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Abstract

Gradient-dependent constitutive equations can model size effects of stress/strain curves. We
demonstrate the approach using experimental data of (a) initial yield for carbon steel cylindrical
specimens subjected to torsional loading and (b) stress flow curves for twisted copper wires in
continuing yielding.

1 Introduction

Constitutive modeling denotes the identification of constitutive equations for various materials. In this
paper we consider constitutive equations which incorporate gradient terms [1, 2], in other words we
investigate gradient constitutive modeling. This approach has considerable success in resolving problems
which cannot be accomodated by classical mechanics, as has been demonstrated in a series of papers
[3, 4, 5, 6].

In this paper we use gradient constitutive modeling to model the presence of size effects in the
stress / strain behavior of metals. When applied to a specific stress / strain process, the gradient-based
constitutive equations yield terms which depend on the geometrical configuration of the problem; as
will be seen in the sequel, this can explain the presence of size effects. If appropriate values are obtained
for the coefficients appearing in the constitutive equations, then this approach yields results which agree
with experimental observations. Hence, the main problem we investigate here is the identification of
the “constitutive coefficients”; this is achieved by the use of artificial neural networks (ANN) and
appropriate optimization algorithms.

ANN’s have already been applied succesfully to a wide range of engineering problems, and in
particular to constitutive modeling [7, 8, 9]. The popularity and success of ANN’s can be attributed
to the following factors.

(i) ANN’s do not require strong assumptions regarding the phenomenon being modeled and they
can approximate arbitrarily well a wide range of functions (the universal approximation property
[10]).

(ii) The existence of efficient “training” algorithms (e.g. the back-propagation algorithm [11]) makes
possible the development of complex ANN’s with hundreds of parameters (so-called weights)
which can model multivariable functions of the form f(x1, x2, ..., xN ) accurately and efficiently,
even for large N .

1



2 Yield Initation

In this section we estimate the constitutive equation of carbon steel, based on the yield initiation data
of Richards [13].

2.1 Description of the Problem

Experimental data [13] on yield initiation during torsion of cylindrical carbon steel specimens reveal
the presence of size effect, i.e. the dependence of the yield stress Y on the specimen radius a.

While various theories have been proposed for interpreting the phenomenon of size effect, of partic-
ular interest here is a simple approach recently suggested by Aifantis (see [3], and references therein).
This approach is based on the gradient theory introduced earlier by Aifantis [4, 5, 6] to capture spa-
tial features such as shear band widths and spacings during deformation localization. In particular,
higher-order gradients of strain were introduced in the expression for the flow stress; in this way an
internal length scale is incorporated in the constitutive structure. A number of size effect problems
were thus modeled by the gradient approach; the gradient coefficients were assumed constant and their
values were obtained by the use of standard error minimization. Here we follow essentially the same
approach, but we consider the gradient coefficients to be variable rather than constants. In other words
we assume the constitutive equation to have the following form [3]

τ = τ0 − c1(γ;w) · |∇γ| − c2(γ;u) · ∇2γ. (1)

Here τ denotes the shear stress, γ denotes shear strain, τ0 is the homogeneous (classical) part of the flow
stress (initial yield, taken here as constant) and c1(γ;w), c2(γ;u) are the so-called gradient coefficients,
which are parametric functions , with γ being the independent variable and w, u the parameters. Of
particular interest is the case where c1(γ;w), c2(γ;u) are sigmoid feedforward ANN’s; here w, u are the
weights, i.e. parameters which determine the behavior of the ANN’s. The task is to obtain appropriate
values for w, u.

To this end, let us consider the gradient-dependent constitutive equation of the flow stress. In the
elastic region the constitutive equation has the familiar form of linear elasticity

τ = Gγ, (2)

where G is the shear modulus. In the plastic region, the constitutive equation has the form given by
Eq.(1). Regarding shear yield stress τ0, it should be noted that it is connected to tensile yield stress
σ0 by the relation

Λ =
τ0

σ0
, (3)

where Λ is a numerical factor (equal to
√

3
3 according to the von Mises yield condition, or to 1

2 acording
to the Tresca yield condition).

Since the problem is expressed in radial coordinates, we also have

∇γ = φ; ∇2γ =
φ

r
. (4)

These expressions for the gradient and the Laplacian of the shear strain γ follow directly from the
assumption of radial symmetry and the basic kinematic relation for the torsion of a circular shaft,
which reads

γ = φr, (5)
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where r is the radial coordinate (distance of the point under consideration from the axis of the cylindrical
specimen at hand and φ is the angle of twist per unit length).

Finally, we assume that yielding first ocurs when the stress at the the surface of the specimen
reaches a critical value Y , while the specimen interior supports elastic deformations. Thus, for the
experimental configuration at hand, the elastic / plastic boundary at initial yielding is defined by the
condition

r = a. (6)

By requiring continuing stress equilibrium across the elastic / plastic boundary just after initial
yielding occurs (the plastic region is viewed as an infinitesimally thin surface layer), we have the
following relations for Y :

Y (a) = Gφa (7)

by evaluating the stress from the elastic region, and

Y (a) = τ0 − c1 · φ− c2 ·
φ

a
. (8)

by evaluating the stress from the plastic region. Eq.(7) is a direct consequence of Eqs.(2), (5) and (6),
while Eq.(8) is a direct consequence of Eqs.(1), (4) and (6). On eliminating φ from Eqs.(7) and (8) we
obtain the following expression for the size dependence of the initial yield stress Y (a)

Y (a) = τ0 ·
a2

a2 + ( c1
G )a + ( c2

G )
(9)

or, equivalently,
Y (a)
σ0

= Λ · a2

a2 + ( c1
G )a + ( c2

G )
. (10)

Our task is now to obtain the functional form of the gradient coefficients c1 and c2 by fitting Eq.(10) to
the experimental data of Richards. These data are given as (a, Y (a)

σ0
) pairs. A plot of the data appears

in Figure 1. We set

Ŷ (a) =
Y (a)
σ0

, (11)

so the data are pairs (a, Ŷ (a)). The task is to identify the material parameters τ0, c1, c2 so that Eqs.(7),
(8) are compatible with the experimental data. This task is considered in the following section.

2.2 Form of Gradient Coefficients

Constant Coefficients. The simplest possible approach is to assume τ0, c1, c2 are constants, as in [14].
For convenience we define d0 = τ0, d1 = −c1/G, d2 = −c2/G. Then Eq.(10) can be written as

z = Λ ·
(

a2

d0a2 + d1a + d2

)
, (12)

where z must approximate Y
σ0

. The cost function is

J(Λ, d0, d1, d2) =
∑

(a,Y/σ0)

(
Y

σ0
− Λ ·

(
a2

d0a2 + d1a + d2

))2

(13)
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and it is required to find Λ, d0, d1, d2 which minimize (13). Having found optimal values for Λ, d0, d1, d2,
c1 is obtained from c1 = −d1 ·G; similarly for c2; and τ0= Λ · σ0 (σ0 is known from tables). Hence we
have obtained all the coefficients of Eq.(1) and so identified the constitutive equation.

Neural Coefficients. Here we still assume τ0, Λ to be constants, but allow c1 and c2 to be functions
of the strain γ. In other words, the constitutive equation takes the form

τ = τ0 − c1(γ;w) · |∇γ| − c2(γ;u) · ∇2γ. (14)

We further assume that c1(γ;w), c2(γ;u) are “neural” functions, in particular one-hidden layer, sigmoid,
feedforward ANN’s (here u, w are the weight vectors of the respective ANN’s). We now set d0 = τ0,
d1(γ;w) = −c1(γ;w), d2(γ;u) = −c2(γ;u), and utilize Eqs.(3), (6) in conjunction with φ = Y

Ga ,

obtained from Eq.(7), and γ = φa, obtained from Eqs.(5), (6). We also write Ŷ = Y
σ0

σ0. In conclusion,
we derive

z = d0 + d1(
Ŷ σ0

G
;w)Ŷ σ0

1
Ga

+ d2(
Ŷ σ0

G
;u)Ŷ σ0

1
Ga2

, (15)

where z must approximate Ŷ = Y
σ0

σ0. All quantities on the right side of Eq.(15) are known (i.e. either
are included in, or can be easily computed from the data) with exception of the weights d0, w, u. Hence,
the modeling problem consists in minimizing

J(d0, w, u) =
∑

(a,Ŷ )

(
Ŷ σ0 −

(
d0 + d1(

Ŷ σ0

G
;w)Ŷ σ0

1
Ga

+ d2(
Ŷ σ0

G
;u)Ŷ σ0

1
Ga2

))2

. (16)

It is worth remarking that, while the optimization problem involves feedforward sigmoid ANN’s, it is in
a nonstandard form. In particular, the appearance of terms multiplying the neural functions d1(φa;w),
d2(φa;u) makes the direct application of the backpropagation error minimization algorithm impossible.
In any case, minimization of Eq.(16) yields optimal values for d0 (constant) and d1(γ;w), d2(γ;u); and
hence specifies the correct form of the constitutive response described by Eq.(14).

Polynomial Coefficients. Other families of approximating functions can be used in place of ANN’s.
For comparison purposes, we present a simple variation, utilizing quadratic functions, i.e.

d0 = τ0; d1(γ;w) = w0 + w1γ + w2γ
2; d2(γ) = u0 + u1γ + u2γ

2. (17)

The error function is

J(d0, w, u) =
∑

(a,Ŷ )

(
Ŷ σ0 −

(
d0 + d1(

Ŷ σ0

G
;w)Ŷ σ0

1
Ga

+ d2(
Ŷ σ0

G
;u)Ŷ σ0

1
Ga2

))2

(18)

which is identical to that of the neural case. However, minimization of Eq.(18) is much easier than
that of Eq.(16), because the w, u parameters occur in a linear manner in Eq.(17). Hence Eq.(18) can
be minimized by simple matrix inversion. Again, the optimal values of d0 (constant) and d1(γ;w),
d2(γ;u) specify the correct form of the constitutive equation.

2.3 Numerical Results

Here we use the Morrison / Richards data regarding the yield stress problem and we present three
approximating schemes: using constant, neural and polynomial coefficients.

Since only eight pairs (a, Ŷ ) of experimental data are available we have generated additional
“pseudo-experimental” data by the following interpolation procedure: first the experimental data are

4



fitted by a third order polynomial; and then the polynomial is sampled with a constant, small step
da (da=0.011407); hence 1000 input-output (a, Ŷ ) pairs are obtained. Having obtained a large set of
(a, Ŷ ) pairs, we compute the corresponding values for the remaining necessary data: Y , φ, γ, using the
relations: Y = Ŷ · σ0, φ = Y

Ga , γ = φ · a. The parameters σ0 and G are known from materials tables.
In conclusion, our data consist of values for σ0 and G and 1000 (a, Ŷ , Y , φ, γ) quintuples.

We solve three optimization problems, one corresponding to each of the three cost functions of
eqs.(13), (16), (18). The following remarks can be made regarding each problem.

1. Constant coefficients. We need to estimate four coefficients: Λ, d0, d1, d2. The method used
for minimization is the Levenberg-Marquardt algorithm [16].

2. Neural coefficients. The topology of the ANN’s used is 1-2-1 (i.e. one input unit, two hidden
units and one output units). The hidden units have sigmoid transfer function and the output unit
has linear transfer function. The total number of weights is then 12; including the τ0 variable, we
have a total of 13 parameters to estimate: τ0, w (six-element vector) and u (six-element vector).
Optimization is again performed by the Levenberg-Marquardt algorithm.

3. Polynomial coefficients. In this case we have a total of seven parameters to select: τ0, w (three-
element vector) and u (three-element vector). Optimization is performed by matrix inversion
(matrix pseudoinverse).

Results are presented in Table 1. Since each optimization problem has a different output, we
modify the results so that they are directly comparable. In particular, in Table 1 we present: the
kind of coefficients used, the root of the normalized total square error; the minimum and maximum
value of c1 and c2. Note that the minimum and maximum value of c1 and c2 are equal in the case
of constant coefficients (first column) while they differ in the case of functional coefficients (second
and third column). In Figs.2, 3, 4 we present the actual and estimated a/Ŷ curves; in each figure the

estimated curve is obtained from the respective values of c1 and c2.
The following remarks can be made regarding the results. First, all three methods give quite small

error (see Figures 2, 3, 4). Second, all three methods give a value of Λ which is close to theoretical
predictions (Tresca, von Karman). Third, while each method uses a quite different parametrization, the
obtained values for c1 and c2 are close for all methods. This shows that the obtained values correspond
to physically meaningful coefficients of the gradient constitutive law, rather than to mathematical
artefacts.

3 Continuing Yielding

In this section we present an additional example of gradient constitutive modeling and obtain a con-
stitutive equation which describes the strain / torque behavior of thin copper wires under rotational
stress.

3.1 Description of the Problem

The data used [15] describe the strain / torque behavior of thin copper wires under rotational stress.
Specifically, we have measurements of the quantity Q(γs, a)/a3 where Q denotes torque, γs denotes
surface strain and a denotes the radius of the specimen. If we plot Q(γs, a)/a3 vs. γs for a particular
value of a, we obtain the so-called stress flow curve. In other words, the data is a collection of stress flow
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curves of the form (γ(i)
j , a(i),

Q
(i)
j

(a(i))3
), i = 1, ..., I and j = 1, ..., J . The data were collected by performing

I experiments; in the i-th experiment (corresponding to a specimen of radius a(i)) J pairs (γ(i)
j ,

Q
(i)
j

(a(i))3
)

were collected; the sequence (γ(i)
1 ,

Q
(i)
1

(a(i))3
), ... , (γ(i)

J ,
Q

(i)
J

(a(i))3
) describes the strain / torque curve for the

specimen of radius a(i). The stress flow data obtained from thin high purity copper wires (with radius
in the range 6 µm - 85 µm) are presented in Figure 5.Our goal is to determine the constitutive equation
connecting stress and strain. In particular, we augment the classic stress/strain relationship by a neural
gradient term in order to obtain good agreement to the observed torque data.The classic relationship
is

τ0 = K(γ0 + γ)N , (19)

and the proposed augmentation is

τ = K · (γ0 + γ)N +
s(γ;w)
γ1−N

· ∇2γ; (20)

here s(γ;w)
γ1−N is th egradient coefficient; in particular s(γ;w) is the neural part of the gradient coefficient

(which will be further discussed later) and w is the weight vector. We also use the relations γ = φr
and ∇2γ = φ

r . Recall that γs is strain at the surface of the speicmen, i.e. at points with r = a. Then

φ =
γ

r
=

γs

a
⇒
{

γ = γs
a r

φ
r = γs

ar

. (21)

From eqs.(20), (21) we obtain

τ(γ, r;w,K, γ0, N) = K · (γ0 + γ)N +
s(γ;w)
γ1−N

· γs

ar
; (22)

where γ, r are the independent variables and w,K, γ0, N are parameters of the constitutive equation.
For the torque we get

Q(γs, a;w,K, γ0, N)
a3

=
2π

a3

∫ a

0
τ(γ, r;w,K, γ0, N)r2dr ⇒

Q(γs, a;w,K, γ0, N)
a3

=
2π

a3

∫ a

0

[
K(γ0 +

γs

ar
)N · r2 +

s(γs
ar ;w)(γs

ar

)1−N
· γs

ar
· r2

]
dr ⇒ (23)

Q(γs, a;w,K, γ0, N)
a3

=
2π

a3

∫ a

0

[
K(γ0 +

γs

ar
)N · r2 + s(

γs

ar
;w) ·

(
γs

a

)N

· rN

]
dr. (24)

The constitutive equation will be obtained by detrmining optimal values for the parameters w,K, γ0, N .
This will be achieved by minimizing the cost function

J(w,K, γ0, N) =
∑
i,j

∣∣∣∣∣∣ Q
(i)
j

(a(i))3
−

Q(γ(i)
sj , a(i);w,K, γ0, N)

(a(i))3

∣∣∣∣∣∣
2

(25)

Rather than minimizing J(w,K, γ0, N) directly we proceed in two stages. First we obtain ap-
propriate values for the “classical” parameters K, γ0, N ; then considering these given, we optimize
J(w,K, γ0, N) with respect to w.
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3.2 Form of Gradient Coefficients

Let us first address the issue of obtaining appropriate values for K, γ0, N . Eq.(22) can be rewritten in
the following forms:

τ(
γs

a
, r;w,K, γ0, N) = K · (γ0 +

γs

a
r)N + s(

γs

a
r;w) ·

(
γs

a

)N

· 1
r2−N

; (26)

τ(γ, r;w,K, γ0, N) = K · (γ0 + γ)N + s(γ;w) · γN · 1
r2−N

. (27)

As r tends to infinity, a sigmoid neural function s(γs
a r;w) tends to a constant value. Consequently, we

see from Eq.(26) that the influence of the gradient term on τ(γ, r) goes to zero as r goes to infinity.
Hence, as r goes to infinity, the influence of the gradient term on Q(γs, a) goes to zero. For large a
(and so for large r) the main part of the torque will be produced by the K(γ0 + γs

a r)N term. Hence, the
appropriate values for K, γ0, N can be obtained by minimizing the discrepancy between the observed
torque and the one obtained by the classical law.

The “classical” torque is given by

Q̃(γs, a;K, γ0, N)
a3

=
2π

a3

∫ a

0
K(γ0 +

γs

ar
)N · r2 · dr. (28)

Hence we minimize the auxiliary cost function

J̃(K, γ0, N) =
∑
j

∣∣∣∣∣∣ Q
(i)
j

(a(i))3
− Q̃(γs, a

(i);K, γ0, N)
(a(i))3

∣∣∣∣∣∣
2

(29)

using the value a(i) = 85 (corresponding to a thick wire with negligible size effects).
Having obtained values for K, γ0, N , we now derive appropriate values for w in s(γs

ar ;w) ·
(γs

a

)N ·rN .
This term appears in the integral of Eq.(24) and supplements the “classical” torque generated by the
K · (γ0 + γs

a r)N term. It must satisfy several requirements.

1. As can be seen from Figure 5, as a decreases, Q(γs,a;w,K,γ0,N)
a3 (given by the integral of Eq.(24))

increases. For the value of the integral to increase, it is necessary that the term s(γs
ar ;w)·

(γs
a

)N ·rN

is positive.

2. As a increases, Q(γs, a;w,K, γ0, N) must decrease to the classical value Q̃(γs, a;K, γ0, N); hence
s(γs

ar ;w) ·
(γs

a

)N · rN must go to zero.

3. Finally, for every r, τ(γ, r) = K(γ0 + γ)N + s(γ;w) · γN · 1
r2−N (as given by Eq.(26)) must be

increasing with γ.

In order to satisfy these requirements, let us first look at the form of s(γ;w). We use a very simple,
one-neuron ANN of the form:

s(γ;w) = w1 ·
e−w2γ−w3

e−w2γ−w3 + ew2γ+w3
.

To satisfy requirement (1), we must have w1 > 0. Requirement (2) will be automatically satisfied: recall
that s(γ;w) = s(γs

a r;w) and so, as a tends to a large value, s(γ;w) tends to s(0;w), i.e. a fixed value;
and therefore s(γs

ar ) ·
(γs

a

)N · rN goes to zero. For requirement (3) to be satisfied, we have to consider
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the graph of s(γ;w); this will be either that of Figure 6 (for w2 < 0) or that of Figure 7 (for w2 > 0).
Now, in case w2 > 0, s(γ;w) will be decreasing, while K(γ0 +γ)N will be increasing (both with respect
to γ) and their addition (which is in effect τ(γ, r)) may have a minimum, which is undesirable. If, on
the other hand, w2 < 0, then s(γ;w) will be increasing with γ and so will be s(γ) · γN · 1

r2−N ; since
K(γ0 + γ)N is also increasing with γ, it follows that τ(γ, r) will also be increasing with γ, as desired.

In conclusion, we obtain optimal values for w = [w1, w2, w3] by minimizing J(w,K, γ0, N) (as given
by Eq.(25)) with respect to w, subject to the constraints w1 > 0 and w2 < 0.

3.3 Numerical Results

The above considerations determine our optimization / estimation strategy as follows.
Choose K, γ0, N so as to minimize the total square error J̃(K, γ0, N) as given by Eq.(29). This yields

the following values K =118, γ0 =0.006 and N =0.27. In Figure 8 we plot τ0(γ;K, γ0, N) = K(γ0+γ)N

and in Figure 9 we plot the observed Q and the estimated Q̃. Notice that, while Q and Q̃ show large
discrepancies for a = 6, 7.5, 10 they agree very closely for a = 85, as required.

Choose w = [w1, w2, w3] so as to minimize the total square error total square error J(w,K, γ0, N)
as given by Eq.(25), with respect to w and under the constraints w1 > 0 and w2 < 0. In Figure 10 we
plot the resulting τ(γs

a , r;w,K, γ0, N) and in Figure 11 we plot the true Q and the estimated Q. It
can be seen that the estimated stress / flow curves are in good agreement with the observed ones. In
fact the average relative error is 6.35%.

4 Conclusion

In this paper, we augment the calssical constitutive equations with gradient terms and neural coeffi-
cients. Our investigation indicates that this approach accurately descibes size effects, which cannot
be described by the classical theory. Therefore, it appears that there is considerable potential for
ANN-based constitutive modeling.

The next step in our exploration will be the use of ANN’s to approximate more complicated data
sets. Of particular interest is the case of high dimensional data. Even more challenging would be
dynamic phenomena, which involve an additional time variable t (thus further increasing the dimen-
sionality of the data). If we follow the above direction, two issues present themselves. First, it may
be difficult to obtain true experimental data for complicated, “high dimensional” experiments. In this
case, it may be reasonable, as a first step, to use “pseudo-experimental” data obtained by numerical
simulation. The second issue is computational: it may be hard to obtain near optimal solutions for
complicated modeling tasks. This may necessitate the use of more complicated optimization algorithms
(e.g. genetic algorithms [17]).
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const neural polyn.
Error 0.21% 0.18% 0.16%
C1MIN -0.4857 -0.4862 -0.5069
C1MAX -0.4857 -0.4835 -0.4548
C2MIN 0.3629 0.3512 0.3060
C2MAX 0.3629 0.3604 0.3160

Table 1: Estimation of yield initiation curves
In Table 1 we can see the normalized estimation errors of the yield initiation curves estimation
for various function families (some additional information is included).

a Y(a)/sigma
a Y(a)/sigma

1.293 0.609
1.386 0.608
1.543 0.608
1.626 0.607
3.533 0.571
6.006 0.545
7.163 0.542
12.7 0.527

Figure 1
Plot of the Morrison yield initiation data.
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a Y(a) true Y(a) est
1.29 0.61 0.61
1.38 0.61 0.61
1.54 0.61 0.61
1.62 0.60 0.61
3.53 0.57 0.57
6.06 0.55 0.55
7.17 0.54 0.54

12.70 0.53 0.53

Figure 2: True and estimated yield initiation data, using constant coefficients

a Y(a) true Y(a) est
1.29 0.61 0.61
1.38 0.61 0.61
1.54 0.61 0.61
1.62 0.60 0.61
3.53 0.57 0.57
6.06 0.55 0.55
7.17 0.54 0.54

12.70 0.53 0.53

Figure 3: True and estimated yield initiation data, using neural coefficients

a Y(a) true Y(a) est
1.29 0.61 0.60
1.38 0.61 0.61
1.54 0.61 0.61
1.62 0.60 0.61
3.53 0.57 0.57
6.06 0.55 0.55
7.17 0.54 0.54

12.70 0.53 0.53

Figure 4: True and estimated yield initiation data, using polynomial coefficients
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gamma 6 ìm 7.5 ìm
0 180 150

0.05 356 251
0.1 426 291

0.15 458 321
0.2 485 352
0.3 514 387
0.4 541 416
0.5 557 435
0.6 573 452
0.7 589 467
0.8 600 481
0.9 616 490

1 627 496
1.2 648 514

Figure 5: Plot of the Fleck stress flow data.
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0.2 0.689974 -0.4
0.3 0.768525 -0.6
0.4 0.832018 -0.8
0.5 0.880797 -1
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Figure 6: Sigmoid, w2<0
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-1.2 0.991837 -2.4 w1 w2 w3
-1.1 0.987872 -2.2 1 2 0

-1 0.982014 -2
-0.9 0.973403 -1.8
-0.8 0.960834 -1.6
-0.7 0.942676 -1.4
-0.6 0.916827 -1.2
-0.5 0.880797 -1
-0.4 0.832018 -0.8
-0.3 0.768525 -0.6
-0.2 0.689974 -0.4
-0.1 0.598688 -0.2

0 0.5 0
0.1 0.401312 0.2
0.2 0.310026 0.4
0.3 0.231475 0.6
0.4 0.167982 0.8
0.5 0.119203 1
0.6 0.083173 1.2
0.7 0.057324 1.4
0.8 0.039166 1.6
0.9 0.026597 1.8

1 0.017986 2
1.1 0.012128 2.2

Figure 7: Sigmoid, w2>0

0.00 29.65 29.65 29.65 29.65 29.65 29.65 29.65 29.65
0.05 54.19 54.19 54.19 54.19 54.19 54.19 54.19 54.19
0.10 64.37 64.37 64.37 64.37 64.37 64.37 64.37 64.37
0.15 71.45 71.45 71.45 71.45 71.45 71.45 71.45 71.45
0.20 77.02 77.02 77.02 77.02 77.02 77.02 77.02 77.02
0.30 85.71 85.71 85.71 85.71 85.71 85.71 85.71 85.71
0.40 92.51 92.51 92.51 92.51 92.51 92.51 92.51 92.51
0.50 98.18 98.18 98.18 98.18 98.18 98.18 98.18 98.18
0.60 103.07 103.07 103.07 103.07 103.07 103.07 103.07 103.07
0.70 107.41 107.41 107.41 107.41 107.41 107.41 107.41 107.41
0.80 111.32 111.32 111.32 111.32 111.32 111.32 111.32 111.32
0.90 114.90 114.90 114.90 114.90 114.90 114.90 114.90 114.90
1.00 118.19 118.19 118.19 118.19 118.19 118.19 118.19 118.19
1.20 124.12 124.12 124.12 124.12 124.12 124.12 124.12 124.12

Figure 8: Plot of tau0
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0.00 180.00 63.00 0.00 29.65 29.65 29.65 29.65 29.65
0.05 356.00 107.00 0.05 1725.16 239.85 121.03 88.29 74.82
0.10 426.00 127.00 0.10 1843.98 262.11 135.56 100.69 86.35
0.15 458.00 140.00 0.15 1954.41 280.67 146.77 109.88 94.70
0.20 485.00 151.00 0.20 2058.68 297.21 156.29 117.47 101.49
0.30 514.00 168.00 0.30 2249.71 326.15 172.27 129.87 112.43
0.40 541.00 181.00 0.40 2416.69 350.75 185.48 139.94 121.20
0.50 557.00 192.00 0.50 2559.23 371.63 196.62 148.40 128.56
0.60 573.00 202.00 0.60 2678.31 389.21 206.08 155.63 134.87
0.70 589.00 210.00 0.70 2775.99 403.92 214.16 161.87 140.36
0.80 600.00 218.00 0.80 2854.95 416.17 221.07 167.32 145.20
0.90 616.00 225.00 0.90 2918.11 426.36 227.02 172.10 149.50
1.00 627.00 231.00 1.00 2968.24 434.86 232.19 176.36 153.38
1.20 648.00 243.00 1.20 3039.14 448.01 240.72 183.61 160.11

0.00 150.00 63.00
0.05 251.00 107.00
0.10 291.00 127.00
0.15 321.00 140.00
0.20 352.00 151.00
0.30 387.00 168.00
0.40 416.00 181.00
0.50 435.00 192.00
0.60 452.00 202.00 Figure 9: Torque with tau0 only
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0.20 203.00 151.00 Figure 10: tau with gradient
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0.6 452.00 440.14 Figure 11: Torque with gradient
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