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Abstract

On a generalized deMorgan lattice (X,≤,∨,∧,′ ) we introduce a family of join hyperoperations
∗p, parametrized by a parameter p ∈ X . As a result we obtain a family of join spaces (X, ∗p). We
show that: for every a, b ∈ X the family {a∗p b}p∈X can be considered as the p-cuts of a L-fuzzy set
a ∗ b; in this manner we synthesize a L-fuzzy hyperoperation ∗ which takes pairs from X to L-fuzzy
subsets of X . We then show that (X, ∗p) is a L-fuzzy hypergroup (in the sense of Corsini) and can
be considered as a L-fuzzy join space. Furthermore, a ∗ b is a L-fuzzy interval for all a, b ∈ X .

AMS Classification: 06B99, 06D30, 08A72, 20N20.

1 Introduction

In this paper we present an algebraic structure which is related to several themes from the theories of
hypergroups, join spaces and fuzzy sets. Let us first briefly review some work on these themes.

Hypergroups have been introduced in [14] and studied extensively by many mathematicians. A
comprehensive review of the theory of hypergroups appears in [3].

Join spaces have been introduced by Jantosciak and Prenowitz [18]. The topic is covered in con-
siderable detail in [19]. Jantosciak has noted that join spaces are a special case of hypergroups [9].

In recent years there has been considerable activity on fuzzy algebraic hyperstructures. Corsini and
Zahedi introduced some crisp algebraic hyperstructures related to fuzzy sets [5, 6, 30]. More recently,
the concept of fuzzy hypergroups has been introduced in [4]; in fact the closely related concept of fuzzy
polygroups has been introduced somewhat earlier in [28, 29]. Fuzzy hyperrings are studied in [7].

Fuzzy lattices have been introduced in [27] and studied in more detail in [1]. L-fuzzy lattices have
been studied in [23] and [24]. Fuzzy intervals (in a lattice theoretic sense, as a special case of fuzzy
lattices) are studied in [13].

In this paper we do the following. On a generalized deMorgan lattice (X,≤,∨,∧,′ ) we introduce a
family of join hyperoperations ∗p, parametrized by a parameter p ∈ X. As a result we obtain a family
of join spaces (X, ∗p). We show that: for every a, b ∈ X the family {a ∗p b}p∈X can be considered as
the p-cuts of a L-fuzzy set a ∗ b; in this manner we synthesize a fuzzy hyperoperation ∗ which takes
pairs from X to L-fuzzy subsets of X. We then show that (X, ∗) is a L-fuzzy hypergroup (in the sense
of Corsini) and also a L-fuzzy join space. Furthermore, a ∗ b is a L-fuzzy interval for all a, b ∈ X.

2 Preliminaries

In what follows, (X,≤,∨,∧,′ ) will be a complete generalized de Morgan lattice, i.e. a complete lattice
satisfying the following definition.
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Definition 2.1 A generalized deMorgan lattice is a structure (X,≤,∨,∧,′ ), where (X,≤,∨,∧) is a
distributive lattice with minimum element 0 and maximum element 1; the symbol ′ denotes an unary
operation (“negation”); and the following properties are satisfied.

1. For all x ∈ X, Y ⊆ X we have x∧(∨y∈Y y) = ∨y∈Y (x∧y), x∨(∧y∈Y y) = ∧y∈Y (x∨y). (Complete
distributivity).

2. For all x ∈ X we have: (x′)′ = x. (Negation is involutory).

3. For all x, y ∈ X we have: x ≤ y ⇒ y′ ≤ x′. (Negation is order reversing).

4. For all Y ⊆ X we have (∨y∈Y y)′ = ∧y∈Y y′, (∧y∈Y y)′ = ∨y∈Y y′ (Complete deMorgan laws).

A fuzzy set is a mapping from X to the interval of real numbers [0,1]; a L-fuzzy set is a mapping
from X to a set L, where (L,
) is a complete lattice. In this paper we will be concerned with L-fuzzy
sets which map X to itself. The following definitions and notation will be used.

1. The collection of all crisp subsets of X is denoted by P(X) (the power set of X).

2. The collection of all L-fuzzy sets (i.e. functions M : X → X) is denoted by F(X).

3. A (crisp) hyperoperation is a mapping ◦ : X×X→ P(X); a L-fuzzy hyperoperation is a mapping
◦ : X×X→ F(X).

4. An order is introduced in F(X) using the “pointwise” order of (X,≤,∨,∧) (the symbols ≤,∨,∧
will be used without danger of confusion), i.e. for M,N ∈ F(X) we write M ≤ N iff for all x ∈ X
we have: M(x) ≤ N(x).

5. For all M,N ∈ F(X): we define the L-fuzzy set M ∨N by: (M ∨N)(x) = M(x)∨N(x); we define
the L-fuzzy set M ∧N by: (M ∧N)(x) = M(x)∧N(x). It is well known [15] that ≤ is an order on
F(X) and that (F(X),≤,∨,∧) is a complete and distributive lattice with sup(M,N) = M ∨ N ,
inf(M,N) = M ∧ N .

6. For all M,N ∈ P(X) we write M ∼ N iff ∃x ∈ M ∩ N . For M,N ∈ F(X) and p ∈ X we write
M ∼p N iff ∃x ∈ X : M(x) ∧ N(x) ≥ p.

7. Given a L-fuzzy set M : X → X, the p-cut of M is denoted by Mp and defined by Mp
.= {x :

M(x) ≥ p}.
8. We use the standard notation of algebraic hyperstructures, whereby for any operation (resp.

hyperoperation) ◦ : X×X→X (resp. ◦ : X×X→ P(X)) and any A,B ∈ P(X), we define
A ◦ B

.= ∪a∈A,b∈Ba ◦ b.

9. The collection of crisp intervals of X is denoted by I(X) and defined by I(X) .= {[a, b]}a,b∈X ⊆
P(X); the empty set ∅ is also considered a member of I(X) and can be symbolized by ∅ = [a, b]
with any a, b such that a � b.

Let us also recall a few well known facts about closed intervals.

1. Since ⊆ is an order on P(X), it is also an order on I(X) ⊆ P(X).

2. Take any two sets A = [a1, a2], B = [b1, b2] ∈ I(X). Note that

[a1, a2] ⊆ [b1, b2] ⇔ (b1 ≤ a1 ≤ a2 ≤ b2) .
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3. With ∩ denoting the usual set theoretic intersection we have

[a1, a2] ∩ [b1, b2] = [a1 ∨ b1, a2 ∧ b2].

4. Also, for any A,B ⊆ X define the family of sets Q(A,B) .= {C : C ∈ I(X), A ⊆ C and B ⊆ C
}; next define the operation .∪ on elements of I(X) by

A
.∪ B = ∩C∈Q(A,B)C.

5. It is easy to prove that [a1, a2]
.∪ [b1, b2] = [a1 ∧ b1, a2 ∨ b2] and that (I(X),⊆,

.∪,∩) is a lattice.
If (X,≤,∨,∧) is complete (which is assumed throughout this paper) then (I(X),⊆,

.∪,∩) is also
complete.

Finally, the following properties of ∨ and ∧ acting on intervals of a distributive lattice will be used
in the sequel.

Proposition 2.2 For all a, b, x, y ∈ X such that x ≤ y, a ≤ b we have:

(i) a ∨ [x, y] = [a ∨ x, a ∨ y];

(ii) a ∧ [x, y] = [a ∧ x, a ∧ y];

(iii) [a, b] ∨ [x, y] = [a ∨ x, b ∨ y];

(iv) [a, b] ∧ [x, y] = [a ∧ x, b ∧ y].

Proof. In [11].
The following propositions describe some properties of p-cuts. Their proofs can be found in [15].

Proposition 2.3 Take any M ∈ F with p-cuts {Mp}p∈X . Then we have the following.
(i) For all p, q ∈ X we have: p ≤ q ⇒ Mq ⊆ Mp.
(ii) For all P ⊆ X we have: ∩p∈P Mp = M∨P .
(iii) M0 = X.

Proposition 2.4 Consider a family of sets {M̃p}p∈X which satisfy the following.
(i) For all p, q ∈ X we have: p ≤ q ⇒ M̃q ⊆ M̃p.
(ii) For all P ⊆ X we have: ∩p∈P M̃p = M̃∨P .
(iii) M̃0 = X.
Define the L-fuzzy set M as follows: for all x ∈ X define M(x) .= ∨{p : x ∈ M̃p}. Then for all

p ∈ X we have Mp = M̃p.

Proposition 2.5 For any fuzzy sets M,N ∈ F(X) we have: M = N ⇔ (∀p ∈ X we have Mp = Np).

3 The p-Join and p-Extension Hyperoperations

In this section we define a family of crisp join and extension hyperoperations.
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3.1 The p-Join

For every p ∈ X we define a hyperoperation ∗p : X × X → I(X) as follows.

Definition 3.1 For every p ∈ X and for all a, b ∈ X, the p-join hyperoperation is denoted by ∗p and
defined by

a ∗p b
.= [a ∧ b ∧ p, a ∨ b ∨ p′].

The following property of the join will be used in the sequel.

Proposition 3.2 For all a, b, c, d, p ∈ X such that a ≤ b, c ≤ d we have

(i) [a, b] ∗p c = [a ∧ c ∧ p, b ∨ c ∨ p′].

(ii) [a, b] ∗p [c, d] = [a ∧ c ∧ p, b ∨ d ∨ p′].

Proof. Choose any a, b, c, d, p ∈ X such that a ≤ b, c ≤ d.
To prove (i), first choose any u ∈ [a, b] ∗p c. Then ∃x ∈ [a, b] such that u ∈ x ∗p c. I.e.

∃x :
a ≤ x ≤ b
x ∧ c ∧ p ≤ u ≤ x ∨ c ∨ p′

}
⇒

∃x : a ∧ c ∧ p ≤ x ∧ c ∧ p ≤ u ≤ x ∨ c ∨ p′ ≤ b ∨ c ∨ p′ ⇒ u ∈ [a ∧ c ∧ p, b ∨ c ∨ p′].

Hence u ∈ [a ∧ c ∧ p, b ∨ c ∨ p′]. It follows that [a, b] ∗p c ⊆ [a ∧ c ∧ p, b ∨ c ∨ p′].
Second, choose any v ∈ [a∧ c∧ p, b∨ c∨ p′]. Set zv = (v ∨ a)∧ b = (v ∧ b)∨ a. So a ≤ (v ∧ b)∨ a =

zv = (v ∨ a) ∧ b ≤ b ⇒
zv ∈ [a, b]. (1)

Also, zv ∧ c∧ p = (v∨a)∧ b∧ c∧ p = (v∧ b∧ c∧ p)∨ (a∧ b∧ c∧ p). But v∧ b∧ c∧ p ≤ v and a∧ b∧ c∧ p
= a ∧ c ∧ p ≤ v. Hence

zv ∧ c ∧ p ≤ v (2)

Similarly, zv ∨ c ∨ p′ = (v ∧ b) ∨ a ∨ c ∨ p′ = (v ∨ a ∨ c ∨ p′) ∧ (b ∨ a∨ c ∨ p′). But v ∨ a ∨ c ∨ p′ ≥ v and
b ∨ a ∨ c ∨ p′ = b ∨ c ∨ p′ ≥ v. Hence

v ≤ zv ∨ c ∨ p′. (3)

From (2)-(3) we see that v ∈ zv ∗p c which, together with (1) implies that v ∈ [a, b] ∗p c. Hence
[a ∧ c ∧ p, b ∨ c ∨ p′] ⊆ [a, b] ∗p c.

We conclude that [a ∧ c ∧ p, b ∨ c ∨ p′] = [a, b] ∗p c, which proves (i); (ii) is proved similarly.
We are now ready to present the basic properties of the p-join hyperoperation.

Proposition 3.3 The following properties hold for any a, b, c, p, q ∈ X.

(i) a ∈ a ∗p a; a, b ∈ a ∗p b.

(ii) a ∗p b = b ∗p a.

(iii) (a ∗p b) ∗p c = a ∗p (b ∗p c).

(iv) a ∗p X = X.
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Proof. Choose any a, b, c, p, q ∈ X.
(i) and (ii) are obvious.
For (iii), note that (a ∗p b) ∗p c = [a ∧ b ∧ p, a ∨ b ∨ p′] ∗p c = [a ∧ b ∧ c ∧ p, a ∨ b ∨ c ∨ p′] (where we

have used Proposition 3.2). Similarly a ∗p (b ∗p c) = a ∗p [b∧ c∧ p, b∨ c∨ p′] = [a∧ b∧ c∧ p, a∨ b∨ c∨ p′]
and we are done.

For (iv), clearly we have a ∗p X ⊆ X. On the other hand, taking any x ∈ X we have x ∈ a ∗p x.
Hence X = ∪x∈X{x} ⊆ ∪x∈Xa ∗p x = a ∗p X and we are done.

Proposition 3.4 (i) For every p ∈ X, (X, ∗p) is a commutative hypergroup
(ii) For every a, b ∈ X, (a ∗p b, ∗p) is a commutative sub-hypergroup of X.

Proof. Choose any p ∈ X. The proof of (i) is immediate by Proposition 3.3 and the definition of
hypergroup [3].

For (ii), choose any a, b ∈ X. We need to prove: (ii.1) x, y ∈ a ∗p b ⇒ x ∗p y ⊆ a ∗p b and (ii.2)
x ∈ a ∗p b ⇒ x ∗p a ∗p b = a ∗p b. Regarding (ii.1) we have

a ∧ b ∧ p ≤ x ≤ a ∨ b ∨ p′

a ∧ b ∧ p ≤ y ≤ a ∨ b ∨ p′

}
⇒ a ∧ b ∧ p ≤ x ∧ y ∧ p ≤ x ∨ y ∨ p′ ≤ a ∨ b ∨ p′ ⇒

x ∗p y ⊆ a ∗p b.

Regarding (i.2) we have a ∧ b ∧ p ≤ x ≤ a ∨ b ∨ p′, which implies x ∗p a ∗p b = [x ∧ a ∧ b ∧ p ,
x ∨ a ∨ b ∨ p′] = [a ∧ b ∧ p , a ∨ b ∨ p′] = a ∗p b.

Proposition 3.5 For all a, b, c, p ∈ X, we have a ∗p (b ∗q c) = (a ∗p b) ∗q c = a ∗p∧q b ∗p∧q c.

Proof. Choose any a, b, c, p ∈ X . We have

a ∗p (b ∗q c) = a ∗p [b ∧ c ∧ q, b ∨ c ∨ q′] = [a ∧ b ∧ c ∧ p ∧ q, a ∨ b ∨ c ∨ p′ ∨ q′] = a ∗p∧q b ∗p∧q c

(where we have used p′ ∨ q′ = (p ∧ q)′); similarly

(a ∗p b) ∗q c = [a ∧ b ∧ p, a ∨ b ∨ p′] ∗q c = [a ∧ b ∧ c ∧ p ∧ q, a ∨ b ∨ c ∨ p′ ∨ q′] = a ∗p∧q b ∗p∧q c.

3.2 The p-Extension

We will now introduce the p-extension hyperoperation which is derived, in the manner of Prenowitz
[19], from the p-join hyperoperation.

Definition 3.6 For every p ∈ X and for all a, b ∈ X, the p-extension hyperoperation is denoted by
a/pb and is defined by:

a/pb
.= {x : a ∈ x ∗p b} = {x : x ∧ b ∧ p ≤ a ≤ x ∨ b ∨ p′}.

It is seen immediately that for any a, b ∈ X we have a ∈ a/pb. In addition, the extension hyperop-
eration enjoys the join property [19].

Proposition 3.7 For all a, b, c, d ∈ X we have: (a/pb) ∼ (c/pd) ⇒ a ∗p d ∼ b ∗p c.
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Proof. Suppose we have (a/pb) ∼ (c/pd). Then there exists some x such that

x ∈ a/pb ∩ c/pd ⇒
{

a ∈ x ∗p b
c ∈ x ∗p d

}
⇒

{
x ∧ b ∧ p ≤ a ≤ x ∨ b ∨ p′

x ∧ d ∧ p ≤ c ≤ x ∨ d ∨ p′ .

Now, we have

a ≤ x ∨ b ∨ p′ ⇒ a ∧ d ≤ (x ∨ b ∨ p′) ∧ d = (x ∧ d) ∨ ((b ∨ p′) ∧ d) ⇒ a ∧ d ≤ (x ∧ d) ∨ (b ∨ p′) ⇒
a ∧ d ∧ p ≤ (

(x ∧ d) ∨ (b ∨ p′)
) ∧ p. (4)

On the other hand,
x ∧ d ∧ p ≤ c ⇒ x ∧ d ∧ p ≤ c ∧ p ≤ (c ∨ p′) ∧ p (5)

From (4) and (5) we obtain

a ∧ d ∧ p ≤ (x ∧ d ∧ p) ∨ ((b ∨ p′) ∧ p) ⇒ a ∧ d ∧ p ≤ ((c ∨ p′) ∧ p) ∨ ((b ∨ p′) ∧ p) ⇒
a ∧ d ∧ p ≤ ((c ∨ p′) ∨ (b ∨ p′)) ∧ p ≤ b ∨ c ∨ p′. (6)

In a similar manner we have

c ≤ x ∨ d ∨ p′ ⇒ c ∧ b ≤ (x ∨ d ∨ p′) ∧ b = (x ∧ b) ∨ ((d ∨ p′) ∧ b) ⇒
c ∧ b ≤ (x ∧ b) ∨ (d ∨ p′) ⇒ c ∧ b ∧ p ≤ (

(x ∧ b) ∨ (d ∨ p′)
) ∧ p. (7)

On the other hand,
x ∧ b ∧ p ≤ a ⇒ x ∧ b ∧ p ≤ a ∧ p ≤ (a ∨ p′) ∧ p (8)

From (7) and (8) we obtain

c ∧ b ∧ p ≤ (x ∧ b ∧ p) ∨ ((d ∨ p′) ∧ p) ⇒ c ∧ b ∧ p ≤ ((d ∨ p′) ∧ p) ∨ ((a ∨ p′) ∧ p) ⇒
c ∧ b ∧ p ≤ ((d ∨ p′) ∨ (a ∨ p′)) ∧ p ≤ a ∨ d ∨ p′. (9)

From (6) and (9) we have that

(a ∧ d ∧ p) ∨ (c ∧ b ∧ p) ≤ (a ∨ d ∨ p′) ∧ (b ∨ c ∨ p′)

and so the interval

a ∗p d ∩ b ∗p c = [(a ∧ d ∧ p) ∨ (c ∧ b ∧ p), (a ∨ d ∨ p′) ∧ (b ∨ c ∨ p′)]

is nonempty, i.e. b ∗p c ∼ a ∗p d.

Proposition 3.8 For all p ∈ X, (X,≤, ∗p) is a join space.

Proof. This follows from the definition of join space [19] and from Propositions 3.3, 3.7.
By its definition, a ∗p b is always a closed interval. The same is true of a/pb as seen in the next

proposition. Note the critical use of complete distrubutivity.

Proposition 3.9 For all p ∈ X, for all a, b ∈ X, the set a/pb is a closed interval. In particular

a/pb = [p1, p2]

where
p1 = ∧{x : (b ∨ p′) ∨ x ≥ a}, p2 = ∨{x : (b ∧ p′) ∧ x ≤ a}.
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Proof. Choose any a, b, p ∈ X . It is well known [2] that a completely distributive lattice is
Brouwerian (i.e. that for any u,w ∈ X the set {z : u ∧ z ≤ w} has a maximum element) and dually
Brouwerian (i.e. that for any u,w ∈ X the set {z : u ∨ z ≥ w} has a minimum element). Since (X,≤)
has been assumed completely distributive, it is Brouwerian and dually Brouwerian.

Define Qab = {x : (b∨p′)∨x ≥ a}, then (according to the previous remarks) Qab = [p1, 1]. Similarly,
define Qab = {x : (b ∧ p) ∧ x ≤ a}, then, according to the previous remarks Qab = [0, p2]. Now a/pb =
{x : b ∧ x ∧ p′ ≤ a ≤ b ∨ x ∨ p′} = Qab ∩ Qab = [p1, 1] ∩ [0, p2] = [p1, p2].

A special case of interest is the following.

Proposition 3.10 If (X,≤,∧,∨,′ ) is Boolean, then a/pb = a ∗p b′.

Proof. Choose any a, b, p ∈ X .
Take any x ∈ a/pb, i.e. x∧ b∧p ≤ a ≤ x∨ b∨p′. Now a ≤ x∨ b∨p′ ⇒ a∧ b′∧p ≤ (x∨ b∨p′)∧ b′∧p

= (x∨ b∨ p′)∧ (b∨ p′)′ = (x∧ (b∨ p′)′) ∨ ((b ∨ p′)∧ (b∨ p′)′) = (x∧ (b∨ p′)′)∨ 0 = x∧ b′ ∧ p. In short

a ∧ b′ ∧ p ≤ x ∧ b′ ∧ p. (10)

Now from (10) we get: 0 ≤ a∧ b′ ∧ p ≤ x∧ b′ ∧ p ⇒ 0 = 0∧ x′ ≤ a∧ b′ ∧ p∧ x′ ≤ x∧ b′ ∧ p∧ x′ ≤ x∧ x′

= 0. Hence a ∧ b′ ∧ p ∧ x′ = 0 ⇒ x′ ≤ (a ∧ b′ ∧ p)′ ⇒

a ∧ b′ ∧ p ≤ x. (11)

Similarly we get
x ≤ a ∨ b′ ∨ p′. (12)

From (11) and (12) we get x ∈ a ∗p b′. Hence a/pb ⊆ a ∗p b′.
Now take any x ∈ a ∗p b′. Then a ∧ b′ ∧ p ≤ x ⇒ (a ∧ b′ ∧ p) ∨ (b ∨ p′) ≤ x ∨ b ∨ p′ ⇒ (a ∨ b ∨ p′)∧

((b′ ∧ p) ∨ (b ∨ p′)) = (a ∨ b ∨ p′)∧ ((b′ ∧ p) ∨ (b′ ∧ p)′) ≤ x ∨ b ∨ p′ ⇒ (a ∨ b ∨ p′) ∧ 1 ≤ x ∨ b ∨ p′ ⇒

a ≤ x ∨ b ∨ p′ (13)

Similarly x ≤ a∨ b′∨ p′ ⇒ x∧ b∧ p ≤ (a∨ b′ ∨ p′)∧ (b∧ p) ⇒ x∧ b∧ p ≤ (a∧ b∧ p)∨ ((b′∨ p′)∧ (b∧ p))
= (a∧ b ∧ p) ∨ ((b ∧ p)′ ∧ (b ∧ p)) ⇒ x ∧ b ∧ p ≤ (a ∧ b ∧ p) ∨ 0 ⇒

x ∧ b ∧ p ≤ a. (14)

From (13) and (14) follows that a ∈ x ∗p b and so x ∈ a/pb. Hence a ∗p b′ ⊆ a/pb. In conjunction with
the previously established a/pb ⊆ a ∗p b′, it follows that a/pb = a ∗p b′.

4 The L-fuzzy Join and Extension Hyperoperations

In this section we introduce the fuzzy join and the L-fuzzy extension hyperoperations, which yield a
L-fuzzy join space. To this end we will use the family of (crisp) hyperoperations {∗p}p∈X and the family
of (crisp) hyperoperations {/p}p∈X .

We first show that a ∗p b and a/pb viewed as functions of p behave like p-cuts of a L-fuzzy set.

Proposition 4.1 For all a, b ∈ X we have:
(i) For all p, q ∈ X : p ≤ q ⇒ a ∗q b ⊆ a ∗p b;
(ii) For all P ⊆ X : ∩p∈P a ∗p b = a ∗∨P b;
(iii) a ∗0 b = X.
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Proof. Choose any a, b ∈ X.
(i) Choose any p, q ∈ X with p ≤ q. Then

p ≤ q ⇒ p ∧ a ∧ b ≤ q ∧ a ∧ b. (15)

Also, by the order inversion property of negation we have

p ≤ q ⇒ q′ ≤ p′ ⇒ q′ ∨ a ∨ b ≤ p′ ∨ a ∨ b. (16)

Now (15) and (16) yield [q ∧ a∧ b, q′ ∨ a∨ b] ⊆ [p∧ a∧ b, p′ ∨ a∨ b], which is exactly the required result.
(ii) Choose any P ⊆ X. Then

∩p∈P a ∗p b = ∩p∈P [a ∧ b ∧ p, a ∨ b ∨ p′] = [∨p∈P (a ∧ b ∧ p),∧p∈P (a ∨ b ∨ p′)]
= [a ∧ b ∧ (∨p∈P p), a ∨ b ∨ (∧p∈P p′) = [a ∧ b ∧ (∨p∈P p), a ∨ b ∨ (∨p∈P p)′]
= [a ∧ b ∧ (∨P ), a ∨ b ∨ (∨P )′] = a ∗∨P b.

(In the above derivation note the crucial use of the generalized deMorgan properties.)
(iii) a ∗0 b = [a ∧ b ∧ 0, a ∨ b ∨ 1] = [0, 1] = X.

Proposition 4.2 For all a, b ∈ X we have:
(i) For all p, q ∈ X : p ≤ q ⇒ a/qb ⊆ a/pb;
(ii) For all P ⊆ X : ∩p∈P a/pb = a/∨P b;
(iii) a/0b = X.

Proof. Choose any a, b ∈ X.
(i) Choose any p, q ∈ X with p ≤ q. Choose any x ∈ a/qb. Then

b ∧ x ∧ q ≤ a ≤ b ∨ x ∨ q′. (17)

Also

p ≤ q ⇒
{

b ∧ x ∧ p ≤ b ∧ x ∧ q
b ∨ x ∨ q′ ≤ b ∨ x ∨ p′ . (18)

From (17) and (18) we get

b ∧ x ∧ p ≤ b ∧ x ∧ q ≤ a ≤ b ∨ x ∨ q′ ≤ b ∨ x ∨ p′

which implies x ∈ a/pb. Hence a/qb ⊆ a/pb.
(ii) Choose any P ⊆ X. Then:

∀p ∈ P : p ≤ ∨P ⇒ ∀p ∈ P : a/∨P b ⊆ a/pb ⇒ a/∨P b ⊆ ∩p∈P a/pb.

On the other hand, take any x ∈ ∩p∈P a/pb. We have: ∀p ∈ P : x ∈ a/pb ⇒ ∀p ∈ P : a ∈ x ∗p b ⇒
∀p ∈ P : x ∧ b ∧ p ≤ a ≤ x ∨ b ∨ p′ ⇒ ∨p∈P (x ∧ b ∧ p) ≤ a ≤ ∧p∈P (x ∨ b ∨ p′) ⇒ x ∧ b ∧ (∨p∈P P ) ≤
a ≤ x ∨ b ∨ (∧p∈P p′) ⇒ x ∧ b ∧ (∨P ) ≤ a ≤ x ∨ b ∨ (∨P )′ ⇒ a ∈ x ∗∨P b ⇒ x ∈ a/∨P b. Hence
∩p∈P a/pb ⊆ a/∨P b. (In these derivations note the crucial use of the generalized deMorgan properties.)
So, from a/∨P b ⊆ ∩p∈P a/pb and ∩p∈P a/pb ⊆ a/∨P b we obtain ∩p∈Pa/pb = a/∨P b.

(iii) a/0b = {x : a ∈ x ∗0 b} = {x : a ∈ [x ∧ b ∧ 0, x ∨ b ∨ 1]} = {x : a ∈ [0, 1]} = X.
Analogously to [4], we define a L-fuzzy hyperoperation to be an operation that takes pairs of X

elements to L-fuzzy subsets of X. We will now construct two L-fuzzy hyperoperations (namely ∗ and
/) by associating appropriate L-fuzzy sets with every pair a, b ∈ X.
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Definition 4.3 For all a, b ∈ X define the L-fuzzy set a ∗ b by defining (for any x ∈ X)

(a ∗ b)(x) .= ∨{q : x ∈ a ∗q b}. (19)

Proposition 4.4 For all a, b ∈ X and p ∈ X we have (a ∗ b)p = a ∗p b.

Proof. From Proposition 4.1 we see that the family {a ∗p b}p∈X has the p-cut properties. Then,
the required result follows from Definition 4.3 and Proposition 2.4.

Definition 4.5 For all a, b ∈ X define the L-fuzzy set a/b by defining (for any x ∈ X)

(a/b)(x) = ∨{p : x ∈ a/pb}.

Proposition 4.6 For all p ∈ X and a, b ∈ X we have (a/b)p = a/pb.

Proof. From Proposition 4.2 we see that the family {a/pb}p∈X has the p-cut properties. Then,
the required result follows from Definition 4.3 and Proposition 2.4.

We now proceed to establish that (X, ∗) is a L-fuzzy hypergroup. To this end we need some
auxiliary definitions, which regard the manner in which L-fuzzy sets are combined using a L-fuzzy
hyperoperation ◦. These definitions can be considered as extensions of the one given in Section 2,
where for a crisp hyperoperation ◦ and crisp sets A,B ∈ P(X) we defined A ◦ B

.= ∪a∈A,b∈Ba ◦ b.

Definition 4.7 Given a L-fuzzy hyperoperation ◦ : X×X→ F(X), for all a ∈ X, B ∈ F(X) define
the L-fuzzy set a ◦ B by

(a ◦ B)(x) .= ∨b:B(b)>0(a ◦ b)(x)

and the crisp set a◦̂B by
a◦̂B .= ∪b:B(b)>0{x : (a ◦ b)(x) = 1}.

Definition 4.8 Given a L-fuzzy hyperoperation ◦ : X×X→ F(X), for all A,B ∈ F(X) define the
L-fuzzy set A ◦ B by

(A ◦ B)(x) .= ∨a:A(a)>0,b:B(b)>0(a ◦ b)(x).

and the crisp set A◦̂B by

A◦̂B .= ∪a:A(a)>0,b:B(b)>0{x : (a ◦ b)(x) = 1}.

Remark. Note that if A and B are crisp sets then the above definition reduces to (A ◦ B)(x) =
∨a∈A,b∈B(a ◦ b)(x). This emphasizes the similarity with the previously mentioned definition A ◦ B

.=
∪a∈A,b∈Ba ◦ b (where ◦ is a crisp hyperoperation ◦ and A,B are crisp sets).

Proposition 4.9 For all a ∈ X, for all B ∈ P(X), for all p ∈ X we have: a ∗p B ⊆ (a ∗ B)p.

Proof. Choose any a ∈ X, any B ∈ P(X), any p ∈ X. If p = 0 then a ∗p B = X = (a ∗ B)p. If
p > 0, then choose any x ∈ a ∗p B. For this x, there exists some b ∈ B such that x ∈ a ∗p b = (a ∗ b)p.
Hence (a ∗ b)(x) ≥ p > 0. Now

(a ∗ B)(x) = ∨z:z∈B(a ∗ z)(x) ≥ (a ∗ b)(x) ≥ p

which implies x ∈ (a ∗ B)p. Hence a ∗p B ⊆ (a ∗ B)p.
We now establish some properties of ∗ and /.

9



Proposition 4.10 For all a, b, c, p ∈ X we have
(i) (a ∗ b)(a) = (a ∗ b)(b) = 1, (a ∗ a)(a) = 1.
(ii) a ∗ b = b ∗ a.
(iii) (a ∗ b) ∗ c ∼p a ∗ (b ∗ c).
(iv.1) a∗̂X = X (i.e. for all x ∈ X, ∃y ∈ X : (a ∗ y)(x) = 1).
(iv.2) a ∗ X = X (i.e. for all x ∈ X : (a ∗ X)(x) = ∨y∈X(a ∗ y)(x) = 1).

Proof. Choose any a, b, c ∈ X.
(i) We know that a ∈ a∗1b = [a∧b, a∨b]. Hence 1∈ {p : a ∈ a∗pb} and so (a∗b)(a) = ∨{p : a ∈ a∗pb}

= 1. Similarly (a ∗ b)(b) = 1. To show (a ∗ a)(a) = 1, just take a = b.
(ii) For all p ∈ X we have (a ∗ b)p = a ∗p b = b ∗p a = (b ∗ a)p. Since a ∗ b and b ∗ a have the same

cuts, they are identical (by Proposition 2.5).
(iii) Take any p ∈ X.
(iii.1) If p = 0, then it is easy to see that (a∗(b∗c))0 = X = ((a∗b)∗c)0 and so (a∗b)∗c ∼0 a∗(b∗c).
(iii.2) If p > 0, take any x ∈ a ∗p b ∗p c = a ∗p (b ∗p c), then there exists some z ∈ b ∗p c such that

x ∈ a ∗p z. For this z we have:

z ∈ b ∗p c = (b ∗ c)p ⇒ (b ∗ c)(z) ≥ p > 0 (20)

and
x ∈ a ∗p z = (a ∗ z)p ⇒ (a ∗ z)(x) ≥ p > 0. (21)

From (20) follows that
z ∈ {u : (b ∗ c)(u) > 0} (22)

and from (21), (22) follows that

p ≤ (a ∗ z)(x) ≤ ∨{u:(b∗c)(u)>0}(a ∗ u)(x) = (a ∗ (b ∗ c))(x) ⇒

x ∈ (a ∗ (b ∗ c))p ⇒ a ∗p b ∗p c ⊆ (a ∗ (b ∗ c))p

Hence a ∗p b ∗p c ⊆ (a ∗ (b ∗ c))p. Similarly we show that a ∗p b ∗p c = (a ∗p b) ∗p c ⊆ ((a ∗ b) ∗ c)p and so
we have

x ∈ a ∗p b ∗p c ⇒ (a ∗ (b ∗ c))(x) ∧ ((a ∗ b) ∗ c)(x) ≥ p ≥ 0.

Since a ∗p b ∗p c is nonempty, it follows that (a ∗ b) ∗ c ∼p a ∗ (b ∗ c).
(iv) We prove (iv.1), i.e. that for all x ∈ X, ∃y ∈ X : (a ∗ y)(x) = 1. Indeed, take any x ∈ X,

and set y = x; then (a ∗ x)(x) = 1, since x ∈ [a ∧ x, a ∨ x] = a ∗1 x = (a ∗ x)1. Now (iv.2) follows
immediately.

Proposition 4.11 For all a, b, c, d, p ∈ X we have: (i) a∗b ∼p c∗d ⇔ a∗p b ∼ c∗p c, (ii) a/b ∼p c/d ⇔
a/pb ∼p c/pd.

Proof. Choose any a, b, c, d, p ∈ X. For (i) we have:

a ∗ b ∼p c ∗ d ⇔
(
∃x :

(a ∗ b)(x) ≥ p
(c ∗ d)(x) ≥ p

)
⇔

(
∃x :

x ∈ (a ∗ b)p = a ∗p b
x ∈ (c ∗ d)p = c ∗p d

)
⇔ a ∗p b ∼ c ∗p d

and (ii) is proved similarly.

Proposition 4.12 For all a, b, c, d, p ∈ X, for all p ∈ X we have: a/b ∼p c/d ⇒ a ∗ d ∼p b ∗ c.
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Proof. Choose any a, b, c, d, p ∈ X. Then a/b ∼p c/d ⇒ a/pb ∼ c/pd ⇒ a ∗p d ∼ b ∗p c ⇒
a ∗ d ∼p b ∗ c.

In [4] Corsini and Tofan introduce four different types of reproducibility, which they denote by
R1, R2, R3 and R4. They proceed to define accordingly four different variants of fuzzy hypergroup.
In this paper we restrict ourselves to R3-type reproducibility. This is the strongest type, i.e. it also
implies R1, R2 and R4 reproducibility (see [4]). We now present some definitions which are essentially
the ones presented in [4], but here they are adapted to the L-fuzzy context.

Definition 4.13 Given a L-fuzzy hyperoperation ◦ : X × X → F(X), the hyperstructure (X, ◦) is
called L-fuzzy3-hypergroup if it satisfies the following conditions.

(i) For all a, b, c, p ∈ X we have (a ◦ b) ◦ c = a ◦ (b ◦ c) (associativity).
(ii) For all a ∈ X we have a◦̂X = X (R3 reproducibility).

Definition 4.14 Given a L-fuzzy hyperoperation ◦ : X × X → F(X), the hyperstructure (X, ◦) is
called L-fuzzy3-p-hypergroup if it satisfies the following conditions.

(i) For all a, b, c, p ∈ X we have (a ◦p b) ◦p c = a ◦p (b ◦p cp (p-associativity).
(ii) For all a ∈ X we have a◦̂X = X (R3 reproducibility).

We now introduce an additional definition which makes use of Hv associativity (see Spartalis [20, 21]
and Vougiouklis [22, 25, 26]).

Definition 4.15 Given a hyperoperation ◦ : X × X → F(X), the hyperstructure (X, ◦) is called L-
fuzzy3-Hv-hypergroup if it satisfies the following conditions.

(i) For all a, b, c, p ∈ X we have (a ◦ b) ◦ c ∼p a ◦ (b ◦ c) (fuzzy Hv associativity).
(ii) For all a ∈ X we have a◦̂X = X (R3 reproducibility).

In view of the above definitions and Proposition 4.10, we have the following.

Proposition 4.16 The hyperstructure (X, ∗) is a L-fuzzy3-Hv-hypergroup and also a L-fuzzy3-p-hypergroup.

Proof. Easy.
Remark. As already remarked, R3 reproducibility implies Ri reproducibility, with i = 1, 2, 4.

Hence (X, ∗) is a L-fuzzyi-Hv-hypergroup and also a L-fuzzyi-p-hypergroup, with i = 1, 2, 4.
Now we introduce some definitions of L-fuzzy join spaces.

Definition 4.17 Given a L-fuzzy hyperoperation ◦ : X × X → F(X), the hyperstructure (X, ◦) is
called L-fuzzy3-p-join space if it is a commutative L-fuzzy3-p-hypergroup and also satisfies (with x �y .=
{z : x ∈ z ◦ y}):

For all a, b, c, d, p ∈ X we have: a � b ∼p c � d ⇒ a ◦ d ∼p b ◦ c.

Definition 4.18 Given a L-fuzzy hyperoperation ◦ : X × X → F(X), the hyperstructure (X, ◦) is
called L-fuzzy3-Hv-join space if it is a commutative L-fuzzy3-Hv-join space and also satisfies (with
x � y .= {z : x ∈ z ◦ y}):

For all a, b, c, d, p ∈ X we have: a � b ∼p c � d ⇒ a ◦ d ∼p b ◦ c.

Hence we have the following.

Proposition 4.19 The hyperstructure (X, ∗) is a L-fuzzy3-Hv-join space and also a L-fuzzy3-p-join
space.
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Proof. Easy.
The hyperstructure (X, ∗) has an additional interesting property which is related to the theory of

L-fuzzy sublattices. Notice that for any fixed a, b ∈ X, the family {(a ∗ b)p}p∈X is a family of (crisp)
closed intervals. The same is true of the family {(a/b)p}p∈X . Hence a ∗ b is a L-fuzzy interval and, a
fortiori, a L-fuzzy convex sublattice. The same is true of a/b. For the definition and some properties of
L-fuzzy intervals, see the Appendix. In this section we simply present the following.

Definition 4.20 We say M : X → X is a L-fuzzy interval of (X,≤) iff
∀p ∈ X : Mp is a closed interval of (X,≤).

Proposition 4.21 For all a, b ∈ X , the L-fuzzy sets a ∗ b and a/b are L-fuzzy intervals.

Proof. This is obvious from the definitions of the *, / hyperoperations.

5 The Lattice of p-cuts of a ∗ b

Let us pick any a, b ∈ X and keep them fixed for the rest of this section. We will now study some
properties of the family of p-cuts {a ∗p b}p∈X . To this end we introduce the following.

Definition 5.1 For all a, b ∈ X, define Ia,b(X) .= {(a ∗ b)p}p∈X .

We obviously have the inclusions: Ia,b(X) ⊆ I(X) ⊆ P(X). This section is devoted to clarifying the
connection between (Ia,b(X),⊆) and (X,≤)

Proposition 5.2 For all a, b ∈ X, for all p, q ∈ X we have

a ∗p b ∩ a ∗q b = a ∗p∨q b, a ∗p b
.∪ a ∗q b = a ∗p∧q b. (23)

(a ∗ b)p ∩ (a ∗ b)q = (a ∗ b)p∨q, (a ∗ b)p
.∪ (a ∗ b)q = (a ∗ b)p∧q. (24)

Proof. Choose any a, b, p ∈ X. We have

a ∗p b ∩ a ∗q b

= [a ∧ b ∧ p, a ∨ b ∨ p′] ∩ [a ∧ b ∧ q, a ∨ b ∨ q′]
= [(a ∧ b ∧ p) ∨ (a ∧ b ∧ q), (a ∨ b ∨ p′) ∧ (a ∨ b ∨ q′)]
= [a ∧ b ∧ (p ∨ q), a ∨ b ∨ (p′ ∧ q′)]
= [a ∧ b ∧ (p ∨ q), a ∨ b ∨ (p ∨ q)′] = a ∗p∨q b.

and

a ∗p b
.∪ a ∗q b

= [a ∧ b ∧ p, a ∨ b ∨ p′]
.∪ [a ∧ b ∧ q, a ∨ b ∨ q′]

= [(a ∧ b ∧ p) ∧ (a ∧ b ∧ q), (a ∨ b ∨ p′) ∨ (a ∨ b ∨ q′)]
= [a ∧ b ∧ (p ∧ q), a ∨ b ∨ (p′ ∨ q′)]
= [a ∧ b ∧ (p ∧ q), a ∨ b ∨ (p ∧ q)′] = a ∗p∧q b.

Hence we have proved (23). Now (24) follows from the equality (for any r ∈ X) between a ∗r b and
(a ∗ b)r.
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Proposition 5.3 For all a, b ∈ X, (Ia,b(X),⊆,
.∪,∩) is a lattice.

Proof. Since (P(X),⊆) is an ordered set and Ia,b ⊆ P(X), it follows that (Ia,b(X),⊆) is an
ordered set. It remains to show that for every a, b ∈ X, we have sup(a ∗p b, a ∗q b) = a ∗p b

.∪ a ∗q b and
inf(a ∗p b, a ∗q b) = a ∗p b ∩ a ∗q b (both the sup and inf being with respect to Ia,b(X)). Choose any
a, b ∈ X and consider them fixed. Choose any p, q ∈ X.

(i) We have already seen that a ∗p b
.∪ a ∗q b = a ∗p∧q b ∈ Ia,b(X). Also we have

p ∧ q ≤ p ⇒ a ∗p b ⊆ a ∗p∧q b;
p ∧ q ≤ q ⇒ a ∗q b ⊆ a ∗p∧q b.

Also, take any r ∈ X such that

a ∗p b ⊆ a ∗r b
a ∗q b ⊆ a ∗r b

}
⇒ (a ∗p b)

.∪ (a ∗q b) ⊆ a ∗r b ⇒ a ∗p∧q b ⊆ a ∗r b.

Hence sup(a ∗p b, a ∗q b) = a ∗p∧q b = a ∗p b
.∪ a ∗q b (the sup being with respect to Ia,b(X)).

(ii) We have already seen that a ∗p b ∩ a ∗q b = a ∗p∨q b ∈ Ia,b(X). Also we have

p ≤ p ∨ q ⇒ a ∗p∨q b ⊆ a ∗p b;
p ≤ p ∨ q ⇒ a ∗p∨q b ⊆ a ∗q b.

Also, take any r ∈ X such that

a ∗r b ⊆ a ∗p b
a ∗r b ⊆ a ∗q b

}
⇒ a ∗r b ⊆ (a ∗p b) ∩ (a ∗q b) ⇒ a ∗r b ⊆ a ∗p∨q b.

Hence inf(a ∗p b, a ∗q b) = a ∗p∨q b = a ∗p b ∩ a ∗q b (the inf being with respect to Ia,b(X)).
We now introduce a relation Ja,b on X × X.

Definition 5.4 The relation Ja,b ⊆ X × X is defined by: (p, q) ∈ Ja,b iff (a ∗ b)p = (a ∗ b)q.

Proposition 5.5 For all a, b ∈ X, Ja,b is an equivalence relation on X.

Proof. Easy.

Definition 5.6 The classes of Ja,b are defined by p
.= {q : (p, q) ∈ Ja,b} = {q : (a ∗ b)p = (a ∗ b)q},

p ∈ X.

Definition 5.7 We denote the quotient of X with respect to Ja,b by Xa,b and define it by Xa,b
.=

{p}p∈X .

Definition 5.8 For all a, b ∈ X we define the function fa,b : Xa,b → Ia,b(X) by

fa,b(p)
.= (a ∗ b)p = a ∗p b.

Proposition 5.9 For all a, b ∈ X the function fa,b is well-defined, 1-1 and onto Ia,b(X).

Proof. Fix any a, b ∈ X. Then p = q ⇔ a ∗p b = a ∗q b ⇔ fa,b(p) = fa,b(q). This shows that fa,b is
well-defined and 1-1. To show that its is onto, take any A ∈ Ia,b(X); then exists some p ∈ X such that
A = a ∗p b = fa,b(p).
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Definition 5.10 For all a, b ∈ X and for all p, q ∈ Xa,b, we write p � q iff a ∗q b ⊆ a ∗p b.

Proposition 5.11 For all a, b ∈ X, � is an order on Xa,b.

Proof. Since p � q ⇔ a ∗q b ⊆ a ∗p b, it is obvious that: (a) p � p and (b) (p � q, q � r)⇒ p � r.
It remains to show that (p � q, q � p)⇒ p = q. But (p � q, q � p)⇒ (a ∗q b ⊆ a ∗p b, a ∗p b ⊆ a ∗q b)⇒
a ∗p b = a ∗q b ⇒ p = q.

Proposition 5.12 For all a, b ∈ X, fa,b is an order anti-isomorphism between (Xa,b,�) and (Ia,b,⊆).

Proof. p � q ⇔ a ∗q b ⊆ a ∗p b ⇔ fa,b(q) ⊆ fa,b(p). Also, fa,b is 1-1 and onto.

Proposition 5.13 For all a, b ∈ X, Ja,b is a congruence, i.e. for all p, q, r ∈ X we have:

p = q ⇒
{

p ∨ r = q ∨ r,
p ∧ r = q ∧ r.

.

Proof. Assume p = q. Then p = q ⇒ a ∗p b = a ∗q b ⇒ a ∗p b ∩ a ∗r b = a ∗q b ∩ a ∗r b ⇒
a ∗p∨r b = a ∗q∨r b ⇒ p ∨ r = q ∨ r. Similarly we can show p ∧ r = q ∧ r.

Definition 5.14 For given a, b ∈ X and for all p, q ∈ X define p � q = p ∨ q, p � q = p ∧ q.

Remark. The p � q, p � q are well defined in view of Proposition 5.13.

Proposition 5.15 For all a, b ∈ X, fa,b is a lattice anti-isomorphism between (Xa,b,�,�,�) and
(Ia,b,⊆,

.∪,∩).

Proof. This is obvious in light of the fact that (Ia,b,⊆,
.∪,∩) is a lattice (Proposition 5.3) and

Propositions 5.12 and 5.13.

6 Conclusion

Working on a complete generalized de Morgan lattice (X,≤,∨,∧,′ ), we introduced a family of join
hyperoperations ∗p and a family of extension hyperoperations /p . Hence we obtained a family of join
spaces indexed by p ∈ X. We used this family to construct the cuts of the respective L-fuzzy join “∗′′
and L-fuzzy extension “/” hyperoperations and thus obtained a L-fuzzy join space. In addition, we
proved that for any a, b ∈ X the L-fuzzy sets a ∗ b and a/b are L-fuzzy intervals. The present work can
be extended in several directions; let us indicate some possibilities.

1. In [11] we have have shown that the crisp join space (X, ∗1) is a lattice-ordered hypergroup
with respect to the ≤ order and also obtained a number of distributivity properties of the crisp
hyperoperations ∗1, /1. One may extend this research to: (a) the study of (X, ∗p) for a fixed
p, (b) the study of the family {(X, ∗p)}p∈X , (c) the study of analogous order and distributivity
properties of the L-fuzzy join space (X, ∗).

2. In [12] we have examined convexity properties of crisp join hyperoperations. One may, analo-
gously, explore fuzzy convexity properties of the L-fuzzy ∗ hyperoperation.

3. Choosing a particular pair a, b ∈ X severals issues can be explored. For example: what are the
properties of the cuts of a ∗ b , a/b? what are the properties of the congruence Ja,b introduded
in Section 5?
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4. One may also investigate the families {a ∗ b}a,b∈X , {a/b}a,b∈X and obtain L-fuzzy interval prop-
erties.

At a more general level, let us remark that in this paper we have studied a particular example of a
L-fuzzy join space. This may serve as motivation for a general study of fuzzy and L-fuzzy join spaces,
which, as far as we know, has not been undertaken so far.

Last but not least, let us remark that fuzzy lattices and join hyperoperations have been used in
several engineering and computer science applications [10, 16, 17]. Hence we expect that the results of
this work may in the future prove useful in similar applications.

A Appendix: L-Fuzzy Lattices and Intervals

We start with some informal remarks. Consider two complete lattices (X,≤,∨,∧) and (L,
,�,�).
Fuzzy sublattices, fuzzy convex sublattices and fuzzy intervals are fuzzy sets M : X → L which satisfy
certain special properties. We reserve the term “fuzzy sublattice” (fuzzy convex sublattice, fuzzy
interval) for the case where L = [0, 1] ⊆ R (i.e. real number valued fuzzy sets). For the more general
case of an arbitrary complete lattice (L,
,�,�) we use the term “L-fuzzy sublattice” (L-fuzzy convex
sublattice, L-fuzzy interval). This conforms with standard usage in the fuzzy sets literature.

In [13] we have introduced fuzzy intervals as a special case of fuzzy sublattices [1]. An easy general-
ization yields L-fuzzy intervals, as a generalization of L-fuzzy sublattices [24]. As remarked in Section
4, for every a, b ∈ X, the fuzzy sets a ∗ b and a/b are L-fuzzy intervals. Some of the results obtained
in [13] hold specifically for the case L = [0, 1] ⊆ R. However, a number of properties of fuzzy intervals
can be extended to the case of L-fuzzy intervals.

Hence, in this Appendix we present some properties of L-fuzzy intervals, omitting proofs, since
these are identical to the proofs presented in [13] for the case L = [0, 1] ⊆ R. The presentation is
in terms of fuzzy sets M : X → L and, obviously, they also hold for the special case (X,≤,∨,∧) =
(L,
,�,�) which conforms with the setting of this paper. Hence, all the following propositions hold
for any fuzzy set M = a ∗ b, M = a/b (for any a, b ∈ X).

We repeat that (X,≤,∨,∧) and (L,
,�,�) are assumed to be complete lattices. We define L-fuzzy
sublattices and L-fuzzy convex sublattices in terms of their p-cuts; this is different from, but equivalent
to Ajmal’s approach [1].

Definition A.1 We say M : X → L is a L-fuzzy sublattice of (X,≤) iff ∀p ∈ L the set Mp is a
sublattice of (X,≤).
Definition A.2 We say M : X → L is a L-fuzzy convex sublattice of (X,≤) iff ∀p ∈ L the set Mp is
a convex sublattice of (X,≤); (i.e. ∀p ∈ L,∀x, y ∈ Mp we have [x ∧ y, x ∨ y] ⊆ Mp).

Proposition A.3 M : X → L is a L-fuzzy sublattice of (X,≤) iff
∀x, y ∈ X : M(x ∧ y) � M(x ∨ y) � M(x) � M(y).

Proposition A.4 Let M : X → L be a L-fuzzy sublattice of (X,≤). It is a L-fuzzy convex sublattice
of (X,≤) iff

∀x, y ∈ X,∀z ∈ [x ∧ y, x ∨ y] : M(z) � M(x ∧ y) � M(x ∨ y) = M(x) � M(y).

Definition A.5 We say M : X → L is a L-fuzzy interval of (X,≤) iff
∀p ∈ L : Mp is a closed interval of (X,≤).

The collection all L-fuzzy intervals will be denoted by Ĩ(X,L) or simply by Ĩ.

15



Arbitrary intersections of L-fuzzy intervals yield a L-fuzzy interval.

Proposition A.6 For all J̃ ⊆ Ĩ we have: ∧
M∈J̃

M ∈ Ĩ

Since Ĩ ⊆ F, it follows that (̃I,
) is an ordered set. In fact, (̃I,
) is a lattice as seen in the following.

Definition A.7 For all M,N ∈ Ĩ we define M
.∨ N as follows. We define S̃(M,N) .= {A : A ∈ Ĩ,

M 
 A,N 
 A} and then define
M

.� N
.= �

A∈S̃(M,N)
S.

Proposition A.8 (̃I,
,
.�,�) is a complete lattice.

The following propositions establish some properties of L-fuzzy intervals.

Definition A.9 For every fuzzy set M we define LM
.= {p : Mp �= ∅}.

Proposition A.10 (i) Let M be a L-fuzzy convex sublattice. If we have

∀p ∈ LM : M(∧Mp) � �x∈MpM(x), M(∨Mp) � �x∈MpM(x),

then M is a L-fuzzy interval.
(ii) If M is a L-fuzzy interval, then it is a L-fuzzy convex sublattice and we have

∀p ∈ LM : M(∧Mp) � �x∈MpM(x), M(∨Mp) � �x∈MpM(x).

Corollary A.11 If M is a L-fuzzy interval, then ∀p ∈ LM we have M(∧Mp)�M(∨Mp) = �x∈MpM(x).

Corollary A.12 If X is finite, every L-fuzzy convex sublattice is a L-fuzzy interval and conversely.

Proposition A.13 Let M be a L-fuzzy convex sublattice. If M is a L-fuzzy interval, then ∀p ∈ LM

we have Mp = Mp1�p2, where p1 = M(∧Mp), p2 = M(∨Mp).

As remarked previously, when replacing L,
,�,� with X,≤,∨,∧, the above propositions hold true
for any fuzzy set M = a ∗ b or M = a/b (with any a, b ∈ X).

References

[1] N. Ajmal and K.V. Thomas. “Fuzzy lattices”. Info. Sciences, vol. 79, pp.271-291, 1994.

[2] G. Birkhoff, Lattice Theory, American Mathematical Society, Colloquium Publications, vol. 25,
1967.

[3] P. Corsini, Prolegomena of Hypergroup Theory, Udine: Aviani, 1993.

[4] P. Corsini and I. Tofan. “On fuzzy hypergroups”. PU.M.A. vol.8, pp.29-37, 1997.

[5] P. Corsini. “Join spaces, power sets, fuzzy sets”. In Algebraic Hyperstructures and Applications,
Ed. M. Stefanescu, p.45-52, Palm Harbor: Hadronic Press, 1994.

[6] P. Corsini and V. Leoreanu. “Join spaces associated with fuzzy sets”. J. of Comb., Inf. and System
Sci., vol. 20, p.293-303, 1995.

16



[7] A. Hasankhani and M.M. Zahedi. “F -Hyperrings”. Ital. Journal of Pure and Applied Math., vol.
4, pp.103-118, 1998.

[8] A. Hasankhani and M.M. Zahedi. “On F -polygroups and fuzzy sub-F -polygroups”. J. Fuzzy Math.,
vol. 6, pp. 97–110. 1998.

[9] J. Jantosciak, “Classical geometries as hypergroups”, in Convegno su Ipergruppi, Altre Strutture
Multivoche e loro Applicazioni, Udine, 1985.

[10] V.G. Kaburlasos and V. Petridis. “Fuzzy Lattice Neurocomputing (FLN) Models”. Neural Net-
works, vol. 13, pp. 1145-1170, 2000.

[11] Ath. Kehagias and M. Konstantinidou. “Lattice-ordered Join Space: an Applications-oriented
Example”. To appear in Italian Journal of Pure and Applied Mathematics.

[12] Ath. Kehagias and M. Konstantinidou. “Convexity in Lattices and an Isotone Hyperoperation”.
In the Proceedings of the Conference on Constantine Caratheodory in his Origins, pp.137-146,
Hadronic Press, 2001.

[13] Ath. Kehagias. “The Lattice of Fuzzy Intervals and Sufficient Conditions for Its Distributivity”.
Submitted.

[14] F. Marty. “Sur le role de la notion d’hypergroups dans l’ etude des groupes non-abeliens”.
C.R.Acad.Sci., vol.201, 1935.

[15] H.T. Nguyen and E.A. Walker. A First Course on Fuzzy Logic, CRC Press, Boca Raton, 1997.

[16] V. Petridis and V.G. Kaburlasos. “Fuzzy Lattice Neural Network (FLNN): A Hybrid Model for
Learning”. IEEE Transactions on Neural Networks, vol. 9, pp. 877-890, 1998.

[17] V. Petridis and V.G. Kaburlasos. “Learning in the Framework of Fuzzy Lattices”. IEEE Transac-
tions on Fuzzy Systems, vol. 7, pp. 422-440, 1999.

[18] W. Prenowitz and J. Jantosciak. “Geometries and join spaces”. J. Reine und Angew. Math., vol.
257, p.100-128, 1972.

[19] W. Prenowitz and J. Jantosciak. Join Geometries, New York: Springer, 1979.

[20] S. Spartalis. “On reversible Hv groups”. In Algebraic Hyperstructures and Applications, ed. M.
Stefanescu, pp.163-170, 1994.

[21] S. Spartalis, A. Dramalides, T. Vougiouklis. “On HV -group rings”. Algebras, Groups and Geom.
vol. 15, pp.47-54, 1998.

[22] S. Spartalis, T. Vougiouklis. “The fundamental relations on Hv rings”. Riv. Mat. Pura et Appl.,
vol.12, 1993.

[23] U.M. Swamy and D.V. Raju. “Fuzzy ideals and congruences of lattices”. Fuzzy Sets and Systems,
vol. 95, pp.249-253, 1998.

[24] A. Tepavcevic and G. Trajkovski. “L-fuzzy lattices: an introduction”. Fuzzy Sets and Systems,
vol. 123, pp.209–216. 2001.

[25] T. Vougiouklis. “Enlarging Hv-structures”. Algebras and combinatorics (Hong Kong, 1997), pp.
455–463, Springer, Singapore, 1999.

17



[26] T. Vougiouklis. “On Hv-rings and Hv-representations”. Discrete Math. vol. 208/209, pp.615–620,
1999.

[27] B. Yuan and W. Wu. “Fuzzy ideals on a distributive lattice”. Fuzzy Sets and Systems, vol. 35,
pp.231-240, 1990.

[28] M.M. Zahedi and A. Hasankhani. “F -Polygroups”. Int. J. Fuzzy Math., vol. 4, pp.533–548. 1996.

[29] M.M. Zahedi and A. Hasankhani. “F -Polygroups (II)”. Inf. Sciences, vol.89, pp.225-243, 1996.

[30] M.M. Zahedi and R. Ameri. “On the prime, primary and maximal sybhypermodules”. Ital. J. of
Pure and Appl. Math., vol. 5, 1998.

18


