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Abstract

We present a new on-line multi-model algorithm for parameter estimation of time-
varying nonlinear systems. The time-variation is captured by assuming that the
system parameters change according to a Markovian mechanism. The algorithm
postulates a finite number of possible values of the system parameter and computes
recursively the credit function of each parameter value, according to its predictive
accuracy. A convergence analysis of the algorithm is presented which indicates that
the algorithm estimates correctly the parameter value, in the time intervals between
source switchings. This conclusion is corroborated by numerical experiments.
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1 Introduction

Many methods have been developed to solve the problem of parameter es-
timation for dynamical systems (Ljung, 1987). Of particular interest is the
case of on-line algorithms which are used to estimate time-varying parame-
ters. Here we present such an algorithm which assumes a nonlinear dynamical
system. The system is time-varying: its parameter changes values according
to a Markovian model switching mechanism. The algorithm starts with a fi-
nite number of models, each corresponding to one of the parameter values,
and selects the “phenomenologically best” parameter value; namely the one
which produces the best fit to the observed behavior of the system. Our al-
gorithm is related to the Partition Algorithm (PA) presented in (Hilborn &
Lainiotis, 1969; Lainiotis, 1971; Lainiotis & Plataniotis, 1994; Sims, Lainiotis
& Magill, 1969). PA is suitable for the parameter estimation of a linear dy-
namical system with Gaussian noise in the input and output; no provision is
made for model switching. Under these assumptions, an algorithm is devel-
oped for exact computation of the models’ posterior probabilities; these are
used for Maximum a Posteriori (MAP) estimation of the unknown parameter.
This method has been used extensively in a number of applications, including
parameter estimation and system identification (Kehagias, 1991; Lainiotis &

Plataniotis, 1994; Petridis, 1981).

Our algorithm is more general than the PA: it applies to nonlinear systems
and requires no probabilistic assumptions regarding the noise. Furthermore,
while there are several convergence studies of the PA without a switching
mechanism (Anderson & Moore, 1979; Kehagias, 1991; Tugnait, 1980), as
far as we know, the analysis presented here is the first one that handles the
Markovian switching assumption.

It should be mentioned that similar multi-model algorithms, incorporating
dynamical systems and Markovian model switching have been used for state
estimation (Caputi, 1995; Dufour & Betrtrand, 1994; Magill, 1965) and con-
trol (Athans et al., 1977; Dufour & Bertrand, 1993; Narendra, 1994, 1995).
This approach is also related to work on time series classification, presented in
(Kehagias & Petridis; Petridis & Kehagias, 1996a, 1996b). In addition, there
is a connection to predictive hidden Markov models (Kenny, Lennig & Mer-
melstein, 1990). These approaches are all related to black-boxr models of the
dynamical system; on the other hand, the approach presented here makes use
of structured models.



2 The Parameter Estimation Algorithm

Consider a dynamical system described by the following equations

xs = f(Ts_1,Us; 2s) Ys = 9(Ts_1,Us; 25) + Wy (1)

where s is the time index, z, is state vector (z, € R"Y), y, is the output
(ys € RM), u, is the input (u, € R7), and w, is a white noise vector (w, € RM).
zs 1s a time varying parameter taking values in the set © = {64,0s,...,0x}. 2
varies in a Markovian way, described by the transition probability matrix P:

P = Prob(zs = 0y |zs-1 = 0p,).

At every time step we want to identify the member of © which best matches
the observed sequence v, v¥o, ..., Y, ... . An algorithm is now presented to
solve this problem. Consider a set of models, which evolve according to the
following equations (k = 1,2, ..., K):

a”{: f(a”{:—lu Ug; ek)u y§ = g('j’{:fl? Ug; ek) (2>

Equation (2), describes the evolution of the system (1), with the parameter
fixed at 65 and without noise input. The estimation algorithm is based on the
following idea: if z,= 0}, for some time interval, then 4* must be close to y, over
the same interval. This is formalized by introducing a (recursively updated)
credit function for each value of k. We will work with quantities which evolve
at time-steps 1, L+ 1, 2L+ 1 ... . Hence we use a new time variable ¢, where
t= % +1. We adopt the convention of denoting the new quantities by capital
letters (while original quantities are displayed by small letters):

Zlizlu }/1: [y17y27“‘7yL]7 }/1k: [ylfuyguuyi]u k:17JK(3>

Ly = 2141, Yo = [Yrt1, Y042, -, Yorl, Yy = [ylz+17yl£+27 o Yl

Of course by taking L=1 we revert to the original variables. Now consider

the following quantities 7%, k = 1,2,..., K, t = 0,1,..., which are updated

recursively according to the following formula.

K o ik
& (Zmzl Ty g Rmk) ‘€ Lo?
Trt = Yy ,YZ‘Q ° (4>

L ¢

K K -
>t (Zm:1 Ty le) ‘e Lo?



Here |- | denotes Fuclidean norm and matrix R is the L-th power of the matrix
P: R = P%; o is an error scale parameter; a high value of o mollifies the effect
of large error Y; — Y}, at the expense of slower updating of 7F.

It follows from (4) that 0 < 7% < 1. We propose the following interpretation:

when 7 is large, parameter Z;= 0; matches well the observed data block

Y;; similarly, when 7% is small, Z,= 0, does not match well the data block

Y;. Hence we call 7 the credit functions. This interpretation is justified by

considering the terms appearing in (4). A large 7}, value implies that 0,,

matched well the previous output data block of the system. A large thnzk value
Y;-YF|

\ i
indicates that the 0,, to 0, parameter switch is likely. A large e” ~ o2 value

(i.e. a small m—;;;kfi value) indicates that parameter 05 matches well Y}, the
data block observed at time t. These factors are combined through equation(4)
to evaluate the credit of parameter value 0y at the current time step ¢. Finally,
the denominator ensures that the 7 credits are scaled so as to lie in the [0,1]

mterval.

k2
The computation takes account of the entire output history: eJYt_L:?t_‘ in
equation(4) introduces an explicit dependence on the last L outputs; 77" |,
m=1,2,..., K, introduces an explicit dependence on the previous L outputs
and an implicit dependence (through 7}",) on the previous L outputs and so
on. Regarding 7§, the credit assigned to 0 at time ¢ = 0 (before any out-
put has been observed), we can just assume all models to be equally credible:

T = %, k=1,2,..., K. Finally, we choose the estimate 7, as follows

L .
Zy = arg Max 7y (5)
In other words, at time ¢, having observed Y7, ..., Y:= 11, v2,... Y:1, we claim

that the current value of the parameter is Z;, where Z; maximizes 7".

Combining (2), (3), (4) and (5) the proposed estimation algorithm is obtained.
This algorithm works well in practice, as has been established by numerical
experimentation. In addition to the experimental justification, the algorithm
can be justified mathematically: in Section 3 we show that if the parameter
switches sufficiently slowly, the length of the data block is sufficiently large
and one model provides better output predictions than the remaining ones,
then, in intervals between switchings, the algorithm selects the corresponding
parameter value.

In the design of this algorithm, we were motivated by the Partition Algo-
rithm (Hilborn & Lainiotis, 1969; Lainiotis, 1971; Sims, Lainioits & Magill,
1969). This algorithm applies to linear systems and is placed in a probabilis-
tic framework. In particular the 7% quantities can be interpreted as posterior
probabilities: 7 = Pr(Z; = 0;|Y1, ..., Y;) and eq.(4) as Bayes’ rule. However, as



the reader has noticed, our algorithm requires no probabilistic interpretation;
its justification is purely phenomenological, in that the parameter value best
fitting the output is selected. The removal of the probabilistic interpretation
enlarges the scope of application: the PA is based on the assumption that pos-
terior probabilities (corresponding to our ¥ credit functions) are computed
exactly. However, this computation can only be carried out under the assump-
tion of linear systems and Gaussian noise. Our algorithm applies to nonlinear
systems as well; also knowledge of the statistical characteristics of noise is not
necessary. In addition, a number of modifications of eq.(4) are possible, which
retain the basic idea of recursively updating credit according to predictive
accuracy, but have no formal similarity to Bayes’ rule. In short, we believe
that the probabilistic interpretation may be illuminating but also limits the
versatility of our algorithm and related schemes.

3 Convergence

It is desirable to provide some theoretical justification of our algorithm. The
desired result is this: while the parameter value remains fixed (say at 0,,) the
credit functions tend to values such that 77 > 7%, for n # k. This ensures
correct estimation of the parameter.

We prove a somewhat weaker result, which is based on the study of determin-
istic quantities pf'; these are selected in such a way that they approximate the
random quantities 7F. We then prove that pf have the desired behavior; to the
extent that the 7¥ are approximated closely, these also will have the desired
behavior that ensures correct estimation.

Suppose, for the time being, that the parameter value is fixed at Z; = 6,,.
Define

L =YEE Zzlzl(tfl)LJrl lys — yil?

A= T =T e

Here o is the error scale parameter defined in the previous section. Also define
Qpp, = € Aon (note that 0 < ag, < 1 for all k,n). Consider now the following
quantities (t =1,2 ... and k =1,2,..., K):
. (Zh Py Bong) - i
. = .
leil (an(:l AN le) * Qi

(7)

We will prove that the pf’s as given by (7) are convergent; this is the conclusion
of the following theorem.



Theorem 1 Consider the system defined by eq.(7), with ag, defined by eq.(6)
for k,n=1, 2, ..., K. Suppose that for a fivxed n (1 < n < K) the following
conditions hold

(A1) R>0 (i.e. Ry >0 fork,l=1, 2, ..., K),

(A2) there is some € > 0 such that for all k we have Ryr, > 1 — € and forl # k
Ry < €,

(A3) for all k # n we have HEE < 2on

Okn

then lim, o, pF exists for k = 1,2,.... K and lim; ., p? > lim; ., pf for all

Proof : The proof is presented in the Appendix.

Remark 1: The theorem states that, as long as the parameter is fixed to the
value 0,, each pf converges to some limiting value; also, the largest limiting
value corresponds to the true parameter value 6,,. Hence, if 0,, stays fixed for a
long enough time, then eventually p' will become larger than all p!, for [ # n,
which will ensure correct parameter estimation. If (A3) holds for every n, and
the intervals between parameter switchings are long enough, then convergence
holds for every time interval and every parameter value. The theorem pertains
to pf, as computed by equation(7).

Remark 2: We also require (condition (A1)) that R is positive, i.e. R > 0.
This means that no parameter switch is completely unlikely. In fact it would
suffice to assume that R is primitive, i.e. there is some d such that B¢ > 0; we
take d = 1 to simplify the analysis, but we would reach the same conclusions
for any d > 1. In addition we require (condition (AZ2)) that there is some
¢ > 0 such that for all I we have Ry > 1 — ¢ and Ry, < ¢ for k # [. This is
a condition for “slow switching”. If parameter switching took place at a fast
rate, there would not be enough time for the p¥ to converge to some limit
between model switchings. Slow switching is guaranteed if Ry is significantly
larger than Rjy.

Remark 3: Finally, it is required that for a fixed n and all [ # n the
inequality = HKG < &z holds. This is a “goodness-of-model” condition. Recall
that oy, expresses the exponentiated error of parameter #;, when parameter
0, is active. Convergence to the true parameter 6, requires at least that 6,

generates the smallest average error, i.e. 1 < 222 for all [ # n. The condition
in

14+ Ke

we impose here is somewhat stronger, since 1 < <=5

Remark 4: Suppose now that for some time interval the active parameter
value is 0y (outside of O= {04, 0s, ..., 0k }). However, there is some n such that
for all I # n we have HK £ < —ll‘ﬂ Then, as will be explained in the Appendix,
the result of the theorem still holds true. In other words, among all parameter



values in the search set, the algorithm picks the one that best fits the output.

k2
‘Yt *Yt ‘
Lo?

Remark 5: In place of the exponential function of the error e
more general function f(]Y; —Y/|) can be used; all that is required is that f(-)
is a decreasing function.

, &

Remark 6: Now, let us consider the relationship between p¥ and #¥. First,
consider n and L fixed and introduce the following assumption
Yt*Yk‘Q

PeYr
Lo? -

(B) For k =1,2,..., K we have Ay, ~

This assumption will be true if the original system has ergodic behavior and
L is large. Second, suppose that the convergence of pf (which is guaranteed by
the theorem) takes place (up to desirable accuracy) within some time, say 7.
Finally, suppose that the system operates with fixed parameter 6,,, for some
time, say Ts. If L << T, << Ts, then it is reasonable that ¥, as given by (4),
is approximated by pf, as given by (7). An additional discussion of this issue
is provided in the conclusions section.

4 Experiments

We test our algorithm on the task of rotor resistance estimation of an AC
induction motor. The AC induction motor is described (in discrete time) by
the following nonlinear equations.

X(s)=7- A1 {-B-X(s—1)+U(s)} (8)

(igs(s — 1)igr(s — 1) —igs(s — 1)ig(s —

1))

p

2J

TL<s>} ©)

here X ()= [igs(s),tas(s), i4r(5), ar(s)], U(s)= [Vis(s), Vas(s), 0,0] and
([, 0 Lo O] L 0 0 o |
0 L, 0 Ly 0 Ty 0 0
A= B = .(10)
Lo 0 —L, 0 0 —w(s—1)Lo Ty —w(s — 1)L,
0 Lo 0 L, w(s — 1) Lo 0 w(s — 1)L, Ty

The stator currents are i4(s), i4s(s), the rotor currents are i,.(s), iq-(s), the
angular velocity is w(s), the stator voltages are Vys(t), Vis(s) and the load




torque is T7(s). T is the integration step; 75, . are the stator and rotor resis-
tances, Lg, L., Lo are the stator, rotor and mutual inductances respectively;
J 1s the moment of inertia and p is the number of pole pairs. The state vector
is [X(s), w(s)] and the input vector is [U(s), Tr(s)]. All the parameters can
be measured, except for 7., which depends on operating conditions. But 7, is
necessary for the efficient and economic control of angular velocity. This is a
standard on-line parameter estimation problem. We measure i4($), i45(s); the
vector [igs(s), 14s(s)] (s=1, 2, ... ) play the role of the time series ys (s=1, 2,
... ). This may have been produced by any model corresponding to a specific
value r,; that is, . plays the role of the model parameter 7.

The AC induction motor is simulated, mixing the stator current output with
additive noise at various levels, described by the Signal - to - Noise Ratio
(SNR). Each simulation is run for 10000 time steps (7 = 0.5 ms). A three
phase AC voltage of 220 V RMS value and a torque T, =1.5 N-m are used as
input. The real motor parameters are: r,=11.58 2, L, =0.071 H, L,=0.072 H,
Lo=0.069 H, J=0.089 kg-m? , B=0 Nt-sec/m, p=2. The effect of r, variation
is simulated by using ten r, values: from time ¢{=0.0 to 0.5 s the real rotor
resistance r,= 4.9 Q, from 0.5 to 1.0 s 7,=5.9  and so on until the value 13.9
Q. Ten models are used (K=10), with 7, values of 5, 6,..., 14 Q. For real r,
value 4.9 €, the best estimate is 5 2; similarly for r,=5.9, 6.9, ... . The time
step used in equations(8), (9) is 7=0.5 ms. Several sampling times are used for
the measurement of the stator current, namely 7= 0.5, 1, 2, 3 ms. Fquation
(4) is used for the computation of 7f. The value L=10 is used; o is computed
experimentally from the prediction errors computed by (2). Regarding the
switch matrix R, it is taken equal to P%, where P is a band matrix, with all
diagonal elements equal (Pyy= Py= ... = Py ) and close to one; also Py ;1=
Py wy1=1— Py /2. All other elements were set equal to zero. This represents an
assumption that, as r, varies, it can only move to neighboring values. Several
Py values were used.

The results for various combinations of noise level, 7, and Ry are presented
in Figures 1 to 5. The results are expressed by an estimation figure of merit
¢ = Ni/Ny. Here Ny is the total number of time steps and Ny the number of
time steps where the best parameter value was picked. In each figure we list ¢
for 7=0.5, 1, 2, 3 ms and for various noise levels (starting with the noise free
case and advancing through SNR=20.00, 10.00, 6.66, 5.00, 4.00, 3.33, 2.50).
What differs in each figure is the values of ¢ and Ryy.

5 Conclusions

We have presented an on-line, multi-model algorithm for the estimation of
the switching parameter of a dynamical system. The algorithm is based on



the comparison of output behaviors of the true system and those of a set
of models, each tuned to a particular value of the parameter. Our algorithm
is a generalized version of the Partition Algorithm; in particular, minimal
probabilistic assumptions are required, the new algorithm applies to nonlin-
ear systems as well, and the case of a switching parameter is handled by the
introduction of a switching mechanism. While a probabilistic interpretation of
our results is possible, it i1s not necessary and in fact it may be limiting possi-
ble extensions of the applicability of the algorithm and variations of the form
of update eq.(4). We provide a convergence analysis of the algorithm, which
is based on the approximation of the probabilistic credit functions 7¥ by the
deterministic quantities pf. The latter are proved to converge (between para-
meter switchings) to values which ensure selection of the parameter value that
best approximates the observed system behavior. Numerical experiments show
that the algorithm estimates the parameter value with very good accuracy.

In the future, we want to provide a more detailed analysis of the connection
between 7F and pF, with the final goal of establishing convergence of 7% to one
for the best model. We are currently examining this problem; let us present
some introductory remarks. A method is required to establish convergence
either of 7% (in some stochastic sense) or of the expected value F(n¥). Taking
expectations in both sides of equation (4) is a possible first move in writing an
equation that expresses expected 7% in terms of expected 7% | and expected

ef%i (i.e. similar to eq.(7)). However, a way must be found to replace the
expectation of a product with a product of expectation. Another possibility
is to use Ljung’s and Kushner’s methods and establish convergence of the
stochastic difference equation (4) by studying the properties of a deterministic
differential equation. However, this approach requires rewriting eq.(4) in the
form: 7f =7 4+ €. f(nl 1, Y, =Y} ..., 7K, Y, — V,5), or finding an equation

of such form that approximates (4).

In addition, we want to extend our algorithm so that it is applicable to prob-
lems with high dimensional parameter space. In this case, the quantization
approach used in Section 4 is not practical, due to the large number of models
that must be employed. What is required is to replace quatization by a more
sophisticated method of searching the parameter space, by a “divide-and-
conquer” approach, e.g. using a genetic algorithm (which employs the credit
functions 7% to create successive generations of models), a simulated anneal-
ing or a Monte Carlo Markov Chain scheme, such as described in (Gilks et al,
1996). However, such methods are computationally intensive and their on-line
application may present difficulties.



A Appendix: Proof of the Convergence Theorem

Here we present the proof of the convergence theorem. To prove Theorem 1,
we will work with auxiliary quantities ¢F, defined as follows, for k = 1,2, ..., K.

K
g = (Z " Rmk) g (A.1)
m=1

Comparing (7) and (A.1), se see that the ¢/’s are simply the unscaled versions
of the pf’s. This is actually proved in the following Lemma.

Lemma 2 For pf as given by (7) and ¢F as given by (A.1), define A, =
1

o ok

SE g™, Suppose that fork = 1,..., K p¥ and qF are chosen so that %11- = %12— =
1 1
"= %? Then, form =1,2,..., K and fort =1,2...we have ¢* = A, - p;*.
Proof By induction. For ¢ =1
G _@_ % _atetd _ateta
2=2=.=2=2 = = = A (A.2)
1 1 Pt pite-tpr 1

Now suppose that the proposition holds for ¢ = r. Then p'= A%q:,” for m =
1,2,..., K and

L K m, . m m
& Ay <Zm:1 4, Rmk) Qkn 9ri1 - 9ri1

Pri1 = = &K = .
1L K K ] A
A i1 ( me1 @ le) cap 211 1

(A.3)

and the proof is complete. I

Now, to prove convergence we work for a while with the auxiliary quantities
q" rather than the pf. Define ¢, = [¢}, ¢, ..., ¢] and

Q1p 0 ... 0 Rn R12 RlK
0 agy ... .. Ro1 Ros ... ...
A= ’ R=| 7" Q = RA;(AA)
i 0 ... .. OéKn_ _RKI RKK_

then (A.l) can be rewritten as

¢ =@ 1RA=q1Q (A.5)

10



Q is a positive matrix. Since ag, < 1 for k = 1,..., K and Y5 Ry = 1, we
have 25, Qr; < 1. The following theorem holds for the powers of Q.

Theorem 3 Q' = \'-w' - v/ + O(tM|pu|").
Proof (Sencta, 1987), p.7.

Here A is the (positive) maximum modulus eigenvalue of ) (guaranteed to exist
by the Perron-Frobenius theorem, (Seneta, 1987, p.1); w, v are the associated
(strictly positive) right and left eigenvectors, i.e. w@Q = Aw , Qv = v and
wv = 1; p is the second maximum modulus eigenvalue, with multiplicity M.
We have the following Lemma.

Lemma 4 |\ =\ < 1.

Proof That ])\]: A follows from the Perron-Irobenius theorem. Now define
cm =S5 Qumn < 1. Suppose A > 1. We have

w@ = \w = ZwQOn = \w, = ZZwQOn = )\an =

> Wi (cm — A) = 0. (A.6)

This leads to a contradiction, because we know that A > 1 and, for all m,
Wy, > 0 and ¢, < 1; so we have a sum of strictly negative numbers that
equals less than zero. The proof is complete. I

Now we will prove the following Lemma.

Lemma 5 Define v,,, = ﬂvﬂll Fort=12,... and m,l =1,2,..., K we have

m

@ [ (A7)

— Yy QS T —> 00.

¢ (@

Proof I'rom Theorem 3 and LLemma 4 it follows that as ¢t — oo

w1y uNnve ... UNUVK
un
1 WoU1 WUy ...
t —
Wk
WUy ... ... WKV

11



2

5 g eeey

Then, for i, 7, m =1 K

[@im ., s e ,
D\ | [@im  w;
[Qt]jm WjUm

Similarly, for i,j =1,2,..., K (and fixed n)

[Qt]nz — W Vs t . .
R T [Qt]m N (A.10)
[Qi\] S wlv‘ [Q ]nj "

ng nvg

Since ¢; = ¢_1Q, -1 = q_»Q etc., finally ¢, = go@Q'. Then we have for
m,l=12 .. K
¢" = ©lQ"Tim + 6 [Q2m + - + ¢ [Qxm- (A.11)
I 1
g QM+ @Qy + . + o' [Q i

(A.12)

Taking i = 1,2,..., K and j = n in (A.9) one obtains

[Qt]lm [thm [Qt]Km
Qo P Qe P Qi e (A1
then applying to (A.11) one obtains

Similarly, in (A.9) take m=1,i=1,2,..., K and j = n to obtain

QT Q2 @t 5
[Qt]nl ﬂlnu [Qt]nl ﬂQn? ] [Qt]nl ﬂKm ( 15>

combining (A.15) with (A.12) one obtains
[Qt]nl 1

— ) A.16
Multiply (A.14) and (A.16) to obtain
g [Q"]n:
. — 1. A7
Ol 4 (A1)



Also, by (A.10) with ¢ = and j = m, one obtains

[Qt] nl
QT

Combining (A.17) and (A.18) one finally obtains

Q" q" 1 1 Vi
Ll'/ylmﬁli%_)—zzz__’ymz
gt Gt Yim o Ui

and the proof is complete. I

Now we prove the convergence theorem.

(A.18)

(A.19)

Proof of Theorem 1 From Lemma 5 we know that for m,l = 1,2, ..., K

we have %;ti — Y,- From Lemma 1 we know that for m,l = 1,2,..., K and
t

t=1,2,... we have ¢" = A, - pI* and ¢! = A, - pl. Hence

q;"

A, p
lim—lzlimt—pt:hmpt

t— 00 qs t— 00 At pi t—00 Pt

In other words

Py

It is easy to show that

P_i _ Zm Pﬁl i le . Ay,
28 Yom Py Bon Qg
Then, taking the limit as ¢ — co one obtains

P Swl™ Bt i
pn Zm pm ' Rmn Qnn

1

P

;Z“—“le

P

T Y Yom P 1

P m 't 4

‘ = 1 _>Z/yml:>_l_>27ml:>pt_>
Dy m D m

K

P

= YKy

m

ml

(A.20)

=p'.(A.21)

(A.22)

(A.23)

Now suppose that the conclusion of the theorem is false. In that case the

maximum of p* occurs for some m # n. In other words for some m # n and

13



for all k # m, we have p™ > p*. In particular

77

p

— kak * ka . amn < pm ¢ Zkka . amn pm 1 +K€ Oémn :>

< 1—|—K€.Oémn:> Cyn < 1+ Ke

1—€¢ o, Omn 1 —€

(A.24)

which contradicts (A3). Hence the proof is complete. I

Remark It has been assumed so far that ,, is a member of ©, the search set.
However, suppose now that the actual parameter value is 8y, outside ©. Fur-
ther suppose that the conditions (A1), (A2), (A3) still hold. In particular,
(A3) now becomes: “ for all I # n we have 1 < HKe < —ll‘ﬂ ” This means that
the n-th model (in the set ©) matches the output behav1or of the true system
better than any other model in ©. It will be observed that the proof still goes
through without any modifications and the conclusion of the theorem still
holds: limy; . pf* exists for m = 1,2, ..., K and lim; o p} > lim; .., p! for all
[ # n. Hence the parameter is estimated correctly, in the sense that the value
selected approximates the output behavior of the true system better than any
other parameter value in the search set ©.
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FIGURE CAPTIONS

FIGURE 1 Classification figure of merit ¢ for ¢ =0.1, Py =0.99, L=10.
FIGURE 2 Classification figure of merit ¢ for ¢ =0.005, Py, =0.99, L=10.
FIGURE 3 Classification figure of merit ¢ for ¢ =0.01, Py, =0.99, L=10.
FIGURE 4 Classification figure of merit ¢ for ¢ =0.01, Py, =0.995, L=10.
FIGURE 5 Classification figure of merit ¢ for ¢ =0.01, Py, =0.98, L=10.
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Figure 1: Classification figure of merit ¢ for sigma = 0.1, Py = 0.99, L = 10.
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Figure 2: Classification figure of merit ¢ for sigma = 0.005, Py = 0.99, L = 10.
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Figure 3: Classification figure of merit ¢ for sigma = 0.01, Py = 0.99, L = 10.
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Figure 4: Classification figure of merit ¢ for sigma = 0.01, Py = 0.995, L = 10.
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Figure5: Classification figure of merit ¢ for sigma = 0.01, Py = 0.98, L = 10.



