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Abstract

A predictive modular neural network (PREMONN) architecture for time series classification is
presented. The PREMONN has a hierarchical structure. The bottom level consists of a bank of
linear or nonlinear predictor modules. The top level is a decision module which employs Bayesian or
nonprobabilistic decision rules. For various choices of prediction and decision modules, convergence
to correct classification is proven. Also it is shown that PREMONN is robust to noise and the speed
/ accuracy tradeofl is investigated. The analysis is mainly mathematical; however, to corroborate

our conclusions we also present classification experiments.
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1 Introduction

Let us consider the following time series classification problem. A time series y;, t = 1,2,... ! is
produced by a source S(6y), where 0, is a parameter taking values in a finite set @ = {64, ..., 0k }. The
source that produces the time series should be identified; in other words the “true” or “best” value of
0, should be computed.

For example, the time series 1, yo, ... may be a speech signal, and the parameter 8, a phoneme label
taking values in the set @= { [ah], [00], ... }. When the speech signal, for instance, corresponds to the
phoneme [ah], y1, y2, ... is produced by S([ah]). This type of problem arises in phoneme recognition
(Waibel et al., 1989), radar (Haykin & Cong, 1991) and sonar (Gorman & Sejnowski, 1988) signal
classification, processing of seismic signals (Lainiotis et al., 1988), EEG (Zetterberg et al., 1981)and
ECG (Zhu et al., 1989) analysis etc. A Bayesian approach to classification is quite common.

A significant trend of current connectionist research (for classification as well as other problems)
is the development of training algorithms that partition the parameter space into regions, and fit a
local model to each region. This approach is implicit in many earlier papers (Farmer & Sidorowich;
1988, Moody, 1989) but is recently being reexamined and formulated in the more suggestive language
of probability mixztures, local experts (Jacobs et al., 1991; Jordan & Jacobs, 1992; Neal, 1991; Nowlan,
1990), committees (Schwarze & Hertz, 1992), neural ensembles (Perrone & Cooper, 1993) etc. More
important than the change in vocabulary, is the development of new, adaptive methods for efficient
combination of the local models, as in (Ayestaran & Prager, 1993; Baxt, 1992; Beyer and Smieja, 1993;
Jacobs et al., 1991; Jordan & Jacobs, 1992; Kadirkamanathan & Niranjan, 1992; Schwarze & Hertz,
1992) etc. We find Bayesian model combination methods particularly interesting. Our work lies in
this direction and has common elements with (Jacobs et al., 1991; Jordan & Jacobs, 1992; Neal, 1991;
Nowlan, 1990; Shadafan & Niranjan, 1993).

Our first approach to time series classification is based on Bayesian combination of local predictors.
This draws on the classical Partition Algorithm first used in the context of control theory (Hilborn &
Lainiotis, 1969; Lainiotis, 1971). We have introduced its use to time series classification in a previous
paper (Petridis & Kehagias, 1993). The space of time series sources is partitioned into sets and a local
prediction module is trained for each set. It is assumed that the training data can be separated into well
defined classes and used for offline training. Each source is assigned a Bayesian posterior probability,
which is adaptively updated on-line, according to the predictive performance of the corresponding
prediction module. ? Finally, the time series is classified to the source of highest posterior probability.

This approach results to a modular, hierarchical neural network with a prediction level at the

bottom and a decision level at the top (see Fig. 1). This general architecture can be modified at

» ”

or “yi,y2,.." or “{y:}{21” to denote a time

In what follows we use interchangeably the notations “y,, t = 1,2, ...
series.

2The computed value of the posterior probability also depends on a prior probability, selected before classification
starts, according to our prior knowledge. However, we prove in the Appendix that asymptotic classification performance

(i.e. convergence to correct classification) does not depend on the choice of prior probabilities.



both the prediction and decision levels. For instance, at the prediction level linear, sigmoid, radial
basis, polynomial etc. modules can be used. At the decision level a variety of credit functions other
than the probabilistically motivated Bayesian can be used. Thus a framework for the design of a
family of classification networks is established, which we call PREMONNSs ( PRedictive MOdular Neural
Networks). These can also be used for prediction: in this case the classification results are employed
in an intermediate step.

This paper is mainly devoted to a mathematical analysis of the properties of PREMONNs. In
Section 2 a Bayesian approach to time series classification is presented. In the following sections our
main result, which is convergence of the posterior probabilities (or, in general, figures of merit), is
given. This result is proven for Bayesian decision rule and nonlinear prediction modules in Section
3; for Bayesian decision rule and linear prediction modules in Section 4; and for general decision rule
and nonlinear prediction modules in Section 5. In Section 6 the general principles of the PREMONN
architecture are discussed. Further, in Section 7 a prediction network is presented, which is obtained
from a classifier PREMONN by combining the output of local prediction modules. It is proven that
this composite prediction is convergent and has minimum square error. Finally, in Section 8 we include
an informal discussion of implementation issues and in Section 9 a number of numerical experiments,

that corroborate our conclusions, are given.

2 Bayesian Time Series Classification

A time series y, £t = 1,2, ... is produced by a source S(6)), where 0y is a parameter taking values in
a finite set © = {60y, ...,0x}. The source that produces the time series should be identified; in other
words the “true” or “best” value of 0; should be computed.
A random variable Z which takes values in © = {01, ...,0x } is introduced. The time series y1, yo,
. is produced by source S(Z). For instance, if Z = 64, then the time series y1, ya, ... is produced by
S(61). At every time ¢ a decision rule produces an estimate of 7, denoted Z. For instance, if at time
t we believe that the time series 1, ... ¥ has been produced by 0;, then Zy = 0. Clearly, Z may
change with time, as more observations become available.

The conditional posterior probability pf for k=1,2, ..., K, t = 1,2, ... is defined by
pf = Prob(Z =0k | yt, ..., y1);
also the prior probability p§ for k= 1,2, ... , K is defined by
ph = Prob(Z =6y | at t =0). (1)

pk reflects our prior knowledge of the value of Z. In the absence of any prior information we can
just assume all models to be equiprobable: pf = 1/K for k = 1,2,..., K. pf reflects our belief (after
observing data y1,...,4) that the time series is produced by S(6;). It is natural then to choose Z
= argmaxg, co pk. In other words, at time ¢ we consider that yi, ..., has been produced by source
S (Zt), where Z; maximizes the posterior probability. So the classification problem has been reduced

to computing pf, t = 1,2, ...., k = 1,2, ..., K. This computation can be performed recursively. We start



with Bayes’ rule

Prob(ys, Z =0 | ye 1,.sy1)  Prob(ye, Z =0k | ye 1, ..., 151)

Prob(ye | ye—1, 1) B ZJK:1 Prob(ye, Z = 0; | Y11, 91)
(2)

pf = Prob(Z =0 | Y, ... th) =

Also
Prob(yy, Z =0k | Y—1, .-, y1) = Prob(ye | Ye—1,. 91, Z =0g) - Prob(Z =04 | y1—1,....,31) =

Prob(ye | ys—1..91, Z = 6x) - pF 1. (3)

Now (2), (3) imply the following recursion for k =1,2, ..., K, ¢ =0, 1, 2, ... :

ot — Prob(ys | ye 1,91, % = 0k) - P} 4 (4)
k= —
S Prob(yc | ye1, .y, Z =0;) - pl_y

and we only need (for each ¢ and k) to compute Prob(y; | y¢—1,...,y1, Z = 6). This probability depends
on the form of the predictor. In the next two sections it is computed for nonlinear and linear predictors

respectively.

3 Nonlinear Prediction Modules
The predictors have a general parametric form f(-;60x), k=1, ... , K:
YE = fWe 1y ve-ni Op).- (5)

Typically, f(-;0x) would be a feedforward (sigmoid, radial basis, polynomial) neural network trained

on data from source S(6y). This predictor approximates y; when the time series is produced by S(6y).

It should be noted that the predictor uses only the finite past 41, ... , ye—n. For &k = 1,2, ..., K the
prediction error ef, k=1, ... , K, t = 1,2, ... is defined by
ef = yi— - (6)

It is assumed that ef has a Gaussian conditional probability of the form

k

(=1 \/_Ttak %). (7)

Prob(ef | ye_1, .oy y1, £ = 03) = Coy,) - exp

It then follows immediately from (5), (6) and (7) that

Lk
Probye | ge-1,e1, % = ) = Clo) - exn(— | 2520 ), (8)
20k

The probability assumption of (7) is entirely arbitrary, but works well in practice. The parameter O']% is
the variance and C(0y,) is a normalizing constant. Extensions for vector valued y; and ef are obvious.

The posterior probability of every source S(x), k= 1,2, ..., K, for time ¢ = 1,2, .., can be computed



by means of the above equations. At time ¢ the time series is classified to the source that maximizes
the posterior probability:

Z; = arg max pf. (9)

The desired recursion for pf is obtained from (1), (4), (5), (8) and (9). This recursion is inspired
by the partition algorithm, first developed by Hilborn and Lainiotis (Hilborn & Lainiotis, 1969) and
applied to control problems in (Lainiotis, 1971): Our recursion equations can be implemented by a
PREMONN with nonlinear prediction modules and Bayesian decision module. Now we turn to the

question of convergence; ergodicity of {y;}72; must be assumed.

Theorem 1 Suppose that the following assumptions hold

A1 {y}2, is ergodic, square integrable.

A2 f(z1,...,2n,0) is a measurable function of z1, ..., zy for every value of 0 € {61, ...,0k}.
A3 yF is square integrable for every value of 0 € {01, ..., 0 }.

A4 pf >0 fork=1,2,...,K.

NN Elef|? ; . - L Eef2 - . Eler]?
Now define d = minyj<x<x =7 and the following sets: Ko = {k: —= = d}, Ky ={k: — >
- k k k
d}. Then

K
vk € K1, € Ko lim B — o with prob.1, (10)
. ko .
tlirgo Z oY =1 with prob.1, (11)
keKo
. k . .
tlirgo Z pi =0 with prob.1. (12)
kel

Ko is the set of “good” predictors; in particular, if o, = o for k = 1,2, ..., K (all predictors have
the same error variance) then Ko is the set of predictors that minimize prediction error. Judging on
prediction performance only, any element of Ky is as good as any other, and they are all preferrable
to any element of K. Note that both Ky and Xy are time invariant, because of ergodicity. Theorem 1
states that the total posterior probability of the Ky predictors tends to one, with probability 1. Note
that convergence is not affected by the values of the prior probabilities, as long as they are nonzero

(Assumption A4). The theorem is proven in the Appendix.

4 Linear Prediction Modules

If the predictor modules are linear, convergence results can be obtained under less restrictive assump-
tions. For instance ergodicity can be proven (rather than assumed), the Gaussian assumption can be
justified and less restrictive convergence conditions can be obtained.

Let us assume that the source produces a signal y¢, t = 1, 2,... by a linear mechanism of the form

y=A Y +w



where A = [ay...an], Vi = [yt—1.-y+n] and wy is a Gaussian, zero-mean, white noise process with

variance 0. We use matched linear predicting modules; for k =1,2, ..., K,
i =4 Y (13)
where Ay = [a}...a%;]" is estimated using data from source 6. (13) can be realized by a linear neural

network. If the active source is 6y, then we expect that A and Ay are close in some sense.

The recursive computation of posterior probabilities is the same as in the case of nonlinear modules.
The only change is in the computation of ¥, which is now given by (13). So, (1), (4), (13), (8) and (9)
can be implemented by a PREMONN with linear prediction modules and Bayesian decision module.
The O']% in (8) is the variance of y — y¥, which depends on A, Ay and the variance of w;. It can be
computed explicitly, but this is not necessary; we just need to know that it is well defined and constant.

Let us define R = E(Y;Y]) and | z |g= 2z/Rz. R is a positive definite matrix and hence | - | is a

norm on z vectors. In particular, | A — A |z measures the difference between A and Ay.

Theorem 2 Suppose that the following assumptions hold

N—-1 N—2

B1 The polynomial N— aqz — a9z *— ... ay_12— an has rools z1, ... , zy such that | z, |< 1

forn=1,2, ..., N.
B2 pf >0 fork=1,2,...,K.

B3 oy=0 fork=1,2,.... K.

Now define d = minj<y<x | A — Ay |r and the sets: Ko = {k ;| A— A |r= d}, K1 = {k 1

A— Ay |r>d}. Then
k

vk € K1, € Ko Jim 25 = 0 with prob. 1. (14)
. ko .
Jim Z pf =1 with prob. 1. (15)
kekKo
. ko .
tlirglo Z pf =0 with prob. 1. (16)
kekq

The theorem implies that convergence to the set of “good” predictors Ky is guaranteed as long as
the predictors are well separated in parameter space (that is, |[A — 4| is large relative to |A — Ag|gr)
and all predictors have the same variance. Once again, convergence is not affected by the values of the
prior probabilities, as long as they are nonzero (Assumption B2). The proof of the theorem is given

in the Appendix.

5 Decision Module

So far we have been considering variations of the prediction modules. However, the decision module can
also be modified. Rather than the Bayesian credit function (4), a number of other credit functions can

be used; in this section we present some. The Bayesian credit function used so far, allows a probabilistic



interpretation. Some of the new credit functions presented can also be interpreted probabilistically,
but this is not necessary for the solution of the classification problem; they can be considered as figures
of merit. It should be noted that changing the credit function affects only the top (decision) level of
the PREMONN, not the bottom (prediction) level.

5.1 Multiplicative Credit Function

Let us consider the usual predictors ¢ = F(Yt—1, .-y yt—n; 0x) and errors ¥ =y —yf fork=1,2,.., K,
t=1,2 ... ; the figure of merit p¥ is given by
o A
ket
' S Py e T’

(17)

where F(-) is a continuous, increasing and nonnegative function. (Obviously, the Bayesian credit
function is a special case of (17), where F'(z) =| z |?; more generally we could use F'(z) =| = |*.) At

time ¢ the time series is classified to the k*-th source, where k* maximizes pf.
Theorem 3 Suppose that the following assumptions hold

C1 {y:}32, is ergodic, bounded.
C2 f(z1,...; 2n,0) is a continuous function of z1, ..., zn for every value of 6 € {6y, ...,0k }.
C3 F(z) >0 for all z, increasing and continuous in z.

C4 pk >0 fork=1,2,.. K.

Now define d = minj<p<x F | F(ef) | and the sets: Ko = {k : E | F(e}) |=d}, K1 = {k : F |
F(ef) |> d}. Then

k
vk € K1, 1 € Ko lim B — 0 with prob. 1.

. ko .
tlirglo Z p; =1 with prob. 1.

keKo

. k . .
tlirglo Z p, =0 with prob. 1.

kekq

The proof is omitted, since it is very similar to that of Theorem 1.

5.2 Additive Credit Function 1

Here the figure of merit pf is given by

pk _ 22:1 F<€§)
! leil 22:1 F(d@)

F(z) is a continuous, decreasing and nonnegative function.



Theorem 4 Suppose that the following assumptions hold

D1 {y:}3°, is ergodic, bounded.
D2 f(z1,...,2n,0) is a continuous function of z1, ..., zy for every value of 6 € {04, ...,0k }.

D3 F(z) > 0 for all z, decreasing and continuous in z.

Then

E(F(e}
lim pf = () with prob. 1.

t=o0 Yy B(F ()

The proof is omitted, since it is a trivial consequence of the Ergodic Theorem. It should be noted
that, in general, no pf will tend to 1. However, the highest pf is assigned to the module which maximizes
the expected value of F(eF). Intuitively, such a model is “best”, since F'(ef) is a decreasing function
of the error (e.g. F(ef) = \G%P)'

5.3 Additive Credit Function 11

In this case the figure of merit pf is given by

t
B Zs:tfm 1{ef<ei Vitk}
pt,m - m ‘I‘ 1

i

where 17 is the indicator function, taking the value 1 when event U is true, and 0 otherwise. It should

be noted that this update rule depends on an extra index m. The following convergence theorem holds.
Theorem 5 Suppose that the following assumptions hold

E1 {y:}°, is ergodic.

E2 f(z,...,2n,0) is a measurable function of z1, ..., zn for every value of 6 € {64, ...,0k }.

Then for all t large enough

lim pf,, = Prob(e} <€, Vi+#k) with prob. 1.

m— 00

The proof is omitted, since it is a trivial consequence of the Ergodic Theorem. Note that convergence
depends on m, not ¢. In general, as in the previous case, no pf’m will tend to 1. However, the highest

pf’m will be assigned to the model which has the highest probability of yielding minimum error.

6 The PREMONN Architecture

In summary, we have started with a Bayesian point of view to obtain a neural network (see Fig.1),
the so-called PREMONN, that classifies time series. It can be seen from Fig.1 that PREMONN has
a recursive, modular, hierarchical architecture. The bottom level consists of the prediction modules

and the top level consists of the decision modules. The Bayesian version of PREMONN has been



our starting point, but it can be extended. Namely, the decision module can be modified by using
nonprobabilistic credit functions, as explained in Section 5. Similarly, there are many choices for the
prediction functions. They can be linear, sigmoid, radial basis functions, polynomial etc; also they can
be implemented by feedforward or recursive neural networks. Finally, a PREMONN can be built such
that every prediction module is of a different type, e.g. a linear predictor is used for one module, a
sigmoid for another and so on.

Hence the PREMONN architecture can be considered as a general framework for the design of
recursive, modular, hierarchical networks for time series classification. It should also be noted that
the same architecture could be used for the classification of static patterns. We believe however, that
the advantages of PREMONN become evident in time series problems, where there are correlations

between observations.

7 Prediction

The original, probabilistic PREMONN can also be used for prediction, with slight modifications. The
main idea is the following. If the true source ) were known, then y; would be predicted with yF =

F Y1y s yt—n, Ox). Since 0y is not known, a weighted predictor
K
k k
y; = Zptfl Yt (18)
k=1

can be used. As it will be shown in Theorem 6, this predictor minimizes square error and is convergent.
However, first the following concepts are needed.
The conditional expectation of y;, conditioned on y1, ..., y—1 and Z = 6 exists always (Breiman,

1968); it can be denoted as a function

Je(ye—1, - y130%) = Bt | Ye—1, 00, Z = b). (19)

In the following, we assume that f; in fact depends only on the last N values y;_1, ..., y¢+—n and that

our prediction modules express this dependence. In other words

E@W | Yoty ooy, 2 =08) = (-1, 0 Y-~ 0) = U5 - (20)

Of course, the following results are correct to the extend that (20) approximates reality.
The conditional expectation of y;, conditioned on y1, ..., yr—1 also exists always (Breiman,1968) and

it is given by
K
Ye = Pr(Z =0k | ye1,01) - Byt | Yt 1591, 2 = 0k) = BE(ye | Y1, -, 01)- (21)
k=1

The properties of y/ are summarized in the following theorem.



Theorem 6 Under the assumptions A1-Aj of Theorem 1
Ely; =y P<E g —w (22)
for all functions §¢ that are o(yy, ..., yt—1) measurable. Equalily occurs only when gy = y; with prob. 1.

Purthermore, if we assume

k¥ 2 k|2
F1 There is evactly one k* such that E—Ueﬁ—‘ < E—;E‘— for all k £ k* and
k* k

F2 {yF} is bounded for k=1,2,.... K

then
lim B y; =y |=0, (23)
lim |y — ¥ |= 0 with prob. 1. (24)

The proof of the Theorem is given in the Appendix. 3

8 Implementation Issues

In this section we discuss various implementation issues which do not lend themselves to a rigorous

analysis, but are important in practice.

8.1 Deterministic Time Series

‘We have implicitly assumed that the time series considered is stochastic. This is not necessary. Suppose

that ¥+ N ,..., y_1 completely determine :

Yt = f(ytflv ---vyt—N)- (25)

In practice, prediction error will still be nonzero because the exact form of f in (25) and/or the value
of N are not known, or, finally, because the parametric form of the predictors cannot reproduce (25)
exactly. The prediction error is deterministic, but since we know nothing about it, we can simply
assume that it has Gaussian probability given by (7). Or, we can take p} to be figures of merit,
without a probabilistic significance. This is all a matter of interpretation, which does not affect the

performance and convergence of the network.

3There is an apparent contradiction here. It appears that we have proven y; to have mean square error smaller or equal
to that of any linear combination of v¥, k =1, ..., K. So in particular, ¢} has smaller mean square error than, say yi. Now
supposing that the true source is Z = 1, would we not expect 4 to be better than y;? Actually this is not a problem,
because the expectation in (22) is conditioned on y1,...,y: and Z. There are two possibilities. Either Prob(Z = 6:1) <
1, or Prob(Z = 01) = 1. In the first case y; is better than y; only with probability Prob(Z = 01), but it is worse with
probability 1 — Prob(Z = 61) and, taking expected values, y; is overall better. On the other hand, if Prob(Z = 01) = p}
=1, then p§ =0 for k =2,3,..., K and so, by (4) pf =0 for k = 2,..., K, t = 0,1,.... In that case p; = 1 for t =0, 1, ...
and by (18) y; = yi for t =0, 1, .... The same analysis applies for every k = 1,..., K, in case Z = k.

10



8.2 Variance and Threshold

Error variance O']% affects the performance of the PREMONN. The convergence rate of the posterior

_Elek|2 /g2 )
%m, k,I=1, ... , K. If predictor ¥ has large

mean square error and predictor [ has small mean square error, then dy; is close to 0, and convergence is

probabilities depends (see Appendix) on dy; =

fast. However, one can see that when the o’s are large, dj, ; is small and convergence is slow. Intuitively,
larger variance means that less information is generated per observation, so more observations must
be collected to reach a certain level of confidence. O',% can be estimated during the predictor training
phase, but we found by computer experimentation that sometimes it is advantageous to modify this
estimate. For faster classification, the variance must be decreased.

A probability threshold is also introduced, so that pf never becomes zero. This is necessary because
of source switching. So far we have assumed that the whole time series is produced by a single source
but in many cases this is not true. For instance, in a speech time series each phoneme is produced
by a different source and different sources are active over different time intervals. We refer to this
phenomenon as source switching.

If a source, say S(f), has been active for a long time, p; is close to 1 and p?, ... , pi are close
to 0; in fact, due to numerical undeflow they may become equal to 0. Then, referring to (4) we
observe that they will remain 0 even in case of a source switching; this will result in false classification.
For this problem to be resolved, whenever pf falls below a specified threshold h, it is reset to h. In
essence, this thresholding is equivalent to introducing a forgetting factor. No matter how unlikely a
sequence of observations is, a source model always retains a small posterior probability, equal to h;
thus it is never removed from consideration. If the model performs well at predicting a later sequence
of observations, its posterior probability can recover a high value. An alternative way of looking at the
use of threshold % is that whenever one or more p}’s fall below h (because the corresponding source
models perform poorly) we restart the algorithm using new prior probabilities, obtained from resetting
the corresponding pf’s to h. Under this interpretation, our prior belief in any of the source models
never goes below h.

Both variance and threshold are related to a speed/accuracy trade-off. Large variance slows the
network down and assigns little importance to individual errors; small variance speeds the network up,
but also assigns more importance to instantaneous fluctuations and makes the network more prone
to instantaneous classification errors. Similarly, a low threshold (or absence of threshold) incurs on
the posterior probabilities a large recovery time between source switchings. On the other hand, a
high threshold tends to obliterate the significance of past performance and makes the response of the
network to source switchings faster, at the cost of spuriously interspersed false classifications.

Analogous considerations apply to nonprobabilistic credit functions.

8.3 Parallelism and Scaling

The modularity of the network introduces parallelism naturally. Prediction modules can execute in
parallel and send the results to the decision module. Hence execution time is independent of the number
of classes in the classification problem.

It is well known that lumped neural networks scale badly. As the number of parameters increases

11



training may take exponentially long time and/or fail to achieve a good solution. Hence, modular
networks, where fixed size modules are trained piecewise, are highly desirable. PREMONNSs fall in
this category. Clearly, both network size and training time scale linearly with the number of sources
(categories) that must be learned. Also, PREMONNS perform well even when the individual prediction
modules have poor performance, as long as they are clearly separated in the parameter space: the
decision module will simply pick the “least bad” prediction module. In particular, PREMONN is

immune to a high level of noise in the data (see also Section 9).

9 Experiments

‘We include a number of classification experiments to corroborate our theoretical results and to illustrate
the implementation issues of the previous section. In particular we want to show that convergence to the
true source takes place, to investigate the effect of the variance and threshold parameters to convergence
rate, to compare performance of various credit functions and to show that the algorithm is immune to

a high level of noise in the data.

9.1 Logistic Detection

Our first set of experiments deals with the problem of separating a logistic time series from white noise.
‘We have chosen these data because the logistic resembles noise, both visually and statistically. Hence
separating the logistic from the noise is an interesting classification task. The logistic time series is
produced by the relationship s = - ys—1 - (1 — y¢—1). For values of « higher than 3.67..., {y:}7°, is a
chaotic time series, (see Figs.2, 3 and 4). All networks used are of size 18-5-1. The 18 inputs are the
values 4¢ 1, ... , ¥¢—18 and the target output is y;. For a = 4.0 a logistic time series is generated and
used to train a sigmoid neural network predictor; it attains mean square prediction error 0.15. Also a
neural network predictor is trained on a Gaussian white noise time series, with mean p,, = 0.50 and
standard deviation o,, =0.25. In this case the mean square error of the predictor is 0.3.%

In the first experiment 200 time steps of a logistic time series have been generated (again with «
= 4.0, but with different initial condition) and a PREMONN consisting of two prediction modules has
been used. One module has been trained on the logistic training data and the other on the white noise
training data. We have used o1 = g9 = 0.15, h = 0.01 and the Bayesian credit function. The results
of this experiment are presented in Fig. 2. It can be seen that classification to the logistic is very fast.

In the second experiment a composite time series has been used. The first half of it has been 100 time
steps of the logistic time series of the previous experiment and the second half of it has been 100 samples
of Gaussian white noise with mean p,, = 0.5 and standard deviation o,, =.25. In this case also, the
PREMONN used consisted of the same two predictor modules as in the previous experiment. We have
used o1 = g9 = 0.20, h = 0.01 and Bayesian credit function. The results of this experiment are presented
in Fig.3. In the beginning of the time series, classification to the logistic is almost instantaneous. Then

at the switching point ¢,=82, a very quick switch to noise classification is observed. In the third

4Note that 0.25, the noise variance, is the minimum theoretically attainable MSE, which can be attained by using the
constant predictor ¢, =0.5.

12



experiment ten predictor modules have been trained (18-5-1 sigmoid neural networks) on logistics with
a= 3.0, 3.1, ... , 3.9. Then 200 time steps of a test logistic have been generated with a=3.8 and a
new initial condition. The PREMONN consisted of the previously mentioned ten prediction modules.
We have used 01 = ... = 019 = 0.15, h = 0.01 and the Bayesian credit function. The results of this
experiment are presented in Fig.4. It can be seen that classification to the true logistic is very fast.
This demonstrates PREMONN’s ability to deal with a large number of source classes.

We have performed many additional experiments, which for economy of space we present in tab-
ular form. Dataset can be either A (a 200 time steps logistic time series with a= 4.0) or B (a 100
time steps logistic followed by 100 time steps of Gaussian white noise with 1,,=0.50 and o,= 0.25).
Classification performance is measured by cgg and cg g, evaluated at two levels of confidence: 0.60 and
0.90. Namely, cp¢ (respectively cgg) is computed by dividing the number of time instants where the
posterior probability of the “true” module is above 0.6 (respectively 0.9) by the total number of data
points. In Table 1 we experiment with o, values, in Table 2 with h values, in Table 3 with noise levels
(i.e. we add to the data Gaussian, zero-mean white noise with various values of standard deviation

o) and in Table 4 with credit functions. It can be seen that the overall performance is very good.

9.2 McKey-Glass Time Series Discrimination

In the second set of experiments the problem is discrimination of two Mackey-Glass time series. The

Mackey-Glass time series is produced by the relationship

dy 0.2-¢(s—7)

rri s — 0.1 - 9(s). (26)

Here we use 7 = 10 and 7 = 17 to obtain two chaotic time series which must be identified. For each

value of 7 we integrate eq.(26) and then sample at times s=5, 10, 15, ... secs to obtain a time series y,
Y2, ..., where yp = (5-t), t=1, 2, ... . We train two sigmoid networks, both of size 5-5-1, to predict y;
using as inputs ¥ 1, %9, ... , ¥+—5. The mean square prediction error is in both cases approximately
0.04.

In the first experiment a 200 time steps Mackey-Glass time series has been generated (with 7 = 17,
but with different initial condition) and a PREMONN consisting of two prediction modules has been
used. One module has been trained on 7 = 17 and the other on 7 = 10. We used 01 = g9 = 0.040, h
= (.01 and the Bayesian credit function. The results of this experiment are presented in Fig. 5. It can
be seen that classification is very fast.

In the second experiment a composite Mackey-Glass time series has been used. The first 200 time
steps have 7 = 17 and the last 200 time steps have 7 = 10. Also, Gaussian, zero-mean white noise
with standard deviation o, = 0.3 has been added to the data. The PREMONN consisted of the same
two predictor modules as in the previous experiment. We used oy = g9 = 0.04, 7 = 0.01 and Bayesian
credit function. The results of this experiment are presented in Fig. 6. In the beginning of the time
series, classification to the logistic is almost instantaneous. Then at the switching point £,=200, a very
quick switch to noise classification is observed.

We have performed many additional experiments, which we present in tabular form. Dataset can
be either A (200 time steps Mackey-Glass time series with 7 = 17) or B (200 time steps Mackey Glass
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time series with 7 = 10 followed by 200 time steps with 7 = 17). Classification performance is measured
by co.¢ and g9, evaluated at two levels of confidence: 0.60 and 0.90, in the same manner as in the case
of logistic experiments. In Table 5 we experiment with oy values, in Table 6 with A values, in Table 7
with noise levels and in Table 8 with credit functions. It can be seen that the overall performance is

very good.

9.3 Enzyme Classification

This experiment involves real world data. It considers classification of a set of enzymes, called (-
lactamases. The data and problem are described in Papanicolaou & Medeiros (1990); here we give a
short overview. (-lactamases are enzymes which determine the resistance of many bacteria to G-lactam
antibiotics. The problem is classification of S-lactamases. To solve this problem biomedical researchers
have developed several methods. However conventional methods present many difficulties and amino-
acid sequencing is time consuming (Papanicolaou & Medeiros, 1990). A new method to overcome
some of these difficulties is presented in Papanicolaou & Medeiros (1990); it uses an “inhibition”
experiment where the hydrolysis rate of a chemical called nitrocefin, in the presence of a G-lactamase
/ B-lactam pair, is measured. The S-lactamase enzyme (henceforth to be called simply the enzyme)
causes hydrolysis of nitrocefin, and the #-lactam (henceforth to be called simply the inhibitor) slows
hydrolysis down by inhibiting the action of the enzyme. Nitrocefin concentration is measured optically
and recorded over a 40-minute interval. In this way, for every enzyme/inhibitor pair a characteristic
“inhibition profile” (as illustrated in Fig.7) is obtained. Ideally, the inhibition profile (for a given
inhibitor) characterizes the enzyme. This method has a high classification success. However, there are
problems: the properties of enzymes and inhibitors depend strongly on the conditions under which
they were prepared, and this may result in different inhibition profiles for two different preparations
of the same enzyme/inhibitor pair. However, the dynamic properties of the profile appear to remain
invariant; it is reported in Papanicolaou & Medeiros (1990) that enzyme classification depended on
the slope of the inhibition profile at various times during the duration of the experiment, as well as on
the final concentration of nitrocefin. This information was used by a human operator who combined
various characteristics of the inhibition profile to classify the enzyme.

We automate the enzyme classification process, using the inhibition profiles as input time series to
a PREMONN. Eight enzymes are classified using inhibition profiles for a given inhibitor. The data
set of inhibition profiles is separated into a test set and a training set’. For each enzyme we train
a fifth order linear predictor using the corresponding inhibition profile (40 min time series) from the
training set. Mean square prediction error is approximately 0.1 for all enzymes. Next, we choose an
inhibition profile from the test set and proceed to classify it, i.e. determine the enzyme it corresponds
to. The PREMONN classifies correctly all eight inhibition profiles in the test set; in Fig.8 we present
the posterior probability evolution for a particular enzyme inhibition profile. Note that in this task
classification is performed using only the final values ply, P2y, - » Pio-

We present a number of experiments in tabular form. We use two data sets, consisting of inhibition

profiles for two different inhibitors (and all eight enzymes). Classification performance is measured by

5We want to thank G.A. Papanicolaou for kindly permitting us to use the inhibition profile data.
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¢, the number of correctly classified enzymes (at time =40 mins) divided by eight, the total number of
enzymes. We experiment with values of oy, (Table 9) and h (Table 10) and with different types of credit
functions (Table 11). For inhibitor # 1 classification is 100% correct for a very wide range of choices
of these parameters; for inhibitor # 2 classification is generally 100% correct, with some exceptions for

extreme choices of parameter values.

9.4 Classification of phonemes

In this final experiment we also use real world data: two utterances of the word “one”. They have
been sampled at 2 KHz. The time series is plotted in Fig. 9. It contains three phonemes ([oo], [ah]
and [nn]) which can be visually distinguished in the figure.

Three linear prediction modules of the form §F = w} -y 1 + ... + w¥ -y 18, k = 1,2, 3 have been
trained, using data from the three phonemes. We combine the predictors into a Bayesian PREMONN
and perform several classification experiments using the second utterance of “one”.

The results of a classification experiment, which uses the data of the [ah] to [nn| transition, are
presented in Fig. 10. We have used 01 = 09 = 03 = .01, A = 0.01 and the Bayesian credit function.
The same setup has been used for classification experiments at various noise levels. The results are

presented in Table 12.

10 Conclusions

We have defined Predictive Modular Neural Networks (PREMONNS) for time series classification and
investigated their properties. PREMONNs have a hierarchical organization: at the bottom level we
have a bank of prediction modules and at the top level a decision module that processes the prediction
errors of the bottom level and adaptively updates their Bayesian posterior probabilities or figures of

merit. Our basic conclusions are:

1. PREMONNSs have a probabilistic motivation and interpretation, but this is not necessary for
their succesful operation. They can be applied just as well to the classification of stochastic or

deterministic time series.

2. Convergence to correct classification with prob. 1 has been mathematically proven for both
Bayesian and nonprobabilistic PREMONNs.

3. PREMONNS can be used for prediction as well as for classification. The PREMONN prediction
has minimum mean square prediction error among all (linear and nonlinear) predictions that are

functions of the past observations.

4. PREMONNS can be parallelized in an obvious way (one processor per module) and the learning

time scales linearly with the number of sources that have to be learned.

5. PREMONNSs can operate online.
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‘While the variance O']% and threshold h parameters can be used to optimize the tradeoff between
speed and accuracy of classification, experimental results show that classification success does not
depend crucially on o5 and h as long as they do not take extreme values. Experiments also show
that PREMONNSs are robust to prediction error; that is, they classify correctly even if the prediction
modules perform poorly. In particular, they are robust to noise in the data. While the Bayesian credit
function performs better than the additive ones, the latter perform satisfactorily and are simpler to
implement. Finally, it should be noted that in experiments involving source switching, cg.¢ and cg.g9 are
smaller than those in the corresponding non-switching experiments. This is due to the transient stage
of the pf’s around the switching point.

In the following paragraphs we list some directions in which the investigations of PREMONNSs can

be continued.

1. Source switching. We have not modelled source switchings, instead we have treated them via
thresholding. An alternative solution is to assume Markovian switching; essentially this brings
PREMONNS in the hidden Markov models framework. Our task then is to extend the posterior
update formula so that it takes into account the Markovian switching. A second task would then

be to prove some convergence property of the modified PREMONN.

2. Adaptive partition. In many problems the time series sources are known in advance and
there is sufficient data for the offline training of the predictor modules. Typical problems of this
category are phoneme recognition, radar and sonar signal classification and so on. However, there
are other problems where the sources are not known in advance. For such problems, we want
to try a version of PREMONNSs in which modules are adaptively generated. In this version, an
initial prediction module is trained and the next incoming datum is used for the computation
of the module’s posterior probability. If this is high, the datum is used to update the module
parameter estimates. Otherwise, the datum is placed in a separate data pool; after a while this
data pool is used for the training of a second module. The incoming data are now tested against
both modules, and if they do not fit either one, they are set aside and eventually used for the
training of a third module etc. There is a maximum number of modules that can be active at a

given time, so modules with a low posterior probability are deactivated .

3. Applications to system identification. This idea relates to the original use of the partition
algorithm in the control context (Lainiotis, 1971). In many control problems we must estimate
the parameters of a nonlinear system. In the simplest case, these parameters can only take a
small number of values. Then a PREMONN can be applied quite readily for the computation
of the most likely parameter values. A difficulty with this idea is the “curse of dimensionality”:
the number of possible modules increases exponentially with the parameters of the system. This

leads us to the next idea.

4. Parameter search schemes. In case the parameters can take a large number of values, a
method must be found to search efficiently the parameter space. One parameter could be searched
at a time, possibly cycling through all the parameters several times. Or orthogonal grids of

progressively finer resolution could be used. Or, the parameters could be changed in the direction
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of steepest ascent of the posterior probability. Finally, genetic algorithms could be used for the

parameter search as well.

5. Comnsistency. For PREMONNs with fixed prediction modules it has been proven here that
Z; — Z. Will this be true for the adaptive and refined versions of paragraphs (2) and (4) above?
In fact we expect that, when all the data comes from a fixed source, the following convergence
result will be true: if the adaptation and/or refinements occur at a slow enough rate (that is, if
enough data is accumulated before the prediction modules are changed) then 7 converges to 7.
This is what statisticians call a consistency result, and adheres to the philosophy of Grenander’s
method of sieves (Grenander, 1981).

A Appendix

Here we present the proofs of Theorems 1, 2 and 6.

Proof of Theorem 1: For every k& € Ky and I € Ky we have

DI DD
ﬁ _ ﬁ €$p< QUI% ) . _f e ﬁ €$p< 20%-1& ) 27
vhomh I FTa OARIETC &7
b0 ep(— st ‘ 0 eap(—=5hr)

Because f is measurable as a function of the y's, y¥ is ergodic (see (Breiman, 1968)) and the same
holds for ef = y — yF and |ef|2. Since y; and yf are both square integrable, |ef| is also square
integrable: Elef|? < co. (Incidentally, this shows that d is well defined and finite, and Ko not empty.)
Since E]ef]Q < oo and €F ergodic, by the continuity of the exp(-) function, the Ergodic Theorem
(Breiman,1968) and (27) we see that for all ¢ > 0 and almost all 1, yo, ..., there is a ¢, (depending on

Y1, Y2, ... ) such that for all ¢ > ¢,

- v [ eap(—Zily

(P o P00 205 0
S 1 Elel |2 +e (28)

b Po exp(——ef—)
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. E k|2 Eel)? . E k|2 Eel)?
Define dj,; = exp(—Tng—)/egcp(—E%—). By assumption 77%_ > Eflg—, so we can choose € such that

dy,; + € is less than 1. Then, raising (28) to the ¢ power, we have that for all ¢ > ¢, and almost all 1,

Y2, o
t

B ek‘?
k ro [ exp(—=45-) k
()gp—tlgp—?- EU{“Q +e€ :>11mp—§:0 with prob. 1.
Pt Do exp(——f—;g‘ t=o0 py
l

This proves (10). Note that the term pf /ph does not affect convergence, as long as neither p§ nor p)
are zero. Hence the priors are not crucial to the convergence of the algorithm, as long as they are not

k
zero. Now, by the continuity of the max function we also have lim; . maxke;chlelco(%f) = 0 with
t
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prob. 1. Define m = |Ky|, M = |Kp| and observe that

k
Zkelcl P} < M MAXE Ly pt max 2 0 with prob 1.
ZZGICO pt Mminlgco pt M kek1,leky pzlt

Hence Y e, PF/ S ick, Ph tends to 0 with probability 1. From this and the fact that 3., pf +
Sk Pt =1, (11) and (12) follow immediately. .
Proof of Theorem 2: It can be proven (see (Grenander & Szego,1984)) that under condition B1,
{y}72 is Gaussian, ergodic and square integrable. (So in particular, we have that the covariance
matrix R exists and is finite.) Hence Y; is also ergodic and square integrable. Taking the same steps

as in the previous proof, for every k € K1, 1 € Ky

271 YI(A— Ap)(A'— A} ) Yot 2wl (A'— A} )Ystw?

p_f — ﬁ . exp(_ 20129 ) (29)
t ! ! / ! ! !
Pl ph exp(_z L Y/(A-A)(A féfT)QYﬁzws(A fAl)YSerg)

i

By the Ergodic Theorem and the continuity of the exp(-) function, (29) implies that for all ¢ > 0, and
almost all y1, o, ..., there is a ¢, (depending on y1, yo, ... ) such that for all ¢ > ¢,
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It is a well known fact that E(Y{(A— Ax)(4' — AL)Y;)) = (A — AL R(A— Ay) = |A— Ag|%. Similarly,
EY,(A—A)A - A)Y,)) = (A — A)R(A— A)) = |A— Aj|%. Hence (30) becomes

|A—Ag|2
i < /2o —‘AUA‘Q tel. (31)
!
pt pO exp( Ti)
. |A— A2 |A—Ay 2
Recall that we have assumed o;, = o for all k; then define dy; = exp(——=%)/ exp(——=%). By
A2
assumption A 2?2’“"3 ‘AQUQ . so we can choose € such that dj, ; +¢ is less than 1. The rest of the proof

proceeds like the proof of Theorem 1. Note that again the term pf /ph does not affect convergence, as
long as neither p& nor p)) are zero. Hence the priors are not crucial to the convergence of the algorithm,
as long as they are not zero. °
Proof of Theorem 6: A remarkable, but easy to prove (Doob,1953) property of the conditional
expectation is the following. Take a o-field F, a random variable X, its conditional expectation with
respect to F, E(x|F), and a random variable Y that is F-measurable. We have

E(Y(X — E(X|F)))=0. (32)
Now take any o (y1,...,y+—1) measurable predictor of y, call it g;. Since yf is a function of ¥_1, ...,
Y-, it is also o (y1, ..., y+—1) measurable. Since y; is the conditional expectation of y; with respect to
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o (Y1, ., Yt—1), we have
BElge —w|” = Blge —yi + v —wel” = Elge — v 1> + Elyf —vel® + 2B — 7)) (i —we))- (33)

Now @ — yf is o (y1,...,Y+—1) measurable, so we can use (32) with F = o(y1,..., 1), ¥ = 4t — vy,
X =y, E(X|F)=y;. Then (33) becomes

BElge —w|> = Elge — yi|* + Ely; — wel. (34)

From (34) it becomes obvious that E|§; — y|? > Ely; — v¢|?, with equality occurring only when g =
yf with probability 1. This proves (22). To prove (23) and (24), note that, by Assumption F1, Ky has
only one member, namely £*. Then, by Theorem 1, with probability 1, pf* — 1 and pf — 0 for all
k # k*. On the other hand, by the definition of y; and the triangle inequality, we have

0<ly; =yt | <= |-l |+ > pilvrl. (35)

kfk>

Integrate (35) and use the Bounded Convergence Theorem to prove (23). To prove (24), define M =

maxj<p<x.t—12,. |Yr|; this exists and is finite by assumption F2. Then (35) implies

0<|yf —w | <M-(L=pf [+ > pp). (36)
k#k
Taking the limit as £ — oo in (36) we obtain (24) and the proof is complete. .
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