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Abstract

We introduce the so called PREdictive MOdular Fuzzy System (PREMOFS) which performs time series
classification. A PREMOFS consists of (a) a bank of prediction modules and (b) a fuzzy decision module. It is
assumed that the time series is generated by a source belonging to a finite search set (universal set); then the
classification problem is to select the source that best represents the observed data. Classification is based on
a membership function which is updated recursively, according to the predictive accuracy of each model. Two
algorithms are presented for updating the membership function: the first is based on sum/product fuzzy inference;
the second on max/min fuzzy inference. In short, PREMOFS is a fuzzy modularsystem which classifies time series
to one of a finite number of classes, using the full set of past data (without preprocessing )to perform a recursive,
competitive computation of membership function, based on predictive accuracy. Convergence proofs are given for
both PREMOFS algorithms; in both cases the membership grade tends to one for the source that best predicts
the observed data and to less than one for the remaining sources; hence correct classification is guaranteed.
Simulation results are also presented: PREMOFS are applied to signal detection, system identification and

phoneme classification tasks.



1 Introduction

This paper treats the following time series classification problem. A source S(6), generates time series
X1, Xo, X3, ... ; here parameter 0y takes values in the finite set © = {0y, ...,0x}. The source that
generates the time series must be determined. A typical example involves a speech time series X,
Xy, ... and phoneme labels ) belonging to the phoneme set ©= { [ah], [00],... }; the phoneme [ah]
corresponds to Xi, Xo,... generated by S([ah]). Problems of this type arise in phoneme recognition
[6, 30], EEG/ECG diagnosis [9, 42, 43], polygraph test analysis [24], radar classification [10] and various
general tasks [26, 29, 41]. System identification [27, 37] may also be viewed as a problem of this type.

The term “dynamic pattern classification” will be used as a synonym of “time series classification”;
similarly for the terms “class” and “source”. The term “dynamic pattern” is used in contradistinction
to “static pattern classification”, where a (finite dimensional) feature vector must be assigned to one
of a set of possible classes. Problems of static pattern classification appear frequently in the pattern
recognition literature and they can be solved by fuzzy methods, e.g. see [2, 8, 17, 28, 35, 40]; other
treatments of the problem use statistical [7] or neural [12, 16, 38] methods. Of course, the above cited
references are only a small sample of the vast pattern classification literature.

Several characteristics distinguish dynamic pattern classification from the static one. If the feature
vector is taken to be the observations of the time series X7, X9, ... then the dimensionality of the
problem increases without bound. Also, it is usually required that the classification is updated on-
line as new data become available. The usual approach to these issues is what we call staticizing the
problem. Namely, the time series is viewed in portions (usually through a sliding window); each portion
is preprocessed and a static feature vector is extracted; finally, the preprocessed feature vector is used
for static pattern classification. This approach, used in most of the time series applications cited above,
may result in loss of important correlations across several time steps.

In this paper time series classification is carried out by the so called PRFEdictive MOdular Fuzzy
System (PREMOFS). PREMOFS operates in two phases. In the off-line phase, a predictor is trained
for each candidate source / class (using data from that particular source). In the on-line phase, at
time steps ¢t = 1, 2, ... , each predictor produces an estimate of the next observation X¢, using raw
data X; 1, X¢ 9, .... When the new observation X; becomes available, the respective prediction error
is computed for each predictor; this error is used to update the respective source membership grade
in a recursive manner. At time ¢ the time series is classified to the source / class with maximum
membership grade. In short, PREMOFS is a modular system which classifies time series to one of a
finite number of classes, using the full set of past data without preprocessing to perform a recursive
computation of membership function which is based on predictive accuracy.

The inspiration for PREMOFS comes from the Partition Algorithm, a method originally applied to
system identification and control [13, 22, 23, 36]. We have used the Partition Algorithm as the basis
for developing the PREMONNS (PREdictive Modular Neural Networks) family of neural classification
algorithms [18, 31, 32]; these are close relatives of PREMOFS. Both the Partition Algorithm and the
original PREMONN [31] are based on a Bayesian probabilistic point of view. More general versions
of PREMONN’s [18, 32| do not depend on a probabilistic interpretation, but still use a probabilis-

tic convergence analysis. On the other hand, PREMOFS makes no use of probabilistic assumptions



whatosever and can be based either on sum/product or on max/min inference, as will be explained in
Section 3. In addition to these “direct” relatives of PREMOFS, related ideas appearing in the fuzzy
and neural literature are discussed below.

In a sense, all fuzzy systems are implicitly modular, since they implement a combination of various
rules, one module corresponding to each rule. However this does not necessarily result in a modular
training algorithm such as the one employed by PREMOFS. By this we mean a method whereby
substitution of one part of the classification system does not require retraining the whole system.
Methods for modular training of fuzzy classifiers [11, 26, 29, 33, 39] are usually applied to static or
staticized problems, they involve approximate (rather than exact) optimization and they do not use a
recursive classification update. Modular architectures also appear in the neural literature; for instance
in [14, 15] under the name of local experts. Once again, training is modular but approximate, and is
performed off-line.

Several fuzzy clustering algorithms use new data to recursively update some classification criterion
[2, 11, 26, 29, 39, 40]. In fact, some of these algorithms discover a previously unknown partition of
the feature space; this is beyond the scope of PREMOFS. However, in such algorithms recursion is
usually employed to improve the estimates of class boundaries; once this is achieved (i.e. when the
recursion converges) every new exemplar presented is classified independently of the previous ones.
PREMOFS, on the other hand, must learn the classification rules off-line; but every time step of on-
line classification depends on previous classification decisions. In short, on-line recursion provides a
link between past and currect clasifications. This underscores the dynamic nature of PREMOFS and
dynamic pattern classification in general; in statistical terms, useful information is extracted from the
correlation between successive observations of the time series. Finally, to the best of our knowledge,
PREMOFS is unique among fuzzy time series classifiers in using raw data (without preprocessing) and
in classifying according to prediction error.

The paper is organized as follows: in Section 2 classification by prediction is explained in detail ; in
Section 3 two alternative methods of fuzzy inference are presented and used to develop the sum/product
PREMOFS and the max/min PREMOFS; in Section 4 convergence of the PREMOFS algorithms is
proved; in Section 5 some general issues are discussed; in Section 6 PREMOFS is applied to logistic
detection, AC motor resistance estimation and phoneme classification; In Section 7 conclusions are

summarized.

2 Classification by Prediction

We are given a finite crisp set © = {64, ...,0k }, a source S(0x) (where 6, is a parameter taking values
in ©) and a time series X, t=1, 2, ... , generated by S(6;), where X; takes values in R", for some n.
© will be henceforth called the source set, search set or, in fuzzy set theory terms, the universal set. It
is required to identify the source that generates the time series; i.e. to find the “true” value of 6.
Consider a variable 7, taking values in the crisp set ©, and say that the time series is generated by
source S(7); e.g. when Z = 64, the time series X1, Xa, ... is generated by S(61). Also take an estimate
of Z; it is called 7, and takes values in ©. The time index ¢ is used because Z; is updated by a fuzzy

decision rule at every time step: if at time ¢ we believe Xy, ... X; to have been generated by, say, S(61),



then Zt = #1. As more observations become available, Zt may change with time. The selection of Zt
at time ¢ is based on the following process of fuzzy inference. Consider the attribute: “source S(Z) has
been active from time s up to time t”. A crisp set of elements that satisfy this attribute, must include
exactly one member of ©; this is so because it has been assumed that the time series is generated by

a single source. However, we propose to use a fuzzy set:

A(s,8) = {(Z, pagon (2))|Z € O}, (1)

The fuzzy set A(s,t) consists of the crisp set © (the set of possible values of the source parameter) and
the membership function p14(s)(%); for a given Z, j14(s4) (%) is the membership grade of the attribute
“source S(Z) has been active from time s to time t”. Obviously A(s,t) has a time dependence on times
s and t. Now, consider 0y (the k-th member of ©): 1414 (k) is the membership grade of “source
S(60y) has been active from time 1 to time t”, or equivalently, “observations X1, Xo, ... , X have been
generated by source S(0;)”. This particular quantity is used very frequently in this paper; for economy

of space we use the alternative notation

1 = pacny On); (2)

but the reader should keep in mind that ;f depends on 0. It is emphasized that ;f may change with
time, depending on new observations; what is required here is to provide and justify a method for
updating pf at every time step. This will be derived presently; but first note that, for a given time ¢,

1t 1s natural to set

7y = arg max fa1,o) (6). (3)

or, using a simpler notation,
Zy = ’“ 4
¢ = argmax i (4)

but the reader should keep in mind that 7, takes values in the set ©. In other words the time series is
classified to the source S (Zt) which achieves maximum membership grade.

To implement recursive computation of uf the PREMOFS algorithm is developed. Its first phase
is an off-line process: for each source /class in the search set (i.e. for every value O, k=1, 2, ... K)

labelled data are collected and a predictor trained; the predictor has the general form
Xf :f<Xt717---7Xt7M;0k)- (5)

Here M is the order of the predictor (number of past time series values used). This is a general form,
encompassing fuzzy, linear, sigmoid (neural) and many other predictor types. 65 appears in eq.(5)
because Xf approximates Xy when the time series is generated by S(0x). The second phase is on-line:

for t=1, 2, ... and k = 1,2, ..., K define the one-step prediction error



or, more generally, the N-step prediction error
By =X, — X, Xpq1-XP, ., Xew—XPyl (7

Note that in eq.(7) EF depends on N, the number of backward steps used, but this dependence is
suppressed for brevity. For N > 0, EF is a vector of size (N 4+ 1) - n; for N = 0, EF= €F which can
be a vector (if n > 1) or a scalar. The idea on which PREMOFS is based is this: when the time
series is generated by source S(0,), | E"| should be smaller than |EF|, k # m, “on the average” (where
| - | denotes Euclidean norm). Based on this idea and keeping track of predictor errors over long time
intervals, a reasonable membership function will be computed in a recursive manner. For instance, the

following update could be used

11t = 1ea, Or) = 1aci—1y(0k) AND i1 4 (0k). (8)

Eq.(8) means: the membership grade of the attribute “the complete X7, ... , X; observation has been
generated by source / class S(6))” is the same as the membership grade of the conjuncted attributes
“the complete X7, ... , Xy_1 observation has been generated by source / class S(6;)" AND “the X
observation has been generated by source / class S(0;)”. Thus, uf is computed in terms of p g1 ;1) (05)

and fA(;—1,1) (0x). The latter can be computed as a function of the form

gk

fa—1,)(Ok) = €7<‘_"L‘)2- (9)

Any function can be used in place of the exponential, as long it is a decreasing function of the Euclidean

norm of the error. In eq.(9) the membership grade is expressed in terms of predictive accuracy: when
|EF|\2
| EF | is large, pai—1.60k) = e (55)" is small. Now eqs.(8), (9) result in the following recursive

equation:
BF2
pi = piy AND e (55)

(10)

The implementation of the AND conjunction in (10) has not yet been specified; several options are

2R\ 2
available and will be discussed presently. At any rate, (10) shows that when | EF | is large, then e (5)
|x,—XFk|\2
(and consequently pia¢—1,4)(0k)) is small; this implies that pf =1 ,_1)(0x) AND e (57) g

also small. In fact, a little reflection shows that eq.(10) results in a decreasing sequence of membership
grades uf. This may result in various implementation problems (e.g. numerical underflow), so a
normalized form will be used in what follows.

|EF| )2

©F | AND e (5

(11)

k
By = 7 .
B2
OR K (u._, AND ¢ (F-))

The previous comments about the influence of | EF | on uF apply to eq.(11) as well, but now relative, not
absolute, magnitude of | E¥ | influences pf, since the computation of membership grades is competitive.

Hence, a large | EF | does not necessarily imply small membership grade uf; the value of uf may be



large if | B} | > | EF | for I # k, that is, if other predictors perform even worse.

Eqgs.(5), (7), (9), (11) and (4) constitute the PREMOFS classification algorithm. This algorithm can
be implemented in a modular manner, with K prediction modules implementing eq.(5) and a decision
module implementing eq.(11). Each of these modules computes independently of each other; in addition,
any module can be substituted without having to retrain the remaining modules. Eq.(11) updates pf
using the entire history X1, Xo, ... , X;. The prediction error E¥ has an explicit time dependence of
N +1 steps back: ¢, ¢t —1, ... ,t— N (see eq.(7)). However, ¥ ; depends on Ef ; (which depends on
time steps t — 1,4 —2, ... ,t =N —1),0n ul ,,1=1,2, ..., K and so on. Hence, p implicitly depends
on the entire X7, ... , X; series. This is useful to capture correlations between different parts of a time
series; when such correlations exist they furnish information which is important for the classification
task (this is an important difference between static and dynamic pattern classification). On the other
hand, the update method should provide a forgetting mechanism, so that the distant past does not
influence current classification decisions excessively. Such a mechanism is provided in the PREMOFS
algorithm, by the use of a threshold; this issue is discussed in 5.1.

It has been established that PREMOFS is a method for modular, recursive update of class mem-
bership grades, depending on class predictive accuracy. The computation of membership grades is
competitive: the classes compete for a share of the membership grade, and receive as much of it as is
warranted by their respective predictive accuracy. Note that the form of the decision module has not
vet been specified; this will depend on the implementation of the fuzzy AND and OR inference, to

be discussed in the next section.

3 Modes of Fuzzy Inference

The form of the PREMOF'S decision module depends on the implementation of the fuzzy AND and
OR in eq.(11). In fuzzy set theory there are two standard ways to implement such logical operators
[3]: AND is implemented by a product and OR is implemented by a sum; alternatively AND
is implemented by a minimum and OR. is implemented by a maximum. Two “hybrid” combinations
are also possible: AND is implemented by a product and OR. is implemented by a maximum:;
AND is implemented by a minimum and OR is implemented by a sum. In this paper only the
first two cases are dealt with, yielding respectively the sum/product PREMOFS and the max/min
PREMOFS; but it should be obvious how to obtain the corresponding max/product PREMOFS and
sum/min PREMOFS.

The sum/product PREMOFS algorithm is obtained by combining eqs.(4), (5), (6) and (11) (with
N=1,ie. Ef= ef), replacing all AND ’s by products and all OR.’s by sums.

Sum/Product PREMOFS Algorithm
For k=1,..., K and for t=1,2,...

0< /ﬂé <1 (12)
Xf = f(thl, ceey thM; Qk) (13)
e = X, — XF. (14)
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(Y
II’L? = =l ‘ei‘ (15)

2
leil Mifl '€7<T)

% = axg max pf (16)

The max/min PREMOFS algorithm is obtained by combining egs.(4), (5), (7) and (11) , replacing all
AND ’s by min’s and all OR.’s by max’s.
Max/Min PREMOFS Algorithm
For k=1,..., K and for t=1,2,...

0<puh<1 (17)

XF = f( X1, Xooar36). (18)

EF =X, —XF, X, 1 —XF,, .., Xen-—XF, (19)
k Py /\€7<%€“’_)2

He = Bl (20)

2
— (==
Vit (1 Ae () )
Zy = arg max pr (21)

It has already been mentioned that the N-time-steps error E¥ is more general than the one-time-step
error ef. It is easy to design a sum/product PREMOFS algorithm that uses EF rather than ef; we
chose to present the particular forms of sum/product and max/min PREMOFS algorithms because
these are the ones that were experimentally found to work best.

The normalized form of equations (15) and (20) ensures that in both algorithms we have 0 < pf < 1
for all + and K. In the case of the sum/product PREMOFS S | yf = 1 for every ¢ and in the case of
the max/min PREMOFS \/& | uf =1 for every ¢. Hence the normalization ensures that at least one
1% never becomes too small. In fact, under appropriate conditions, one pf will tend to one, as will be

seen In the next section.

4 Convergence of Membership Grades

It has already been stated informally that the time series should be classified to the source / class that
best predicts the observations. This requirement is now stated in an exact manner. It is immediately
recognized that a “predictive accuracy” criterion cannot be based on the instantaneous predictive error
e¥ or EF for any fixed value of ¢, because even the most accurate predictor (corresponding to the best
class) may perform poorly at any particular time step. What matters is average performance.

In a probabilistic context one would describe average behavior using expected values; but here we
want to avoid probabilistic considerations. A purely phenomenological approach will be followed, based

on the Cesaro average ([4], p.572). For a sequence x1, 3, ... we say that x; — z in the Cesaro sense iff

i T2 b T (22)

t— o0 A




In short, {z:}3°; tends to x on the average. It is easy to prove that convergence in the usual sense
implies convergence in the Cesaro sense, but not conversely ([4], p.572).

Now convergence results are given for the two PREMOF'S algorithms: if the m-th predictor is best
(i.e. the limit of Cesaro average prediction error is smallest for the m-th predictor), then in the case
of sum/product PREMOFS limy o 1" = 1 and limy o p5f = 0, k # m, while in the case of max/min
PREMOFS lim; o, pf* =1 > limsup,_, ., pf, k # m. 1 In both cases, the time series is classified to

the “best” source.

4.1 Convergence of the sum/product PREMOFS Algorithm

First, for k = 1,2, ..., K, the following quantity is defined

t—o00 1

(23)

It is emphasized that the k superscript is not an exponent, but denotes the error of the k-th predictor.
Existence of the limit is discussed in the next paragraph. In other words D¥ is the limit of the Cesaro
average of the squared one-step prediction errors | ef |2 = | X; — XF |2. D" is a meaningful index
of the predictive accuracy of the k-th predictor: the smallest DF corresponds to the predictor that is
best in the sense of having smallest average square error. The following theorem is proved regarding
convergence of the sum/product PREMOFS algorithm, as summarized in eqs.(12) - (16) (the proof is
presented in the Appendix). 2

Theorem 1 If the following conditions hold:
Al O<puf <1 fork=1,2,... K,

A2 there is some m such that D™ < D¥, for all k # m,
then limy o0 p* =1 and for k#m limg o ,uf =0.

Condition A1 says that initial values pf§ must be strictly between zero and one; this can always be
satisfied, since we choose . Condition A2 says that the quantities D¥ must exist for all k£ and an m
must exist such that D™ is minimum (namely there is a “best” class). (In a probabilistic context, this
condition would hold for an ergodic time series; but our formulation avoids any reference to probabilistic
concepts.) If the above conditions are satisfied, convergence to the “best” class is guaranteed and, in
the limit, the largest membership grade is attained by the m-th class which minimizes prediction error

(in the sense of limit Cesaro average); this also ensures that lim; o Zt = Op,.

1 A given sequence a, may be divergent; still it always has at least one subsequence converging to some limit. Roughly
speaking, lim sup a; is the largest limit attainable by some subsequence of a;. In other words, in the long run a; will never
exceed limsup a; by much.

2Here (and in what follows) average value means the time average, such as taken in eq.(23); this should be distinguished
from the probabilistic ensemble average, usually called mean or expected value and denoted by E(-). For an ergodic time
series, time and ensemble averages are equal; however, wanting to avoid probabilistic assumptions, we only use time
averages.



4.2 Convergence of the max/min PREMOFS Algorithm

First define Df, as

Dk - ’ Xt*N _XI{ZN ’2 +ot ’ thl B Xf*l ’2 + ’ Xt _Xf ’2 (24)
6= o2 (N +1) '

(In fact D also depends on N; for notational simplicity this dependence is not denoted explicitly.) Df
is an approximation to the previously defined D¥: in most practical situationsD} becomes independent
of N, for large enough N. The following theorem is proved, regarding convergence of the max/min
PREMOFS algorithm, as summarized in eqs.(17) - (21) (the proof is presented in the Appendix).

Theorem 2 If the following conditions hold:
Bl 0<pf <1 fork=1,2,...K,

B2 there are numbers m, A, B, C such that for a given N, for all t and for all k = m

0<A<D"<B<C<Dj, (25)

then limy oo " =1 and for k#m limsup,_, ., puf < 1.

The quantities D are not actual limits, but they approximate the limits D* for large N. Condition
B2 requires that the error of the m-th predictor is smaller than that of all other predictors; B2 is
similar to A2 in requiring the existence of a “best” class. Compared to the sum/product PREMOFS,
the convergence condition is more complicated to state (and the theorem harder to prove) for a technical
reason: the min operator cannot be concatenated in the same manner as the product operator and it
is necessary to operate with “finite approximations” of the limit of the Cesaro average (i.e. the Df’s).
This becomes apparent in the proof of the theorem. It should be mentioned that in practice a value of

N around 50 is sufficient to ensure convergence.

5 General Considerations

The mathematical analysis of the previous section guarantees convergence to the best class, as long
as the assumptions of Theorems 1 and 2 are satisfied. This analysis has been complemented by
informal analysis, verified by running a large number of classification experiments. Some experiments

are reported in Section 6. In this section some general conclusions are presented.

5.1 Decision Module

Given a bank of prediction modules we must reach a classification decision. This will be influenced by
several factors.
A. Form of Decision Module. First, there is a choice regarding the implementation of the AND

and OR operations; as already mentioned, we have experimented with sum/product and max/min



modules. Second, in egs.(15), (20), the membership function is a Gaussian or Radial Basis Function
(RBF) , i.e. an exponential function of the negative squared prediction error. This type of membership
function is prevalent in fuzzy sets literature [19, 34]. However, any other standard form of membership
function (triangular, square etc.) may be used, as long as it is a decreasing function of the norm of the
prediction error.

B. Robustness of Decision. Classification performance depends not on absolute, but on relative pre-
dictive accuracy, because of the competitive computation of membership grade (see eqs.(15) and(20)).
The time series will be classified to a source even if it performs poorly, but consistently better than
its competitors. This results in considerable robustness to prediction error. Good predictors generally
result in superior classification performance, but, within certain bounds, high prediction error does not
affect classification too much. This is verified by the experiments of Section 6. On the other hand,
since some classification must always take place, if no good class is available, the “least bad” one will
be chosen, which may at times lead to wrong conclusions. But, as discussed in 6.4, examination of
membership grade profiles offers a useful diagnostic in such cases.

C. Scale Factor o. The o parameter appearing in eqs.(15), (20) influences the speed of convergence
to correct classification. In the proof of Theorem 1, it is shown that convergence rate of the f’s
depends on (D* — DY) /o2, for k,I= 1, ... , K. If predictor k has large D* and predictor ! has small
D', then (D* — D')/o? is large, and convergence is fast (see eq.(44)). However, all other things being
equal, when o is large, (Dk — Dl) /o? becomes small and convergence is slow. A similar, but more
complicated argument applies to max/min PREMOFS as well. From a different point of view, a large
error means that less information is obtained per observation, so more observations are necessary to

reach a certain level of confidence. This can be controlled by the choice of o, which can be estimated

ST led?

during the predictor training phase, by the usual statistical estimator: o =~ s, s = \/ ==—. It
is sometimes advantageous to modify this estimate: for faster classification, ¢ must be decreased, as
experiments indicate.

D. Threshold h. So far it has been assumed that the whole time series is generated by a single
source; in other words, a stationary time series has been assumed. In many cases this assumption is
not true. For instance, in a speech time series each phoneme is generated by a different source and
different sources are active over different time intervals, introducing nonstationarity of the time series.
This situation is termed source switching and presents the following difficulty. Suppose that a source,
say S(01), has been active for a long time; then by the convergence theorems presented earlier, p}
will be close or equal to 1 and u¥, k # 1 may be close to 0 (especially in the case of sum/product
PREMOFS). In fact, due to numerical underflow the zf’s may become equal to 0. From eq.(15) or
eq.(20) it is obvious that in such a case uf will remain 0 even in case source S(fy) is “switched on” at a
later time and a false classification will result. To solve this problem, when p# falls below a prespecified
threshold h, it is reset to h. Such thresholding amounts to introducing a forgetting factor: even if a
sequence of observations is very unlikely to have been generated by a particular source, that source is
never completely removed from consideration; if it predicts well a later sequence of observations, ;¥ can
recover a high value. An alternative way of looking at the use of & is this: whenever one or more 1if’s

fall below h (because the corresponding predictors perform poorly) the algorithm is restarted using
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new pb’s, obtained from resetting the corresponding uf’s to h. Under this interpretation, the prior
estimate of the membership grade for each source never goes below A.

Both o and h are related to a trade-off between speed and accuracy. A large o value slows the
PREMOEFS algorithm down and assigns little importance to individual errors; small o speeds the PRE-
MOF'S up, but also assigns more importance to instantaneous fluctuations and makes the PREMOFS
more prone to instantaneous classification errors. Conversely, a large 7 minimizes the importance of
past performance and speeds up the response of the PREMOFS to source switchings, at the cost of
spurious false classifications; small h results in large recovery time between source switchings.

E. Imitial values pf. It can be seen from the convergence Theorems 1 and 2 that strict positivity
is the only restriction placed on the /,ng’s to ensure convergence of the membership functions. This
theoretical conclusion, is also supported by our experiments: classification performance is more or less

independent of the initial values pf.

5.2 Prediction Modules

Let us now consider the prediction modules.

A. Form of Prediction Module. Several different types of predictors can be used for the PREMOFS
prediction modules: linear, sigmoid (neural), polynomial or RBF (radial basis functions) predictors are
some possibilities. These are called black-box models or predictors and do not take into account the
mechanism that generates a particular time series. On the other hand, if such a mechanism is known
(except for some parameter values) a so called structured model or predictor may be used, e.g. a
logistic-form predictor for a logistic time series. The distinction between black-box and structured
models is well established in the system identification literature. Black-box predictors are often used in
fuzzy set methods of identification; consider for instance [27] and especially [37]. It must be mentioned
that PREMOFS can employ different types of predictors within the same predictor bank, e.g. a linear,
a sigmoid and a polynomial predictor.

B. Noise Robustness of Prediction. Predictors of the form (5) use past observations as input. This
makes prediction accuracy depend on the level of noise present in the observations. In certain cases, a
predictor performs very well with noise-free input, but performance deteriorates rapidly with increasing
noise level. This phenomenon has been observed in the logistic time series experiments presented in
6.1, 6.2, 6.3. Three types of predictors are used: sigmoid, linear and logistic-structured. The logistic
predictor gives zero prediction error when noise-free input is used, but the error becomes quite large
when the input is noisy. This is due to the nonlinear, chaotic nature of the logistic mapping: small
input variations may result in large output variations [1], (pp.226, 244). The sigmoid predictor is even
more sensitive to noise. On the other hand, the linear predictor error is relatively insensitive to noise,
never becoming too large or too small. ® This, combined with the decision robustness discussed in

5.1, results in superior, noise-robust classification, as will be seen in 6.1, 6.2, 6.3. The noise robustness

3The linear predictor uses past observations of the logistic time series in a linear combination; by the linearity or
superposition principle, this results in separate components for the signal and noise parts of the time series. Regarding
the noise part, the total noise term will have the form

WINE—1 + Woene—2 + ... + WarNe—pr - (26)
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observed in the logistic experiments is an illustration of a general principle: a combination of decision
and prediction robustness makes PREMOFS classification noise-robust.

C. Predictor Order M. This is related to the number of predictor parameters, to be determined in
the training phase. The main consideration is to avoid overfitting. We have used reasonably low order
predictors, trying to enhance robustness rather than accuracy of prediction.

D. Prediction Error Order N. Sum/product PREMOFS uses one-step error ef; while max/min
PREMOFS uses N-step error £2F. Hence, for the max/min PREMOFS, N is another parameter to be
chosen. A theoretical consideration in the choice of IV, is that it should be large enough to justify the
approximation of D* by DF (see Theorem 2). On the other hand, our experience indicates that a large
value of NV results in a sluggish system; a small value in an unstable one. Usually IV is taken around
50, to obtain satisfactory results.

E. Modularity. The predictors employed by PREMOFS are independent of each other, in the sense
that if one of them is removed from the system the remaining predictors need not be reconfigured or
retrained. For instance, if it is decided to replace the sigmoid predictor of a particular source, by a linear
predictor for the same source, predictors of the other sources remain unchanged. Similarly, the decision
module can be changed without affecting the prediction modules, e.g. change from sum/product to
max/min decision. This property of modularity is useful in reducing development time.

F. Parallelism. Modularity also introduces parallelism. Predictors can operate in parallel and send
their predictions concurrently to the decision module. Hence execution time is independent of the
number of classes in the classification problem and new classes / predictors can be added as the need
arises. In contrast, it is a well known fact that lumped classifiers scale badly with the number of classes.
E.g. in neural classifiers, as the number of parameters increases training may take exponentially long
time and /or fail to achieve a good solution [12]. Similar considerations apply for fuzzy classifiers. Hence,
modular classifiers, where fixed size modules are trained piecewise, are highly desirable. PREMOFS
falls in this category. Clearly, both classifier size and training time scale linearly with the number of

sources / classes that must be learned.

6 Experiments

Several sets of experiments are presented in this section, dealing with various time series classification
tasks. The following considerations apply to all the experiment sets presented.
Classification performance is measured by a figure of merit ¢ = Ny /Ny, where N; is the number of

time steps at which the source of the time series is correctly identified, and Ny is the total number of

time steps.
Since E(ny)= E(ni—1)= ... =E(n._ar), the expectation of the above expression is equal to

E(n) - (wn +wo + ... +wnr) (27)
Since the terms wy, ... , wyy will in general have different signs, their summation usually yields a small net result; in short,

even if the individual noise terms may have large values, the total noise term will usually be small (barring exceptional
cases). Hence a linear predictor has higher noise robustness than a nonlinear one. This principle has been verified in our
logistic experiments and appears to have general application for many types of time series.
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Two different decision modules have been used: a sum/product module and a max/min module.
Depending on the type of predictors used (linear, sigmoid, structured) several different combinations
of prediction / decision modules are obtained; the value of ¢ is listed for each combination. The o,
h, M and pf parameters were chosen as follows: o was always set equal to the standard deviation
of prediction error, computed during the training phase of each predictor; h was set to 0.01; M was
chosen for each predictor used, so as to get good prediction while avoiding overfitting; /ﬂg was always
taken to be 1/K. No attempt is made to fine tune these parameters; the values chosen were found to
work quite well. Experimenting with other values we have found that PREMOFS is characterized by
considerable robustness to parameter choice.

In every experiment set, classification experiments are repeated with the original time series being
mixed with additive white noise, uniformly distributed in some interval [—%, é], for various A values
(i.e. various noise levels). The strength of noise signal relative to that of the time series is shown by
listing a signal to noise ratio, i.e. signal energy (3", X?) divided by noise energy (3, n?). This yields

a signal-to-noise ratio denoted by SNR. Training was performed on noise-free data.

6.1 Logistic and noise, black box predictor, complete search set

The first example concerns a case of signal detection: a signal must be discriminated from white noise.

The signal used is the logistic time series (see [1]) generated by the following difference equation
Xt:oth,l '(1—Xt71) t= 1,2,... (28)

Here a plays the role of source parameter Z. A test time series has been generated by running a logistic
with a=3.9 for 950 time steps, then appending 950 time steps of white noise, uniformly distributed in
the [0,1] interval. The task is to classify each step of the time series to logistic (with a= 3.9) or noise.
This is a rather hard task, as the logistic with o = 3.9 is a chaotic time series, similar to white noise,
both statistically ([25], p.110) and visually (in Fig.1 observe the time series at SNR=6.00).

It is assumed that a part of the time series has been generated by a logistic, but the exact value
of a is not known; it is conjectured that it lies in the interval [3.6,3.9]. Hence, in the off-line phase
a bank of four predictors has been trained on noise-free versions of logistic time series, generated by
the following values of a: 3.6, 3.7, 3.8, 3.9. An additional predictor is trained on white noise data.
4 Of course the train data are different from the test data; this holds true for this as well as all

subsequent experiments. Hence a bank of five predictors is used in the on-line phase of PREMOFS.

4Does a predictor learn something when trained on white noise data? Consider the optimal predictor (of any form)
X! for white noise uniformly distributed in [0,1]: it is the conditional expectation X;= E(X:|X:-1, X¢—2, ..., X1), which,
because of the independence of white noise, equals the unconditional expectation E(X;)= 0.5 (in other words a constant
predictor) (for more details see [5], p.64). Now consider a linear predictor of the form Xi= w1 Xs 1+ wo Xy ot oh
was Xt—nr, for some M. When trained, X; should approximate the optimal predictor X;=— 0.5. As X, depends on a number
of variables (X;_1,X:_2,...X¢t_ar), it cannot be constant; but if a large M is used and if w, ..., was are approximately
equal, then the predictor X, essentially takes an average of past values X;_1, X;_o,...X:_as, each approximately equally
weighted, hence it approximates E(X;). This is exactly what we found to happen with the linear predictor of white noise
trained for this experiment, in contrast to the linear predictors of logistic time series, where w; values vary considerably,
reflecting different correlations between X;, X; 1, X¢_o etc. A similar, but more complicated comparison pertains to the
sigmoid predictors.
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Two separate banks of predictors have been used: 12-th order linear predictors, in one case, 18-5-
1 sigmoid feedforward neural networks (i.e. 18 input, 5 hidden, one output neurons), in the other
case. In the case of max/min PREMOFS, N (error order) was taken equal to 50. In all, there are
four combinations of predictor and decision modules, so the classsification experiment is repeated four
times, once for each combination.

In Table I the ¢ values are listed for four different PREMOF'S implementations: sigmoid predictor
with max/min decision, sigmoid predictor with sum/product decision, linear predictor with max/min
decision and linear predictor with sum/product decision. Fig.2 is a plot of the evolution of membership
grades as computed by the max/min method; Fig.3 is a plot of the evolution of membership grades
as computed by the sum/product method. Both cases pertain to sigmoid predictor experiments and
a noise level SNR=12.50. A similar plot is presented in Fig.4 using a linear predictor, sum/product
decision and noise level SNR=3.33. Figures 2 - 4 and Table I indicate that the logistic/noise time
series is generally classified at a high level of accuracy. For the noise free case, sigmoid predictor and
sum/product decision give the best results with a classification figure of merit ¢ over 0.95. Linear
predictors, on the other hand, are more robust to noise. Max/min and sum/product decision perform

almost equally well.

6.2 Logistic and noise, black box predictor, incomplete search set

This set of experiments again concerns signal detection. The setup is identical to the previous exper-
iment set, except in that it is incorrectly assumed that the logistic « lies in the interval [3.5,3.8]; it
is intended to investigate the behavior of the PREMOEFS when the true model is not included in the
search set. Accordingly, the predictors are trained on « values 3.5, 3.6, 3.7, 3.8 and on white noise. For
the logistic part of the time series, classification will be considered correct if the closest available source
is chosen, namely a=3.8. For the noise part there is no change. Experimental results (on a new test
time series) are summarized in Table IT; these support the same conclusions as in section 6.1. Namely,
sigmoid predictors are more accurate at low noise levels but linear predictors are more robust to noise.
In addition it is evident that even when the true class does not appear in the search set, PREMOFS

vields quite accurate classification in the sense that the closest class available is selected.

6.3 Logistic and logistic, black box predictor, complete search set

This set of experiments can be considered as an exercise in black-box system identification. Again,
a 1900 steps time series is used; the first 950 steps have been generated by a logistic with a = 3.6
and the last 950 steps by a logistic with a = 3.7. The search set is the same as in 6.1; The task
is to find the correct value of a. The results of this experiment set (on a new test time series) are
summarized in Table III; they are similar to those of the previous experiment sets, except that in this
task the sigmoid predictors are found to be quite sensitive to noise. In Fig.b the membership grades
evolution is presented for the combination of linear predictor and max/min decision, while in Fig.6 it
is presented for the combination of linear predictor and sum/product decision; in both cases noise level
is SNR=5.00.
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6.4 Logistic and noise, structured predictor, complete search set

In this set of experiments, a signal detection task is again considered. Two points are investigated:
the use of structured predictors, and performance with a large search set. A 1900 steps time series
is used; the first 950 steps of it has been generated by a logistic with @ = 3.9 and the last 950 steps
by white noise uniformly distributed in [0,1]. The difference between this and previous experiments is
in the predictor modules and search set. Namely, nine structured logistic predictors are used, having
the same form as eq.(28) and a= 3.1, 3.2, ... , 3.9. The noise predictor is X,= 0.5; it is structured in
the sense that prior information about the time series is used. As remarked in footnote 10, this is the
optimal predictor for uniform white noise in the interval [0,1]. In the case of max/min PREMOFS, N
(error order) was taken equal to 50. This experiment set also illustrates the use of different forms of
predictor modules (the form of the predictor equation is different for the logistic and noise predictors).
The results of this experiment set are summarized in Table IV.

In terms of noise robustness, the performance of structured logistic predictors is somewhere between
that of linear and sigmoid predictors used in the previous experiment sets. Namely, structured logistic
predictors perform very well up to relatively high noise level, but then performance gradually drops
off. We attribute this phenomenon to the chaotic nature of the logistic mapping, which is known to
be very sensitive to small deviations in initial conditions [1]. Hence, a relatively small level of noise in
the observation of past X values can lead all predictors to almost equally large prediction errors; this
cannot be compensated by the competitive nature of PREMOFS computations, since all predictors are
about equally bad. Regarding the use of a larger predictor bank, while in principle this might lead to a
deterioration of classification performance (more predictors/ classes are competing at every time step),
it is observed that PREMOEFS performs quite satisfactorily. Finally, as in previous experiment sets,
the sum/product decision module generally performs better than the max/min one, but the distinction

is not so sharp.

6.5 Noise, structured predictor, incomplete search set

This experiment set is concerned with a time series which is completely mismatched to the available
predictors. A 2000 steps time series is used, consisting solely of white noise, uniformly distributed in
[0,1]. The search set consists of ten logistic predictors with a= 3.1, 3.2, ... , 3.9, 4.0. In the case
of max/min PREMOFS, N (error order) was taken equal to 50. The point of the experiment set is
to determine whether PREMOFS will provide some indication that the time series observed bears no
relation to the available classes. According to Theorems 1 and 2, classification will converge to the
class with minimum average square prediction error. It can be proved that this is the predictor with
a= 3.1, but also that prediction errors are very close for all predictors (proofs are omitted, for lack of
space). Hence, o = 3.1 is taken to be the “best” class. Classification results are presented in Table V.

Results of Table V indicate, on the one hand, that PREMOF'S classifies to the class with minimum
average square prediction error, as expected by the theoretical analysis. On the other hand, this result
may mislead the user into believing that a logistic time series with a= 3.1 is observed, while in fact
the time series is white noise. However, PREMOFS does give an implicit warning signal, through the

profile of the membership grades. In Fig.7, the irregular form and rapid variation of the membership
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grade profile is due to large prediction errors, which are almost uniformly spread among all predictors.
Since all predictors are about equally bad, the competitive function of PREMOEFS does not give a clear
advantage to any predictor. The membership grade profiles of Fig.7 should be compared to that of
Figs.3, 4, where a single predictor has a clear advantage over all others. Such irregular profiles can

serve as a useful diagnostic for a reevaluation of the search set.

6.6 Motor, structured predictor, complete search set

In this experiment set a more realistic example of system identification is considered, involving mea-
surements generated from simulation of an AC induction motor. The operation of the AC induction

motor is described (in discrete time) by the following nonlinear state equations.

Y(t)=6t-A1 - {B-Y(t-1)+U(@)} (29)

w(t) =w(t—1)+ 8- {% (igs(t — V)ige(t — 1) —igs(t — 1)igr(t — 1)) — TL(t)} , (30)

where Y ()= [igs(£), ias (£),igr(£), iar ()], UE)= [Vas (£), Vs (£), 0, 0] and

Ly 0 Ly 0 R, 0 0 w(t — 1)Ly

A_| 0 L 0 L . 0 R, w(t —1)Lg 0
—Ly 0 Ly 0 0 —w(t—1)Lg R, w(t —1)Lg

0 —Lo 0 L —w(t — 1)L 0 0 R,

(31)
Here i45(t), 145(t) are stator currents, iy (t), iq,(t) are rotor currents, w(t) is angular velocity, Vgs(t),
Vis(t) are stator voltages and Ty, (¢) is torque. 6t is the integration step; Rs, R, are stator and rotor
resistances, Lg, L,, Ly are stator, rotor and mutual inductances; J is moment of inertia and P is number
of pole pairs. Y (¢) and w(t) are the states; U (%) and T}, (¢) are the inputs. All the parameters are known,
except for R,, which depends on operating conditions. However, is necessary for the determination
of the motor time constant 7}, which in turn is necessary for efficient and economic angular velocity
control. Hence this problem is a typical example of on-line parameter estimation. Various methods
have been proposed to solve this problem [20, 21]. To apply PREMOFS to the R, estimation task, the
problem must be converted to one of time series classification. We measure ¢4(t), i45(¢); the vector
sequence [igs(t), i45(t)] (=1, 2, ... ) is considered to be the time series X; (t=1, 2, ... ) which may
have been generated by any of a number of sources, each with a particular value R,; in other words
R, plays the role of the source parameter Z. The parameter estimation task has been converted to the
task of classifying the observable time series to one of a number of classes; correct classification (at a
given time step) will yield the (approximately) correct value of R,.

The AC induction motor is simulated, and the stator current observations mixed with additive
noise at various noise levels. Each simulation is run for 10000 time steps, each step corresponding to
0.5 milliseconds of real time; hence the operation of the motor is simulated for a 5 second time interval.
Input is a three phase AC voltage of 220 Volts RMS value and torque 17,=1.5 N-m. The actual motor
has the following parameters: Rs=11.58 Ohm, L; =0.071 Henry, L,=0.072 Henry, Ly=0.069 Henry,
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J=0.089 kg-m? | B=0 Nt-sec/m, P=2. To simulate the effect of R, variation, ten R, values are used:
from time ¢=0.0 to 0.5 seconds R,= 4.9 Ohm, from 0.5 to 1.0 seconds R,=5.9 Ohm and so on until
the value 13.9 Ohm. We use a bank of ten prediction modules (K=10), tuned to R, values of 5, 6,...,
14 Ohm. When actual R, value is 4.9, the best estimate is 5 Ohm; similarly for R,=5.9, 6.9, ... .

For the integration of eqs.(29), (30) the time step was §t=0.5 msec. However, several sampling times
were used for the observation of the stator current, namely 6s= 0.5, 1, 2, 3 msec. Larger sampling time
implies that less information is obtained about the operation of the motor and fewer comparisons are
performed between the true system and the predictors. Presumably, this makes the identification task
harder; on the other hand it ameliorates computational load and makes the method more attractive
for on-line application. In the case of max/min PREMOFS, N (error order) was taken equal to 10.
The classification results for various noise levels and sampling times are presented in Table VI. It can

be seen that PREMOFS has good performance for quite high noise levels.

6.7 Speech, black box predictor, complete search set

The last example is a case of phoneme classification, involving real world data. The time series used
are two utterances of the word “one”, one for training and one for testing. Both have been sampled
initially at 10 KHz, then subsampled at 2 KHz. Three sources (phonemes [0o], [ah] and [nn]) are
contained in the data. Three linear prediction modules of the form §¥ = w¥ - y; 1 + ... + why - y¢_ 18,
k = 1,2,3 have been trained, using data from the first utterance of the three phonemes. In the case
of max/min PREMOFS, N (error order) was taken equal to 10. The predictors are combined into a
sum/product PREMOFS and a max/min PREMOFS and several classification experiments are run,
using the second utterance of “one” with additive noise superposed at various levels. The noise free
speech time series is plotted in Fig.8. In Fig.9 the evolution of membership grades is presented for the
noise-free case.

In Fig.8 two transition regions of the time series can be observed, between time steps 250 and 300,
and 550 and 600, where the time series does not correspond to any phoneme. It could be said that
two sources/phonemes are active over each transition region ([oo] and [ah] for the first region, [ah] and
nn] for the second). This is well reflected in the respective portions of membership function profiles,
as displayed in Fig.9. In the transition regions the membership grades of the two sources fluctuate
widely before they settle into steady state. Corresponding to this phenomenon of concurrently active
sources, classification results can be computed in two different ways. Namely, the transition regions
can be included in the computation of ¢, or removed from consideration; the second option is more
realistic, since the transition regions cannot be properly classified to any phoneme. Classification results
presented in Table VII, are computed in both ways: the second and third columns of the table give
classification results on the complete time series, while the fourth and fifth columns give classification

results with the transition regions deleted.

7 Conclusion

‘We have presented a Predictive Modular Fuzzy System for classification of time series to one of a

finite number of classes. Two varieties of PREMOFS were presented, depending on the method used
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to implement the fuzzy AND and OR operators (max/min and sum/product). PREMOFS has the

following characteristics.

1. Classification is based on membership function of the entire time series to a universal set of sources
/ classes. The computation of the membership function is based on the predictive accuracy of

each source for the observed time series.

2. PREMOFEFS is modular and parallelizable. This results in good scaling properties and high execu-
tion speed. The max/min PREMOFS can be implemented by very simple hardware.

3. The computation is recursive and thus well suited to on-line classification. No preprocessing of

data is required.

4. The assignment of membership grades is competitive: what matters is not how well a particular
source fits the data, but how much better than other sources. As a result, PREMOFS is highly

robust to noise and prediction error.

Convergence of classification to the correct class has been mathematically proved for both varieties
of PREMOFS. A number of experiments have been presented which corroborate our mathematical
results. Theory and experiment indicate that PREMOFS is an efficient, simple and hence attractive
method for dynamic pattern classification. Many possible variations of PREMOFS have been discussed
only briefly. Such variations can be created by changing either the prediction or the decision modules.
In addition, there is a number of parameters ( o, h, M, N, /ﬂg) which can be used to optimize
performance.

Several issues merit further research. We have dealt here exclusively with the case of a finite source
set. This is an important case, but it is also desirable to extend the use of PREMOFS to infinite
(especially continuous) source sets. One method to achieve this involves a system of progressively
narrowing grids. At every classification epoch a fixed grid with a finite number of nodes is used;
PREMOFS finds the “best” node; then a narrower grid is built around this node and a new epoch is
started. A desirable result would be to prove consistency of this method, in the limit: as the grid size
goes to zero, so does the error in parameter estimate. Another way to deal with an infinite source set
uses adaptive generation and training of source predictors. At any given time only a finite number
of these are actively considered (i.e. their pf values updated); but if some uf becomes too small, the
respective 0y is discarded and replaced by a new one in the search set. In this way we have a finite

active source set, but a potentially infinite total source set.

A Appendix

Here we present the proofs of Theorems 1 and 2 of Section 4.
Proof of Theorem 1: Take any k # m; from eq.(15) we have
C(ledy?
pt _ P e (=)
Tm T m e
oy Hi—1 e*( )

o
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(repeating the argument for s=¢t—1,¢t—2, ... , 1)

_ ‘et s l‘et 1
'u_f — ’LL_S . 6 ( t lut t ILLO 02) (32)
AT 7( 1" o' 2ozt 1)
e o2
Using the limit of Cesaro average of | €¥ |2, | €™ |? and the continuity of the exponential function, it is

concluded that for every ¢ > 0 there is some t. such that for all £ > £, we have

k k pk_pm_.

tf Mt ¢/ Mo 7( 2 )
— </ —=-¢€ v . 33
Vi =\ (33)

However, since by assumption A2 D¥ is strictly larger than D™, one can find some ¢ small enough
that the exponent above is negative; this in turn implies that the exponential in (33) equals some p,

with 0 < p < 1. Substitute p in (33) and raise to the ¢-th power; for every ¢ > ¢, to get

Hi Ho ¢
< P 34
s 4

Since p < 1, taking the limit as ¢ goes to infinity

. Mt
tlgc{lo,ug” 0 Yk #m;

this, combined with the fact that S5, ul = 1 gives the required conclusion of the theorem:
tlim ' =1 and for k# mtlim =0 (35)

and the proof is concluded. o

Proof of Theorem 2: Multiplying eq.(25) by —1 and exponentiating, one gets

I>a>a'>B3>y>a) >0 k#m; (36)

—e A B=e¢B y=eC d = e Dt forl=1,2,..., K; update equation (20) becomes

k k

k M1 N G
He = : (37)

Visy (b1 Aah)
Suppose that for some time s we have ' < aj'; then, since pj' A a}' is the minimum of uf*, al*, we
must have p7" A o' = p7" and eq.(37) becomes
Mm

P = SR (38)

Visy (uh A al)
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On the other hand, for I =1,2,..., K
K K
dnd <d =\ had)<\d=a (39)
=1 =1

where the last maximum equals aZ* by (36). Use (39) in the right hand side denominator of (38):

1 1 1
m.o_..m_ - m._> [ 40
Hst1 Mg \/{il (/ié A aé) Z Hg agn Hg a ( )

The last inequality follows from (36). Now, applying (40) n times we get
m m 1 n
Mspn = Mt - (E) (41)

and taking n large enough, p7%,, will get larger than ay} ,,, which is bounded above. In short: for some
to

P > agy = g A agy = afy > B (42)
at the same time, for k £ m
k k k
/’Lto A a’to S a’to S - (43)

Combining (42) and (43) (and using the assumption 3 > «) it is concluded that

K K m
V (g Aaly) =\ aly = afy = iy = =2 = 1. (44)
=1 =1 Aty
But then 1 = p? | > af | and the argument can be repeated from (42) down. From this follows that
there is some %y such that for all ¢ > 7y we have pf" = 1. This yields the first part of the theorem.
Similarly, one sees that for all ¢ > tg and k £ m
i <a—§<1<1- (45)
tH1 = a3 ;
taking lim sup on both sides of (45) we obtain the second part of the theorem; the proof is concluded.
[ J
It is worth emphasizing that, if the conditions of Theorem 2, (in particular B2) are satisfied exactly,
then pi® will increase monotonically and will achieve the value 1 in a finite number of steps; then it
will never decrease. pf* temporarily becomes different from one, during a source switch, when it starts
from a small initial value pj'; then it will increase monotonically until it becomes one. This is an
immediate consequence of the proof presented above. On the other hand, in realistic experiments,
e.g. in the simulations of Section 6, B2 may be temporarily violated, especially if N (the E¥ error
order) is small and the observations are very noisy. In such cases temporary decreases of uf* may be
observed. However, if the assumptions of Theorem 2 are satisfied, the proof of the theorem also shows
that pf" = 1 is a stable equilibrium point in the following sense: if 17" = 1 then pi'y; = 1; if i <1

then pfy,, = 1 for some finite n. Therefore, if B2 is temporarily violated by some perturbations, but
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is later restored, the system will return to equilibrium in a finite number of steps.
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SNR | Sig-Sum/Pro | Sig-Max/Min | Lin-Sum/Pro | Lin-Max/Min
Noise Free 0.952 0.886 0.905 0.911
25.00 0.948 0.858 0.909 0.911
12.50 0.934 0.821 0.904 0.921

8.33 0.893 0.759 0.903 0.910

6.00 0.835 0.728 0.899 0.915

5.00 0.822 0.649 0.906 0.901

4.33 0.855 0.630 0.900 0.922

3.50 0.748 0.604 0.929 0.916

3.33 0.616 0.516 0.931 0.942

2.80 0.546 0.532 0.927 0.919

2.50 0.557 0.450 0.893 0.841

TABLE 1
Classification accuracy results for logistic-to-noise time series, black box predictor, complete search set.

SNR | Sig-Sum/Pro | Sig-Max/Min | Lin-Sum/Pro | Lin-Max/Min

Noise Free 0.962 0.887 0.955 0.953
25.00 0.960 0.877 0.958 0.951
12.50 0.959 0.858 0.955 0.956

8.33 0.957 0.843 0.963 0.959

6.00 0.936 0.821 0.959 0.954

5.00 0.950 0.785 0.951 0.920

4.33 0.942 0.763 0.968 0.945

3.50 0.950 0.718 0.970 0.917

3.33 0.682 0.506 0.966 0.935

2.80 0.711 0.514 0.951 0.897

2.50 0.311 0.453 0.961 0.940

TABLE 11

Classification accuracy results for logistic-to-noise time series, black box predictor, incomplete search set.
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SNR | Sig-Sum/Pro | Sig-Max/Min | Lin-Sum/Pro | Lin-Max/Min

Noise Free 0.509 0.686 0.945 0.900

25.00 0.931 0.889 0.943 0.925

12.50 0.919 0.927 0.945 0.905

8.33 0.615 0.779 0.946 0.863

6.00 0.423 0.422 0.925 0.852

5.00 0.005 0.098 0.918 0.849

4.33 0.006 0.051 0.911 0.813

3.50 0.019 0.040 0.820 0.650

3.33 0.001 0.004 0.805 0.599

2.80 0.005 0.006 0.875 0.684

2.50 0.003 0.002 0.560 0.520

TABLE III
Classification accuracy results for logistic-to-logistic time series, black box predictor, complete search set.
SNR | sum/pro | max/min SNR | sum/pro | max/min
Noise Free 0.960 0.959 Noise Free 0.984 0.916
25.00 0.928 0.962 20.00 0.974 0.901
12.00 0.944 0.952 10.00 0.984 0.884
8.33 0.968 0.951 6.66 0.985 0.850
6.00 0.971 0.932 5.00 0.984 0.859
5.00 0.976 0.895 4.00 0.968 0.834
4.33 0.968 0.842 3.33 0.984 0.837
3.50 0.505 0.541 2.85 0.984 0.923
3.33 0.505 0.527 2.50 0.984 0.889
2.80 0.509 0.509 2.22 0.985 0.876
TABLE 1V TABLE V

Classification accuracy results for

logistic-to-noise time series, structured

predictor, complete search set.

Classification accuracy results for

noise time series, structured

predictor, incomplete search set.

SNR 6s= | 0.0005 sec 6s=| 0.0010 sec 6s= | 0.0020 sec Os=
sum/product | max/min | sum/product | max/min | sum/product | max/min | sum/product

Noise Free 0.951 0.979 0.950 0.979 0.916 0.964 0.870
20.00 0.949 0.979 0.947 0.979 0.916 0.966 0.870
10.00 0.947 0.969 0.940 0.965 0.908 0.960 0.855

6.66 0.943 0.958 0.929 0.953 0.894 0.946 0.816

5.00 0.934 0.953 0.917 0.949 0.866 0.936 0.822

4.00 0.905 0.945 0.889 0.930 0.820 0.912 0.801

3.33 0.881 0.934 0.887 0.913 0.808 0.908 0.720

2.50 0.870 0.926 0.853 0.890 0.796 0.874 0.687
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TABLE VI

Classification accuracy results for motor currents time series, structured predictor, complete search set.

SNR | Lin-Sum/Pro | Lin-Max/Min | Lin-Sum/Pro | Lin-Max/Min

Complete TS | Complete TS | Deleted Trans. | Deleted trans.

Noise Free 0.816 0.807 0.912 0.903

33.30 0.838 0.810 0.913 0.900

16.60 0.832 0.781 0.916 0.878

12.50 0.821 0.785 0.912 0.818

8.30 0.798 0.726 0.835 0.775

6.25 0.748 0.603 0.827 0.692

5.00 0.688 0.638 0.775 0.715
TABLE VII

Classification accuracy results for speech time series, black box predictor, complete search set.
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Figure 1: Plot of logistic time series, mixed with noise at SNR=6.00.

Figure 2: Plot of evolution of membership grades for logistic-to-noise time series at SNR=12.5, max/min
decision module, sigmoid predictor. Thick “— line is membership grade of source with a = 3.9; thick
“~ . -7 line is membership grade of white noise source; the remaining membership grades are denoted

by thin “ -” lines. Note that the maximum membership grade always equals 1.

Figure 3: Plot of evolution of membership grades for logistic-to-noise time series at SNR=12.5,
sum/product decision module, sigmoid predictor. Thick “- . -” line is membership grade of source
with a = 3.9; thick “—” line is membership grade of white noise source; the remaining membership
grades are denoted by thin “- -” lines.

Figure 4: Plot of evolution of membership grades for logistic-to-noise time series at SNR=3.33,
sum/product decision module, linear predictor. Thick “- . -” line is membership grade of source
with a = 3.9; thick “—” line is membership grade of white noise source; the remaining membership

grades are denoted by thin “- -” lines.

Figure 5: Plot of evolution of membership grades for logistic-to-logistic time series at SNR=5.00,

max/min decision module, linear predictor. Thick “—” line is membership grade of source with o = 3.6;
thick “- . -7 line is membership grade of source with a = 3.7; the remaining membership grades are
denoted by thin “- -” lines. Note that the maximum membership grade always equals 1.

Figure 6: Plot of evolution of membership grades for logistic-to-logistic time series at SNR=5.00,
sum/product decision module, linear predictor. Thick “— line is membership grade of source with
a = 3.6; thick “- . -7 line is membership grade of source with a = 3.7; the remaining membership
grades are denoted by thin “- -” lines.

Figure 7: Plot of evolution of membership grade for white noise time series at SNR=25, sum/product
decision module, structured predictor. Thick “—” line is membership grade of source with @ = 3.1;
the remaining membership grades are denoted by thin “- -” lines. Note the fluctuations in membership
grade, indicating that the true source is not in the search set.

Figure 8: Plot of noise-free speech time series.

Figure 9: Plot of evolution of membership grade for noise-free speech time series, sum/product decision
module, linear predictor. Thick “—” line is membership grade of phoneme [00]; thick “- -” line is
membership grade of phoneme [ah]; thick “...” line is membership grade of phoneme [n].
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Figuresfor the paper "Predictive Modular Fuzzy Systems for Time Series Classification”
by V. Petridisand Ath. Kehagias
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