H 4 (see [2]). Finally, recall that S 5 is

$$
(a \in a \curlyvee b \text { or } b \in a \curlywedge b) \Rightarrow b \leq a .
$$

and hence: $a \in a \curlyvee b \Rightarrow b \leq a \Rightarrow b=b \wedge a$, which is hyperlattice axiom H 5 . In short, $(\mathrm{S} 1-\mathrm{S} 8) \Rightarrow(\mathrm{H} 1-\mathrm{H} 5)$ and so (L, \curlyvee, \wedge) is a hyperlattice.
(ii) is proved dually.

We now turn to the study of the (P, Q)-superlattice, which has been introduced in [5]. It is a special kind of superlattice, which can be considered as a generalization of either the P-hyperlattice [3, 4] or the dual Q-hyperlattice. A (P, Q)-superlattice is constructed on a lattice (L, \vee, \wedge) in a manner analogous to the construction of P-hypergroups [$1,9,10$] and P-hyperrings [8].

In what follows, (L, \vee, \wedge) will always denote a lattice (with $L \neq \emptyset$) and \leq will denote the order of (L, \vee, \wedge). If L possesses a minimum (respectively maximum) element, this will be denoted by 0 (respectively 1).

Given a lattice (L, \vee, \wedge) let us select two sets $P, Q \in \mathbf{P}(L)$ and define the following hyperoperations.

Definition 2.6 For all $a, b \in L$ we define $a \stackrel{P}{\vee} b \doteq a \vee b \vee P=\{a \vee b \vee p$: $p \in P\}$.

Definition 2.7 For all $a, b \in L$ we define $a{ }_{\wedge}^{Q} b \doteq a \wedge b \wedge Q=\{a \wedge b \wedge q$: $q \in Q\}$.

[^0]Remark. A $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ structure (with arbitrary choice of P, Q) is not necessarily a superlattice [7].
The necessary and sufficient conditions on P, Q for $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ to be a superlattice are easily stated in terms of the following two collections of sets.

Definition 2.8 $\mathbf{A}(L) \doteq\{A \in \mathbf{P}(L): \forall x \in L \quad \exists a \in A$ such that $a \leq x\}$.
Definition 2.9 $\mathbf{B}(L) \doteq\{B \in \mathbf{P}(L): \forall y \in L \quad \exists b \in B$ such that $y \leq b\}$.
It is clear that $L \in \mathbf{A}(L) \cap \mathbf{B}(L)$. Also, clearly, if (L, \vee, \wedge) has a 0 , then $P \in \mathbf{A}(L) \Leftrightarrow 0 \in P$; if (L, \vee, \wedge) has a 1 , then $Q \in \mathbf{B}(L) \Leftrightarrow 1 \in Q$. Furthermore, we have the following:

$$
\begin{aligned}
& (P \in \mathbf{A}(L) \text { and } P \text { is an interval }) \\
& (Q \in \mathbf{B}(L) \text { and } Q \text { is an interval }) \Rightarrow L \text { has } 1 .
\end{aligned}
$$

The following proposition yields a necessary and sufficient condition for $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ to be a superlattice.

Proposition $2.10(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is a superlattice $\Leftrightarrow(P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$.
Proof. The proof appears in [5].
Remark. Given a lattice (L, \vee, \wedge) and $P \in \mathbf{A}(L),, Q \in \mathbf{B}(L)$ we construct the associated superlattice $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$. Now, the hyperoperations $\stackrel{P}{\vee}, \stackrel{Q}{\wedge}$ induce an order \leqslant on L; it is easy to see that \leqslant is identical with the \leq order of the original (L, \vee, \wedge) lattice.
Remark. In the sequel we will assume (unless explicitly stated otherwise) that $(P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$; hence $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ will be a superlattice.

Proposition 2.11 For all $(P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$ and all $a, b \in L$ we have: (i) $a \vee b=\min (a \stackrel{P}{\vee} b)$, (ii) $a \wedge b=\max (a \stackrel{Q}{\wedge} b)$.

Proof. See [7].
Remark. It follows that for all $(P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$ we have that $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is a strictly strong superlattice.

Let us now introduce the concept of a sub-superlattice of a (P, Q) superlattice.

Definition 2.12 Let $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ be a (P, Q)-superlattice and $S \in \mathbf{P}(L)$. We say that $(S, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is a sub-superlatice of $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ iff $\forall a, b \in S$ we have $a \stackrel{P}{\vee} b \subseteq S, a \stackrel{Q}{\wedge} b \subseteq S$.

The next proposition gives necessary and sufficient condition for a subset of L to be a sub-superlattice of $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$.

Proposition 2.13 Let (L, \vee, \wedge) be a lattice and $(P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$ (hence $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is (P, Q)-superlattice). Let S be such that $P \cup Q \subseteq S \subseteq L$. Then
$(S, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is subsuperlattice of $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge}) \Leftrightarrow(S, \vee, \wedge)$ is sublattice of (L, \vee, \wedge).
Proof. (i) Assume that $(S, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is a sub-superlattice of $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$. Choose any $a, b \in S$. Then $a \vee b \in a \stackrel{P}{\vee} b \subseteq S$; similarly we show that $a \wedge b \in S$ and so we conclude that S is a sublattice.
(ii) Assume that (S, \vee, \wedge) is a sublattice of (L, \vee, \wedge). Then for all $a, b \in S$ we have $a \vee b \in S$; since also $P \subseteq S$, we have for all $a, b \in S$ and for all $p \in P$ that $a \vee b \vee p \in S$. Then we have for all $a, b \in S: \cup_{p \in P} a \vee b \vee p \subseteq S$, which implies that for all $a, b \in S: a \stackrel{P}{\vee} b \subseteq S$. Similarly we prove that for all $a, b \in S: a \stackrel{Q}{\wedge} b \subseteq S$. Hence we conclude that $(S, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is a sub-superlattice of $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$.

Proposition 2.14 For all $a, b \in L$ we have: (i) $a \stackrel{L}{\vee} b=\{x: a \vee b \leq x\}$, (ii) $a \stackrel{L}{\wedge} b=\{x: x \leq a \wedge b\}$.

Proof. (i) has been proved in [3]; (ii) can be proved dually.
Remark. Given $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ with minimum element 0 and maximum element 1, we have $0 \stackrel{P}{\vee} 0=P, 1 \stackrel{Q}{\wedge} 1=Q$.

Proposition 2.15 For all $(P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$ we have: $P \vee Q \in \mathbf{B}(L)$ and $P \wedge Q \in \mathbf{A}(L)$.

Proof. For every $a \in L$ there is some $q \in Q$ such that $a \leq q$. But $Q \subseteq P \vee Q \Rightarrow q \in P \vee Q$. In short, for every $a \in L$ there is some $q \in P \vee Q$ such that $a \leq q$ and so $P \vee Q \in \mathbf{B}(L) ; P \wedge Q \in \mathbf{A}(L)$ is proved dually.

3 The Structure of $a \stackrel{P}{\vee} b$ and $a \stackrel{Q}{\wedge} b$

In this section we examine the structure of $a \stackrel{P}{\vee} b$ and $a{ }_{\wedge}^{Q} b$ under various conditions on P and Q. For the rest of the paper we always assume that $(P, Q) \in \mathbf{A}(L) \times \mathbf{B}(L)$, unless explicitly stated otherwise.

Proposition 3.1 For all $a, b \in L$ we have: $x \in a \stackrel{P}{\vee} b, y \in a \stackrel{Q}{\wedge} b \Rightarrow y \leq x$.
Proof. $x \in a \stackrel{P}{\vee} b \Rightarrow x=a \vee b \vee p ; y \in a{ }^{Q} b \Rightarrow y=a \wedge b \wedge q$ (for approriate $p \in P, q \in Q)$. Obviously $y=a \wedge b \wedge q \leq a \vee b \vee p=x$.

Proposition 3.2 For all $a, b \in L$ we have: $(a \stackrel{P}{\vee} b) \cap(a \stackrel{Q}{\wedge} b) \neq \emptyset \Rightarrow a=b$.
Proof. Suppose there exists $z \in(a \stackrel{P}{\vee} b) \cap(a \stackrel{Q}{\wedge} b)$. Then exists $p \in P$, $q \in Q$ such that $z=a \vee b \vee p=a \wedge b \wedge q$. Then we have

$$
z=a \wedge b \wedge q \leq a \wedge b \leq a \vee b \leq a \vee b \vee p=z
$$

from which follows immediately that $a=b$.
Proposition 3.3 (i) If (L, \vee, \wedge) is distributive, then:
$(P$ is a sublattice $) \Rightarrow(\forall a, b \in L \quad a \stackrel{P}{\vee} b$ is a sublattice $)$.
(ii) If (L, \vee, \wedge) is distributive, then:
$(Q$ is a sublattice $) \Rightarrow(\forall a, b \in L \quad a \stackrel{Q}{\wedge} b$ is a sublattice $)$.
(iii) If (L, \vee, \wedge) has a minimum element 0 , then:

$$
(\forall a, b \in L \quad a \stackrel{P}{\vee} b \text { is a sublattice }) \Rightarrow(P \text { is a sublattice }) .
$$

(iv) If (L, \vee, \wedge) has a maximum element 1, then:

$$
(\forall a, b \in L \quad a \stackrel{Q}{\wedge} b \text { is a sublattice }) \Rightarrow(Q \text { is a sublattice }) .
$$

Proof. For (i) assume that P is a sublattice of L. Take any $a, b \in L$. For any $x_{1}, x_{2} \in a \stackrel{P}{\vee} b$ there exist $p_{1}, p_{2} \in P$ such that $x_{1}=a \vee b \vee p_{1}$ and $x_{2}=a \vee b \vee p_{2}$. Furthermore, $p_{1} \vee p_{2}=p_{3} \in P, p_{1} \wedge p_{2}=p_{4} \in P$. Hence $x_{1} \vee x_{2}=a \vee b \vee p_{3} \in a \stackrel{P}{\vee} b$ and $x_{1} \wedge x_{2}=\left(a \vee b \vee p_{1}\right) \wedge\left(a \vee b \vee p_{2}\right)=$ $(a \vee b) \vee\left(p_{1} \wedge p_{2}\right)=(a \vee b) \vee p_{4} \in a \stackrel{P}{\vee} b$. Part (ii) is proved duallly to (i). Part (iii) is obvious, since $0 \stackrel{P}{\vee} 0=0 \vee P=P$; (iv) is proved dually to (iii).

Proposition 3.4 (i) If (L, \vee, \wedge) is distributive, then: (P is convex sublattice) $\Rightarrow(\forall a, b \in L: a \stackrel{P}{\vee} b$ is convex sublattice $)$.
(ii) If (L, \vee, \wedge) is distributive, then: $(Q$ is convex sublattice $) \Rightarrow(\forall a, b \in$ $L: a \stackrel{Q}{\wedge} b$ is convex sublattice).
(iii) If (L, \vee, \wedge) has minimum element 0 , then: $(\forall a, b \in L: a \stackrel{P}{\vee} b$ is convex sublattice $) \Rightarrow(P$ is convex sublattice $)$.
(iv) If (L, \vee, \wedge) has maximum element 1 , then $\left(\forall a, b \in L: a \wedge{ }^{Q} b\right.$ is convex sublattice $) \Rightarrow(Q$ is convex sublattice $)$.

Proof. For part (i) assume P is a convex sublattice. Choose any $a, b \in L$ and any $x, y \in a \stackrel{P}{\vee} b$; i.e. exist p_{1} and p_{2} such that $x=a \vee b \vee p_{1}$ and $y=a \vee b \vee p_{2}$. By Proposition 3.3, $x \vee y \in a \stackrel{P}{\vee} b$ and $x \wedge y \in a \stackrel{P}{\vee} b$. Now take any $z \in[x \wedge y, x \vee y]=a \vee b \vee\left[p_{1} \wedge p_{2}, p_{1} \vee p_{2}\right] \subseteq a \stackrel{P}{\vee} b$ (the equality holds because of distributivity, and the inclusion because $\left[p_{1} \wedge p_{2}, p_{1} \vee p_{2}\right] \subseteq P$, since P is a convex sublattice). Now part (ii) is proved dually; for (iii) just take $a=b=0$; for (iv) just take $a=b=1$.

Proposition 3.5 (i) If (L, \vee, \wedge) is distributive, then:

$$
(P \text { is an ideal }) \Rightarrow(\forall a, b \in L: a \stackrel{P}{\vee} b \text { is a convex sublattice }) \text {. }
$$

(ii) If (L, \vee, \wedge) is distributive, then:

$$
(Q \text { is a filter }) \Rightarrow\left(\forall a, b \in L: a{ }_{\wedge}^{Q} b \text { is a convex sublattice }\right)
$$

(iii) If (L, \vee, \wedge) has a minimum element 0 , then:

$$
(\forall a, b \in L: a \stackrel{P}{\vee} b \text { is an ideal }) \Rightarrow(P \text { is an ideal }) .
$$

(iv) If (L, \vee, \wedge) has a maximum element 1 , then:

$$
(\forall a, b \in L: a \stackrel{Q}{\wedge} b \text { is a filter }) \Rightarrow Q \text { is a filter })
$$

Proof. Part (i) is proved using the fact that an ideal is a convex sublattice and Proposition 3.4; part (ii) is proved using the fact that a filter is a convex sublattice and Proposition 3.4; part (iii) is proved setting $a=b=0$; part (iv) is proved setting $a=b=1$.
Remark. If (L, \vee, \wedge) is not distributive, then parts (ii), (iv) of Proposition 3.4 do not necessarily hold. Consider the lattice of Figure 1 and take $P=$ $\{c, d\}$. Then $a \stackrel{P}{\vee} c=a \vee P=a \vee\{c, d\}=\{a, e\}$ which is not convex.

Figure 1

Proposition 3.6 (i) If (L, \vee, \wedge) is distributive, then we have: $(P$ is an interval $) \Rightarrow \quad(\forall a, b \in L: a \stackrel{P}{\vee} b$ is an interval $)$;
(ii) If (L, \vee, \wedge) is distributive, then we have: $(Q$ is an interval $) \Rightarrow$ ($\forall a, b \in L: a{ }_{\wedge}^{Q} b$ is an interval).
(iii) If $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ has minimum element 0 , then: $(\forall a, b \in L: a \stackrel{P}{\vee} b$ is an interval $) \Rightarrow(P$ is an interval $)$;
(iv) If $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ has maximum element 1 , then: $(\forall a, b \in L: a \stackrel{Q}{\wedge} b$ is an interval $) \Rightarrow(Q$ is an interval $)$.

Proof. For part (i) assume $P=[x, y]$, then (using distributivity) $a \stackrel{P}{\vee} b$ $=a \vee b \vee[x, y]=[a \vee b \vee x, a \vee b \vee y]=[a \vee b, a \vee b \vee y]$, since $\min (a \stackrel{P}{\vee} b)=$ $a \vee b$. Part (ii) is proved dually; for part (iii) take $a=b=0$; for part (iv) take $a=b=1$.

Proposition 3.7 If (L, \vee, \wedge) is a distributive lattice then:
(i) $(P$ is an interval $) \Rightarrow\left(\forall a, b \in L\right.$ such that $a \leq b:(a \stackrel{P}{\vee} c) \vee\left(b \vee{ }_{\vee} c\right)=$ $b \stackrel{P}{\vee} c)$;
(ii) $(P$ is an interval $) \Rightarrow(\forall a, b \in L$ such that $a \leq b:(a \stackrel{P}{\vee} c) \stackrel{P}{\vee}(b \stackrel{P}{\vee} c)=$ $b \stackrel{P}{\vee} c)$;
(iii) $(Q$ is an interval $) \Rightarrow(\forall a, b \in L$ such that $a \leq b:(a \stackrel{Q}{\wedge} c) \wedge(b \stackrel{Q}{\wedge} c)=$ $a \stackrel{Q}{\wedge} c) ;$
(iv) $(Q$ is an interval $) \Rightarrow(\forall a, b \in L$ such that $a \leq b:(a \stackrel{Q}{\wedge} c) \stackrel{Q}{\wedge}(b \stackrel{Q}{\wedge} c)=$ $a \stackrel{Q}{\wedge} c)$.

Proof. (i) Assume $P=[x, y]$, then, since L is distributive, $a \stackrel{P}{\vee} c=$ $[a \vee c \vee x, a \vee c \vee y]$ and $b \stackrel{P}{\vee} c=[b \vee c \vee x, b \vee c \vee y]$. Again by distributivity, we have

$$
\begin{aligned}
& (a \stackrel{P}{\vee} c) \vee(b \vee c)=[a \vee c \vee x, a \vee c \vee y] \vee[b \vee c \vee x, b \vee c \vee y]=[a \vee b \vee c \vee x, a \vee b \vee c \vee y]= \\
& {[b \vee c \vee x, b \vee c \vee y]=b \vee c \vee[x, y]=b \stackrel{P}{\vee} c}
\end{aligned}
$$

(ii) is proved similarly.
(iii) is proved dually to (i) and (iv) is proved dually to (ii).

The next two propositions give additional information on the structure of $\stackrel{P}{\vee}$ and $\stackrel{Q}{\wedge}$.

Proposition 3.8 If $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is a superlattice, then

$$
(\forall a \in L: a \stackrel{P}{\vee} x=a \stackrel{P}{\vee} a) \Leftrightarrow x \leq a ; \quad(\forall a \in L: a \stackrel{Q}{\wedge} x=a \stackrel{Q}{\wedge} a) \Leftrightarrow a \leq x
$$

Proof. Pick any $a \in L$. Pick some $x \in L$ such that $a \stackrel{P}{\vee} x=a \stackrel{P}{\vee} a \Rightarrow$ $\min (a \stackrel{P}{\vee} x)=\min (a \stackrel{P}{\vee} a) \Rightarrow a \vee x=a \vee a=a \Rightarrow x \leq a$. Conversely, assume
$x \leq a$; then $a \stackrel{P}{\vee} x=\cup_{p \in P} a \vee x \vee p=\cup_{p \in P} a \vee p=\cup_{p \in P} a \vee a \vee p=a \stackrel{P}{\vee} a$. So we have proved the first equivalence; the second equivalence is proved dually.

Proposition $3.9((L, \vee, \wedge)$ is distributive $) \Leftrightarrow$

$$
\left.\left(\text { For all } a, x, y \in L \text { we have: } \begin{array}{l}
a \stackrel{P}{\vee} x=a \stackrel{P}{\vee} y \tag{1}\\
a \stackrel{Q}{\wedge} x=a \stackrel{Q}{\wedge} y
\end{array}\right\} \Rightarrow x=y\right) \text {. }
$$

Proof. See [7].
Remark. Note that if (1) holds for some pair $\left(P_{1}, Q_{1}\right) \in \mathbf{A}(L) \times \mathbf{B}(L)$, then (L, \vee, \wedge) is distributive and so (1) holds for every pair $(P, Q) \in \mathbf{A}(L) \times$ B(L).

Remark. One would expect that the above relations imply that $(L, \stackrel{P}{\vee}, \stackrel{Q}{\wedge})$ is distributive. However, we have shown in [7] that this is not the case.

4 Properties Related to Order

4.1 Some Order-like Relationships

We now introduce the relations $\preceq, \precsim, \sqsubseteq$ between elements of $\mathbf{P}(L)$.
Definition 4.1 Take any $A, B \in \mathbf{P}(L)$; we write $A \preceq B$ iff

$$
\text { (i) } \forall a \in A \quad \exists b_{1} \in B: a \leq b_{1}, \quad \text { (ii) } \forall b \in B \quad \exists a_{1} \in A: a_{1} \leq b \text {. }
$$

Definition 4.2 Take any $A, B \in \mathbf{P}(L)$; we write $A \sqsubseteq B$ iff

$$
\text { (i) } \exists b_{1} \in B: \forall a \in A: a \leq b_{1}, \quad \text { (ii) } \exists a_{1} \in A: \forall b \in B \quad: a_{1} \leq b \text {. }
$$

Definition 4.3 Take any $A, B \in \mathbf{P}(L)$; we write $A \precsim B$ iff $\forall a \in A, \forall b \in B$: $a \wedge b \in A, a \vee b \in B$.

Proposition 4.4 For all $A, B \in \mathbf{P}(L)$ we have: $A \precsim B \Rightarrow A \preceq B$.
Proof. Choose any $a \in A$ and any $b \in B$. Then $a \wedge b \in A$ and also $a \wedge b \leq b$. Similarly, $a \vee b \in B$ and also $a \leq a \vee b$.
Remark. The converse is not necessarily true. Consider the lattice of Figure 2 with $A=\left\{a_{1}, a_{2}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$. Here for all $a \in A$ exists some $b \in B$ such that $a \leq b$, and for all $b \in B$ exists some $a \in A$ such that $a \leq b$. Hence $A \preceq B$. However, $a_{2} \wedge b_{1}=b_{1} \in B$, so $A \npreceq B$.

Figure 2

Proposition 4.5 For all $A, B \in \mathbf{P}(L)$ we have: $A \sqsubseteq B \Rightarrow A \preceq B$.
Proof. This is obvious.
Remark. The converse is not necessarily true. Consider the lattice of of integers, with the natural order. Take $A=\{\ldots,-1,1,3, \ldots\}$ and $B=$ $\{\ldots, 0,2,4, \ldots\}$; clearly $A \preceq B$ but $A \nsubseteq B$.
Remark. The relations $\preceq, ~ \precsim, ~ \sqsubseteq$ defined above, generally are not order relations on $\mathbf{P}(L)$. We now explore situations where each of the above is an order relationship. This generally happens if we restrict ourselves to a subset of $\mathbf{P}(L)$.

Proposition 4.6 If \mathbf{S} is a collection of intervals of (L, \vee, \wedge), then $\preceq, ~ \precsim, ~ \sqsubseteq ~$ are orders on \mathbf{S}.

Proof. (i) Let us first show that \preceq is an order on \mathbf{S}.
(i.1) Obviously, for all $A \in \mathbf{S}$ we have $A \preceq A$.
(i.2) Choose any $A=\left[a_{1}, a_{2}\right], B=\left[b_{1}, b_{2}\right] \in \mathbf{S}$ such that $A \preceq B$ and $B \preceq A$. From $A \preceq B$ we have that $\exists b_{3} \in B$ such that $a_{2} \leq b_{3} \leq b_{2}$ and $\exists a_{3} \in A$ such that $a_{1} \leq a_{3} \leq b_{1}$. From $B \preceq A$ we have that $\exists b_{4} \in B$ such that $b_{1} \leq b_{4} \leq a_{1}$ and $\exists a_{4} \in A$ such that $b_{2} \leq a_{4} \leq a_{2}$. From these follows that $a_{1} \leq b_{1} \leq a_{1} \Rightarrow a_{1}=b_{1}$ and $b_{2} \leq a_{2} \leq b_{2} \Rightarrow a_{2}=b_{2}$; hence $A=B$.
(i.3) Choose any $A=\left[a_{1}, a_{2}\right], B=\left[b_{1}, b_{2}\right], C=\left[c_{1}, c_{2}\right] \in \mathbf{S}$ such that $A \preceq B$ and $B \preceq C$. Now we have $a_{1} \leq b_{1}$ and $b_{1} \leq c_{1}$, so $a_{1} \leq c_{1}$; and $a_{2} \leq b_{2}$ and $b_{2} \leq c_{2}$, so $a_{2} \leq c_{2}$. This means that: for all $a \in A$ we have $a \leq a_{2} \leq c_{2} \in C$; and for all $c \in C$ we have $A \ni a_{1} \leq c_{1} \leq c \in C$. Hence $A \preceq C$.

From (i.1), (i.2), (i.3) follows that \preceq is an order on \mathbf{S}.
(ii) Next we show that \sqsubseteq is an order on \mathbf{S}. For this it suffices to show that: when \mathbf{S} is a class of intervals we have $A \preceq B \Leftrightarrow A \sqsubseteq B$. Obviously, we have $A \sqsubseteq B \Rightarrow A \preceq B$. To show the converse, recall that $\left[a_{1}, a_{2}\right]=A \preceq B$ $=\left[b_{1}, b_{2}\right] \Rightarrow\left(a_{1} \leq b_{1}\right.$ and $\left.a_{2} \leq b_{2}\right)$. From this follows immediately that: $\forall b \in B$ we have $a_{1} \leq b_{1} \leq b$; and $\forall a \in A$ we have $a \leq a_{2} \leq b_{2}$. Hence $A \sqsubseteq B$. In short, we have shown that \preceq and \sqsubseteq are equivalent on \mathbf{S} and, since \preceq is an order, so is \sqsubseteq.

From (ii.1), (ii.2), (ii.3) follows that \sqsubseteq is an order on \mathbf{S}.
(iii) Last we show that \precsim is an order on \mathbf{S}.
(iii.1) Choose any $A=\left[a_{1}, a_{2}\right] \in \mathbf{S}$ and any $x, y \in\left[a_{1}, a_{2}\right]$. I.e.

$$
\left.\begin{array}{l}
a_{1} \leq x \leq a_{2} \\
a_{1} \leq y \leq a_{2}
\end{array}\right\} \Rightarrow a_{1} \leq\left\{\begin{array}{l}
x \vee y \\
x \wedge y
\end{array}\right\} \leq a_{2}
$$

Hence $x \wedge y, x \vee y \in A$ and so $A \precsim A$.
(iii.2) Choose any $A=\left[a_{1}, a_{2}\right], B=\left[b_{1}, b_{2}\right] \in \mathbf{S}$ such that $A \precsim B$ and $B \precsim A$. Then we have $a_{1} \wedge b_{1} \in A$ and $a_{1} \wedge b_{1} \in B$. But then $a_{1}=a_{1} \wedge b_{1}=$ b_{1}. Similarly $a_{2}=a_{2} \vee b_{2}=b_{2}$ and so $A=B$.
(iii.3) Choose any $A=\left[a_{1}, a_{2}\right], B=\left[b_{1}, b_{2}\right], C=\left[c_{1}, c_{2}\right] \in \mathbf{S}$ such that $A \precsim B$ and $B \precsim C$. Now we have $a_{1} \wedge b_{1} \in A=\left[a_{1}, a_{2}\right]$ and so $a_{1} \wedge b_{1}=a_{1}$ $\Rightarrow a_{1} \leq b_{1}$; similarly $b_{1} \wedge c_{1} \in B \Rightarrow b_{1} \leq c_{1}$; and so we get that $a_{1} \leq c_{1}$. Similarly we get $a_{2} \leq c_{2}$. Now choose any $a \in A$ and any $c \in C$; then we have

$$
\left.\begin{array}{l}
a_{1} \leq a \leq a_{2} \\
c_{1} \leq c \leq c_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
a_{1}=a_{1} \wedge c_{1} \leq a \wedge c \leq a_{2} \wedge c_{2} \leq a_{2} \\
c_{1} \leq a_{1} \vee c_{1} \leq a \vee c \leq a_{2} \vee c_{2}=c_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
a \wedge c \in A \\
a \vee c \in C
\end{array}\right.
$$

Hence $A \precsim C$.
From (iii.1), (iii.2), (iii.3) follows that \precsim is an order on \mathbf{S} and the proof of the proposition is complete.

Proposition 4.7 If \mathbf{S} is a collection of convex sublattices of (L, \vee, \wedge), then is an order on \mathbf{S}.

Proof. (i) Choose any $A \in \mathbf{S}$. Obviously, for all $x, y \in A$ we have $x \wedge y \in A$ and $x \vee y \in A$. Hence $A \precsim A$.
(ii) Choose any $A, B \in \mathbf{S}$ such that $A \precsim B$ and $B \precsim A$; choose any $a \in$ $A, b \in B$. Then, $a \wedge b \in A$ but also $a \wedge b \in B$; similarly, $a \vee b \in A$ but also $a \vee b \in B$. From:

$$
a \wedge b, a \vee b \in B, \quad a \wedge b \leq a \leq a \vee b
$$

and convexity, we obtain $a \in B$. Hence $A \subseteq B$. But similarly we get $B \subseteq A$ and so $A=B$.
(iii) Choose any $A, B, C \in \mathbf{S}$ such that $A \precsim B$ and $B \precsim C$. Choose any $a \in A, b \in B, c \in C$. Then $a \vee b \in B$ and so $a \vee b \vee c \in C$. Then $a \vee c \in[c, a \vee b \vee c] \subseteq C$. Similarly, $b \wedge c \in B$ and so $a \wedge b \wedge c \in A$. Then $a \wedge c \in[a \wedge b \wedge c, a] \subseteq A$. Hence $A \precsim C$.

From (i), (ii), (iii) follows that \precsim is an order on \mathbf{S} and the proof of the proposition is complete

Corollary 4.8 (i) If \mathbf{S} is a collection of ideals of (L, \vee, \wedge), then \precsim is an order on \mathbf{S}.
(ii) If \mathbf{S} is a collection of filters of (L, \vee, \wedge), then \precsim is an order on \mathbf{S}.

Proof. (i) This follows from the fact that every ideal is a convex sublattice and from Proposition 4.7.
(ii) This follows from the fact that every filter is a convex sublattice and from Proposition 4.7.

From Propositions 4.6 and 4.7 one infers the following propositions.
Proposition 4.9 Let (L, \vee, \wedge) be distributive. Then:
(i) if P is an interval, then $\preceq, ~ \precsim, ~$ are orders on $\{a \stackrel{P}{\vee} b\}_{a, b \in L}$;
(ii) if Q is an interval, then $\preceq, ~ \precsim, ~ \sqsubseteq$ are orders on $\{a \stackrel{Q}{\wedge} b\}_{a, b \in L}$.

Proof. (i) follows immediately from Propositions 3.6 and 4.6; (ii) is proved dually.

Proposition 4.10 Let (L, \vee, \wedge) be distributive. Then:
(i) if P is an ideal, then \precsim is an order on $\{a \stackrel{P}{\vee} b\}_{a, b \in L}$;
(ii) if Q is a filter, then \precsim is an order on $\{a \stackrel{Q}{\wedge} b\}_{a, b \in L}$.

Proof. (i) follows immediately from Propositions 3.5 and 4.7; (ii) is proved dually.

4.2 Properties of \preceq

Proposition 4.11 For all $a, b \in L$ we have: (i) $P \preceq a \stackrel{P}{\vee} b$, (ii) $a \stackrel{Q}{\wedge} b \preceq Q$.
Proof. Take any $p \in P$; there exists some $x=a \vee b \vee p \in a \stackrel{P}{\vee} b$ and we obviously have $p \leq x$. Take any $x \in a \stackrel{P}{\vee} b$; there exists some $p \in P$ such that $x=a \vee b \vee p \in a \stackrel{P}{\vee} b$ and we obviously have $p \leq x$. (ii) is proved dually.

Proposition 4.12 (i) If $A, B \in \mathbf{P}(L)$ have minimum elements, then: $A \preceq$ $B \Rightarrow \min (A) \leq \min (B)$.
(ii) If $A, B \in \mathbf{P}(L)$ have maximum elements and $A \preceq B$, then $\max (A) \leq$ $\max (B)$.

Proof. (i) Since $\underline{b}=\min (B) \in B$, then exists some $a \in A$ such that $a \leq \underline{b}$; also $\underline{a}=\min (A) \leq a$; hence $\underline{a} \leq \underline{b}$. (ii) is proved dually.

Proposition 4.13 For all $a, b \in L$ the following conditions are equivalent.
(i) $a \leq b$.
(ii) For all $c \in L$ we have: $a \stackrel{P}{\vee} c \preceq b \stackrel{P}{\vee} c$
(iii) For all $c \in L$ we have: $a \stackrel{Q}{\wedge} c \preceq b{ }_{\wedge}^{Q} c$.

Proof. We will show $(\mathrm{i}) \Rightarrow(\mathrm{ii}),(\mathrm{i}) \Rightarrow($ (iii $),(i i) \Rightarrow(\mathrm{i}),(\mathrm{iii}) \Rightarrow(\mathrm{i})$
(i) \Rightarrow (ii) If $x \in a \stackrel{P}{\vee} c$ then exists some $p_{1} \in P$ such that $x=a \vee c \vee p_{1} \leq$ $b \vee c \vee p_{1}=y \in b \stackrel{P}{\vee} c$. Similarly, if $z \in b \stackrel{P}{\vee} c$ then exists some $p_{2} \in P$ such that $z=b \vee c \vee p_{2} \geq a \vee c \vee p_{2}=w \in a \vee{ }^{P}$. Hence $a \vee{ }^{P} c \preceq b \vee{ }_{P} c$.
(i) \Rightarrow (iii) It is proved dually to the previous.
$\frac{(\text { (ii } \Rightarrow \text { (i) }}{P}$ Set $c=b$. Then $a \stackrel{P}{\vee} b \preceq b \stackrel{P}{\vee} b$. From Proposition 4.12 we get $a \vee b$ $=\min (a \stackrel{P}{\vee} b) \leq \min (b \stackrel{P}{\vee} b)=b \vee b=b$. Hence $a \vee b \leq b \Rightarrow b=a \vee b \Rightarrow a \leq b$. (iii) \Rightarrow (i) It is proved dually to the previous.

Remark. Note that in general $a \stackrel{P}{\vee} c$ and $b \stackrel{P}{\vee} c$ will not be intervals, hence it is not necessary that $a \stackrel{P}{\vee} c \preceq b \stackrel{P}{\vee} c$ denotes an order relationship.

4.3 Properties of \sqsubseteq

Proposition 4.14 (i) If (L, \vee, \wedge) is distributive and P is an interval, then for all $a, b \in L$ we have: $P \sqsubseteq a \stackrel{P}{\vee} b$.
(ii) If (L, \vee, \wedge) is distributive and Q is an interval, then for all $a, b \in L$ we have: $a{ }^{Q} \wedge$ Б Q.

Proof. (i) In the proof of Proposition 4.6 we have seen that, for A, B intervals, we have $A \sqsubseteq B \Leftrightarrow A \preceq B$. Also, from Proposition 3.6 we know that when P is an interval, $a \stackrel{P}{\vee} b$ is also an interval. So $P \sqsubseteq a \stackrel{P}{\vee} b \Leftrightarrow P \preceq a \stackrel{P}{\vee} b$, which is true by Proposition 4.11.
(ii) is proved dually.

Proposition 4.15 (i) If $A, B \in \mathbf{P}(L)$ have minimum elements, then: $A \sqsubseteq$ $B \Rightarrow \min (A) \leq \min (B)$,
(ii) If $A, B \in \mathbf{P}(L)$ have maximum elements, then: $A \sqsubseteq B \Rightarrow \max (A) \leq$ $\max (B)$.

Proof. (i) There exists some \underline{a} such that for all $b \in B$ we have $\underline{a} \leq b$. Also, $\min (A) \leq \underline{a}$. Hence, for all $b \in B$ we have $\min (A) \leq b ; \operatorname{since} \min (B) \in$ B, we then get $\min (A) \leq \min (B)$; (ii) is proved dually.

Proposition 4.16 Assume (L, \vee, \wedge) is distributive and P, Q are intervals. Then the following conditions are equivalent.
(i) $a \leq b$.
(ii) For all $c \in L$ we have: $a \stackrel{P}{\vee} c \sqsubseteq b \stackrel{P}{\vee} c$.
(iii) For all $c \in L$ we have: $a \stackrel{Q}{\wedge} c \sqsubseteq b \wedge^{Q} c$.

Proof. We will show (i) \Rightarrow (ii), (i) \Rightarrow (iii), (ii) $\Rightarrow(\mathrm{i}),(\mathrm{iii}) \Rightarrow(\mathrm{i})$
(i) \Rightarrow (ii) This is obvious if we use the fact that for A, B intervals we have $A \sqsubseteq B \Leftrightarrow A \preceq B$ and then use Proposition 4.13.
(i) \Rightarrow (iii) It is proved dually to the previous.
$\frac{(i i) \Rightarrow(\text { i) }}{P}$ Set $c=b$. Then $a \stackrel{P}{\vee} b \preceq b \stackrel{P}{\vee} b$. From Proposition 4.15 we get $a \vee b$

(iii) \Rightarrow (i) It is proved dually to the previous.

Remark. In the above proposition note that, since (L, \vee, \wedge) has been assumed distributive and P, Q have been assumed intervals, $a \stackrel{P}{\vee} c$ and $b \stackrel{P}{\vee} c$ will also be intervals (by Proposition 3.6). Hence $a \stackrel{P}{\vee} c \sqsubseteq b \stackrel{P}{\vee} c$ will be an order relationship.

4.4 Properties of \precsim

Proposition 4.17 (i) If P is an ideal, then for all $a, b \in L$ we have: $P \precsim$ $a \stackrel{P}{\vee} b$.
(ii) If Q is a filter, then for all $a, b \in L$ we have: $a \stackrel{Q}{\wedge} b \precsim Q$.

Proof. (i) Take $x \in a \stackrel{P}{\vee} b$, i.e. $x=a \vee b \vee p_{1}$, for some $p_{1} \in P$. Take any $p \in P$. Then $x \vee p=a \vee b \vee\left(p_{1} \vee p\right)$. Since $p_{1} \vee p \in P$, it follows that $x \vee p \in a \stackrel{P}{\vee} b$. On the other hand, $x \wedge p=\left(a \vee b \vee p_{1}\right) \wedge p \leq p$. Since $p \in P$, it follows that $x \wedge p \in P$. Hence $P \precsim a \stackrel{P}{\vee} b$.
(ii) is proved dually to (i).

Proposition 4.18 (i) If $A, B \in \mathbf{P}(L)$ have minimum elements, then: $A \precsim$ $B \Rightarrow \min (A) \leq \min (B)$.
(ii) If $A, B \in \mathbf{P}(L)$ have maximum elements, then: $A \precsim B \Rightarrow \max (A) \leq$ $\max (B)$.

Proof. (i) Set $\underline{a}=\min (A), \underline{b}=\min (B)$. Now $A \precsim B \Rightarrow c=\underline{a} \wedge \underline{b} \in A$. But, since $\underline{a}=\min (A)$ it follows that $\underline{a} \leq c=\underline{a} \wedge \underline{b} \leq \underline{a}$. In short, $\underline{a}=\underline{a} \wedge \underline{b} \Rightarrow \underline{a} \leq \underline{b}$ and the proof of (i) is complete; (ii) is proved dually.

Proposition 4.19 . The following are true.
(i) Assume (L, \vee, \wedge) is distributive, P is an ideal and $a, b \in L$ satisfy $a \leq b$; then for all $c \in L$ we have: $a \stackrel{P}{\vee} c \precsim b \stackrel{P}{\vee} c$;
(ii) Assume (L, \vee, \wedge) is distributive, Q is a filter and $a, b \in L$ satisfy $a \leq b$; then for all $c \in L$ we have: $a{ }_{\wedge}^{Q} c \precsim b{ }_{\wedge}^{Q} c$.
(iii) Assume $a, b \in L$ are such that for all $c \in L$ we have $a \stackrel{P}{\vee} c \precsim b \stackrel{P}{\vee} c$; then $a \leq b$.
(iv) Assume $a, b \in L$ are such that for all $c \in L$ we have $a{ }^{Q} c \precsim b{ }_{\wedge}^{Q} c$; then $a \leq b$.

Proof. (i) Take any $x \in a \stackrel{P}{\vee} c$, and any $y \in b \stackrel{P}{\vee} c$; i.e. $x=a \vee c \vee p_{1}$, $p_{1} \in P$ and $y=b \vee c \vee p_{2}, p_{2} \in P$. Now we have $x \vee y=a \vee c \vee p_{1} \vee b \vee c \vee p_{2}=$ $(a \vee b) \vee c \vee\left(p_{1} \vee p_{2}\right)=b \vee c \vee\left(p_{1} \vee p_{2}\right) \in b \vee{ }^{P}$. Also, $x \wedge y=\left(a \vee c \vee p_{1}\right) \wedge\left(b \vee c \vee p_{2}\right)$ $=\left(\left(a \vee p_{1}\right) \wedge\left(b \vee p_{2}\right)\right) \vee c=\left((a \wedge b) \vee\left(p_{1} \wedge b\right) \vee\left(a \wedge p_{2}\right) \vee\left(p_{1} \wedge p_{2}\right)\right) \vee c=$ $a \vee\left(p_{1} \wedge b\right) \vee\left(p_{2} \wedge a\right) \vee\left(p_{1} \wedge p_{2}\right) \vee c=a \vee\left(p_{1} \wedge b\right) \vee\left(p_{1} \wedge p_{2}\right) \vee c=a \vee c \vee p$,
where $p=\left(p_{1} \wedge b\right) \vee\left(p_{1} \wedge p_{2}\right) \in P$. Hence $x \wedge y=a \vee c \vee p \in a \stackrel{P}{\vee} c$. In short we have shown $a \stackrel{P}{\vee} c \precsim b \stackrel{P}{\vee} c$; (ii) is proved dually.
(iii) From Proposition 4.4 we get $a \stackrel{P}{\vee} c \precsim b \stackrel{P}{\vee} c \Rightarrow a \stackrel{P}{\vee} c \preceq b \stackrel{P}{\vee} c$. Hence, for all $c \in L$ we have $a \stackrel{P}{V} c \preceq b \stackrel{P}{\vee} c$, which by Proposition 4.13 implies $a \leq b$; (iv) is proved dually.

Corollary 4.20 Assume (L, \vee, \wedge) is distributive, P is an ideal and Q is a filter. Then the following conditions are equivalent.
(i) $a \leq b$.
(ii) For all $c \in L$ we have: $a \stackrel{P}{\vee} c \precsim b \stackrel{P}{\vee} c$.
(iii) For all $c \in L$ we have: $a \stackrel{Q}{\wedge} c \precsim b \stackrel{Q}{\wedge} c$.

Proof. Follows immediately from Proposition 4.19.
Remark. Note that in the above proposition (L, \vee, \wedge) has been assumed distributive, P has been assumed an ideal and Q has been assumed a filter. Hence, by Proposition 4.10 we have that \precsim is an order on both $\{a \stackrel{P}{\vee} b\}_{a, b \in L}$ and $\{a \stackrel{Q}{\wedge} b\}_{a, b \in L}$. Hence both $a \stackrel{P}{\vee} c \precsim b \stackrel{P}{\vee} c$ and $a \stackrel{Q}{\wedge} c \precsim b \stackrel{Q}{\wedge} c$ are order relationships.

References

[1] L. Koguetsof and Th. Vougiouklis. "Constructions d'hyperanneaux à partir d'anneaux". Acta Univ. Carolin. Math. Phys., vol. 28, pp.9-13, 1987.
[2] M. Konstantinidou and J. Mittas. "An introduction to the theory of hyperlattices." Math. Balkanica, vol. 7, pp.187-193, 1987.
[3] M. Konstantinidou. "On P-hyperlattices and their distributivity." Rend. Circ. Mat. Palermo, vol. 42, pp.391-403, 1994.
[4] M. Konstantinidou. "A representation theorem for P-hyperlattices". Riv. Mat. Pura Appl., vol. 18, pp. 63-69, 1996.
[5] M. Konstantinidou and K. Serafimidis. "Sur les P-supertreillis". In New frontiers in hyperstructures (Molise, 1995), pp.139-148, Ser. New Front. Adv. Math. Ist. Ric. Base, Hadronic Press, Palm Harbor, FL, 1996.
[6] J. Mittas and M. Konstantinidou, "Sur une nouvelle génération de la notion de treillis. Les supertreillis et certaines de leurs propriétés générales". Ann. Sci. Univ. Blaise Pascal, Ser. Math., vol.25, pp.61-83, 1989.
[7] K. Serafimidis and M. Konstantinidou. "Some properties and the distributivity of the (P, Q)-superlattice. To appear in Proc. of 2001 Conference on Applied Differential Geometry, Lie Algebras and General Relativity, Thessaloniki, 2001.
[8] S. Spartalis. "Quotients of P - H_{V}-rings". New frontiers in hyperstructures (Molise, 1995), pp. 167-176, Ser. New Front. Adv. Math. Ist. Ric. Base, Hadronic Press, Palm Harbor, FL, 1996.
[9] Th. Vougiouklis. "Isomorphisms on P-hypergroups and cyclicity". Ars Combin., vol. 29, Ser. A, pp.241-245, 1990.
[10] Th. Vougiouklis and L. Koguetsof. "P-hypergroupes". Acta Univ. Carolin. Math. Phys., vol.28, pp.15-20, 1987.

Figure 1

Figure 2

[^0]: ${ }^{1} \mathrm{~A}$ dual hyperlattice can be defined as a hyperstructure (L, \vee, \curlywedge); here \vee is the classical sup operation and λ is a hyperoperation which generalizes the classical \wedge (inf) operation. As the name suggests, it is dual to the hyperlattice (L, \curlyvee, \wedge).

