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Abstract

In this paper we study the propagation of electromagnetic waves in a waveguide completely filled

with a inhomogeneous dielectric material. The material is inhomogeneous in the longitudinal direc-

tion, i.e. the dielectric permittivity is described by a function ε = ε0εr(z). We first solve the direct

problem; then we develop a computational procedure for solving the inverse problem and apply the

procedure to the estimation of an unknown dielectric permittivity profile. An important feature of

our approach is the expansion of the unknown εr(z) into a power series. The dielectric permittivity

profile estimation consists in determining the unknown coefficients through error function minimiza-

tion. We test our method by numerical experiments utilizing a genetic algorithm and obtain very

accurate results.
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1 Introduction

In this paper we describe a method for estimating the dielectric permittivity profile of a material, inside

a waveguide, which is axisymmetric and inhomogeneous along its axis. This requires the development

of a novel method for the solution of electromagnetic wave propagation problems.

Maxwell’s equations for electromagnetic wave propagation in isotropic and inhomogeneous media

are PDE’s with variable coefficients. Closed form solutions of these equations are available only for

special cases of inhomogeneous profiles [1]. Approximate solutions can be obtained by replacing the

actual medium with a finely layered one, where each layer is assumed to have constant permittivity

[2, 3, 4, 5]. If these layers are much thinner than the wavelength of the propagation wave then suf-

ficiently accurate solutions can be obtained. This approach is used by finite difference methods [6],

the Transmission Line method [7], the WKB method together with asymptotic matching [2, 8], the

propagation/scattering matrix method [2] etc.

In this work we propose an alternative technique which can be applied to dielectric profiles of the

form ε(z) = ε0εr(z), where ε0 is the dielectric permittivity in the free space and εr(z) is the relative

dielectric permittivity. Our technique requires only that εr(z) can be expanded in a power series.

Applying separation of variables in cylindrical coordinates to the field equations results, for the

z-dependent part of the electric field, in an ODE with nonconstant coefficients. Motivated by the

expansion of εr(z) in power series we solve the aforementioned ODE by the Frobenius method. This

results in recursive equations for the expansion coefficients of the electric field. These equations can be

solved symbolically or numerically.

We have applied the above technique to the direct, as well as to the inverse propagation problem,

in a cylindrical waveguide series consisting of three parts: a central inhomogeneous waveguide and two

lateral homogeneous ones. The solution of the direct problem provides the necessary background for

the dielectric profile reconstruction which constitutes the inverse problem. For the complete solution
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of the inverse problem we utilize an error function minimization approach which makes use of a genetic

algorithm; the minimizing solution consists of the coefficients ε0, ε1, ε2... in the expansion of εr(z).

We have used third order expansions but the method can be easily generalized. We have applied

this method to the estimation of specific dielectric permittivity profiles and obtained very accurate

estimates.

2 Maxwell’s Equations in Inhomogeneous Media

For a continuous longitudinally inhomogeneous dielectric material with dielectric permittivity ε(z) =

ε0εr(z), Maxwell’s equations yield the following equations, which characterize the phasor E(r) of the

time harmonic electric field

∇ · (εr(z)E) = 0 (1)

∇(∇ ·E)−∇2E = k2εr(z)E (2)

where k = ω
√

µ0ε0 is the wavenumber, while ω = 2πf is the angular frequency and µ0 is the magnetic

permeability in free space.

We are interested in TE modes, expressed in cylindrical coordinates r, φ, z, in the form

E(r, φ, z) = Er(r, φ, z)r̂ + Eφ(r, φ, z)φ̂ (3)

where r̂, φ̂ are the unit vectors in the radial-(r) and azimuthal-(φ) direction, respectively. Applying

the separation of variables the components of the electric field become

Er(r, φ, z) = Rr(r) Φr(φ) Zr(z) , Eφ(r, φ, z) = Rφ(r) Φφ(φ) Zφ(z) .
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Inserting these expressions in eq.(1), we obtain that

R′r
Rr

= −1
r
− 1

r

Rφ

Rr

Φ′φ
Φr

Zφ

Zr
(4)

where R′r denotes the first derivative of Rr(r) function. Moreover, after some manipulations, eq.(2)

results in the following equations

R′′r
Rr

+
1
r

R′r
Rr

+
1
r2

Φ′′r
Φr

+
Z ′′r
Zr

− 1
r2
− 2

r2

RφΦ′φZφ

RrΦrZr
+ k2εr(z) = 0 (5)

and

R′′φ
Rφ

+
1
r

R′φ
Rφ

+
1
r2

Φ′′φ
Φφ

+
Z ′′φ
Zφ

− 1
r2

+
2
r2

RrΦ′rZr

RφΦφZφ
+ k2εr(z) = 0 . (6)

Handling eq.(5) first, we apply standard separation of variable arguments leading to the relations

Φ′φ
Φr

= λ , (λ constant) (7)

Zφ

Zr
= q , (q constant) (8)

as well as to the equations

Φ′′r − µΦr = Φ′′r + n2Φr = 0 , n = 0, 1, 2, .... (9)

Z ′′r +
[
k2εr (z)− ξ2

]
Zr = 0 (10)

r2R′′r + rR′r + [µ + r2ξ2 − 1]Rr − 2λqRφ = 0, (11)

where µ, ξ are separation of variables constants. Notice that the only acceptable values of the constant
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µ are µ = −n2, n = 0, 1, 2, ..., in order to obtain periodic solutions with period 2π. The special case

µ = n = 0 will be considered later in greater detail.

Thus, eq.(4) is written as

R′r
Rr

= −1
r
− 1

r

Rφ

Rr
λq (12)

and combined with eq.(11) gives the following differential equation concerning Rr(r)

r2R′′r + 3rR′r + (r2ξ2 + µ + 1)Rr = 0 . (13)

The general solution of eq.(13) is

Rr(r) = Anr−1Jn(ξr) + Bnr−1Yn(ξr) (14)

(with arbitrary constants An, Bn) where Jn and Yn are the Bessel functions of first and second kind,

respectively. Once the radial function Rr(r) is determined, then Rφ (r) can be determined through

eq.(12) leading to the result

Rφ(r) = − ξ

qλ
[AnJ ′n(ξr) + BnY ′

n(ξr)] . (15)

In addition, eq.(9) gives immediately that

Φr(φ) = Cn cos(nφ) + Dn sin(nφ) (16)
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where Cn, Dn are constants. Using eq.(7) we infer that

Φφ(φ) =
λ

n
[Cn sin(nφ)−Dn cos(nφ)] (17)

where no integration constant is allowed since otherwise the separability of eq.(6) would be violated.

In addition, note that eq.(6) is expected to separate variables if
Φ′′

φ

Φφ
is constant and this is guaranteed

by eq.(17).

Let us now turn to the solution of eq.(11) and verify that the already constructed solution patches

satisfy as well the relation (6), which originates from Maxwell’s equations. Postponing the treatment

of eq.(11), we exploit eqs.(7-10), (16), (17) and we see that eq.(6) can be rewritten as

r2R′′φ + rR′φ + (r2ξ2 + µ− 1)Rφ + 2
µ

λq
Rr = 0 . (18)

So it must be shown that the general solution (15) satisfies as well eq.(18). This is accomplished if we

replace the expressions (14), (15) in eq.(18) to obtain that

An

[
x3J ′′′n (x) + x2J ′′n(x) +

(
µ + x2 − 1

)
xJ ′n(x)− 2µJn(x)

]
+

Bn

[
x3Y ′′′

n (x) + x2Y ′′
n (x) +

(
µ + x2 − 1

)
xY ′

n(x)− 2µYn(x)
]

= 0 (19)

where x = ξr.

However, every term of the above equation vanishes separately, rendering eq.(19) and consequently

eq.(18) valid. This is proven if we start with the Bessel equation

x2J ′′n(x) + xJ ′n(x) + (x2 + µ)Jn(x) = 0,
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differentiate with respect to x and exploit again the validity of the Bessel equation. (Similar results

hold for the term reffering to Yn(x).)

Let us now handle eq.(10). The relative dielectric permittivity has a power series expansion of the

form

εr(z) =
∞∑
i=0

εiz
i = ε0 + ε1z + ε2z

2 + ... . (20)

We now use Frobenius method for solving eq.(10) and assume that Zr(z), the solution to this equation,

can be expressed as

Zr(z) =
∞∑
i=0

ciz
i = c0 + c1z + c2z

2 + ... (21)

given that the center of expansion 0 is a regular point for the ODE (10) [9, 10]. Hence Zr(z) is

determined by the coefficients ci, i = 0, 1, 2, ... . From now on our analysis will focus on determining

these coefficients.

Substituting the expressions (20), (21) in eq.(10), we produce the following recursive scheme

(i + 2)(i + 1)ci+2 − ξ2ci + k2
i∑

j=0

ci−jεj = 0 , i = 0, 1, 2, ... .

Equivalently, setting H2 = k2ε0 − ξ2 we have

c2 = −H2

2
c0 and (i + 2)(i + 1)ci+2 + H2ci + k2

i∑
j=1

ci−jεj = 0 , i = 1, 2, ... . (22)

From this scheme we infer that ci (i ≥ 2) are functions of c0, c1, H, k and the permittivity coefficients
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εj , j = 0, .., i− 2, i.e. ci = ci(c0, c1, H, k, ε0, .., εi−2). More accurately, ci can be written as:

ci = c0ui(H, k, ε0, .., εi−2) + c1wi(H, k, ε0, .., εi−2)

where ui, wi are smooth functions of their arguments. Actually, ui, wi generate two independent

solutions of the second degree ODE (10) and c0, c1 are mixture coefficients.

Once the recursive equations (22) are solved, the sought “axial” parts Zr (z) , Zφ (z) of the electric

fields are determined through their power series coefficients. All the other components of the fields have

been already determined and so the solution of the equations (22) leads immediately to the solution

of Maxwell’s equations for the specific structure under consideration. The behavior of c2, c3, .., cL can

be studied analytically for small values of L; larger values of L require the use of a symbolic algebra

package, e.g. Maple.

Any arbitrary coefficients appearing in the above solutions will be specified by boundary indepen-

dent conditions pertaining to a specific problem.

Before proceeding further, let us mention that there exist two special cases concerning the values

of the separation of variables constants µ and ξ not discussed before.

1. When µ = 0, the variable ξ necessarily vanishes and we obtain the expressions Rr = d1
r and

Rφ = d2r + d3
r (d1, d2, d3 constants).

2. When µ = −n2 6= 0 and ξ = 0, the field expressions can be obtained from the general case taking

the limit ξ → 0 and exploiting the asymptotic behavior of the underlying functions.

3 Wave Propagation in a Cylindrical Waveguide

Let us apply the solutions presented in the previous section to the determination of the electromagnetic

field in a cylindrical waveguide filled with a linear, isotropic, inhomogeneous and lossless dielectric
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material. This implies that εr(z) is a real valued function (Im{εr(z)} = 0) [2].

We now exploit the boundary conditions for such a cylindrical waveguide. The remarks and ex-

pressions presented below apply to the case of ε(r, φ, z) = ε0εr(z), as well as to the special case of

constant dielectric permittivity. The following conditions must be satisfied by the TE electric field.

Condition 1: The electric field components must have bounded values at the center (r = 0) of the

waveguide.

Condition 2: The tangential component must vanish on the cylindrical surface (i.e. at r = a, where

a is the waveguide radius) of the waveguides, i.e. Eφ(α, φ, z) = 0 for φ ∈ [0, 2π].

Let us examine the general solution for µ = −n2, n = 1, 2, .., in light of the above conditions.

From Condition 1 it follows that solutions which include Bessel’s functions of second kind and their

derivatives are rejected because of their singularities at r = 0. This can be seen from their behavior as

x → 0 :

Yn(x) =


−Γ(n)

π ( 2
x) + O(x ln(x)) , n = 1

−Γ(n)
π ( 2

x)n + O(x2−n) , n ≥ 2

where Γ(n) is the Gamma function. Bessel’s functions of first kind have the following asymptotic

behavior as x → 0:

Jn(x) =
1

Γ(n + 1)
(
x

2
)n + O

(
xn+2

)
, n = 1, 2...

and so they are acceptable as part of the solution. In conclusion, the solution will consist of combina-

tions of terms of the form Jn(x)
x and J ′n(x) , which vanish as x → 0.

From Condition 2 we infer that J ′n(ξa) = 0, from which results the discretization of the ξ, i.e. ξ can

only take the values ξnm = xnm
a , where xnm is the m-th root of J ′n(x) and m = 1, 2, ... . Discreteness of
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ξ implies that H also takes discrete values, namely H = Hnm =
√

k2ε0 − ξ2
nm. Hence, we obtain the

TE field expressions inside the waveguide, which are

Rr(r) = An
Jn(ξnmr)

r
, Rφ(r) = −ξnm

λq
AnJ ′n(ξnmr) , n,m = 1, 2, ...

Φr(φ) = Cn cos(nφ) + Dn sin(nφ) , Φφ(φ) =
λ

n
[Cn sin(nφ)−Dn cos(nφ)] , n = 1, 2, ...

Zr(z) =
∞∑
i=0

ciz
i = c0 + c1z + c2z

2 + ... , Zφ(z) = qZr(z) (23)

where for every choice n, m = 1, 2, ... the ci’s satisfy the recursive equation:

c2 = −H2
nm

2
c0 , (i + 2)(i + 1)ci+2 + H2

nmci + k2
i∑

j=1

ci−jεj = 0 , i = 1, 2, ... . (24)

In the case of constant dielectric permittivity, the z dependence of the field is trigonometric, as can be

deduced easily from eq.(10); eqs.(23), (24) will be used in the case of non-constant dielectric permit-

tivity.

Concerning the special case µ = 0, Condition 1 implies that the Rr component and the d3 coefficient

of the Rφ component must vanish. Also, Condition 2 implies that d2 = 0 or Eφ = 0. Thus, azimuthally

symmetric solutions cannot exist.

4 The Direct Problem for a System of Cylindrical Waveguides

Estimating the dielectric permittivity requires solving a direct problem for a measurement device. In

this section we present the particular device under investigation and solve the corresponding direct

problem.
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4.1 The Measurement Device

The measurement device consists of three cylindrical waveguides interconnected in the manner illus-

trated in Figure 1.

Figure 1 to be placed here.

The left and the right waveguide have constant relative dielectric permittivity εc. The middle

waveguide contains the inhomogeneous dielectric material. This will be the target of our investigation

of the inverse problem . These waveguides are being excited by appropriate TE electric modes generated

by a signal source. We assume perfect interconnection between the waveguides, a load adapted to the

end of the right waveguide (which results in perfect/ideal absoption of the incident field at that point)

and two measurement probes which cause negligible field distortion.

We now perform the field analysis of this system; in particular we study the propagation of the

TE11 mode, which is the main mode for cylindrical waveguides. We also introduce a simplification for

the remainder of the analysis. Up to this point we have assumed the relative dielectric permittivity to

be given by a Taylor series expansion of the form

εr(z) = ε0 + ε1z + ε2z
2 + ... .

Of course, for all practical purposes, such an expansion will terminate after a finite number of terms.

From now on, we specifically assume that εr(z) is a third order polynomial, i.e. that

εr(z) = ε0 + ε1z + ε2z
2 + ε3z

3 .
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We have found a third order polynomial to be sufficient for quite accurate approximation of slowly

varying smooth profile functions. Of course, the following analysis can be generalized to N -th order

polynomials of the form εr(z) = ε0 + ε1z + ... + εNzN .

4.2 Computation of the Field Components

Let us first consider the frequencies at which field propagation occurs.

The cut-off frequencies in the two lateral waveguides, which have relative permittivity εr = εc, are

the following [11]

fc,nm =
ξnm

2π
√

m0e0εc
, n,m = 1, 2, ... .

Examining the propagation of TE1m modes we restrict the above cut-off frequencies as follows

fc,1m =
ξ1m

2π
√

m0e0εc
, m = 1, 2, ... .

This implies that the excitation frequency f must be greater than the first cut-off frequency fc,11 which

takes the form

fc,11 =
ξ11

2π
√

m0e0εc
=

1.841
2πa

√
m0e0εc

.

Hence the use of excitation frequency f > fc,11 is a prerequisite for the trasmission of a wave through

the system of the three waveguides. Consider for a moment the case when the central waveguide is

filled with a material of constant dielectric permittivity. In this case, if f is higher than fc,11 and lower

than fc,12 it can be expected that the wave will propagate through the entire system in TE11 mode

only. A similar argument can be applied when the central waveguide is filled with a material of variable

13



dielectric permittivity. This claim will be justified in Section 4.4. At this point we simply note that by

judicious choice of the excitation frequency, it will be sufficient to compute the TE11 field expressions

inside the three waveguides. In what follows εc is the constant relative permittivity of the left or the

right waveguide, β =
√

k2εc − ξ2
11, k = ω

√
µ0ε0 and ξ11 = x11

a = 1.841
a .

Waveguide no.1: The field expressions are

Er(r, φ, z) =
jωµ0

ξ2
11

C
J1(ξ11r)

r
sin(φ)(e−jβz + Gejβz)

Eφ(r, φ, z) =
jωµ0

ξ11

CJ ′1(ξ11r) cos(φ)(e−jβz + Gejβz)

where C is an arbitrary amplitude constant and G is the reflection coefficient.

Waveguide no.2: The field expressions are

Er(r, φ, z) =
jωµ0

ξ2
11

C
J1(ξ11r)

r
sin(φ)

∞∑
i=0

cizi , Eφ(r, φ, z) =
jωµ0

ξ11

CJ ′1(ξ11r) cos(φ)
∞∑
i=0

cizi .

Waveguide no.3: The field expressions are

Er(r, φ, z) =
jωµ0

ξ2
11

CD
J1(ξ11r)

r
sin(φ)e−jβz , Eφ(r, φ, z) =

jωµ0

ξ11

CDJ ′1(ξ11r) cos(φ)e−jβz,

where D is the transmission coefficient.

Let us set ε = [ε0 ε1 ε2 ε3]. Recall that in the framework of the inverse problem the quantities

obtained by the measurement device will be D = D(ε, f, a, d), G = G(ε, f, a, d), where f, a, d will

be known for a particular experiment, while ε will be the quantity we want to determine. On the one

hand, D, G can be measured; on the other hand, we will now determine their functional dependence

on ε0, ε1, ε2, ε3 (and f, a, d); our final task will be to determine appropriate values for ε0, ε1, ε2,

ε3 such that the theoretically computed D,G measurements agree with the ones obtained from field

14



measurements.

Hence our next task is to obtain concrete functional expressions D(ε, f, a, d) and G(ε, f, a, d). To

this end we use the impendance conditions for the three waveguides.

At the interface z = 0, from the continuity of the components and their derivatives, we have that

c0 = 1 + G (25)

c1 = −jβ · (1−G) . (26)

Similarly, at the interface z = d the continuity of the components and their derivatives leads to

∞∑
i=0

cid
i = De−jβd ⇔ c0Z1(d) + c1Z2(d) = De−jβd (27)

∞∑
i=1

icid
i−1 = −jβDe−jβd ⇔ c0Z

′
1(d) + c1Z

′
2(d) = −jβDe−jβd (28)

where Z1(d) = 1 + u2d
2 + u3d

3 + ... and Z2(d) = d + w2d
2 + w3d

3 + ... .

Eqs.(25-28) can be written as a 4x4 linear system: AX = B , where

A =



1 0 −1 0

0 1 −jβ 0

Z1(d) Z2(d) 0 −e−jβd

Z ′1(d) Z ′2(d) 0 jβe−jβd


, X =



c0

c1

G

D


, B =



1

−jβ

0

0


.

Hence A and B are completely specified in terms of known parameters, X contains the unknowns of

the direct problem and AX = B is a linear matrix equation which can be solved analytically by matrix

inversion. Solving AX = B with Maple is quite straightforward and yields the required expressions

D(ε, f, a, d) and G(ε, f, a, d); these are not presented here for economy of space.
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4.3 Agreement with Existing Solutions

We will now test the agreement of our solution with already existing analytical solutions for two simple

dielectric profiles.

Case 1: εr(z) ≡ εm= constant. In this case the field expressions inside the medium waveguide become

Er(r, φ, z) =
jωµ0

ξ2
11

· C J1(ξ11r)
r

sin(φ)(Cme−jβmz + Gmejβmz),

Eφ(r, φ, z) =
jωµ0

ξ11

CJ ′1(ξ11r) cos(φ)(Cme−jβmz + Gmejβmz)

where m denotes the medium waveguide, Cm is the propagation coefficient, Gm is the reflection coef-

ficient and βm =
√

k2εm − ξ2
11. Applying the same boundary conditions between the waveguides we

obtain the corresponding 4x4 linear system AX = B, where

A =



1 1 −1 0

βm −βm β 0

e−jβmd ejβmd 0 −e−jβd

βme−jβmd −βmejβmd 0 −βe−jβd


, X =



Cm

Gm

G

D


, B =



1

β

0

0


.

We solve numerically this system for various dielectric profiles εm obtaining values for Cm, Gm which

are in extremely close agreement with our Frobenius approximation. This can be seen, in a wide range

of frequencies, in Figures 2 and 3.

Figure 2 to be placed here.

Figure 3 to be placed here.

Case 2: εr(z) = a + bz. In the case of linear inhomogeneity eq.(10) becomes
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Z ′′r + [k2(a + bz)− ξ2] · Zr = 0 ⇔ Z ′′r + (k2a− ξ2 + k2bz) · Zr = 0 ⇔ Z ′′r + (A + Bz) · Zr = 0,

where A = k2a−ξ2 and B = k2b. Applying the change of independent variable: n(z) = −B1/3 ·(z+ A
B ),

we obtain

..
Zr = nZr (29)

where
..

Zr denotes the second derivative with respect to n. The general solution of (29) is a linear com-

bination of the Airy’s functions Ai(n), Bi(n), of the first and second kind, respectively. Consequently,

the z-dependent parts of the field components have the expression

Zr(z) = a1Ai(n(z)) + a2Bi(n(z)) , Zφ(z) = qZr(z) ,

where a1, a2 are arbitrary coefficients. Therefore, the field inside the medium waveguide can be explic-

itly written as

Er(r, φ, z) =
jωµ0

ξ2
11

· C J1(ξ11r)
r

sin(φ)(a1Ai(n(z)) + a2Bi(n(z)))

Eφ(r, φ, z) =
jωµ0

ξ11

CJ ′1(ξ11r) cos(φ)(a1Ai(n(z)) + a2Bi(n(z))) .

Applying the same boundary conditions at the points z = 0 ⇔ n0 ≡ n(0) = − A
B2/3 and z = d ⇔ nd ≡
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n(d) = −B−1/3 · (d + A
B ) we obtain the corresponding 4x4 linear system AX = B, where

A =



Ai(n0) Bi(n0) −1 0

−B1/3Ai′(n0) −B1/3Bi′(n0) −jβ 0

Ai(nd) Bi(nd) 0 −e−jβd

−B1/3Ai′(nd) −B1/3Bi′(nd) 0 jβe−jβd


, X =



a1

a2

G

D


, B =



1

−jβ

0

0


.

We solve this system numerically for various linear profiles εr(z) = a + bz and we obtain values for

G and D which are in extremely close agreement with our Frobenius approximation, as can be seen in

Figures 4 and 5

Figure 4 to be placed here.

Figure 5 to be placed here.

Hence our solutions (obtained using Frobenius method) are in agreement with independently ob-

tained and well known solutions for the two dielectric profiles discussed above.

4.4 Cut-off frequencies

As is well known, in the case of wave propagation through a homogeneous dielectric material, the

cut–off frequency for mode TEnm is determined by the equation fc,nm = ξnm
2π
√

m0e0εc
, n,m = 1, 2, ... .

Namely, for excitation frequencies below fc,nm, the value of the transmission coefficient is very near to

zero.

The concept of a cut-off frequency can be extended for the case of inhomogeneous dielectric materi-

als. Namely, it can be expected that for any particular mode TEnm, there will be a frequency fc,nm with

the following property: when the excitation frequency f is below fc,nm, the value of the transmission

coefficient is very near to zero.
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We have observed by numerical experimentation that our solution has this behavior for the TE11

mode. Hence we now proceed to give a precise definition of the cut-off frequency fc,11 in an inhomoge-

neous dielectric material and to compute the dependence of fc,11 on the dielectric profile.

We define fc,11 to be the frequency at which the transmisison coefficient becomes, for the first time,

0.05. We find that a very good approximation for fc,11 , can be given by utilizing a formula analogous

to the one applying in the case of constant dielectric permittivity. Namely, we find that

f c,11 =
ξ11

2π
√

m0e0ε

(where ε = 1
d

d∫
0

εr(z)dz is the mean value of the dielectric profile) is a very good approximation to

fc,11, which can be computed experimentally according to the above definition. In Table 1 we give a

comparison of fc,11 and f c,11 for some representative dielectric profiles.
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Table 1

εr(z) ε f c,11 fc,11 Rel. Error %

2.5 + 5.47z 3.047 1.6774 1.635 2.5933

2.95 + 5.47z 3.497 1.5658 1.525 2.6754

3.12 + 5.47z 5.647 1.2322 1.185 3.9831

3.55 + 10.47z 4.597 1.3657 1.32 3.4621

4.25− 13.47z 2.903 1.7185 1.652 4.0254

5.13− 13.47z 3.783 1.5054 1.45 3.8207

5.45− 13.47z 4.103 1.4455 1.38 4.7464

2.15 + 25.47z − 120.24z2 3.0938 1.6647 1.585 5.0284

2.75 + 5.47z − 50.24z2 2.6271 1.8065 1.75 3.2286

2.95 + 25.47z − 120.24z2 3.8938 1.4839 1.424 4.2065

3.15 + 10.47z − 50.24z2 3.5271 1.5591 1.505 3.5947

4− 13.47z + 50.24z2 3.3229 1.6063 1.575 1.9873

5.3− 13.47z + 50.24z2 4.6229 1.3618 1.325 2.7774

5.9− 13.47z + 50.24z2 5.2229 1.2812 1.24 3.3226

3.25− 13.47z + 279.24z2 − 946.92z3 3.7324 1.5156 1.455 4.1649

3.75− 13.47z + 279.24z2 − 946.92z3 4.2324 1.4233 1.37 3.8905

4.25− 13.47z + 200.24z2 − 946.92z3 3.679 1.5266 1.47 3.8503

4.75− 13.47z + 200.24z2 − 946.92z3 4.179 1.4323 1.375 4.1673

5.4 + 10.47z − 250.24z2 + 746.92z3 4.6043 1.3646 1.308 4.3272

6.25 + 10.47z − 250.24z2 + 746.92z3 5.4543 1.2537 1.19 5.3529

7.2 + 10.47z − 250.24z2 + 746.92z3 6.4043 1.157 1.1 5.1818
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5 Solving the Inverse Problem: Error Function Minimization

5.1 Formulating the Error Function

We now formulate the estimation of the unknown ε parameters as a minimization problem. Recall

that at this point we have obtained concrete expressions D(ε, f, a, d) and G(ε, f, a, d). By “concrete

expressions” we mean that substitution of numerical values for the dielectric permittivity parameters

ε, for the frequency f , and for the waveguide geometry parameters a, d yields numerical values for

D and G. Now, for a specific measurement device a and d will be fixed. We can choose the excitation

frequency f ; and in fact we can use several different frequencies, call them f1, f2, ... , fK . Then we

can define an error function

J1(ε) =
K∑

k=1

(‖Dk −D(ε, fk, a, d)‖+ ‖Gk −G(ε, fk, a, d)‖)

where ‖·‖ denotes the norm of a complex number. Dk, Gk are the transmission and reflection coefficients

(easily computed from field measurements) corresponding to source frequency fk, while D(ε, fk, a, d)

and G(ε, fk, a, d) are the theoretically obtained values of the same quantities. Hence J1(ε) measures

the discrepancy between observed and theoretically predicted quantities, over all excitation frequencies

used in the estimation experiment. Estimation consists in determining ε values which minimize the

discrepancy J1(ε). The globally minimum value would be achieved at some ε̂ such that J1(ε̂) = 0. In

such a case, theory and measurement would be in perfect agreement. Of course, such a goal is not

realistic, since various factors (polynomial approximation to ε(z), limited measurement precision etc.)

will result in positive values of J1(ε̂). Realistically, the best that can be hoped for is a very small value

of J1(ε̂).

Use of J1(ε) is based on the assumption that one can measure the real and complex parts of D, G,

which is equivalent to measuring both amplitude and phase of D, G. In case measurement of the phase
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is either impossible or impractical, an alternative error function can be used, defined as follows

J2(ε) =
K∑

k=1

| ‖Dk‖ − ‖D(ε, fk, a, d)‖ |+ | ‖Gk‖ − ‖G(ε, fk, a, d)‖ |

where |·| denotes the absolute value.

5.2 Function Minimization by Genetic Algorithms

We have performed the error function minimization indicated in the previous section by the use of a

genetic algorithm. Genetic algorithms (G.A.’s) perform global optimization by mimicking the natural

selection process; they are extensively used in the solution of electromagnetics problems [12].

We have used the so called “Differential Evolution” (DE) optimization algorithm, which is closely

related to genetic ones. This algorithm is described in detail in [13]. Let us give here a brief description.

The algorithm attempts to minimize a function z(x), where x is the independent variables. In stan-

dard genetic algorithm fashion, the DE algorithm works for several iterations, each iteration henceforth

called a “generation”. Every generation contains a number of “phenotypes”, i.e. trial values xold
1 , xold

2 ,

... , xold
N where N is the “population size”. The phenotypes of the next generation, call them, xnew

1 ,

xnew
2 , ... , xnew

N are generated from the previous generation xold
1 , xold

2 , ... , xold
N by a rule of the form

xnew
i = xold

r + F · (xold
s − xold

t ) i = 1, 2, ..., N,

where r, s, t are chosen randomly (in such a manner that they are all different) from the set {1, 2, ..., N}.

It can be seen that the parameter F controls the amplification of differential variation. If z(xnew
i ) <

z(xold
r ) then xnew

i replaces xold
r as a member of the new generation. This process of generating new

vectors by combining old ones is similar to reproduction of natural species. In addition, a mechanism
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which resembles mutation generates a new vector by perturbing the parameters of an old one; this

process is controlled by a parameter P , the so called “crossover probability” (a large value of P results

in strong mutation).

When applying the above algorithm to a function minimization problem, we must also provide a

stopping criterion. We use the following: the algorithm terminates (and the currently best vector x̂

is accepted) if the value of the function becomes less than a prespecified threshold δ; a prespecified

maximum number of iterations may also be provided.

6 Numerical Results

We now present experiments of dielectric permittivity reconstruction. These are simulated experiments,

i.e. they do not involve measurement of an actual physical system. Instead, we postulate a three-

waveguide measurement system of the form presented in Section 4.1 with d=20cm, a=3cm and specific

ε and εc values. Then we obtain numerical values for the field inside the system by utilizing the analysis

presented in Section 4.2. These numerical values are our “virtual measurements”. Then, we assume

the ε values to be unknown and we utilize the error function minimization formulation of Section 5

and the inverse problem solution of Section 4 to obtain “good” estimates ε̂ of the true ε values (i.e.

estimates ε̂ which yield a near zero value of the error function).

We choose the permittivity εc to be εc = 8, so that fc,11 = ξ11
2π
√

m0e0εc
= 1.841

2πa
√

m0e08
= 1.0352GHz

and fc,12 = ξ12
2π
√

m0e0εc

∼= 2.896fc,11 = 2.998GHz. Hence, in accordance with the remarks in Section 4.4,

we expect that, for frequencies in the range [fc,11 fc,12] only the TE11 mode will propagate inside the

waveguides.
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6.1 Experiment Setup

In our virtual experiments we use four frequency values: f1 = 1.7, f2 = 1.8, f3 = 2, f4 = 2.4 (measured

in GHz). As for the genetic algorithm parameters, we have found that the choices listed in Table 2

yield sufficiently accurate parameter estimates.

Table 2

Parameter Significance

Vmin= [1 -40 -400 -1000] Lower limits for the parameters.

Vmax= [7.5 40 400 1000] Upper limit for the parameters.

N=120 Number of trial vectors per generation.

Iterations=150 Maximum number of generations.

F=0.5 Diff. variation amplification.

P=0.8 Crossover probability.

The Vmin and Vmax values were chosen so as to ensure that all ε values of practical interest will be

included in the hyperrectangle of the 4-D space which will be searched by the DE algorithm. Finally,

our experiments have indicated that δ =10−1 is a good value for the stopping criterion threshold.

In other words, stopping the algorithm when J1(ε̂) or J2(ε̂) becomes less than 10−1 yields accurate

estimates of ε. This generally takes place in less than 100 iterations.

In Sections 6.2, 6.3 we present our estimates of the ε coefficients as obtained using two kinds of

data; i.e measurements of (i) only amplitudes of D and G, (ii) amplitudes and phases of D and G.

6.2 Amplitude Measurements

In this case the experimental data are the amplitudes of D and G. The diagrams that follow reproduce

the results obtained by the DE algorithm. Namely, Figure 6 presents the minimum value of the error

function for every second iteration of the DE algorithm. Figures 7–10 present the evolution of the
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ε̂0, ε̂1, ε̂2, ε̂3 parameter estimates, respectively.

Figure 6 to be placed here.

Figure 7 to be placed here.

Figure 8 to be placed here.

Figure 9 to be placed here.

Figure 10 to be placed here.

With respect to the error function value the final best estimate, after 80 iterations, is

ε̂ = [ε̂0 ε̂1 ε̂2 ε̂3] = [3.11 − 15.11 293.31 − 988.39]

while the true value is

ε = [ε0 ε1 ε2 ε3] = [3.05 − 13.47 279.24 − 946.92] .

Let us define the estimate error vector as follows:

∆ε =
[∣∣∣∣ε0 − ε̂0

ε0

∣∣∣∣ ∣∣∣∣ε1 − ε̂1

ε1

∣∣∣∣ ∣∣∣∣ε2 − ε̂2

ε2

∣∣∣∣ ∣∣∣∣ε3 − ε̂3

ε3

∣∣∣∣] .

Then we have ∆ε = [0.02 0.12 0.05 0.04] . The estimates obtained gives a very good approximation

of the true dielectric profile, as can be seen in Figure 11.

Figure 11 to be placed here.
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6.3 Amplitude & Phase Parts Measurement

In this case the experimental data are the amplitudes and the phases of D and G. Similarly, the

diagrams below reproduce the results obtained by the DE algorithm. Figure 12 presents the minimum

value of the error function for every second iteration of the DE algorithm and Figures 13–16 present

the evolution of the best ε̂0, ε̂1, ε̂2, ε̂3 parameter estimates, respectively.

Figure 12 to be placed here.

Figure 13 to be placed here.

Figure 14 to be placed here.

Figure 15 to be placed here.

Figure 16 to be placed here.

The final best (with respect to the error function value) estimate, after 93 iterations, is

ε̂ = [ε̂0 ε̂1 ε̂2 ε̂3] = [3.02 − 13.67 281.7 − 933.21]

while the true value is

ε = [ε0 ε1 ε2 ε3] = [3.05 − 13.47 279.24 − 946.92] .

Now, the error vector becomes ∆ε =[0.01 0.015 0.09 0.015]. Also, in this case our estimation gives a

very good approximation of the true dielectric profile, too. This can be seen in Figure 17.

Figure 17 to be placed here.
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7 Conclusions

In this paper we have solved the problem of electromagnetic wave propagation in a waveguide completely

filled with a dielectric material inhomogeneous in the longitudinal direction. We have first solved the

direct problem representing the waves in the inhomogeneous medium based on the Frobenius method.

We also noticed that a good approximation of the cut-off frequency of the propagating modes is given

by utilizing the mean value of the dielectric profile. Then we have developed a computational procedure

for solving the inverse problem. This procedure, making use of error function minimization by a genetic

algorithm, was applied to the estimation of unknown dielectric permittivity profiles and yielded very

accurate results.
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Figure 1: The measurement device.

Figure 2: Error of the absolute value of D as a function of frequency, for constant dielectric profile εm=3.
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functions)

Figure 3: Error of the absolute value of G as a function of frequency, for constant dielectric profile εm=3.

(Computed as the relative absolute difference between our solution and the one involving trigonometric

functions.)

Figure 4: Error of the absolute value of D as a function of f , for the linearly varying dielectric

εr(z) = 3 + 20z. (Computed as the relative difference between our solution and the one involving

Airy’s functions.)

Figure 5: Error of the absolute value of G as a function of f , for linearly varying dielectric. εr(z) =

3 + 20z. (Computed as the relative difference between our solution and the one involving Airy’s

functions.)

Figure 6: Error function values as a function of G.A.’s iterations.

Figure 7: Evolution of the estimated ε0 coefficient as a function of G.A.’s iterations.

Figure 8: Evolution of the estimated ε1 coefficient as a function of G.A.’s iterations.

Figure 9: Evolution of the estimated ε2 coefficient as a function of G.A.’s iterations.

Figure 10: Evolution of the estimated ε3 coefficient as a function of G.A.’s iterations.

Figure 11: Comparative diagram between our estimated-guess dielectric profile and the real one along

the medium waveguide.

Figure 12: Error function values as a function of G.A.’s iterations

Figure 13: Evolution of the estimated ε0 coefficient as a function of G.A.’s iterations

Figure 14: Evolution of the estimated ε1 coefficient as a function of G.A.’s iterations.
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Figure 15: Evolution of the estimated ε2 coefficient as a function of G.A.’s iterations.

Figure 16: Evolution of the estimated ε3 coefficient as a function of G.A.’s iterations.

Figure 17: Comparation diagram between our estimated-guess dielectric profile and the real one along

the medium waveguide.
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Figure 1: The measurement device.

Figure 2: Error of the absolute value of D as a function of frequency, for constant dielectric profile 
åm=3.  (Computed as the relative absolute difference between our solution and the one involving 
trigonometric functions)

Figure 3: Error of the absolute value of G as a function of frequency, for constant dielectric profile 
åm=3. (Computed as the relative absolute difference between our solution and the one involving 
trigonometric functions)
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Figure 4: Error of the absolute value of D as a function of f, for the linearly varying dielectric 
er(z)=3+20z. (Computed as the relative difference between our solution and the one involving Airy's 
functions.)

Figure 5: Error of the absolute value of G as a function of f, for linearly varying dielectric.
er(z)=3+20z. (Computed as the relative difference between our solution and the one involving Airy's
 functions.)
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Figure 6:  Error function values as a function of G.A.'s iterations

Figure 7: Evolution of the estimated (0) coefficient as a function of G.A.'s iterations

Figure 8: Evolution of the estimated (1) coefficient as a function of G.A.'s iterations
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Figure 9: Evolution of the estimated (2) coefficient as a function of G.A.'s iterations

Figure 10: Evolution of the estimated (3) coefficient as a function of G.A.'s iterations

Figure 11: Comparative diagram between our estimated-guess dielectric profile and the real one
along the medium waveguide.
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Figure 12: Error function values as a function of G.A.'s iterations

Figure 13: Evolution of the estimated (0) coefficient as a function of G.A.'s iterations

Figure 14: Evolution of the estimated (1) coefficient as a function of G.A.'s iterations
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Figure 15: Evolution of the estimated (2) coefficient as a function of G.A.'s iterations

Figure 16: Evolution of the estimated (3) coefficient as a function of G.A.'s iterations

Figure 17: Comparation diagram between our estimated-guess dielectric profile and the real one
along the medium waveguide.
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