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Abstract

In this paper we explore the Nakano superlattice (H,t,u), where t,u are the Nakano hyperop-
erations x t y = {z : x ∨ z = y ∨ z = x ∨ y}, x u y = {z : x ∧ z = y ∧ z = x ∧ y}. In particular, we
study the properties of congruences on the Nakano superlattice and the associated quotients. New
hyperoperations are introduced on the quotient and their properties studied.
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1 Introduction

Superlattices have been introduced by Mittas and Konstantinidou [6] as a generalization of lattices.
A superlattice is a partially ordered set (H,≤) equipped with two hyperoperations (i.e. operations
which assign to every pair of elements of H a set of elements of H) satisfying certain properties [6].
An alternative definition of superlattice starts with two hyperoperations on H which satisfy certain
properties; these properties are then used to establish a partial order ≤ on H. In case (H,≤) is a
lattice, the superlattice is called strong.

In [2], Jakubik studies several aspects of the theory of superlattices; in particular he defines con-
gruences on superlattices (henceforth called s-congruences) as a generalization of classical congruences
(henceforth called l-congruences) and studies the properties of the resulting quotients. Jakubik shows
that, in general, the quotient of a superlattice with respect to a s-congruence fails to be a superlattice.
A natural question, posed by Jakubik, is: under what conditions is the quotient of a superlattice also
a superlattice?

In this paper we answer the above question for a specific superlattice, which we will name the Nakano
superlattice. This name is chosen because we define the superlattice in terms of a hyperoperation u
first studied by Nakano [8] and its dual hyperoperation t; we call these Nakano hyperoperations. We
define the Nakano hyperoperations on a lattice (H,≤) assumed to be modular for the remainder of the
paper. In Section 2 we discuss certain properties of the Nakano superlattice (H,t,u) and its quotient
H/R with respect to a s-congruence R; in particular we show that if R is a s-congruence, then one
can define certain hyperoperations g,f on the quotient H/R. In Section 3 we find conditions which
are necessary and sufficient for (H/R, g,f ) to be a superlattice; for example, one such condition is
that R is convex (i.e. its classes are convex sublattices of H). In Section 4 we examine some order
relationships on H/R. In Section 5 we define additional operations and hyperoperations on H/R and,
using convexity of R, establish some of their properties.
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2 Preliminaries

Consider a modular lattice (H,≤), with sup and inf operations denoted by ∨ and ∧ respectively. We
define the Nakano hyperoperations t,u on H.

Definition 2.1 For all x, y ∈ H we define:

x t y
.= {z : z ∨ x = z ∨ y = x ∨ y}; x u y

.= {z : z ∧ x = z ∧ y = x ∧ y}.

Remark. To the best of our knowledge, the u hyperoperation was first introduced by Nakano in [8],
which is an investigation of hyperrings (multirings, in the author’s terminology). Evidently, t is the
dual hyperoperation of u. The t hyperoperation has also been studied in [4, 7] and it plays a central
role in the theory of Boolean hyperrings and Boolean hyperlattices [5].

The hyperstructure (H,t,u) is a superlattice, i.e. t,u satisfy the conditions of the following
proposition (note that in this proposition ≤ is the order of the original modular lattice). We will call
(H,t,u) the Nakano superlattice, since it makes use of the Nakano hyperoperations.

Proposition 2.2 (H,t,u,≤) satisfies the following for all x, y, z ∈ H.

S1 x ∈ (x t x), x ∈ (x u x).

S2 x t y = y t x , x u y = y u x.

S3 (x t y) t z = x t (y t z), (x u y) u z = x u (y u z).

S4 x ∈ (x t y) u x, x ∈ (x u y) t x.

S5 x ≤ y ⇒ y ∈ x t y, x ∈ x u y.

S6 If y ∈ x t y or x ∈ x u y, then x ≤ y.

Proof. S1, S2 are obvious. The proof of S3 appears in [8] and also in [1].
Regarding S4 let us prove that x ∈ (x t y) u x = {z : z = u u x, u ∈ x t y }. In other words, we

must show that there exists some u ∈ xt y such that x ∈ uu x. But this is easy. Taking u = x∨ y one
obtains immediately that x ∨ y ∈ x t y ; and since (x ∨ y) ∧ x = x ∧ x = (x ∨ y) ∧ x, it follows that
x ∈ (x ∨ y) u x. One can prove dually that x ∈ (x u y) t x and this completes the proof of S4.

x ≤ y ⇒ x∧ y = x, x∨ y = y and these yield S5 immediately. Regarding S6: y ∈ xt y ⇒ x∨ y =
y ∨ y = x ∨ y ⇒ x ≤ y; it can be proved dually that x ∈ x u y ⇒ x ≤ y.�

Proposition 2.3 (H,t,u) satisfies the following for all x, y, z ∈ H.

S6′ y ∈ x t y ⇔ x ∈ x u y.

S7′ x, y ∈ x t y ⇔ x = y.

S8′ y ∈ x t y, z ∈ y t z ⇒ z ∈ x t z.

Furthermore, we have: (S1− S6) ⇔ (S1− S4, S6′ − S8′).
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Proof. The proof that (S1−S6) ⇔ (S1−S4, S6′−S8′) appears in [6]. The first part of the proposition
then follows from Proposition 2.2.�

As shown in [6], Proposition 2.3 is true for any superlattice, not only the Nakano one. In fact
a superlattice can be defined in two alternative ways [6]: one may assume the underlying order ≤
and require that the two hyperoperations satisfy properties S1 − S6; or one may assume that the
hyperoperations satisfy S1−S4, S6′−S8′ and then define an order on H in terms of the hyperoperations,
in which case the resulting order satisfies S5, S6.

In the remainder of the paper we will use extensively the concepts of equivalence and congruence.
Let us first give the following well known definitions for the sake of completeness.

Definition 2.4 An equivalence on H is a relationship R which satisfies the following ∀x, y, z ∈ H:

(i) xRx, (ii) xRy ⇒ yRx, (iii) xRy, yRz ⇒ xRz.

Definition 2.5 Let R be an equivalence on H. For all x ∈ H the class of x is denoted by x and defined
by x

.= {y : xRy}.

Definition 2.6 Let R be an equivalence on H. The quotient of H with respect to R is denoted by
H/R and defined by H/R

.= {x : x ∈ H}.

Notation. We use the following notation: for all A ⊆ H we write A
.= {x : x ∈ A}

Remark. It follows from the above notation that for any A,B ⊆ H such that A = B we have:

(i) ∀x ∈ A ∃y ∈ B such that x = y, (ii) ∀y ∈ B ∃x ∈ A such that x = y.

Let us now turn to the concept of congruence. In classical lattice theory, congruence is defined
in terms of operations; since here we will make use of both operations and hyperoperations, we will
need two concepts of congruence. We use the term l-congruence to describe what is commonly called
“congruence” (with respect to the operations ∨,∧) and the term s-congruence to describe the analogous
property with respect to the hyperoperations t,u.

Definition 2.7 An equivalence R on H is called a l-congruence on a lattice (H,∨,∧) iff for all x, y, z ∈
H we have

x = y ⇒
{

x ∨ z = y ∨ z
x ∧ z = y ∧ z

Definition 2.8 An equivalence R on H is called a s-congruence on a superlattice (H,t,u) iff for all
x, y, z ∈ H we have

x = y ⇒
{

x t z = y t z
x u z = y u z

.

In the remaining part of this work we will use the expression “s-congruence R on H” instead of the
more correct, but also longer, “s-congruence R on a Nakano superlattice (H,t,u)”.

We now define two new hyperoperations g,f on the quotient H/R.

Definition 2.9 Given a s-congruence R on H we define hyperoperations g,f as follows: for all
x, y ∈ H

xgy
.= x t y; xfy

.= x u y.
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Remark. The above definition makes sense only if R is a s-congruence. Because, if for some x, y ∈ H
such that x = y we had some z ∈ H such that x t z 6= y t z, then we would have the following
contradiction: ygz = xgz = x t z 6= y t z = ygz.
Remark. If the hyperoperations g, f are well defined, then an s-congruence can be equivalently
defined as follows.

Definition 2.10 An equivalence R on H is called a s-congruence on H iff for all x, y, z ∈ H we have

x = y ⇒
{

xgz = ygz
xfz = yfz

.

It is worth noting that (H/R,g,f) is in general a proper hyperstructure, i.e. the g,f hyperoper-
ations yield non-singleton sets. This is seen from the following proposition.

Proposition 2.11 Let (H,∨,∧) have either a maximum or a minimum element and R be a s- con-
gruence on H. If card(H/R) ≥ 2, then (H/R,g,f) is a proper hyperstructure.

Proof. Assume H has maximum element denoted by 1. Then 1 t 1 = {z : z ≤ 1} = H and
1 t 1 = {z : z ∈ H} = H/R. Hence card(1 t 1) ≥ 2 and so H/R is a proper hyperstructure. The same
can be proved dually if H has minimum element denoted by 0.�

Proposition 2.12 Let R be a s-congruence on H, then (H/R,g,f) satisfies for all x, y, z ∈ H the
following:

T1 x ∈ ( xgx), x ∈ ( xfx);

T2 xgy = ygx, xfy = yfx;

T3 (xgy)gz = xg(ygz), (xfy)fz = xf(yfz);

T4 x ∈ ( xgy)fx, x ∈ ( xfy)gx.

Proof. It appears in [2].�
Remark. In other words, if R is a s-congruence, then (H/R,g,f) satisfies the first four properties
of a superlattice. A natural question is the following: what are necessary and sufficient conditions for
(H/R,g,f) to actually be a superlattice? This question can be formulated more precisely in terms of
the following properties (T6′ − T8′).

T6′ y ∈ ( xgy) ⇔ x ∈ ( xfy).

T7′ x, y ∈ ( xgy) ⇒ x = y.

T8′ y ∈ ( xgy), z ∈ (ygz) ⇒ z ∈ ( xgz).

Question. What conditions must R satisfy so that (T6′ − T8′) hold?
If (T6′ − T8′) hold, then (H/R,g,f) is a superlattice and we can define the order relationship -

as follows.

Definition 2.13 Let R be a s-congruence on H, such that (T1− T4, T6′ − T8′) hold. We write x - y
iff y ∈ xgy.

Furthermore, if we prove that (T1 − T4, T6′ − T8′) hold, then we will know that the following
conditions also hold.

T5 x - y ⇒ y ∈ ( xgy), x ∈ ( xfy).

T6 (y ∈ ( xgy) or x ∈ ( xfy) )⇒ x - y.
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3 Convexity

We now explore the connection between convexity and conditions (T6′ − T8′). Let us first give two
definitions of convexity on ordered sets.

Definition 3.1 Given A ⊆ H, we say that A is w-convex iff: ∀x, y ∈ A with x ≤ y and ∀z such that
x ≤ z ≤ y, we have z ∈ A.

Definition 3.2 Given A ⊆ H, we say that A is s-convex iff: ∀x, y ∈ A and ∀z such that x ∧ y ≤ z ≤
x ∨ y, we have z ∈ A.

Remark. In other words, s-convexity is a stronger property than w-convexity: A is s-convex if it is a
w-convex sublattice of H.

Let us now define convexity of congruence relationships.

Definition 3.3 Let R be an s-congruence on H. We say that R is w-convex iff ∀x ∈ H we have that
x is w-convex.

Definition 3.4 Let R be an s-congruence on H. We say that R is s-convex iff ∀x ∈ H we have that
x is s-convex.

We will now show that: R is w-convex iff (H/R,g,f) is a superlattice. To this end we will first
prove the auxiliary Propositions 3.5 - 3.8.

Proposition 3.5 Let R be a w-convex s-congruence on H. Then for all x, y ∈ H we have:

(i) x ∈ xgy ⇔ x = x ∨ y; (ii) y ∈ xfy ⇔ y = x ∧ y.

Proof. We only prove (i), since (ii) is proved dually.
Suppose that x ∈ xgy = x t y. This implies that there exists some z such that z ∈ xty and z = x.

Since z ∈ xt y it follows: z ∨ x = z ∨ y = x∨ y ⇒ z ∨ x = z ∨ x∨ y = x∨ x∨ y ⇒ x∨ y ∈ z t x ⇒
x ∨ y ∈ z t x = x t x. Now x ∨ y ∈ x t x implies that there exists some w such that w ∈ x t x and
w = x ∨ y. Since w ∈ x t x it follows: x ∨ w = x ∨ x = x ⇒ w ≤ x. Hence we have w ≤ x ≤ x ∨ y;
since w = x ∨ y, by w-convexity of R it follows that x = x ∨ y.

Conversely, suppose x = x ∨ y; we also have x ∨ y ∈ x t y and hence x ∨ y ∈ x t y = xgy. It
follows that x ∈ xgy.�

Proposition 3.6 Let R be a w-convex s-congruence on H. Then for all x, y ∈ H we have:

x ∈ xgy ⇔ y ∈ xfy.

Proof. By Proposition 3.5 we have: x ∈ xgy ⇒ x = x ∨ y. Now, it is easy to check that for all
u, w ∈ H we have u ∧ w ∈ u u w. In particular, y = (x ∨ y) ∧ y ∈ (x ∨ y) u y ⇒ y ∈ (x ∨ y) u y
= (x ∨ y)fy = xfy. So we have shown that x ∈ xgy ⇒ y ∈ xfy. It can be shown dually that
y ∈ xfy ⇒ x ∈ xgy.�

Proposition 3.7 Let R be a w-convex s-congruence on H. Then for all x, y ∈ H we have:

(i) x, y ∈ xgy ⇒ x = y; (ii) x, y ∈ xfy ⇒ x = y.
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Proof. We only prove (i), since (ii) is proved dually. From Proposition 3.5 we have

x ∈ xgy ⇒ x = x ∨ y
y ∈ xgy ⇒ y = x ∨ y

}
⇒ x = y.

This completes the proof. �

Proposition 3.8 Let R be a w-convex s-congruence on H. Then for all x, y, z ∈ H we have:

(i) y ∈ xgy, z ∈ ygz ⇒ z ∈ xgz; (ii) x ∈ xfy, y ∈ yfz ⇒ x ∈ xfz.

Proof. We only prove (i), since (ii) is proved dually. From Propositions 3.6 and 3.5 we have: (a)
y ∈ xgy ⇒ x ∈ xfy ⇒ x = x ∧ y and (b) z ∈ ygz ⇒ z = y ∨ z. Now y ∨ z = (x ∧ y) ∨ (y ∨ z) ∈
(x ∧ y) t (y ∨ z). Using this and (a) and (b) we have z = y ∨ z ∈ (x ∧ y) t (y ∨ z) = x t z = xgz.�

When R is a s-congruence, Property T7′ implies Properties T6′, T8′, as can be seen from the next
proposition.

Proposition 3.9 Let R be a s-congruence on H. Then T7′ ⇒ T6′, T8′.

Proof. We will first prove the following: if T7′ holds (i.e. for all x, y ∈ H we have: x, y ∈ xgy ⇒ x = y)
then ∀x ∈ H we have that x is w-convex. To show this, take any x ∈ H and any y, z ∈ H such that:
(a) x ≤ z ≤ y and (b) x = y. We have: z = x ∨ z ∈ x t z ⇒ z ∈ x t z = y t z. Similarly,
y = y ∨ z ∈ y t z ⇒ y ∈ y t z. Hence (by T7′) y = z and so x is w-convex. Since w-convexity of R
implies T6′ by Proposition 3.6 and T8′ by Proposition 3.8, the proof is complete.�

We are now ready to prove that: R is w-convex iff (H/R,g,f) is a superlattice.

Proposition 3.10 Let R be a s-congruence on H. Then R is w-convex iff (H/R,g,f) is a superlattice.

Proof. (i) Assume that R is w-convex. Then from Propositions 3.6, 3.7, 3.8 respectively, it follows that
properties T6′, T7′, T8′ hold. Furthermore, since R is an s-congruence, (T1− T4) hold by Proposition
2.12. It follows that (H/R,g,f) satisfies (T1− T4, T6′ − T8′) and hence is a superlattice.

(ii) Assume (H/R,g,f) is a superlattice. Take any x, y, z ∈ H such that: (a) x = y and (b)
x ≤ z ≤ y. Now z = x ∨ z ∈ x t z ⇒ z ∈ x t z = y t z; similarly y = z ∨ y ∈ z t y ⇒ y ∈ z t y =
y t z. Since (H/R,g,f) is a superlattice, it follows that T7′ holds; from T7′ and z ∈ y t z, y ∈ z t y
it follows that y = z. Hence R is w-convex.�

Before proceeding, let us provide some additional notation and prove an auxiliary proposition.
Notation. For all A,B ⊆ H we define

A ∨B
.= {x ∨ y : x ∈ A, y ∈ B}, A ∧B

.= {x ∧ y : x ∈ A, y ∈ B}.

Proposition 3.11 Let R be an equivalence relation on H. If for some z ∈ H we have that z is a
sub-∨-semi-lattice of H, then z ∨ z = z.

Proof. Clearly z ⊆ z ∨ z. Now, say u ∈ z ∨ z; then exist x, y ∈ z such that u = x ∨ y. Since z is a
sub-∨-semi-lattice, it follows that u = x ∨ y ∈ z. So z ∨ z ⊆ z.�

Let us now continue the study of properties of s-congruences. We have seen that when R is a
s-congruence on H, then w-convexity of R is equivalent to (H/R,g,f) being a superlattice. The next
proposition shows that a number of other properties are equivalent to the above two.

Proposition 3.12 Let R be a s-congruence on H. Then the following are equivalent.

6



1. For all x ∈ H, x is a sub-∨-semi-lattice of H.

2. For all x ∈ H, x is a sublattice of H.

3. For all x ∈ H, x is w-convex.

4. For all x ∈ H, x is s-convex.

5. (H/R,g,f) is a superlattice.

Proof. We will show that (1) ⇒ (3) ⇒ (2) ⇒ (1); also that (2) ⇔ (4) and (3) ⇔ (5).
(1) ⇒ (3): Suppose that for all x ∈ H, x is a sub-∨-semi-lattice of H. Take any A ∈ H/R and any

x, y, z ∈ H such that: (a) x = y = A and (b) x ≤ z ≤ y. From (a) we have: x t z = y t z. From (b)
it follows that z = x ∨ z ∈ x t z ⇒ z ∈ x t z = y t z. Hence exists some u ∈ y t z such that: u = z.
But u ∈ y t z ⇒ u∨ y = u∨ z = y ∨ z = y ⇒ u ∨ z = y = x. Also, u∨ z ∈ u ∨ z = z ∨ z = z (since z
is a sub-∨-semi-lattice). Hence z = u ∨ z = x = A. So for all x ∈ H, x is w-convex.

(3) ⇒ (2): Suppose that for all x ∈ H, x is w-convex. Take any A ∈ H/R and any x, y such that
x = y = A. Then x t x =x t y. Now x ∨ y ∈ x t y ⇒ x ∨ y ∈ x t y = x t x. Hence exists some z such
that: (a) z ∈ x t x and (b) z = x ∨ y. We have z ∈ x t x ⇒ x ∨ z = x ∨ x = x ⇒ z ≤ x. So we have
z ≤ x ≤ x ∨ y and z = x ∨ y; by w-convexity of R it follows that x ∨ y ∈ x = A. We show dually that
x ∧ y ∈ A and so we have established that for all x ∈ H, x is a sublattice of H.

(2) ⇒ (1): This is obvious.
(4) ⇒ (2): This is obvious.
(2) ⇒ (4): Assume that for all x ∈ H we have that x is a sublattice. Then, we have already

established that, for all x ∈ H, x is also w-convex. Since for all x ∈ H, x is a w-convex sublattice, it is
also s-convex.

(3) ⇔ (5): This was proved in Proposition 3.10.�

4 Order on (H/R, g, f)

We have already noted that: if (H/R,g,f) is a superlattice (equivalently, if R is a s-convex s-congruence
on H) the order relationship - can be defined on H/R in terms of either g or f. We now introduce two
additional relationships: � and v. Then we show that -, � and v are equivalent when (H/R,g,f)
is a superlattice.

Definition 4.1 Let R be an equivalence on H. For all A,B ∈ H/R we write A � B iff: ∀x ∈ A, y ∈ B
we have x ∧ y ∈ A and x ∨ y ∈ B.

Proposition 4.2 If R is a s-convex equivalence on H, then � is an order relationship on H/R.

Proof. We will show that for all A,B, C ∈ H/R we have: (i) A � A, (ii) A � B and B � A ⇒ A = B
and (iii) A � B and B � C ⇒ A � C .

(i) Take any x, y ∈ A. Since A is s-convex, x ∨ y ∈ A and x ∧ y ∈ A.
(ii) Take any x ∈ A and any y ∈ B . Now A � B ⇒ x ∨ y ∈ B; and B � A ⇒ x ∨ y ∈ A. Since

A,B are classes and A ∩B 6= ∅, it follows that A = B.
(iii) Take any x ∈ A , any y ∈ B and any z ∈ C . Now x ∧ y ∈ A, x ∨ y ∈ B, y ∧ z ∈ B, y ∨ z ∈ C.

Since x∧ y ∈ A, y ∧ z ∈ B and A � B, it follows that x∧ y ∧ z ∈ A. Also, by assumption x ∈ A. Since
x ∧ y ∧ z ≤ x ∧ z ≤ x, by s-convexity it follows that x ∧ z ∈ A. We can prove similarly that x ∨ z ∈ C.
Hence A � C .�
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Proposition 4.3 Let R be an equivalence on H. If � is an order relationship on H/R, then for all
A ∈ H/R we have that A is a sublattice.

Proof. Take any A ∈ H/R and any x, y ∈ A. Since A � A, it follows that x ∧ y, x ∨ y ∈ A.�

Definition 4.4 Let R be an equivalence on H. For all A,B ∈ H/R we write A v B iff:

(i) ∀x ∈ A ∃y ∈ B such that x ≤ y; (ii) ∀y ∈ B ∃x ∈ A such that x ≤ y.

Proposition 4.5 Let R be an equivalence on H. For all A,B, C ∈ H/R we have:

(i) A v A; (ii) if A v B and B v C, then A v C.

Proof. (i) For all x ∈ A we have x ≤ x, so A v A.
(ii) Take any x ∈ A; then exists y ∈ B such that x ≤ y. For this y exists z ∈ C such that y ≤ z.

Hence for every x ∈ A exists some z ∈ C such that x ≤ z. We can similarly prove that for all z ∈ C
exists some x ∈ A such that x ≤ z.�

Proposition 4.6 Let R be a w-convex equivalence on H and A,B ∈ H/R. Then

(A 6= B and A v B) ⇒ @(x, y) ∈ A×B such that y < x.

Proof. Assume that there exists some x ∈ A, y ∈ B such that y < x. There also exists some y1 ∈ B
such that x ≤ y1. Hence we have y < x ≤ y1 ⇒ x ∈ B (by convexity) which implies that A ∩ B 6= ∅.
But A,B were assumed to be distinct classes, so we have reached a contradiction.�

We will now prove that: if (H/R,g,f) is a superlattice then -,�,v are equivalent. To this end
we first need an auxiliary proposition.

Proposition 4.7 Let R be an equivalence on H. If R is s-convex, then for all A ∈ H/R we have:
(i) A ∨A = A, (ii) A ∧A = A.

Proof. We will only prove (i), since (ii) is proved similarly. Clearly A ⊆ A ∨ A. Now take any
x ∈ A ∨ A, then there exist y, z ∈ A such that x = y ∨ z. But, y ∨ z ∈ A by s-convexity of A. So
A ∨A ⊆ A. �

Proposition 4.8 Let R be a s-convex s-congruence on H. Then for all A,B, C ∈ H/R the following
are equivalent: (i) A - B, (ii) A � B, (iii) A v B.

Proof. We will prove (i) ⇔ (ii), (ii) ⇔ (iii).
(i) ⇒ (ii). Assume that A - B. Take any x ∈ A, y ∈ B. Equivalently y ∈ xgy and from Proposition
3.5 we have that y = x ∨ y, i.e. that x ∨ y ∈ y. Similarly we prove that x ∧ y ∈ x. Hence x � y, i.e.
A � B.
(ii) ⇒ (i). Assume that A � B. Take any x ∈ A, y ∈ B. Then x ∧ y ∈ A = x ⇒ x ∧ y = x. This, by
Proposition 3.5, implies x ∈ xfy and so x - y, i.e. A - B.
(ii) ⇒ (iii). Assume that A � B. Take any x ∈ A, y ∈ B. Then x ∧ y ∈ A; so for any y ∈ B exists
x1 = x∧ y ∈ A such that x1 ≤ y. Similarly we can show that for any x ∈ A exists y1 = x∨ y ∈ B such
that x ≤ y1. Hence A v B.
(iii) ⇒ (ii). Assume that A v B. Take any x ∈ A, y ∈ B. We will consider three cases for the
relationship between x and y and we will show that in every case x ∧ y ∈ A, x ∨ y ∈ B.
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(a) If x ≤ y, then x ∧ y = x ∈ A, x ∨ y = y ∈ B.

(b) Assume y < x. Since A v B, we must have A = B; because if A 6= B then, by Proposition 4.6,
we cannot have y < x. Furthermore A is a sublattice, so x ∧ y ∈ A and x ∨ y ∈ A = B.

(c) Assume x||y. Since A v B, exists some x1 ∈ A such that x1 ≤ y. So x ∧ x1 ≤ x ∧ y ≤ x and
x ∧ x1, x ∈ A; then by convexity x ∧ y ∈ A. Similarly it can be shown that x ∨ y ∈ B.

So we have shown that for all x ∈ A, y ∈ B we have x ∧ y ∈ A, x ∨ y ∈ B, i.e. that A � B.�
Remark. Hence when R is a s-convex s-congruence, the v relationship is an order.

In the case of main interest to us, namely when (H/R,g,f) is a superlattice, the three relationships
-, �, v are equivalent and they can be denoted by a single symbol. In such a case we will use the
symbol � to denote this order on the superlattice (H/R,g,f). Let us now establish further properties
of the � order.

Proposition 4.9 Let R be an s-convex s-congruence on H. Then for all x, y ∈ H we have:

x ≤ y ⇒ x � y.

Proof. We have x ≤ y ⇒ x = x ∧ y ⇒ x = x ∧ y. But then x � y by Proposition 3.5. �

Corollary 4.10 Let R be an s-convex s-congruence on H. Then for all x, y, z ∈ H we have:

(i) x ≤ y ⇒ x ∨ z � y ∨ z (ii) x ≤ y ⇒ x ∧ z � y ∧ z.

Proof. This follows immediately from Proposition 4.9.�

Proposition 4.11 Let R be an s-convex s-congruence on H. Then R is a l-congruence on H, i.e. for
all x, y, z ∈ H we have:

(i) x = y ⇒ x ∨ z = y ∨ z, (ii) x = y ⇒ x ∧ z = y ∧ z.

Proof. We only prove (i), since (ii) is proved similarly. x = y ⇒ x t z = y t z. Since x ∨ z ∈ x t z,
exists some u ∈ y t z such that x ∨ z = u. Since u ∈ y t z it follows that u ≤ y ∨ z and then (by
Proposition 4.9) x ∨ z = u � y ∨ z. Similarly we prove y ∨ z � x ∨ z. Hence y ∨ z = x ∨ z.�
Remark. The converse is not true, i.e. an l-congruence (which is necessarily s-convex) is not neces-
sarily an s-congruence. This can be seen in the next example.

Example 4.12 Take the lattice of Figure 1 and let R = {A,B}, A = {0, x1}, B = {x2, 1}. It is easy
to check that R is a l-congruence, but it is not a s-congruence. For instance 0 u x1 = {0}, x1 u x1 =
{x1, x2, 1}, 0 u x1 = {0} = {A}, x1 u x1 = {x1, x2, 1} = {A,B}; so 0 = x1, but 0 u x1 6= x1 u x1.

Figure 1 to be placed here

In fact, the above example is also related to the following proposition.

Proposition 4.13 Let (H,∨,∧) be a chain and R be a s-congruence on H. If there is some x ∈ H
such that card(x) ≥ 2, then H/R = {H}.
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Proof. Given x such that card(x) ≥ 2, choose some y 6= x such that x = y. Since (H,∨,∧) is a chain,
we will have either x < y or y < x. Without loss of generality, take x < y. Then it is easy to check
that x t x = x t y = y. Define A = {z : z ≤ x}; then it is easy to check that A = xt x. Now take any
z ∈ A = x t x; then z ∈ x t x = y, i.e. z ∈ z = y. Hence A ⊆ y. Defining B = {z : x ≤ z}, one can
show similarly that B ⊆ y. Hence H = A ∪B ⊆ y ⊆ H and so the only class of H/R is y = H.�
Remark. Hence, if (H,∨,∧) is a chain, the only s-congruences on H are R1 = {H} and R2 =
{{x}}x∈H . The connection to Example 4.12 is now obvious.

Proposition 4.14 Let R be an s-convex s-congruence on H. Then for all x, y ∈ H we have:

(i) x � y ⇒ x ∨ z � y ∨ z, (ii) x � y ⇒ x ∧ z � y ∧ z.

Proof. We only prove (i), since (ii) is proved similarly. Assuming x � y, it follows that there exists
some y1 ∈ y such that x ≤ y1. Then (from Corollary 4.10) we have x ∨ z � y1 ∨ z. But, from Corollary
4.11 we have y1 ∨ z = y ∨ z and the proof is complete.�

5 Additional Operations on Classes

We now define new operations ∨,∧ and new hyperoperations t,u between classes in H/R.

Definition 5.1 Let R be a s-convex s-congruence on H. For all x, y ∈ H we define

x∨y
.= x ∨ y, x∧y

.= x ∧ y.

Remark.The above operations are well defined in light of Proposition 4.11.

Proposition 5.2 If R is a s-convex s-congruence on H, then (H/R,∨,∧ ) is a modular lattice and
x∨y = y ⇔ x∧y = x ⇔ x � y.

Proof. Since R is an s-convex congruence, in view of Proposition 4.11 it is also an l-congruence. Hence
(H/R,∨,∧ ) is a lattice and the mapping ρ : H → H/R is a homomorphism[9].

The ∨,∧ hyperoperations are compatible with the � order, i.e. x∨y = y ⇔ x � y. To see this,
suppose that x∨y = y, i.e. x ∨ y = y; then, using Proposition 4.9, we have x ≤ x∨ y ⇒ x � x ∨ y = y.
Conversely, from Proposition 4.14 we have x � y ⇒ x ∨ y � y ∨ y = y; since also y ≤ x∨y ⇒ y � x ∨ y
it follows that y = x ∨ y.

Furthermore, (H/R,∨,∧) is a homomorphic image of (H,∨,∧ ) and, since we have assumed
(H,∨,∧) to be modular, (H/R,∨,∧) is also modular [9].�

By the above proposition, given a s-convex s-congruence R on H, (H/R,∨,∧ ) is a modular lattice.
Hence we can define the t,u hyperoperations on elements of H/R, in complete analogy to the definition
of t,u on elements of H.

Definition 5.3 Let R be a s-convex s-congruence on H. For all x, y ∈ H we define

xty
.= {z : x∨y = x∨z = y∨z}

xuy
.= {z : x∧y = x∧z = y∧z}

Proposition 5.4 Let R be a s-convex s-congruence on H. Then (H/R,t,u ) is a superlattice.
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Proof. This is proved in exactly the same manner as Proposiiton 2.2.�
We have at this point obtained two superlattices on H/R, namely (H/R,g,f) and (H/R,t,u ).

A natural question to ask is what is the relationship between these. We will show that in certain cases
(H/R,g,f) and (H/R,t,u ) are identical. To this end we first establish the auxiliary propositions
5.5 - 5.9.

Proposition 5.5 If (H,∨,∧) is a distributive lattice, then for all x1, x2, y1, y2 (where x1 ≤ x2 and
y1 ≤ y2 ) we have

[x1, x2] ∨ [y1, y2] = [x1 ∨ y1, x2 ∨ y2].

[x1, x2] ∧ [y1, y2] = [x1 ∧ y1, x2 ∧ y2].

Proof. This can be found in [3].�

Proposition 5.6 Let R be a s-convex s-congruence on H. If A ∈ H/R and x, y ∈ A with x < y, then:

(i) there does not exist (nonempty) B ∈ H/R such that: ∀z ∈ B we have z ≤ x;

(ii) there does not exist (nonempty) C ∈ H/R such that: ∀u ∈ B we have y ≤ u.

Proof. We only prove (i); (ii) is proved dually.
Assume that there exists some B ∈ H/R such that: ∀z ∈ B we have z ≤ x. Then z ∈ B

⇒ z ∨ x = x ∨ x ⇒ z ∈ x t x ⇒ B = z ∈ x t x. In short:

z ∈ B ⇒ B ∈ x t x. (1)

But also: z ∈ B ⇒ x ∨ z = x, and y ∨ z = y 6= x and x ∨ y = y; these mean z /∈ x t y. In short,

∀z ∈ B : z /∈ x t y. (2)

Now, (2) implies that B /∈ x t y. Indeed, assume the contrary, i.e. that B ∈ x t y. Then exists some
w ∈ B such that w ∈ x t y; but this contradicts (2). In short we have proved:

z ∈ B ⇒ B /∈ x t y. (3)

But, since x t x = x t y, (1) and (3) are in contradiction and we have completed the proof of the
proposition.�

Proposition 5.7 Let R be a s-convex s-congruence on H and x = [x1, x2], y = [y1, y2]. Then:
(i) If x ∨ y = [p, q], then p = x1 ∨ y1 and q = x2 ∨ y2.
(ii) If x ∧ y = [r, s], then r = x1 ∧ y1 and s = x2 ∧ y2.

Proof. We will only prove (i), since (ii) is proved dually.
(a) Clearly x1 ∨ y1 = x ∨ y = [p, q] ⇒ x1 ∨ y1 ∈ [p, q] ⇒ p ≤ x1 ∨ y1. Also, x � x ∨ y = [p, q] ⇒ ∃x0 ∈ x
such that x1 ≤ x0 ≤ p; similarly ∃y0 ∈ y such that y1 ≤ y0 ≤ p; hence x1 ∨ y1 ≤ p. Hence x1 ∨ y1 = p.
(b) We consider two cases.
(b.1) x = y. Then [p, q] = x ∨ y = x ∨ x = x = [x1, x2] ⇒ q = x2 = x2 ∨ y2.
(b.2) x 6= y. Then either x 6= x ∨ y or y 6= x ∨ y or both. Assume x 6= x ∨ y. Now x2 ∨ y2 = x ∨ y =
[p, q]. Hence x2 ∨ y2 ∈ [p, q] ⇒ x2 ∨ y2 ≤ q. On the other hand, since x2 ∈ x, x2 ∨ y2 ∈ x ∨ y and
x 6= x ∨ y, it follows that x2 6= x2 ∨ y2 and this means x2 < x2 ∨ y2 . Now assume that x2 ∨ y2 < q.
Then for all z ∈ x we have z ≤ x2 < x2∨y2 < q. In other words, for all z ∈ x we have z < x2∨y2 < q.
But this contradicts Proposition 5.6 (since x2 ∨ y2 ∈ x ∨ y, q ∈ x ∨ y ). So we cannot have x2 ∨ y2 < q
– hence we must have x2 ∨ y2 = q.�
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Proposition 5.8 Let R be a s-convex s-congruence on H. If (H,∨,∧) is a distributive lattice and for
all Q ∈ H/R there exist q1, q2 ∈ H with Q = [q1, q2], then for all x, y ∈ H we have:

(i) x∨y = x ∨ y , (ii) x∧y = x ∧ y.

Proof. We will only prove (i), since (ii) is proved dually. Take any x, y ∈ H. By assumption we have
x∨y = x ∨ y = [p, q], x = [x1, x2] and and y = [y1, y2]. By Proposition 5.7 we have p = x1 ∨ y1 and
q = x2 ∨ y2. Hence x∨y = [x1 ∨ y1, x2 ∨ y2] = [x1, x2] ∨ [y1, y2] = x ∨ y (note the use of Proposition
5.5).�

Proposition 5.9 Let R be a s-convex s-congruence on H.

(i) If for all x, y ∈ H we have x∨y = x ∨ y, then for all x, y ∈ H we also have xty = xgy.

(ii) If for all x, y ∈ H we have x∧y = x ∧ y, then for all x, y ∈ H we also have xuy = xfy.

Proof. We will only prove (i), since (ii) is proved dually.
(i.1) Take any A ∈ xgy. Then exists z0 ∈ A such that z0 ∨ x = z0 ∨ y = x ∨ y ⇒ z0 ∨ x = z0 ∨ y =

x ∨ y ⇒ z0∨x = z0∨y = x∨y ⇒ A = z0 ∈ xty ⇒ xgy ⊆ xty.
(i.2) Take any z0 ∈ xty. This implies that z0∨x = z0∨y = x∨y. This implies (using the assumption

of (i)) that z0∨x = z0∨y = x∨y. Now z0∨x ∈ z0∨x and so exist z1 ∈ z0, y1 ∈ y such that z0∨x = z1∨y1.
Similarly, exist x2 ∈ x, y2 ∈ y such that z0 ∨ x = x2 ∨ y2. Now:

z0 ∨ x = z1 ∨ y1 ⇒ z0 ∨ x ∨ z1 = z1 ∨ y1 ∨ z1 = z1 ∨ y1 = x2 ∨ y2 (4)

and
z0 ∨ x = z1 ∨ y1 ⇒ z0 ∨ x ∨ z0 = z1 ∨ y1 ∨ z0 = z0 ∨ x2 ∨ y2 = x2 ∨ y2 (5)

(in the last step we have used that z0 ≤ z0 ∨ x = x2 ∨ y2.) Now, (4) implies

z0 ∨ x ∨ z1 = x2 ∨ y2 ⇒ z0 ∨ x ∨ z1 ∨ x2 = x2 ∨ y2 (6)

and (5) implies
z0 ∨ y1 ∨ z1 = x2 ∨ y2 ⇒ z0 ∨ x ∨ z1 ∨ y2 = x2 ∨ y2. (7)

But x ≤ z0 ∨ x = x2 ∨ y2 and y1 ≤ z1 ∨ y1 = x2 ∨ y2 imply

x ∨ y1 ≤ x2 ∨ y2 ⇒ x2 ∨ y2 = x ∨ y1 ∨ x2 ∨ y2. (8)

Hence (6) and (8) imply
z0 ∨ x ∨ z1 ∨ x2 = x ∨ y1 ∨ x2 ∨ y2 ⇒

(z0 ∨ z1) ∨ (x ∨ x2) = (x ∨ x2) ∨ (y1 ∨ y2); (9)

similarly (7) and (8) imply
z0 ∨ y1 ∨ z1 ∨ y2 = x ∨ y1 ∨ x2 ∨ y2 ⇒

(z0 ∨ z1) ∨ (y1 ∨ y2) = (x ∨ x2) ∨ (y1 ∨ y2). (10)

From (9) and (10) we see that z0 ∨ z1 ∈ (x ∨ x2) t (y1 ∨ y2). Then it follows that

z0 ∨ z1 ∈ (x ∨ x2) t (y1 ∨ y2) = (x ∨ x2)g(y1 ∨ y2). (11)

Finally
z0, z1 ∈ z0 ⇒ z0 ∨ z1 ∈ z0 ⇒ z0 ∨ z1 = z0 (12)
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x, x2 ∈ x ⇒ x ∨ x2 ∈ x ⇒ x ∨ x2 = x (13)

y1, y2 ∈ y ⇒ y1 ∨ y2 ∈ y ⇒ y1 ∨ y2 = y (14)

and (12), (13), (14) in conjunction with (11) imply that z0 ∈ xgy and hence xty ⊆ xgy. This, in
conjunction with the conclusion of (i.1) means that xgy = xty.�

We are now ready to give a condition for (H/R,g,f) and (H/R,t,u ) to be identical.

Proposition 5.10 Let R be a s-convex s-congruence on H. If for all x, y ∈ H we have x∨y = x ∨ y,
x∧y = x ∧ y then (H/R,g,f) and (H/R,t,u ) are identical hyperstructures.

Proof. From Proposition 5.9 follows that t, g give identical results; the same is true of u, f.�
A special case of interest is the following.

Proposition 5.11 Let R be a s-convex s-congruence on H. If (H,∨,∧) is a finite distributive lattice,
then (H/R,g,f) and (H/R,t,u ) are identical hyperstructures.

Proof. Since (H,∨,∧) is finite, every convex sublattice is an interval. Hence all the classes of H/R
are intervals. Since (H,∨,∧) is also distributive, we can apply Proposition 5.8 to obtain the conditions
of Proposition 5.9, which in turn allow application of Proposition 5.10.�

Finally, we present two examples where l-congruences fail to be s-congruences and an example of a
l-congruence which is also a s-congruence.

Example 5.12 In the lattice of Figure 2, take R = {A,B, C, D}, A = {0}, B = {x1}, C = {x2},
D = {x3, 1}. It is easy to check that R is a l-congruence but it is not a s-congruence (for instance
check that x3 t x3 = {A,B, C, D} 6= {D} = x3 t 1). In addition, note that, for example, B∨C = D
= {x3, 1} 6= {x3} = B ∨C. Also note that in class D we have x3 < 1 and that x3 is greater than any
element of class B (compare with Proposition 5.6).

Figure 2 to appear here

Example 5.13 In the lattice of Figure 3, take R = {A,B, C, D}, A = {0}, B = {x1, x3}, C = {x2, x5},
D = {x4, x6, x7, 1}. It is easy to check that R is a l-congruence but it is not a s-congruence (for
instance check that x4 t x4 = {A,B, C}6= {D} = x4 t 1). However, note that, for example, C∨D =
D = {x4, x6, x7, 1} = C ∨D. Note also that for the pair (x6, 1) we have x6 < 1 and yet x6 is greater
than any element of class B (compare with Proposition 5.6).

Figure 3 to appear here

Example 5.14 Finally, in the Boolean lattice of Figure 4, A = {0, x2}, B = {x1, x4}, C = {x3, x6},
D = {x5, 1}. It is easy to check that R is both an l-congruence and a s-congruence.

Figure 4 to appear here
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6 Discussion

We have introduced the Nakano superlattice (H,t,u) and studied the properties of s-congruences R
on (H,t,u). When R is s-convex, the resulting hyperstructure (H/R,g,f) possesses many interesting
properties. The following questions arise naturally.

Question 1 Is there an example of a relationship R which is a s-congruence with respect to the Nakano
superlattice, but is not s-convex?

Question 2 What are convenient necessary and/or sufficient conditions to check if an equivalence is
s-congruence with respect to the Nakano superlattice?

Furthermore, the study of the Nakano superlattice appears to be of special interest when the
underlying lattice (H,≤) is either Boolean or deMorgan (in the latter case connections to the theory
of fuzzy sets are possible). These issues will be the subject of further research.
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