
On the Refinement of Ontologies

Grigoris Antoniou1,2 and Athanasios Kehagias3,4

1 School of CIT, Griffith Univ., Australia
2 Dept. of Applied Informatics, Univ. of Macedonia, Greece

3 Dept. of EE and CS, Aristotle Univ., Greece
4 Dept. of Mathematics and CS, American College of Thessaloniki, Greece

Abstract. Ontologies have emerged as one of the key issues in informa-
tion integration and interoperability and their application to knowledge
management and electronic commerce. A trend towards formal meth-
ods for ontology management is obvious. This paper discusses a concept
which can be expected to be of great importance to formal ontology
management, and which is well-known in traditional software develop-
ment: the refinement of ontologies. We define and discuss the concept,
give illustrating examples, and highlight its advantages as compared to
other forms of ontology revision.

1 Introduction

An ontology defines the terminology of a domain: it describes the concepts that
constitute the domain, and the relationships between those concepts. Any infor-
mation system uses its own ontology, either implicitly or explicitly. As applica-
tions become increasingly complex we can observe a trend towards the explicit
representation and management of ontologies.

Ontologies have emerged as one of the key issues in the integration of infor-
mation and the interoperability of systems, and their application to knowledge
management and electronic commerce (see, for example, [13]). The existence of
a common set of definitions of terminology, a common ontology, makes the in-
teroperation of different information systems much easier. This is the approach
takes by many researchers in information integration, e.g. [5, 9, 11, 15]. Moreover,
ontologies are useful in information retrieval, where the use of the right keywords
is critical for the successful processing of a user query [7].

Ontologies need to be developed and maintained just like other software parts
or knowledge bases. In fact, these tasks are quite complex for ontologies. Firstly,
there are various levels and domains in which terminology must be defined.
For example, [6] distinguishes between top-level ontologies (general concepts of
space, time, actions etc.), domain ontologies (concepts in a specific domain),
task ontologies (concepts of a specific type of problems), and application on-
tologies (concepts of a specific application, depending on both task and domain
concepts).

And secondly, ontologies are not developed to remain stable, but are sub-
ject to continual change. Change is caused by several factors: better ways of



2 G. Antoniou and A. Kehagias

organising information are discovered; new concepts evolve over time and need
to be added to the ontology; in information integration, the addition of new
information resources may result in changes to the common ontology. Consult-
ing companies and retailers, to mention just two business sectors, are known to
spend large amounts of money to update their ontologies [12, 13].

This paper will study a particular kind of change, namely refinement (and
its opposite process, abstraction). These concepts are known from the area of
software engineering, together with the underlying concept of a conservative
extension, where they play a prominent role [16]. Conservativity of extension
guarantees that the details added in the development process of software speci-
fications are “non-corrupting” (the exact meaning will be discussed in a subse-
quent section). More pertinent for modern software systems is the fact that the
conservative extension criterion also guarantees the integrity of modularization
and the transparency of objects in the object-oriented framework.

The aim of this paper is to discuss the notion of a conservative extension,
and its derivatives refinement and abstraction, in the context of ontologies. We
will define and discuss these concepts, give illustrating examples, and discuss its
advantages when compared to other forms of ontology revision. One particular
advantage is locality of change in an information integration scenario, as will be
explained later on.

2 On Ontologies

In philosophy, ontology is the study of existence, or a description of what exists
[3]. In information systems and artificial intelligence, the word ontology refers
to the terminology of a system or, to be more precise, an explicit specification
of a conceptualisation: “the objects, concepts and entities that are assumed to
exist in some area of interest, and the relationships that hold among them” [8].

As a minimum, an ontology will define taxonomic relationships (such as:
“a professor is a staff member”) and some other constraints on terms (such as:
“every student must be enrolled in at least one course”). As [17] points out, while
the purpose of an ontology is to define terminology, the form of an ontology is
that of a knowledge base or database conceptual schema. Since ontologies are
usually represented in logic-flavoured languages (such as KIF [4] and CycL [10]),
in this paper we will often view an ontology as a first order theory.

It is instructive to see how taxonomic information can be represented in logic.
Consider the tree in Figure 1 (all figures are presented at the end of this paper)
which represents classes of staff in the School of CIT at Griffith University. Its
logical representation consists of the following logical rules.

faculty(X) → staff(X)
adminStaff(X) → staff(X)
researchStaff(X) → staff(X)
visitingStaff(X) → staff(X)



Lecture Notes in Computer Science 3

3 Conservative Extensions

The formal specification of software has been instrumental in improving the reli-
ability of programs and our understanding of the implementation process itself.
The specification language Z [14] is typical of a number of languages that have
been developed for this purpose. An important aspect of this methodology is
its view of what it means for one specification S′ to be a refinement of another
S. One interpretation of this relationship, for instance, is that S′ is an imple-
mentation of S, so S′ “has more detail” than S. Influential work by Turski and
Maibaum [16] advocated the idea that this be modelled in two steps: (i) regard
S and S′ as logical theories, and (ii) let S′ be a conservative extension of S.

Formally we say that S′ (where S ⊆ S′) is a conservative extension of S if
the formulae that follow from S′ and can be expressed in the language of S are
exactly those which follow from S. Intuitively, one can see that this captures
the idea that while S′ has more detail than S, the details are “inessential”
or “non-corrupting”. More pertinent for modern software systems is the fact
that this conservative extension criterion, as argued in [16], also guarantees the
integrity of modularization and the transparency of objects in the object-oriented
framework.

These ideas carry over easily to ontologies. Let O and O′ be two ontologies.
Then O′ is a conservative extension of O iff, for every relevant ϕ statement in
the terminology of O, ϕ follows from O iff ϕ follows from O′. This formulation
has two parameters: relevant statements and a notion of “follows”; both depend
on the underlying ontological representation language. For example, if one just
uses concept trees, then the relevant statements have the form t → t′ (for terms
t and t′), and “follows” is based on a check whether t′ is an ancestor of t. In
case the ontologies are viewed as logical theories, extensions are defined exactly
as for logical software specifications, as described above.

We say that O′ is a refinement of O iff O′ is a conservative extension of O.
In this case we say that O is an abstraction of O′.

Here are two examples where concepts organised as taxonomies are refined.
Figure 2 shows a refinement of Figure 1 through the addition of a new concept
“technical support staff”:

In Figure 3 new concepts “academic” and “non-academic” are introduced at
the appropriate level. It is a refinement of Figure 2 because no new relationships
between the concepts of Figure 2 are introduced, and none are lost.

Not every extension leads to a refinement. Figure 4 shows an ontology which is
not a conservative extension of Figure 1 because it introduces a new relationship
between old concepts (faculty and visiting staff). Although faculty bears the
same name in both ontologies, their meaning is different, since in Figure 4 it
includes the visiting staff, too.



4 G. Antoniou and A. Kehagias

4 Ontology Refinement in Information Integration

4.1 Information Integration

Information integration (II) [2, 5, 9, 11, 15] seeks to bridge the gap between the
user needs and the information available from different sources by introducing
a meta information source, called mediator or facilitator, which provides in an
integrated fashion access to information from various sources. The basic archi-
tecture of the information integration tools is usually agent-based. The three
main types of agents reflect the main parts in the information integration sce-
nario: (i) user agent, which collects and passes on the user requests; (ii) database
agent (or information source agent or wrapper), which makes available the ser-
vices of a database management system (or an information/knowledge source);
and (iii) mediator or facilitator whose aims are to transform the user request to
appropriate queries to database agents, to collect and integrate the responses,
and to pass on an appropriate response to the user agent.

Each agent may use its own ontology. Let Oi denote the ontology of the i-th
database agent, Ui denote the ontology of the i-th user agent, and CO denote
the commmon ontology used by the mediator. To avoid clashes between symbols
that may bear different meanings we assume that these ontologies are mutually
disjoint. This is not uncommon in practical applications, and is easily achieved
by the addition of a prefix to the concept names (for example, the term staff
member in the common ontology CO is denote as “CO-staff member”).

4.2 Ontology translation

One of the basic function of information integration is to translate the user query
to the common ontology, and from there to the ontologies of the information
resources. Thus ontology translation is central to information integration. Here
we give a formal definition of this concept.

Given two ontologies O1 and O2 (represented as first order theories), a trans-
lation from O1 to O2 is a first order theory T which contains definitions of the
concepts of O1 in terms of O2.

Here is an example. Let O1 be the ontology in Figure 5 and O2 the ontology
in Figure 6. Then the following set T defines a sound translation from O1 to O2.

O1-staff(X) ↔ O2-staff(X)
O1-faculty(X) ↔ O2-faculty(X) ∨O2-visitingStaff(X)
O1-resStaff(X) ↔ O2-resStaff(X)
O1-adminStaff(X) ↔ O2-adminStaff(X)

The requirement we impose on T is that O2 ∪ T is a conservative extension
of O2. In other words, T extends the theory O2 without changing the meaning
of any symbol in O2. The example above satisfies this condition.

While many translations may be defined from the syntactic point of view, not
all translations will be semantically sound. For a translation T to be sound, it



Lecture Notes in Computer Science 5

needs to define the concepts of O1 in such a way that the relationships specified
in O1 hold for the translation, too. Logically this means that O2 together with
T should entail O1: O2 ∪ T |= O1.

The example above defined a semantically sound translation. Here is an ex-
ample of a translation that is not sound. Consider the ontology O1 as specified
in Figure 7, and the following translation T :

O1-staff(X) ↔ O2-staff(X)
O1-faculty(X) ↔ O2-faculty(X)
O1-visitingStaff(X) ↔ O2-visitingStaff(X)

T is not a sound translation from O1 to O2 because the relationship between
O1-faculty and O1-visitingStaff is not reflected. Obviously T should have
defined faculty in O1 to be academic staff in O2.

4.3 Refinement and Locality of Change

Changes to ontologies pose a difficult problem in information integration, since
there is, in general, no central control over the database agents. If the organisa-
tion responsible for a database agent decides to change its ontology, then the II
system is faced with a dilemma: either it decides to remove the agent from the
system (thus reducing its functionality and utility), or it must incorporate the
changes into the entire system. In the following we discuss the latter case.

Suppose that the common ontology is CO, and a database agent wishes to
change its ontology from Oi to O′

i. Also, let T be a sound translator from Oi to
CO. Obviously T will need to be changed. But it may be the case that CO is
not expressive enough to incorporate the new ontology O′

i, so CO may have to
be changed as well. In the worst case, this may lead to necessary changes for all
translators Tj with i 6= j.

It is here that the advantage of refinement becomes apparent. We can show
that if the change from Oi to O′

i is conservative, then the change remains local:
even in the worst case, only T and CO need to be refined. It is not difficult to
see this. We formulate the argument using two formal results.
Theorem 1 Let T be a sound translation from ontology O to an ontology CO.
Further suppose that O′ is a conservative extension of O. Then there are conser-
vative extensions CO′ and T ′ of CO and T , such that T ′ is a sound translator
from O′ to CO′.

The theorem follows immediately from the following observation. For A |= B
and a refinement B′ of B, A ∪ (B′ −B) |= B. Moreover, due to our assumption
about the disjointness of terminologies from different ontologies in the informa-
tion integration scenario (see last paragraph of subsection 4.1), A ∪ (B′ −B) is
a refinement of A, since (B′−B) cannot introduce any new relationships among
symbols of A.
Theorem 2 Let T be a sound translator from O to CO, and let CO′ be a
refinement of CO. Then T is also a sound translator from O to CO′.



6 G. Antoniou and A. Kehagias

The proof is obvious. The first result says that even if we have to change
the common ontology CO to accommodate the change in the ontology Oi of
a database agent, this change needs only be a refinement. In that case, the
translators for the other database agents need not be changed, as the second
result shows.

Here is an example. Let CO be the ontology of Figure 6, and O1 the ontol-
ogy of Figure 5. Also, suppose that the translator T1 is the translator given in
subsection 4.2. CO represents the general organisation of a department, while
O1 reflects the organisation of the School of CIT at Griffith University. Fur-
ther suppose that there is also an ontology O3, same as O1, which reflects the
organisation of the computer science department at the University of Albany
(of course, we use highly simplified ontologies due to space limitations, just to
illustrate our argument), and an associated translator T3.

Now suppose that Griffith University decides that the academic ranks should
be included in the ontology of the CIT agent. Thus leaves lecturer, seniorLec-
turer, associateProfessor, professor are added as sons of the faculty node, and
give us ontology O′

1. The common ontology CO in its current form is unable to
represent this information, so it must be extended, too. So we might decide to
add the nodes assistantProfessor, associateProfessor, professor, distinguished-
Professor as nodes of faculty (in CO). This gives us the new common ontology
CO′. Finally we extend T1 to T ′

1 by adding the following translation rules:

O′
1-lecturer(X) ↔ CO′-assistantProfessor(X)

O′
1-seniorLecturer(X) ↔ CO′-associateProfessor(X)

O′
1-associateProfessor(X) ↔ CO′-Professor(X)

O′
1-professor(X) ↔ CO′-distinguishedProfessor(X)

It is not difficult to see that T ′
1 is a sound translator from O to CO′. Moreover,

ontology O′
1 and CO′ are refinements of O1 and CO respectively. The translator

T3 need not be modified.

5 Conclusion

We discussed the notion of a conservative extension, and its derivatives: refine-
ment and abstraction, in the context of ontologies. We defined these concepts,
gave illustrating examples, and showed that refinement allows for local changes
in information integration, as opposed to other forms of ontology revision.

Several ontological issues can be discussed within the framework of this pa-
per. For example, we are currently exploring the introduction of a distance be-
tween ontologies. This will be useful in selecting the “nearest” (subject to certain
constraints) refinement of an ontology or the “least common refinement” of two
ontologies. There is a connection with research on belief revision where the notion
of minimal change is central [1]. The distance function we are currently inves-
tigating is obtained from graph-theoretic considerations (it is easy to show that
certain logical languages can be corresponded to directed graphs). The graph-
based approach may also facilitate the development of efficient algorithms, for



Lecture Notes in Computer Science 7

example to test whether an ontology is a refinement of another or to find the
“least common refinement” of two ontologies.

References

1. C.E. Alchourron, P. Gardenfors and D. Makinson. On the Logic of Theory Change:
Partial Meet Contraction and Revision Functions. Journal of Symbolic Logic 50
(1985), 510-530.

2. V.R. Benjamins, S. Decker, D. Fensel, E. Motta, E. Plaza, G. Schreiber, R. Studer
and B. Wielinga. IBROW – An Intelligent Brokering Service for Knowledge-
Component Reuse on the World-Wide Web. In Proc. ECAI’98 Workshop on Ap-
plications of Ontologies and Problem Solving Methods.

3. A. Flew. A Dictionary of Philosophy, p. 238. St Martin’s Press, New York 1979.
4. M.R. Genesereth and R.E. Fikes. Knowledge Interchange Format, Version 3.0,

Reference Manual. Technical Report Logic-92-1, Computer Science Department,
Stanford University 1992.

5. M.R. Genesereth, A.M. Keller and O.M. Duschka, O. Infomaster: An Information
Integration System. In Proc. 1997 ACM SIGMOD Conference, ACM Press 1997.

6. N. Guarino. Formal Ontology and Information Systems. In N. Guarino(ed.), Formal
Ontology in Information Systems, IOS Press 1998, 3-15.

7. N. Guarino. Semantic Matching: Formal Ontological Distinctions for Information
Organization, Extraction and Integration. In Lecture Notes in Computer Science
1299, Springer, 1997, 139-170.

8. T.R. Gruber. Towards Principles for The Design of Ontologies Used for Knowledge
Sharing. In N. Guarino and R. Poli (Eds.), Formal Ontology in Conceptual Analysis
and Knowledge Representation, Kluwer 1995.

9. C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish, P.J. Modi, I. Muslea, A.G.
Philpot and S. Tejada. Modeling Web Sources for Information Integration. In Proc.
AAAI-98.

10. D.B. Lenat and R.V. Guha. Building Large Knowledge-based Systems, Addison-
Wesley 1990.

11. A.Y. Levy, A. Rajaraman and J.J. Ordille. Querying Heterogeneous Information
Sources Using Source Descriptions. In Proc. 22th International Conference on Very
Large Data Bases, 1996.

12. F. Maruyama. Personal communication, Fujitsu 1998.
13. D. O’Leary. Using AI in Knowledge Management: Knowledge Bases and Ontolo-

gies. IEEE Intelligent Systems 13,1 (1998):34-39.
14. J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall 1989.
15. M. Tork Roth and P. Schwarz. Don’t Scrap it, Wrap it! A Wrapper Architecture

for Legacy Data Sources. In Proc. 23rd International Conference on Very Large
Data Bases, 1997.

16. W.M. Turski and T.S.E. Maibaum. The Specification of Computer Programs.
Addison-Wesley 1987.

17. A. Waterson and A. Preece. Verifying Ontological Commitment in Knowledge-
Based Systems. In Proc. AAAI-97 Workshop on the Verification and Validation
of Knowledge-Based Systems, AAAI Press 1997. Extended version accepted for
publication by Knowledge-Based Systems.


