Ath. Kehagias and V. Petridis.
" Time Series Segmentation using Predictive Modular Neural
Networks'.

This paper has appeared in the journal:
Neural Computation, Val.9, pp.1691-1710, 1997.

Manuscript Nr. 1406

Time Series Segmentation

using Predictive Modular Neural Networks

Ath. Kehagias Vas. Petridis
Dept. of Electrical Engineering Dept. of Electrical Eng.
Aristotle Univ. of Thessaloniki Aristotle Univ. of Thessaloniki
and

American College of Thessaloniki

January 9, 1997

Abstract

A predictive modular neural network method is applied to the problem of unsupervised time
series segmentation. The method consists of the concurrent application of two algorithms: one for
source identification, the other for time series classification. The source identification algorithm
discovers the sources generating the time series, assigns data to each source and trains one predictor
for each source. The classification algorithm recursively computes a credit function for each source,
based on the competition of the respective predictors, according to their predictive accuracy; the
credit function is used for classification of the time series observation at each time step. The method

is tested by numerical experiments.

This paper appeared in Neural Computation, Vol.9, pp.1691-1710, 1997

1 Introduction

For a given time series, the segmentation process should result in a number of models each of which
best describes the observed behavior for a particular segment of the time series. This can be formulated
in a more exact manner as follows. A time series y;, ¢ = 1,2, ... is generated by a source S(z;), where z
is a time varying source parameter, taking values in a finite parameter set © = {01, 0o, ...,0x }. At time
t, y: depends on the value of z;, as well as on y;_1, yt_9, However, the nature of this dependence,
the number K of parameter values as well as the actual values 01, 0, ..., O are unknown. What
is required is to find the value of z;, for t=1, 2,...; or, in other words, to classify y, for t=1, 2, ...
Typical examples of this problem include speech recognition (Rabiner, 1988), radar signal classification
(Haykin and Cong, 1991), electroencephalogram processing (Zetterberg et al. 1981); other applications
are listed in (Hertz et al., 1991).

Under the assumptions that (a) the parameter set © = {0y, 0s,..., Ok} is known in advance and (b)
a predictor has been trained on source specific data before the classification process starts, we have pre-
sented a general framework for solving this type of problem in (Petridis and Kehagias, 1996a, 1996b;
Kehagias and Petridis, 1997), using Predictive Modular Neural Networks (PREMONNs). The basic
feature of the PREMONN approach is the use of a decision module and a bank of prediction modules.
Each prediction module is tuned to a particular source S(6y) and computes the respective prediction
error; the decision module uses the prediction errors to recursively compute certain quantities (one for
each source) which can be understood as the Bayesian posterior probabilities (probabilistic interpre-
tation) or simply as credit functions (phenomenological interpretation). Classification is performed by
maximization of the credit function.

Similar approaches have been proposed in the control and estimation literature (Lainiotis, 1968,
1969, 1971) and in the context of predictive hidden Markov models (Kenny et al., 1990). These ap-
proaches also assume the sources to be known in advance.

On the other hand, several papers which have appeared recently (Jacobs et al. 1991, Jordan
and Jacobs 1994; Jordan and Xu, 1995; Xu and Jordan, 1996) use a similar approach but provide a
mechanism for unsupervised source specification. The term miztures of experts is used in these papers;
each expert is a neural network specialized in learning the required input - output relationship for a
particular region of the pattern space. There is also a gating network that combines the output of each
expert to produce a better approximation of the desired input - output relationship. The activation
pattern of the local experts is the output of the gating network, and it can be considered as a classifier
output: when a particular expert is activated, this indicates that the current observation lies in a
particular section of the pattern space.

The emphasis in the mixture of experts method, is on static patterns classification, rather than
classification of dynamic patterns such as time series. However, there are some applications of the
mixture of experts method to dynamic problems of time series classification. For example, in (Prank
et al., 1996), the mixture of experts method is applied to a problem of classifying the “pulsatile”
pattern of growth hormone in healthy subjects and patients. The goal is to discriminate the pulsatile
pattern of healthy subjects from that of patients. In general the time series corresponding to a healthy
subject is more predictable than that corresponding to a patient. Classification is based on the level
of prediction error for a particular time series (low error indicating a healthy subject and high error
indicating a patient). The selection pattern of local experts (i.e. which expert is activated at any given
time step), can also be used for classification, since the frequency distribution of most probable experts
significantly differs between patients and healthy subjects. However, the activation of experts by the
gating network, is performed at every time step independently of previous activation patterns. This
may result in the loss of important correlations across time steps, which characterize the dynamics of
the time series.

This static approach to time series classification may be problematic in cases where there is signifi-
cant correlation between successive time steps of the time series; this has been recognized and discussed
in (Cacciatore and Nowlan, 1994), where it is stated that “The original formulation of this [local ex-
perts] architecture was based on an assumption of statistical independence of training pairs ... this

assumption is inappropriate for modelling the causal dependencies in control tasks”. Cacciatore and

Nowlan proceed to develop the mizture of controllers architecture, which emphasizes “the importance of
using recurrence in the gating network”. The mixture of controllers is similar to the method we present
in this paper. However, the method presented in (Cacciatore and Nowlan, 1994) requires several passes
through the training data; our method, on the other hand can be operated on-line as it does not require
multiple passes. In addition, in some cases Cacciatore and Nowlan need to explicitly provide the active
sources (for some portion of the training process) for the mixture of controllers network to accomplish
the required control task; in our case learning is completely unsupervised and the active sources always
remain hidden.

Finally, a very recent paper (Pawelzik et al., 1996) presents an approach using Annealed Competition
of Erperts. The method presented therein is similar to the work cited earlier; it is applied to time series
segmentation and does not assume the sources to be known in advance. This method is mainly suitable
for off-line implementation, due to the heavy computational load incurred by the annealing process.

In this paper we present an unsupervised time series segmentation scheme, which combines two
algorithms. The first is the source identification algorithm: it detects the number of active sources in
the time series, performs assignment of data to the sources and uses the data to train one predictor for
each active source. The second is the classification algorithm: it uses the sources / predictors specified
by the identification algorithm and implements a PREMONN which computes credit functions. A
probabilistic (Bayesian) interpretation of this algorithm is possible, but not necessary.

The combination of the two algorithms, the source identification one and the time series classification
one, constitutes the combined time series segmentation scheme; the two algorithms can be performed
concurrently and on-line. A crucial assumption is that of slow switching between sources. Our approach
is characterized by the use of a modular architecture, with predictive modules competing for data and
credit assignment. A decision module is also used, to assign the credit in a recursive manner which
takes into account previous classification decisions. It should be mentioned that a convergence analysis

of the classification algorithm is available elsewhere (Kehagias and Petridis, 1997).

2 The Time Series Segmentation Problem

Consider a time series z;, t = 1,2,..., taking values in the unknown set ® = {01,...,0k}; further
consider a time series y;, ¢t = 1,2,..., which is generated by some source S(z;): for every value of z
a source S(z) is activated, which produces y; using yi—1, yi—2, We call z the source parameter

and y; the observation. For instance, if z; = 01, we could have y¢ = f(yt—1, Yt—2, ...; 61), where f(-) is

an appropriate function with parameter #;; 67 can be a scalar or vector quantity or, simply, a label

variable.
The task of time series segmentation consists in estimating the values z1, 22, ... , based on the
observations 41, ¥2, The size K of the source set © and its members 01,0y, ...,0k, are initially

unknown. This original task can be separated into two subtasks: source identification and time series
classification. The task of source identification consists in determining the active sources or, equiva-
lently, the source set © = {64, ...,0k}. Having achieved this, the time series classification task consists
in corresponding each z; (t=1, 2, ...) to a value 0y (k = 1,2,..., K) or, equivalently, to determine at

each time step ¢ the source S(0x) that has generated y;.

The combination of the two subtasks yields the original time series segmentation task. Two algo-
rithms are presented here, one to solve each subtask. The source identification algorithm distributes
data 41, 92, ... , ¥ among active sources and uses the data to train one predictor per source. For in-
stance, a data segment y1, ya, ... , yas may be assigned to source S(#;) and used to approximate some
postulated relationship y¢ = f(yt_ 1,9yt 2,..;01). 1 The time series classification algorithm uses the
predictors trained in the source identification phase, to compute predictions of incoming observations.
The respective prediction errors are used to compute a credit function for each predictor / source; an
observation ¥ is classified to the source of maximum credit.

Each of the two algorithms has been developed using a different approach. The source identification
algorithm has an heuristic motivation; its justification is experimental. On the other hand, the clas-
sification algorithm is motivated by probabilistic considerations. While in this paper its performance

is evaluated only experimentally, a detailed theoretical analysis is available (Kehagias and Petridis,

1997).

3 The Time Series Segmentation Scheme

We first present the two algorithms that constitute the time series segmentation scheme; then we

proceed to describe the manner in which they are combined.

3.1 The Source Identification Algorithm

Other authors have tackled the same problem using similar methods (Pawelzik et al., 1996). There are
also connections to k-means (Duda, 1979) and Kohonen’s learning vector quantizer (Kohonen, 1981);
however note that these have been applied mainly to classification of static patterns. We now give a
description of the algorithm. The following parameters will be used in what follows; L, the length of
a data block, M, the length of a data segment, where M < L, K the number of active predictors and

Kpae the mazimum allowed number of active predictors.

SOURCE IDENTIFICATION ALGORITHM

Initialization

Set K = 1. Use data block y1, ¥2, ... , ¥z, to train the first predictor, of the form y} = f(yt—1, yi—2, ..-;01),

where f(-) is a (sigmoid) neural network and 6, is taken to be the connection weights.
Main Routine

Loop forn=1,2,....

lyy=f (ye—1,Yt—2,...; 2) reflects the dependence of y, on past observations, as well as on the parameter z,. In general
the true input-output relationship will be unknown and f(-) will be an approximation, such as furnished by a sigmoid
neural network. In fact, due to the competitive nature of the algorithms presented, even a crude approximation suffices,
as will be explained later.

1. Split data block ys, t =n-L+1,n-L+4+2,...(n+1)-L (that is, L time steps) into L/M data
segments (that is, M time steps, M < L).

2. Loop for k=1, ..., K.

(a) Use each segment of y’s as input to the k-th predictor to compute a prediction yr =
f(yt—1, ...; %) for each time ¢.

b) For every segment, compare the predictions yk with the actual observations y; (f = n -
t
L+1n-L+2..,(n+1)-L)tocompute the Segment-Average Square Prediction Error
(henceforth SASPE).

End of k£ loop.

3. Loop for every segment in the block (a total of L/M segments).

(a) For the current segment, find the predictor that produces the minimum SASPE.
(b) For this predictor, compare minimum SASPE with a respective threshold 2,
(¢) In case SASPE is above the threshold, and K < Kjnqa, set K = K41 and assign the current

segment to a new predictor; otherwise, assign the segment to the predictor of minimum

SASPE.

End of segment loop.

4. Loop for k=1,..., K.

(a) Retrain the k-th predictor for J iterations, using the L/M most current data segments

assigned to it.
End of k£ loop.

End of n loop.

It is assumed that the switching rate is slow enough, so that the initial segment will mostly contain
data from one source; however some data from other sources may also be present. The modular and
competitive nature of the algorithm is evident. A data segment is assigned to a predictor even if the
respective prediction is poor; what matters is that it is better than the remaining ones. Hence, every
predictor is assigned data segments on the assumption that they were generated by a particular source
and the predictor is trained (specialized) on this source. Training can be performed independently, in
parallel, for each predictor.

Numerical experimentation indicates that the values of several parameters may affect performance;

these are now discussed.

2This threshold is computed separately for each predictor.

1. L is the length of data block. If L is too large, then training for each data block requires a long
time. If L is too small, then not enough data are available for the retraining of the predictors.
For the experiments reported in Section 4, we have found that values around 100 are sufficient

to ensure good training of the predictors without incurring excessive computational load.

2. M is the length of data segment; it is related to the switching rate of z;. Let Ts denote the
minimum number of time steps between two successive source switches. While T is unknown,
we operate on the assumption of slow switching, which means that T will be relatively large.
Now, since the M data points included in a segment will all be assigned to the same source (and
used to train the same predictor), it is obviously desirable that they have been truly generated by
the same source; otherwise the respective predictor will not specialize on one source. In reality,
however, this is not guaranteed to happen. In general, a small value of M will increase the
likelihood that most segments contain data from a single source. On the other hand, it has been
found that small M leads to an essentially random assignment of data points to sources, especially
in the initial stages of segmentation, when the predictors have not specialized sufficiently. The
converse situation holds for large M. In practice, one needs to guess a value for T and then take
M somewhere between 1 and 7. This choice is consistent with the hypothesis of slow switching
rate. The practical result is that most segments in a block contain data from exactly one source,
and a few segments contain data from two sources. It should be stressed that the exact value of

T is not required to be known; a rough guess suffices.

3. J, the number of training iterations, should be taken relatively small, since the predictors must
not be overspecialized in the early phases of the algorithm, when relatively few data points are

available.

4. The error threshold is used to determine if and when a new predictor should be added. At
every re-training epoch the training prediction error, Fy, is computed for k£ = 1,2, ..., K. Then
the threshold, D, is set equal to a - Ey, where a is a scale factor. A high a value makes the
introduction of new predictors difficult, since large prediction errors are tolerated; conversely, a

low a value facilitates the introduction of new predictors.

5. In practice a value K4y is set to be the maximum number of predictors used. As long as this is
equal to or larger than the number of truly active sources, it does not affect the performance of

the algorithm seriously.

A further quantity of interest is I, the length of time series. Theoretically this is infinite, since the
algorithm is on-line, with new data becoming continuously available. However, it is interesting to note
the minimum number of data required for the algorithm to perform the source identification succesfully.
In the experiments presented in Section 4 it is usually between 1000 and 3000. This is the information
that the algorithm requires to discover the number of active sources and to train respective predictors.
In addition, the time required to process the data is short, because only a few training iterations are
performed per data segment; these computations are performed while waiting for the new data segment
to be accumulated. The short training time and the small amount of data required, make the source

identification algorithm very suitable for on-line implementation.

3.2 The Classification Algorithm

The classification algorithm has already been presented in (Petridis and Kehagias 1996b; Kehagias and
Petridis, 1997) under the name of Predictive Modular Neural Network (PREMONN). A brief summary
is given here.

It is assumed that the source parameter time series z¢, t = 1,2, ..., takes values in the known set
© = {6y, ..., 0k } (this has been specified by the source identification algorithm). Corresponding to each
source S(0y), there is a predictor (e.g. a neural network trained by the source identification algorithm)

which is characterized by the following equation (k = 1,2, ..., K):

Yr = [(Ye-1,Yt—2, .- Or). (1)

At every time step ¢, the classification algorithm is required to identify the member of ©® which best
matches the observation ;. Using a probabilistic approach, one can define pf = Pr(z: = Oly1, y2, -, yt)-
In (Petridis and Kehagias, 1996a) the following pf update is obtained:

¢~y |2

vy

k
Pi_1°¢

(2)

k _
Pt = K lye—yhl?
Yiz1Piq-€e
Eq.(2) is a recursive implementation of Bayes’ rule. The recursion is started using pf, the prior
probability assigned to) at time ¢t = 0 (before any observations are available). In the absence of any

prior information, all models are assumed equally credible:

1
ph = = for k=1,2,..., K. (3)
Finally, 2; (the estimate of z) is chosen as
2 = argmax py. (4)

Hence the PREMONN classification algorithm is summarized by egs.(3), (1), (2), (4). This is a recursive
implementation of Bayes’ rule; the value p? reflects our belief (at time ¢) that the observations are
produced by a model with parameter value 0;;

The probabilistic interpretation of the algorithm, presented above, is not necessary. A different,
phenomenological, interpretation goes as follows. p¥ is a credit function which evaluates the performance

of the k-th source in predicting the observations w1, y2, ... , y:. This evaluation depends on two
lye—vp?)))
factors: e~ 2 _ reflects how accurately the current observation was predicted, while p | reflects past

performance. Hence eq.(2) updates the credit function p¥ recursively; the update takes into account
the previous value p¥ ;; this makes p¥ implicitly dependent on the entire time series history. The
final effect is that correlations between successive observations are captured. Note also the competitive
nature of classification, which is evident in eq.(2): even if a predictor performs poorly, it may still
receive high credit, as long as the remaining predictors perform even worse.

In (Kehagias and Petridis 1997) it is proved that eq.(2) converges to appropriate values, that ensure

classification to the most accurate predictor. In the case of slow switching (as assumed in this paper),
convergence to the active source is guaranteed for the time interval between two source switchings,
provided that the convergence rate is fast, compared to switching rate. Again, this requirement is in
accordance with the hypothesis of slow switching.

The performance of the classification algorithm is influenced by two parameters, ¢ and h, which

are discussed next.

1. o is a smoothing parameter. Under the probabilistic interpretation, ¢ is the standard deviation

of prediction error. A phenomenological interpretation is also possible. For a fixed error |y; — yr l,
lye—yf?
note that a large o results in a large value of ¢ o2, This is of interest particularly in the

case where a predictor performs better than the rest over a large time interval, but occasionally

generates a bad prediction (perhaps due to random fluctuation). In this case, a very small o will
lye —vf|?
result in a very small value of ¢ 2 in eq.(2). This, in turn, will decrease pf excessively. On

the other hand, a very large o results in sluggish performance (a long series of large prediction

errors is required before p¥ is sufficiently decreased). For the experiments reported in this paper,

K
: : : : : _ lvewp?
o is determined at every time step ¢ by the following adaptive estimate: o= Zk*}(-

2. A threshold parameter) is also used in the classification algorithm. Suppose that z; remains

e v |*
fixed for a long t;rgle at, say, 01; then at time ¢, a switch to 0y occurs. For ¢ < ¢, e T T s
large and ef‘yt_;gt‘_ small (much less than one). Considering eq.(2) one sees that p? decreases
exponentially; after a few steps it may become so small that computer underflow takes place and
p? is set to 0. It follows from eq.(2) that after that point p? will remain 0 for all subsequent time
steps; in particular, th;SQWﬂl also be true after t,, despite the fact that now the second predictor
performs well (eiw—;?‘— will be large, but multiplied by p? ; will still yield p? = 0). Hence
the currently best predictor receives zero credit and is excluded from the classification process.
What is required is to ensure that p? will never become too small. Hence the following strategy is
used: whenever pf falls below h, it is reset to h; if k is chosen small (say around 0.01), then this
resetting does not influence the classification process, but also gives predictors with low credit

the chance to quickly recover, once the respective source is activated.

3.3 The Time Series Segmentation Scheme

The time series segmentation scheme consists in the concurrent application of the two algorithms.
Namely, the classification algorithm is run on the current data block, using the predictors discovered
and trained by the source identification algorithm in the previous epoch ? (operating on the previous
data block). Concurrently, the identification algorithm operates on the current block and provides
an update of the predictors; but this update will only be used in the next epoch of the segmentation
scheme. Hence, the classification algorithm uses information provided by the source identification

algorithm, but not vice versa.

3 An epoch is defined as the interval ofL time steps which correspond to a data block.

The identification algorithm in effect provides a crude classification, by assigning segments to pre-
dictors; the role of the classification algorithm is to provide segmentation at the level of individual
time steps. Comparatively speaking, in the initial stages of the segmentation process, the identification
algorithm is more important than the classification algorithm and the predictors change significantly at
every epoch; at a later stage the predictors reach a steady state and the source identification algorithm
becomes less important. In fact, a reduced version of the segmentation scheme could use only the
identification algorithm initially (until the predictors are fairly well defined) and only the classification
algorithm later (when the predictors are not expected to change significantly). However, for this re-
duced version to work, it is required that new sources are not activated at a later stage of the time

series evolution.

4 Experiments

Two sets of experiments are presented in this section, so as to evaluate the segmentation scheme.

4.1 Four Chaotic Time Series

Consider four sources, each generating a chaotic time series:

1. for zx = 1, a logistic time series of the form y; = f1(yt—1), where fi(x) = 4z(1 — z);

2. for z; = 2, a tent-map time series of the form y; = fo(ys—1), where fo(x) = 2z if € [0,0.5) and
fo(z) =2(1 —z) if z € [0.5,1];

3. for z; = 3, a double logistic time series of the form y: = fa(y:—1) = f1(f1(y+—1)) and

4. for z; = 4, a double tent-map time series of the form v = fa(yr—1) = fa(fo(yi—1)).

The four sources are activated consecutively, each for 100 time steps, giving an overall period of
400 time steps. Ten such periods are used, resulting in a 4000-steps time series. The task is to discover
the four sources and the switching schedule by which they are activated. Six hundred time steps of
the composite time series (encompassing the source transition 1 — 2 — 3 — 4 — 1 — 2) are presented
in Figure 1. Hence the first hundred time steps correspond to z; = 1; the second hundred time steps
correspond to z; = 2 and so on.

A number of experiments are performed, using several different combinations of block and segment
lengths; also the time series is observed at various levels of noise, i.e. at every step y; is mixed
with additive white noise uniformly distributed in the interval [—A/2, A/2]. Hence an experiment is
determined by a combination of L, M and A values. The predictors used are 1-5-1 sigmoid neural
networks; the maximum number of predictors is K4, = 6; the number of training iterations per time
step is J = 5; the credit threshold is set at & = 0.01. *

4Tt should be noted that, for training the sigmoid predictors, a Levenberg-Marquardt algorithm was used; this was
implemented by Magnus Norgaard, Technical University of Denmark, and distributed as part of the Neural Network
System Identification Toolbox for Matlab.

In every experiment performed, all four sources are eventually identified. This takes place at some
time 1., which is different for every experiment. After time 7., a classification figure of merit is
computed. It is denoted by ¢ = T5/T}, where T} is the total number of time steps after T, and 75
is the number of correctly classified time steps after T.. The results of the experiments (i.e. T. and
c) are listed in Tables 1 and 2. The evolution of a representative credit function, in this case p} (the
remaining five credit functions evolve in a similar manner), is presented in Fig. 2.A. This figure was
obtained from a noise-free experiment (A=0.0), with =105, M = 15. Note that classification beyond
time T, is very stable. The classification decisions (namely the source / predictor selected at every
time step) for the same experiment are presented in Fig.2.B. It can be observed that the four sources
correspond to predictors 1, 2, 3 and 6. Predictors 4 and 5 have received relatively few data, have been
undertrained and do not correspond to any of the truly active sources; generally these predictors play

no significant role in the segmentation process.

4.2 Mackey-Glass Time Series

Now consider a time series obtained from three sources of the Mackey-Glass type. The original data

evolves in continuous time and satisfies the differential equation :

02y<t — td)
L+ y(t —ta)'

dy
~Z — 0.1yt
o y(t) +

(5)

For each source a different value of the delay parameter ¢; was used, namely t;= 17, 23 and 30. The
time series is sampled in discrete time, at a sampling rate 7 = 6, with the three sources being activated
alternately, for 100 time steps each. The final result is a time series with a switching period of 300 and
a total length of 4000 time steps. Six hundred time steps of this final time series (encompassing the
source transition 1 — 2 — 3 — 1 — 2 — 3) are presented in Figure 3. Hence the first hundred time
steps correspond to z; = 1; the second hundred time steps correspond to z; = 2 and so on.

Again, a particular experiment is determined by a combination of L, M and A values. The predictors
used are 5-5-1 sigmoid neural networks; the maximum number of predictors is Knqe = 6; the number
of training iterations per time step is J = 5; the credit threshold is set at A = 0.01.

Again all three sources were correctly identified in every experiment. The results of the experiments,
T and ¢ (which have been described in Section 4.1) are listed in Tables 3 and 4. The evolution of three
representative credit functions, pf, p?, p?, are presented in Figs. 4.A, 4.B and 4.C, respectively. This
figure was obtained from an experiment with A=0.15, L=105, M = 15. Note that classification beyond
time T, is quite stable. The classification decisions (namely the source / predictor selected at every
time step) for the same experiment are presented in Fig.4.D. It can be observed that the three sources
correspond to predictors 1, 2 and 3. Predictors 4, 5 and 6 have received relatively few data, have been
undertrained and do not correspond to any of the truly active sources; generally these predictors play

no significant role in the segmentation process.

10

4.3 Discussion

It can be observed from Tables 1-4 that the segmentation scheme takes between 1000 and 3000 steps
to discover the active sources. After that point classification is quite accurate for low to middle noise
levels and gradually drops off as noise level increases. > The scheme is fast: source identification and
classification of the 4000 time steps (run concurrently) require a total of approximately 4 minutes.
The algorithms are implemented in MATLAB and run on a 486 120 MHz IBM compatible machine; a
significant speedup would result from a C implementation (consider that MATLAB is an interpreted
language).

The same segmentation tasks have been treated by the method of Annealed Competition of Fxperts
(ACE) in (Pawelzik et al., 1996). Regarding accuracy of segmentation, both methods appear to achieve
roughly the same accuracy; however it should be pointed out that the ACE method was applied either
to noise-free or low-noise data; we do not know how well the ACE method performs in the presence of
relatively high noise. Execution time is not cited in (Pawelzik et al., 1996) for the two tasks considered
here. On a third, prediction, task, the ACE method requires 2.5 hr on a SPARC 10/20 GX. In general,
we expect the ACE method to be rather time consuming, since it depends on annealing, which requires
many passes through the training data.

Regarding the required number of time series observations, the ACE method uses 1200 data points
for the first task; 400 data point for the second; several annealing passes are required. Our method
requires a single pass through at most 3000 data points. We do not consider this an important difference:
because all time series involved are ergodic, we conjecture that processing 3000 data points once should

yield more or less the same information as cycling thirty times over 100 data points. 6

5 Conclusions

An unsupervised time series segmentation scheme has been presented, which combines a source identi-
fication and a time series classification algorithm. The source identification algorithm determines the
number of sources generating the observations, distributes data between the sources and trains one
predictor for each source. Then, predictors are used by the classification algorithm as follows. For
every incoming data segment, each predictor computes a prediction; comparing these to the actual
observation, segment prediction errors are computed for each predictor. The prediction errors are used
to recursively and competitively update a credit function for each predictor / source. Namely, sources
which correspond to more succesful predictors receive higher credit. Each segment is classified to the
source which currently has highest credit. The combined scheme consists of the identification and
classification algorithms running concurrently, in a competitive and recursive manner.

The scheme is accurate, fast and requires few training data, as has been established by numerical

experimentation; hence it is suitable for on-line implementation. It is also modular: training and pre-

®To evaluate the effect of noise, one should keep in mind that the chaotic time series take values in the [0,1] interval
and the Mackey-Glass time series in the [0.7,1.3] interval.

5Tt should also be mentioned that using the same data for training and testing, makes the task considered in (Pawelzik
et al., 1996) somewhat easier than the one considered in this paper, where segmentation is evaluated on previously unseen
data. But, again, we believe that the difference is not great, due to the ergodic nature of the time series.

11

diction are performed by independent modules, each of which can be removed from the system, without

affecting the properties of the remaining modules. This results in short training and development times.

Finally, a convergence analysis of the classification algorithm has been published elsewhere (Kehagias

and Petridis, 1997); this guarantees correct classification.

It should be mentioned that, while we have not made any assumptions about the switching behavior

of the source parameter, a Markovian assumption can be easily incorporated in the update equation

2).

A convergence analysis for this case is also available. This modification affects the classification

algorithm only, leaving the source identification algorithm unaffected. However, because of lack of

space, these developments will be presented in the future.

References

1]

[10]

[11]

T.W. Cacciatore and S.J.Nowlan. 1994. “Mixtures of Controllers for Jump Linear and Nonlinear
Plants”, in Advances in Neural Information Processing Systems 6 (NIPS 93), eds. J.D. Cowen, G.
Tesauro and J. Alspector, pp. 719-726, San Francisco, CA, Morgan Kaufmann.

R.O. Duda and P.E. Hart. 1973. Pattern Classification and Scene Analysis, Wiley, New York.

S. Haykin and D. Cong. 1991. “Classification of radar clutter using neural networks”, IEEE Trans.
on Neural Networks, vol.2, pp.589-600.

J. Hertz, A. Krogh and R.G. Palmer. 1991. Introduction to the Theory of Neural Computation,
Addison-Wesley, Redwood City, CA.

C. G. Hilborn and D.G. Lainiotis. 1969. “Unsupervised Learning Minimum Risk Pattern Classifi-
cation for Dependent Hypotheses and Depedent Measurements”, IKEE Trans. on Systems Science
and Cybernetics, vol.5, pp. 109-115.

R.A. Jacobs, M.I. Jordan, S.J. Nowlan and G.E. Hinton. 1991. “Adaptive mixtures of local ex-
perts”, Neural Computation, vol.3, pp.79-87.

M.I. Jordan and R.A. Jacobs. 1994. “Hierarchical Mixtures of Experts and the EM Algorithm”,
Neural Computation, vol.6, pp. 181-214.

M.I. Jordan and L. Xu. 1995. “Convergence Results for the EM Algorithm to Mixtures of Experts
Architectures”, Neural Networks, vol.8, pp. 1409-1431.

A. Kehagias and V. Petridis. 1997. “Predictive Modular Neural Networks for Time Series Classi-
fication”, Neural Networks, vol.10, pp.31-49.

P. Kenny, M. Lennig ands P. Mermelstein. 1990. “A linear predictive HMM for vector-valued
observations with applications to speech recognition”, IKEE Trans. on Acoustics, Speech and
Signal Proc., vol.38, pp.220-225.

T. Kohonen. 1988. Self Organization and Associative Memory, Springer, New York.

12

[12]

[13]

[14]

[18]

[19]

D.G. Lainiotis. 1971. “Optimal adaptive estimation: structure and parameter adaptation”, IFKFE
Trans. on Automatic Control, vol.16, pp. 160-170.

V. Petridis and A. Kehagias. 1996a. “A Recurrent Network Implementation of Time Series Clas-
sification”, Neural Computation, vol.8, pp.357-372.

V. Petridis and A. Kehagias. 1996b. “Modular Neural Networks for MAP Classification of Time
Series and the Partition Algorithm”, IEEFE Trans. on Neural Networks, vol.7, pp.73-86.

K. Pawelzik, J. Kohlmorgen and K.R. Muller. 1996. “Annealed Competition of Experts for a
Segmentation and Classification of Switching Dynamics”, Neural Computation, vol.8, pp.340-356.

K. Prank et al. 1996. “Self-organized quantification of hormone pulsatility based on predictive
neural networks: Separating the secretory dynamics of growth hormone in acromegaly from normal
controls”, Biophysical Journal, Vol.70, pp.2540-2547.

L.R. Rabiner. 1988. “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition”, Proc. IEEFE, vol. 77, pp.257-286.

F.L. Sims, D.G. Lainiotis and D.T. Magill. 1969. “Recursive algorithm for the calculation of the
adaptive Kalman filter coeflicients”, IEEE Trans. on Automatic Control, vol.14, pp.215-218.

L. Xu and M.L. Jordan. 1996. “On Convergence Properties of the EM Algorithm for Gaussian
Mixtures”, Neural Computation, vol.8, pp. 129-151.

L.H. Zetterberg et al. 1981. “Computer analysis of EEG signals with parametric models”, Proc.
IEEE, vol. 69, pp.451-461.

13

Credit Function

Source Nr.

Fig.1l

1,20
1,00
0,80
0,60
0,40
0,20

0,00 - —t . —L —
-0,20 JL

101 201 301 401

801 1201 1601 2001 2401 2801

Time Steps

Fig.2B

7+
64
54
44
34
24
14

Time Steps

Fig.3

150 1
1,00 -
0,50 +
0,00

501

401

301

201

101

R 88888
- <4 O O O O

sSuonaunj Mpais

1601 2001 2401 2801 3201 3601

1201

Time Steps

Fig.4B

R 88888
- < O O O O

uonaunj Upa1)

0,00

801 1201 1601 2001 2401 2801 3201 3601

401

Time Steps

Fig.4C

M M i
i Ll NILIN

N

401

R888¢888
- < O O O O O

uonaunj Upa1)

1201 1601 2001 2401 2801 3201 3601

801

Time Steps

Fig.4D

5

801 1201 1601 2001 2401 2801 3201 3601

401

Time Steps

