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Abstract: This paper  presents the Bayesian Combined Predictor (BCP), a

probabilistically motivated predictor for Short Term Load Forecasting

(STLF) based on the combination of an artificial neural network (ANN)

predictor and two linear regression (LR) predictors. The method is applied

to STLF for the Greek Public Power Corporation dispatching center of the

island of Crete, using 1994 data, and daily load profiles are obtained.

Statistical  analysis of prediction errors reveals that during given time

periods the ANN predictor consistently forecasts better for certain hours of

the day, while the LR predictors forecast better during for  the rest. This

relative prediction advantage may change over different time intervals. The

combined prediction is a weighted sum of the ANN and LR predictions,

where the weights are computed using an adaptive update of the Bayesian

posterior probability of each predictor, based on their past predictive

performance. The proposed method outperforms both ANN and LR

predictions.

This paper appeared in Electrical Power and Energy Systems, Vol.19,

pp.171-177, 1997

1. INTRODUCTION

The formulation of economic, reliable and secure operating strategies for a

power system requires accurate short term load forecasting (STLF). The

principal objective of STLF is to provide load predictions for the basic

generation scheduling functions, the security assessment of a power

system and for dispatcher’s information. A large number of computational

techniques have been used for the solution of the STLF problem; these



make use of  statistical models, expert systems or artificial neural

networks (ANN); in addition the hybrid method of   fuzzy neural networks

has appeared in  the bibliography recently.

Statistical STLF models can be generically separated into regression

models [1] and time series models [2]; both can be either static or

dynamic. In static models, the load is considered to be a linear

combination of time functions, while the coefficients of these functions are

estimated through linear regression or exponential smoothing techniques

[3]. In dynamic models weather data and random effects are also

incorporated since autoregressive moving average (ARMA) models are

frequently used. In this approach the load forecast value consists of a

deterministic component that represents load curve periodicity and a

random component that represents deviations from the periodic behavior

due to weather abnormalities or random correlation effects. An overview

over different statistical approaches to  the STLF problem can be found in

[4]. The most common (and arguably the most efficient) statistical

predictors  apply a linear regression on past  load  and temperature data

to forecast future load. For such predictors, we will use the generic term

Linear Regression (LR) predictors.

Expert systems have been successfully applied to STLF [5, 6]. This

approach, however, presumes the existence of an expert capable of

making accurate forecasts who will train the system.

The application of artificial neural networks to STLF yields encouraging

results; a discussion  can be found in [7]. The ANN approach does not

require explicit adoption of a functional relationship between past load or

weather variables and forecasted load. Instead, the functional relationship

between system inputs and outputs is learned by the network through a

training process. Once training has been completed, current data are

input to the ANN, which outputs a forecast of tomorrow's hourly load. One

of the first neural-network-based STLF models was a three-layer neural

network used to forecast the next hour load [8]. A minimum-distance

based identification of the appropriate historical patterns of load and



temperature used for the training of the ANN has been proposed in [9],

while both linear and non-linear terms were adopted by the ANN

structure. Due to load curve periodicity, a non-fully connected ANN

consisting of one main and three supporting neural networks has been

used [10] to incorporate input variables like the day of the week, the hour

of the day and temperature. Various methods were proposed to accelerate

the ANN training [11], while the structure of the network has been proved

to be system depended [12]. The most recent proposed ANN models for

STLF tune the model performance efficiency based on the practical

experience gained by the model implementation to Energy Management

Systems (EMS), [13, 14, 15].

Hybrid neuro-fuzzy systems applications to STLF have appeared recently.

Such methods synthesize fuzzy-expert systems and ANN techniques to

yield impressive results, as reported in [16, 17].

Each of the methods discussed above has its own advantages and

shortcomings.  Our own experience is that no single  predictor type is

universally best. For example, an ANN predictor may give more accurate

load forecasts during morning hours, while a LR predictor may be superior

for evening hours. Hence, a method that combines various different types

of predictors may outperform any single “pure” predictor of the types

discussed above.

In this paper  we present such a “combination” STLF  method, the so

called Bayesian Combined Predictor (BCP), which utilizes conditional

probabilities and Bayes’ rule to combine ANN and LR predictors [18, 19,

23]. We proceed to describe the “pure” LR and ANN predictors and the

BCP combination method. Then we present results and statistics of BCP

forecasts for the Greek Public Power Corporation (PPC) dispatch center of

the island of Crete during 1994.

2. STLF USING “PURE” PREDICTORS



The problem we are considering is the short term load forecasting for the

power system of the island of Crete. In the summer of 1994 this system

had a peak load of about  300 MW; power is supplied by PPC. Load and

temperature historical data are available for the years 1989 to present.  In

this section we present three approaches to STLF which make use of so

called “pure” predictors, namely two LR and one ANN predictor. We call

these “pure” predictors, to distinguish them from the “combined” predictor

which we will present in the next section.

2.1 "LONG PAST" LR PREDICTOR

This predictor performs a straightforward linear regression on two time

series: daily loads (for a given hour of the day) and maximum daily

temperature. There are M+N inputs, where M is the number of past loads

(for the given hour of the day) and N is the  number of past temperatures

used. Several values of M, between 21 and 56, have been employed. This

means we use data from the last 21 to 56 days; hence the designation "long

past". (The best value turned out to be 35.)  Output is tomorow’s load for

the given hour. Hence, for a complete 24-hour load forecast, we need 24

separate predictors. The regression coefficients are determined by least

squared error training; this is achieved using a standard matrix inversion

routine, which takes between 1 and 2.5  secs (depending on the values of M

and N) on a 66 Mhz 486 PC. The training phase is performed only once,

offline. It should also be mentioned that the hourly load data were analysed

and "irregular days", such as national and religious holidays, major strikes,

election days, etc, were excluded from the training data set and replaced by

equivalent regular days; of course this substitution was performed only for

the training data. Training utilized load and temperature data  for the years

1992 and 1993. Training error (computed as the ratio of forecast error

divided by the actual load, averaged over all days and hours of the training

set) was  2.30%. It must be mentioned that there was a “ceiling” effect as to

the possible reduction of forecast error. While training error could be

reduced below 2.30% by the introduction of more regression coefficients,

this improvement was not reflected in the test error. This is the familiar

“overfitting” effect and will be further discussed in Section 4.



2.2 "SHORT PAST" LINEAR PREDICTOR

This  is very similar to the previous method. Again, it utilizes

straightforward linear regression on the time series of loads; but now

loads  of all hours of the day are used as input., in addition to maximum

and  minimum daily temperature. There are (24×M+2×N) inputs, where M

is the number of past loads (for all hours of the day) and N is the  number

of past temperatures used. Several values of M, between 1 and 8, have

been employed. We have found that the best value of M is 4, which means

data from four past days are used. For a given forecast day, we use the

two immediately previous days and  the same weekday of the previous two

weeks.; hence this predictor uses a relatively "short past", as compared to

the one of Section 2.1. Output is tomorow’s load for every hour of the day.

The regression coefficients are determined by least squared error training;

this is achieved using a standard matrix inversion routine, which takes

between 0.1 and 1.5  secs (depending on the values of M and N) on a 66

Mhz 486 PC.  The remarks of Section 2.1 on training and overfitting apply

here as well. Training error (computed as the ratio of forecast error divided

by the actual load, averaged over all days and hours of the training set)

was  2.36%.

2.3 ANN PREDICTOR

A fully connected three layer feedforward ANN was used in this method. The

ANN comprises of 57 input neurons, 24 hidden neurons and 24 output

neurons representing next day’s 24 hourly forecasted loads. The first 48

inputs represent past hourly load data for today and yesterday. Inputs 49-

50 are maximum and minimum daily temperatures for today. The last

seven inputs, 51-57, represent the day of the week, bit encoded. Other

input variables were also tested but they did not improve the performance

of our model. The ANN was trained by being presented with a set of input-

desired output patterns until the average error between the desired and the

actual outputs of the ANN over all training patterns is less than a

predefined threshold. The minimization of the output error is achieved

through a gradient algorithm. The well known back propagation algorithm

[21] was used for the ANN training. The hourly load data were carefully

analysed and all "irregular days", such as national and religious holidays,



major strikes, election days, etc, were excluded from the training data set.

Special logic for the treatment of missing data has also been incorporated

in the data analysis software. The training data set consists of 90+4×
30=210 input/output patterns created from the current year and the four

past years historical data as follows: 90 patterns are created for the 90 days

of the current year prior to the forecast day. For every one of the 4 previous

years,  another 30 patterns are created around the dates of the previous

years that correspond to the current year forecast day. Initial offline

training takes between 4 and 9 secs on a 66 MHz 486 PC. The ANN

parameters are then  updated online, on a daily basis through the following

procedure. A new round of ANN training is performed on the most recent

input/output patterns; the ANN parameters are initialized to those of the

previous day. Since the training data sets of two consecutive days differ by

only a few patterns, daily model parameter updating is very efficient. Online

training takes between 1 and 3 secs per day. The network is trained until

the average error becomes less than 2.5%. It was observed that further

training of the network (to an error 1.5% for example) did not improve the

accuracy of the forecasts. Training of the ANN to a very small error may

results in data overfitting.

3. THE BAYESIAN COMBINED PREDICTOR

We now present the BCP, a new type of predictor, which outperforms all

three predictors presented in the previous  section. The BCP is based on

probabilistic concepts; namely conditional probability and Bayes' rule. The

original idea appears in [18, 19]; see also [23]. We have used the original

probabilistic formulation, as well as nonprobabilistic  generalizations in

the context of Time Series Classification. This is an application of the so

called Predictive Modular Neural Networks (PREMONNs) [22, 23] For a

further discussion see Section 5. In the rest of this section, when we

consider a load ime series yt and its forecasts yt
k

 , we are referring to a

fixed hour of the day, say 1am, 7 pm and so on. The arguments presented

are exactly the same for any hour considered.

3.1 RECURSIVE APPLICATION OF BAYES' RULE



Suppose that the load time series is in fact produced by one of the three

models listed in Section 3: long-past LR, short-past LR or ANN. By this we

mean that

(1) y y y y yt t
k

t t= − −( , ,..., )1 2 1  + et
k

, k=123,,

where yt is the actual load, yt
k

 is the forecast (yt
1

 is the long past LR

forecast, yt
2

 is the short past LR forecast and yt
3

 is the ANN forecast) et
k

 is

the respective forecast error and t is current time. However, eq.(1) will

actually hold true only for one value of k (1, 2 or 3). We do not know which

of the three is the correct or "true"  model. We express this uncertainty by

introducing a variable Z, which can take the values 1, 2 or 3.

The conditional posterior probability  pt
k

 (for k=1,2,3, t =1,2, ...  ) is defined

by

(2) p Z k y y yt
k

t t= = − −Prob(  | )1 2 1, ,...,

and  the prior probability p
k
0   (for k=1,2,3) is defined by

(3) p Z k tk
0 0= = =Prob(  at time  ).

Conditioning on the observed loads y y yt t− −1 2 1, ,...,  expresses the fact that

when new load data become  available they can be used to test which

model most closely conforms to the data. We will show how this test is

performed presently. Let us also remark that  at t=0, when no load data

have been observed, we can choose p
k
0  according to our prior knowledge (

e.g. set p0
1

 =.05, p0
2

 =.05, p0
3

 =.90, if we strongly believe in the ANN model),

or we can choose p0
1

 =p0
2

 = p0
3

 =0.333, in case we have no prior knowledge.

Note that the p
k
0  's must add up to one, since they are probabilities. Given

pk0 , we proceed to recursively compute pt
k

, for t =1, 2, ... , starting with

Bayes' rule



(4)
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and the fact that

(5) Prob(  | ) =  Prob( | )y Z k y y y y y y y Z k pt t t t t t t
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Substituting (5) into (4) we get  (for k = 1, 2, 3)
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Eq.(6)  gives a recursive method to compute pt
k

 from pt
k
−1, provided we

know Prob( | ... , )y y y Z kt
k

t− =1 1 . Let us now determine this probability. With

eq.(1) we have already assumed that the forecast error is given by
e y yt
k

t t
k= −  . Assume further that et

k

  is a Gaussian white noise time series.

In that case we have

(7) Prob( | ... , ) =  Prob( =   | ... , ) =y y y Z k e y y y y Z kt
k

t t
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which  finally yields
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Eq. (8) and the regression equations for y y yt t t
1 2 3, , , constitute the algorithm

for recursive computation of the Bayesian posterior probabilities. The

validity of  the algorithm depends on our assumptions, namely that (a) the

load time series is produced by one of the three models of Section 3 and

(b) the forecast error is Gaussian white noise. When these assumptions

hold, pt
k

  expresses the probability that model k actually generates the

observed load data; this probability is conditional, dependent on

observations up to time t.



There is an alternative, nonprobabilistic interpretation of the pt
k

 ’s. Note

that in eq.(8), models which have large forecast errors (large 
( )y yt t

k−
2

 )

are heavily penalized resulting in decreased pt
k

. So one can consider the

BCP algorithm as a heuristic credit assignment scheme: the model that

best forecasts the observed load data is the one with highest pt
k

  (and so

with highest conditional probability, under the Bayesian interpretation).

In the final analysis, the validity of our assumptions and the BCP method

will be judged  on how efficient the pt
k

 ’s are in forecasting the load time

series. In the next section we present a forecast method that makes use of

the pt
k

 ’s as well as the pure predictors.

3.2 DERIVATION OF THE BCP

There are at least two ways to use the pt
k

 ’s for load forecasting. One could

at every time step use  the forecast of the model with maximum pt
k

 ; since

this model is most likely to have produced the load time series, it must on

the average have smaller forecast error. However there is another way to

use the pt
k

 ’s, which yields the BCP.

Start with following well known fact of probability theory [24]: of all the

predictors of yt   that depend on  past y y yt t− −1 2 1, ,...,  values,  the predictor

with minimum mean square error is the conditional mean

(9) y y y y yt t t t
* , ,...,= − −E (  | ).1 2 1

It is also a standard  probabilistic result [24] that

(10) E (  | )= E E (  | , ) | .y y y y y y y y Z y y yt t t t t t t t− − − − − −1 2 1 1 2 1 1 2 1, ,..., , ,..., , ,...,

Now, assuming that Z can only take the values 1, 2, 3,  we combine (9) and

(10) to obtain

(11) y p y p y p yt t t t t t t
* = 1 1 2 2 3 3+   +  .



It should now be obvious why we call this a “combined” predictor, as

opposed to the “pure” predictors of Section 2. Eq.(11)  together with eq.(8)

and the regression equations for y y yt t t
1 2 3, , , give a complete description  of

the BCP.  Theoretically, this predictor is superior to any “pure” predictor,

if the several assumptions presented above hold.  An alternative, heuristic

interpretation of eq.(11) is the following: we combine the three possible

forecasts into a weighted sum, where  pt
k

  , the weight given to forecast k,

depends on its past predictive performance.

Aside from interpretations,  the practical expedience of the BCP will be

judged by its performance on a practical STLF task. Such an application is

presented in the next section.

4. EXPERIMENTS

In  this section we compare the new BCP to the three “pure” predictors, on

the task of STLF for the power system of Crete island.  Actually we

consider 24 BCP's and 24×3=72 "pure" predictors, one predictor of  each

type corresponding to every hour of the day. The three pure predictors of

each hour have been trained as explained in Section 2. The BCP's needs

no training per se; they simply combine the forecasts of the respective

“pure” predictors by application of eq. (8) and (11). Results presented

correspond to the period from April to June 1994. In Table I we present

average errors for the four types of predictors used, and for the 24 hours

of the day. The reader can observe that  the BCP outperforms all “pure”

predictors. In Fig.1 a comparative plot of the errors obtained is presented.

Table I. Hourly average errors for June to September 1994.
errors ( % )

hours long past
LR

short past
LR

ANN BCP

1 2.89 1.92 2.26 1.96
2 2.22 1.72 2.09 1.63
3 2.14 1.93 2.50 1.69
4 2.55 2.38 2.49 2.17
5 2.71 2.23 2.44 2.31
6 2.55 2.31 2.41 2.16



7 2.47 2.15 2.16 2.01
8 3.11 3.09 2.72 2.38
9 2.57 2.85 2.17 2.07
10 2.72 2.95 2.53 2.36
11 2.53 2.86 2.72 2.32
12 2.44 2.87 2.91 2.43
13 2.24 3.07 2.85 2.16
14 2.29 3.19 2.51 2.10
15 2.26 2.77 2.36 1.95
16 2.29 2.93 2.44 2.12
17 2.35 3.30 2.38 2.13
18 1.82 2.96 2.41 2.06
19 1.98 2.97 2.51 2.16
20 2.30 3.17 2.52 2.34
21 1.83 2.98 2.76 1.99
22 1.95 2.58 2.40 1.93
23 1.70 1.84 1.92 1.56
24 2.20 1.96 2.13 1.78

total 2.34 2.62 2.44 2.07



Fig.1 A typical daily load curve, pure  and combined rforecasts

time ( hrs )

Load (MW)

In Table II average total errors for training  and test data are given  for

various values of the total  number of regression coefficients. The rows in

bold letters correspond to the "pure" predictors actually used in the BCP

combination. The reader can see that an increase in the number of

regression coefficients yields improved training errors but test errors

remain the same or even increase. This is an instance of overfitting. On

the other hand, the BCP also uses an increased number of coefficients,

namely the sum of the numbers of coefficients of the three predictors. In

our case this would be  1200+2448+1200=4848. While we have not tried

to train any pure predictor with 4848 free regression coefficients,

extrapolating from Table II, one expects the test error to be actually larger

than that of any pure predictor with fewer coefficients. However, BCP

increases the number of coefficients in a judicious and strcuctured way,

resulting in the marked decrease of test error to 2.07. Similarly, training

time scales very efficiently for the BCP.  It actually is 1.38+0.86+2.35=4.59

secs (the total time for training the three pure predictors).  Using the data

in Table II and interpolating linearly, one would expect training time to be

around 6.79 secs. In fact, linear interpolation is probably too optimistic.

For the LR predictors, it is known that matrix inversion time scales



cubically with the size of the problem; as for the ANN predictor,

increasing the size of the network may result in failure of the training

procedure (e.g. attainment of local minima).

Finally, it is quite instructive to observe the evolution of the posterior

probabilities of the three pure predictors for two different hours. In Fig. 2a

we plot the evolution of the posteriors for the hour 1pm and in Fig.2b for

the hour 1am. The reader will see that in Fig.2a the highest probability is

generally assigned to the LP LR predictor, even though over short time

intervals one of the other two predictors may outperform it. Similarly, in

Fig.2b the highest probability is generally assigned to the SP LR predictor,

even though over short time intervals one of the other two predictors may

outperform it. These results are consistent with the general test errors of

Table I; the additional information presented in Fig.2  is that a predictor

that generally performs poorly, may still outperform its competitors over

short time intervals; in such cases  the BCP will take this improved

performance into account,as evidenced by the adaptively changing

posterior probabilities. This explains why the BCP is generally  better than

the best pure predictor.

Table II. Error Dependence on Number of Parameters

Predictor

Type

Total Nr. of

Parameters

Train

Error

(%)

Test

Error

(%)

Training

Time

(secs)

LP LR 864 2.41 2.44 1.05

LP LR 1032 2.34 2.37 1.22

LP LR 1200 2.30 2.34 1.38

LP LR 1368 2.27 2.36 1.60

LP LR 1536 2.26 2.38 1.85

LP LR 1704 2.25 2.39 2.09

SP LR 1224 2.61 2.72 0.12

SP LR 1248 2.53 2.69 0.13

SP LR 1800 2.43 2.68 0.34

SP LR 2424 2.36 2.62 0.86



SP LR 2448 2.33 2.73 1.13

SP LR 3000 2.32 2.72 1.45

ANN 1200 2.50 2.44 2.35

ANN 1200 2.00 3.76 8.92
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Fig.2a

Evolution of posterior probabilities for the predictors of 1pm load, over

the period July 1st, 1994 to September 30th, 1994.
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Fig.2b

Evolution of posterior probabilities for the predictors of 1am load, over

the period July 1st, 1994 to September 30th, 1994.



5. CONCLUSIONS

We have applied a new predictor, BCP,  to the problem of STLF. This

predictor is based on conditional probability concepts that enable us to

adaptively combine different types of predictors and extract from each one

of them  the best possible performance over a given time period. Hence

BCP enables to pick the best features of each predictor used. From a

somewhat different point of view, BCP is a judicious way to combine a

large number of regression coefficients avoiding overfitting problems.

Finally, yet another point of view discards the probabilistic interpretation

in a favor of a heuristic one: predictors with inferior predictive power are

penalized and their forecasts are underweighted in a weighted sum

combined predictor; the weights are updated adaptively. At any rate, our

experiments indicate that  the BCP method outperforms all conventional,

"pure" prediction methods in the test problem we have considered.

Finally, it is worth mentioning that BCP is a special case of a more general

class of time series predictors/classifiers, the so called PREMONNs [22,

23]. Several simplifications of the general PREMONN theory have been

made in this paper. For instance, in the general case it is not necessary to

use three "pure" predictors; any finite number K can be used with the

same methodology. Also, predictors need not be only of the LR or ANN

types; fuzzy, hybrid etc. types of predictors can be used. The probabilistic

combination method can also be discarded; a number of nonprobabilistic

combination mathods are available.
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