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Abstract

We apply the Partition Algorithm to the problem of time series classification. We assume that the source that
generates the time series belongs to a finite set of candidate sources. Classification is based on the computation
of posterior probabilities. Prediction error is used to adaptively update the posterior probability of each source.
The algorithm is implemented by a hierarchical, modular, recurrent network. The bottom (partition) level of
the network consists of neural modules, each one trained to predict the output of one candidate source. The top
(decision) level consists of a decision module, which computes posterior probabilities and classifies the time series
to the source of maximum posterior probability. The classifier network is formed from the composition of the
partition and decision levels. This method applies to deterministic as well as probabilistic time series. Source
switching can also be accommodated. We give some examples of application to problems of signal detection,
phoneme and enzyme classification. In conclusion, the algorithm presented here gives a systematic method for
the design of modular classification networks. The method can be extended by various choices of the partition

and decision components.
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1 Introduction

We investigate the following time series classification problem. A time series Xy, t = 1,2, ... is produced
by a source S(0;), where 0, is a parameter taking values in a finite set © = {64, ...,0x }. We want to
identify the source that produces the time series; in other words to find the “true” or “best” value of 0y.
For example, the time series X1, X9, ... may be a speech signal, and the parameter 8; a phoneme label
taking values in the set @= { [ah], [00], ... }. When the speech signal, for instance, corresponds to the
phoneme [ah], X7, X5, ... is produced by S([ah]). This type of problem arises in phoneme recognition
[28, 29], radar signal classification [2], seismic signals processing [14], EEG/ECG analysis [31, 32] etc.

In this paper we want to combine two approaches to classification, which we find particularly
promising. The first is modular design methods (for instance, cf. [6, 7, 20, 21, 22]); the second is
Bayesian statistics (for instance, cf.[2, 1, 11, 12, 27]) and in particular the Mazimum A Posteriori
(MAP) classification rule (see [25]). To this end we use the Partition Algorithm (henceforth PA)
[4, 5, 13, 26, 15]. This is a recursive algorithm, which can be implemented by a modular, hierarchical
neural network with partition and decision components. The first component partitions the source
space to subsets which can be modelled more efficiently than the whole space at once. The second
component combines the models of subsets into a modular structure using the notion of posterior
probability. In this sense, PA provides a framework for the systematic design of modular recursive
classifiers. The operation of the partition modules can be parallelized. The algorithm consists of the

following steps.

1. For every source build a predictor module, and train it on time series data from that source. This

is the off-line learning phase.

2. For t= 1,2, ... run (in parallel) all modules and compare their predictions with the actual

observation. In this way compute the prediction error of every module.

3. Use the prediction error of each predictor module to update the posterior probability of the

respective source generating the time series. This is the recursive, on-line learning phase.

4. Classify (for current time ¢) the time series to the source of highest posterior probability. Classi-

fication may change at future time steps, as more observations become available.

The algorithm has a natural two-level hierarchical network implementation. The bottom level is
the partition component which consists of the predictor modules implemented as neural networks.
These can be linear or nonlinear (with sigmoid, Gaussian, polynomial etc. neurons). They can also
be feedforward or recurrent. In fact any type of parametric predictor will do. The top level is the
decision module (component), which assigns credit to each predictor module. The hierarchy of (a)
the partitioned predictors and (b) the decision module, constitutes the modular, recurrent classifier
network. For obvious reasons, we call this a partition network, as opposed to typical, nonpartitioned
classifier networks.

We assume a probabilistic mechanism of time series generation, but it will soon become evident

that the PA applies to deterministic time series as well. Also, if one wishes, the entire probabilistic



framework can be discarded and the algorithm can be considered as a method of dynamically assigning
credit to a set of models. In fact, there is a number of alternative credit assignment methods, that
can be used. Some of these are mentioned in section 5. Credit assignment affects the decision level of
the modular network, but not the predictor (partition) level. Experiments indicate that the choice of
a particular type or order of predictor is not crucial to the performance of PA. Modules are combined
in a general, standard manner.

The PA has a theoretical foundation in statistics. The basic foundation is presented in Section
2; see also [4, 13]. Theoretical results, regarding the convergence properties of the posteriors, will be
presented elsewhere. The basic result is that, if certain mild identifiability conditions are satisfied, we
can prove convergence to the “true” or “best” model with probability one.

Our work has much in common with, for example, [6, 7, 9, 10, 21]. In [21] an hierarchical architecture
is presented which is very similar to our Partition Network, with a gating network (similar to our
decision module), combining the outcomes of local expert networks (corresponding to our predictor
modules). The same idea is used by Jordan et al. in [6, 7, 9]. In addition, these papers emphasize
the competition between experts, which, in the PA is manifested in the computation of posterior
probabilities using Bayes’ rule. However, there are important differences between our work and the
previously cited papers. Firstly, we consider dynamic, time evolving, rather than static problems. Such
problems require continuous, online computation of the posterior probabilities, and final classification
depends in an essential way on the dynamic behavior of both the data and the posterior probabilities.
This is particularly obvious in classification tasks with source switching, as will be explained in later
sections. Secondly, PA learns by explicit application of Bayes’ rule, whereas in [6, 7, 9, 10, 21] learning is
formulated as a Maximum Likelihood problem which requires the use of some approximate optimization
algorithm. Thirdly, we perform classification using the criterion of predictive power. A fourth difference
is that, in [6, 7, 9, 10, 21] the emphasis is on actually learning the partition of the source space, and
classification is a final step of this learning process. In our case, on the other hand, it is assumed that
the partition is already known, and the hard part of the problem is online classification (because of the
presence of noise in the data, source switching and so on).

Also, the classification approach presented in [16], focusses in classification of dynamic (time evolv-
ing) patterns. However, in [16] learning requires the use of approximate optimization algorithms in
the training phase. Moreover the classifier proposed is not modular. Finally, classification is just one
aspect of the problem examined in [16], besides segmentation.

The rest of the paper is organized as follows. In Section 2 we formulate time series classification as a
MAP problem and develop the PA. In Section 3 simulation results are presented concerning classification
of two sinusoids of different frequencies, detection of a logistic time series from white noise, classification
of four sequential logic circuits driven by stochastic input, and phoneme and enzyme recognition. The
results of the PA and other classifiers are compared. In Section 4 we discuss the general picture of PA
that emerges from our experiments. Finally, in Section 5 we give an overview of our results, consider

advantages and disadvantages of the PA and discuss possible future work.



2 The Partition Algorithm

2.1 MAP classification of time series

A time series X3, t = 1,2, ... is produced by a source S(6), where 6, is a parameter taking values in
a finite set © = {01, ...,0k}. We want to identify the source that produces the time series; in other
words to find the “true” or “best” value of 6. Introduce a random variable Z which takes values in ©
= {61,....,0k }. © will be henceforth called the source set. The time series Xy, X, ... is produced by
source S(Z). For instance, if Z = 0y, then Xj, Xo, ... is produced by S(6;). !

At every time ¢ a decision rule produces an estimate of Z. Call the estimate Zt; it takes values in
©. For instance, if at time t we guess that the X1, ... X; have been produced by 0, then Zy = 0.
Clearly, this estimate may change with time, as more observations become available. The decision rule
for selecting 7, for every ¢, makes use of the conditional posterior probability pf(Xy, ..., X;), or simply
pF. This is defined as

PP(Xy, ., Xy) = Prob(Z =0y, | X1, ..., Xy) k=1,2..,K, t=1,2,... (1)
Also, our prior knowledge of Z is described by a prior probability p&. This is defined as
ph = Prob(Z =0y | at t=0) k=1,2,.., K. (2)

In the absence of any prior information we can just assume all models to be equiprobable: plg =1/K
fork=1,2,.., K.

The value p¥ reflects our belief (at time ¢) that the time series is produced by S(6). It is natural
then to choose Zt as follows

Ztiar max pF.
gekeept

In other words, at time ¢ we claim that X, ..., Xy was produced by source S (Zt), where Z; maximizes
the posterior probability. This is called the Maximum A Posteriori (MAP) estimate.
The classification problem has now been reduced to computing pf, ¢t = 1,2, ...., k = 1,2, ..., K. This

is performed recursively by the Partition Algorithm, described in the next subsection.

2.2 The Partition Algorithm

We present a recursive algorithm for the computation of pf 11, given pf, for k= 1,2,..,K and t =
0,1,2,... . This algorithm was first developed by Hilborn and Lainiotis [4] in a general form; it was
applied to control and estimation problems in [26, 13, 24], see also [15]. Here we present a version

within the context of neural networks. Start with

Pi = Prob(Z =0y | X1,y Xep1) =

"We may also have source switching. For instance source S(61) produces X1, ... , X1, and source S(62) produces Xi1,
Xi2, ... . This case is considered in subsection 2.5.



Prob(Xei1, 2 =01 | X1, ..., X;)
Prob(Xer1 | X1, Xe)
Prob(Xei1, 72 =0 | X1, ..., Xt)
S Prob(Xey1, 2 =0; | X1,... Xy)

Also note that
P?“Ob()(m,l7 7z = 0k ’ )(17 ...7Xt) =

PTOb(Xt+1 ’ )(17 ...7Xt7Z = Qk) . PTOb(Z = 0k ’ )(17 ...7Xt) =
Prob( X1 | X1..Xe, Z = 0) - pF. (4)
Now (3), (4) imply the recursion:

PTOb(Xt+1 ’ X17 ---7Xt7 Z = Qk) 'pf
S Prob(Xew | X, Xe, Z = 0;) -

pi = k=1,2,...K, t=0,1,2,.... (5)

To complete the recursion for p¥, we need to compute the quantity

Prob( X1 | X1,y X4 Z = 01) (6)
For every value 0, € © we build a predictor

X = f(X1, e, Xis 7 = 6y). (7)

This predictor approximates X¢y1 when the time series is produced by S(6y); hence the dependence on
Or. We write f(Xy, ..., Xy; Z = 0) for simplicity; in most cases the predictor makes use only of the
finite past, e.g. Xt s, ... Xe1, Xy, for some finite M.

Now, for & =1, 2, ..., K define the prediction error

et = Xep1 — Xfiy. (8)

We assume that (for k=1,2,.., K, t=0,1,2,....) efﬂ has a conditional probability of the form

k
e
Prob(ef, | | X1, ..., X4;0) = Cloy,) - exp(— | Z_—J: ™). (9)

Substituting ef,; = X;y1 — X1 in (9) we get

vk
X1 — Xt

Prob(Xey1 — Xivq | X1, ey X3 03) = C(o) - exp(— | .
k

") (10)

But, from (7) it follows that thﬂ is a function of Xy, ..., X¢, 0%, which are given in the conditioning



part of (10). Hence we have 2

Prob(Xep1 — Xy | Xiy ey Xu3 0) = Prob(Xyq1 | Xu, e Xe; 01 (11)
It then follows immediately from (10) and (11) that

>k
Xiy1 — Xt+1

Prob(Xey1 | X1, Xt30k) = Co%) - exp(— | -

). (12)
The probability assumption of (9) is entirely arbitrary, but works well in practice. When the exponent
n is taken to be 2, we have a Gaussian probability; this is ad hoc, but reasonable. The parameter oy
is the variance and C'(oy) is a normalizing constant. Both o4 and C(oy) are chosen in a standard,
non-arbitrary way: oy is set equal to the RMS error of predictor &, as computed in the training phase,
and C(oy) is chosen so that the integral of the probability in (12) (over all possible values of X;y1)
equals one. For example, for the case n =2, C(oy,) =1/ V27 - 03, Extensions for vector valued X; and
¥ are obvious.

Using the above equations we can compute the posterior probability of every source S(6;), k =
1,2,..., K and for time ¢t = 1,2,... At time ¢ we classify the time series to the source that maximizes

posterior probability:

7y = arg max pf . (13)
k

Combining (2), (5), (7), (12) and (13) we get the desired recursion for p¥. The complete description

of the PA can be summarized in the following equations.

* PARTITION ALGORITHM *
Fork=1,2,... K

ph = Prob(Z =0 | at t=0)

Then, fort=0,1,2,...and k=1,2,..., K

Prob(Xep1 | X1, o Xo, 2 = 0;) - pb
YA Prob(Xe1 | Xu, ., Xi, Z = 0;) -

koo
Piy1 =

XFoq = (X1, Xe; Z = 0y).

Tk
X1 — Xt+1

Prob(Xey1 | X1, e Xt 0k) = Coy) - exp(— | -

")

Zt = argmax p}.
gekeept

The previous equations underscore the recursive nature of the algorithm. While training of the modules

2More precisely we have Prob(Xi1 — Xf+1 =x| X1, Xt301) = Prob(Xy11 =x +Xf+1 | X1,eeey Xe301)-



(by eq.(7)) is an off-line process, the actual learning of the time series ( by eq.(5)) is a recursive, on-line
process. For correct classification we must have limy_, pf = 1 when S(6) is the true source of the time
series. Then, of course, we will also have lim; . p{ = 0 for all j # k. As long as certain identifiability
conditions are satisfied we can prove that convergence with probability one is guaranteed; because of

lack of space, this will be published elsewhere.

2.3 Neural network implementation

The name “Partition Algorithm” has been established in the control literature [13], but it is somewhat
misleading. The algorithm has two equally important components: partition and decision. “Partition”
refers to separating the source space to a finite number of sources and developing models for each one.
“Decision” refers to the assignment of credit to the partitioned models and the selection of the most
credible model. The partition / decision structure corresponds to a hierarchical and modular network

implementation illustrated in Fig.1.

1. The bottom level of the network corresponds to partition, which is implemented on the basis of
prediction. One predictor corresponds to each source in the source set. The predictor modules

can be implemented as neural networks. Training of the bottom level is performed off-line.

2. The top level of the network corresponds to recursive decision making. The decision element is
a network which performs online the computations of posterior probabilities according to egs.

(3)-(13). This adaptation process is a form of learning.

The hierarchy of partition and decision modules constitutes the modular, recurrent classifier net-
work. As already mentioned, we call this a partition network, as opposed to typical, nonpartitioned

classifier networks.

2.4 DModification for deterministic time series

Suppose we have a deterministic time series, in which the past Xy, ... , X; fully determines Xy .
Further, assume that we can compute exactly the dependence of X1 on Xy, ... , Xy. This can be

easily accommodated by the PA. Suppose for some k o — 0. In the limit (7) reduces to
Xev1 = f(X1,..., Xe; Z = 6;) with prob. 1. (14)

However, in practice there will always be an approximation error, that is, the predictors will not
reproduce (14) exactly. The approximation error is still given by (8). Since we know nothing about
the error, we simply assume that it has probability given by (9), where oy, is the standard deviation
of the error. In case the probabilistic interpretation is not valid or desirable the quantities pf can be

considered as “goodness of fit” scores, that behave like probabilities (positive, add up to one etc.).

2.5 Modification for source switching

The derivation of the PA was based on the assumption that the time series is produced by a single

source. In many interesting cases this assumption is violated. For instance, consider a speech time



series that consists of several distinct phonemes. Each phoneme is produced by a different source. We
refer to this phenomenon as source switching. Here we propose an ad hoc solution that works well in
practice.

Suppose that the time series is produced from a fixed source, say S(61), and at time ¢4 there is a
source switch to S(62). The desired behavior close to the source - switching time point is the following.
For a while p} is close to one and the other pf’s close to zero. As we pass the switch time ¢, p} starts
decreasing and p? starts increasing, until finally we have p? very close to one and the other p¥’s close to
zero, something like Fig.2 (this is a plot of the posterior probability evolution computed in an actual
classification experiment described in Section 3.2 ).

The problem with obtaining this behavior is that, before time ¢4, pi is very close to 1 and p¥,
k= 23,.., K very close to 0. After 4, p? starts increasing; theoretically, if the probabilities update
for a long enough time, p? will become 1. But, since before t5 p? is very close to 0, after 45 it starts
from a very unfavorable initial condition. Therefore it is most likely that a new source switch will take
place before p? becomes sufficiently large. In such a case, classification to S(6) fails. In the extreme
case, because of numerical computer underflow p? is set to zero before t,; referring to (5) we observe
that p? will remain 0 for all subsequent time steps. To resolve this problem, whenever p¥ falls below
a specified threshold A, it is reset to h. Then the usual normalization of the pf’s is performed; this
ensures that the thresholded pf’s remain approximately within the [h,1] range and add to 1. In essence,
this thresholding is equivalent to introducing a forgetting factor. A rigorous proof is omitted, for lack
of space. However, an informal argument goes as follows. Suppose that several samples of the time
series are observed, which have not been produced from source S(6;). For each such sample, predictor
k produces a large error and, from (12), p¥ is multiplied by a number close to zero. If this process
continued for several time steps, pf would become zero soon, as explained above. If we never let p¥
go below h, we essentially stop penalizing predictor k£ for further bad predictions; these are, in effect,
“forgotten”. If h is small, then pf will also be small and will not essentially alter the classification
results. On the other hand, when S(6;) becomes active, p¥ can recover quickly. In the experiments we
present in Section 3, we always chose h=0.01; this choice is arbitrary but consistent and gives good

results.

3 Classification Experiments

In this section we apply the PA to five time series classification tasks. The first three tasks use computer
synthesized data: sinusoid, logistic and sequential logic gates time series. The final two tasks use real
world data: speech and enzyme inhibition time series. We also experiment with various source search
sets and noise levels. Some of the classification problems considered here, can be solved efficiently using
alternative algorithms; in the sequel we present some of them and compare their performance with that
of the PA. However, it turns out that the PA performs at least comparably and usually better than

any of the alternatives.



3.1 Classification algorithms

Our task is to build a classifier network such that, when its input X is generated by source S(6y), the
output is Y; = k (that is, Zy = 0r). Here we present several methods we used in order to build such a

network and explain how we chose the network (algorithm) parameters.
Partition Algorithm: It is characterized by the following.

1. The type (sigmoid, linear etc.) as well as the order M of the predictor modules. We have
experimented with both linear and sigmoid feedforward predictors; the order was chosen in
such a way that a satisfactory prediction error was obtained during the training phase, while
overfitting was avoided. As it will be seen, predictor type and order are not crucial for the

performance of the algorithm.

2. The priors p§, k = 1,..., K. In all experiments presented here, we took pf = 1/K, k =

1, ..., K, which expresses the lack of prior information.

3. The predictor variance oy, k=1,2,...,K. It was always computed in a standard way: we took

it equal to the RMS error of predictor &, which was computed in the training phase.

4. The probability threshold k. In all experiments reported here, h was set to 0.01. This choice

was arbitrary but consistent in all experiments.

5. Finally the power n in the error probability distribution (eq. (12)) was always taken equal

to 2; this corresponds to the case of Gaussian error and appeared a natural choice.

One can use a sigmoid, feedforward, one-hidden-layer network. We have M + 1 inputs (which at
t are the last M + 1 values X, X;—1, ... , X¢—anr) and N hidden neurons, with activation X,
The input/output behavior of the classifier is given by

Xh = sigm(wno - Xt + wn1 - Xeo1 4 oo+ Wnar - Xeoar + n). n=12.,N

Y, = sigm(vy - XP 4.+ oy - XB 4 u) u, up, thresholds;

the desired output is Y; = &k when the input X; is generated by source S(6;). In practice, when
the output is in a range, say [k— 0.5, k+ 0.5], we classify to source S(6y). This method has
been used for pattern classification; see [3], pp.130-135 and especially pp.177-178. The network
is least-squares-trained by the standard back propagation algorithm. The parameters are M and

N and in each experiment we tried several combinations to find their best values.

Classification by the Fast Fourier Transform (FFT) coefficients is a standard method [8]. For each
source, the training phase consists of the following procedure. We choose a window width N and
a window overlap L. At times t= N,2-N—1L,3-N—2-L,... we take an FFT of X; n1,..., X¢; we
average these coefficients at the end of the training phase to get the source template. (Actually
we use the moduli of the complex-valued FFT coefficients.). In the classification phase, we repeat
the procedure to compute the FFT coefficients of the (unknown source) time series X¢y1, ..., Xeyn

and compare it to the template of each source; X is classified to the source template with least

10



Fuclidean distance to the FFT coefficients. The appropriate choice of parameters N and L can

be crucial to the performance of this method.

Classification by the Linear Predictive Coding (LPC) coefficients is also a standard method,
popular for speech recognition tasks [17]. For each source, the training phase consists of the
following procedure. We choose a window width N, a window overlap L and a predictor order
M. At times t=N, 2- N — L, 3- N —2- L,... we least-squares-fit a linear M-th order predictor
of X¢ ny1,..., Xz; we average the predictor coeflicients at the end of the training phase to get
the source template. In the classification phase, we repeat the procedure to compute the LPC
coefficients of the (unknown source) time series X411, ..., Xypn and compare it to the template
of each source; X is classified to the source template with least Fuclidean distance to the LPC
coefficients. The appropriate choice of parameters IV, L. and M can be crucial to the performance
of this method.

3.2 Sinusoid Time Series

This task consists of classifying a number of sinusoid time series of the form

2mt

X, = sin (i> t=1,2,...  j=1,2,..6
T;

where the period of the sinusoid is 7; and plays the role of source parameter ¢; discussed in Section

2. For training we used five sinusoid sources, with periods T1=6, T5=8, T53=10, Ty=12, Ts=14. (A

sixth sinusoid source was used in one of the following experiments, with Tg=16.) We present four

classification methods.

1. In the case of the PA, we used noise-free data to train both a linear and a sigmoid predictor
for each source. The former was used for PA classification with linear predictor modules and
the latter for PA classification with sigmoid predictor modules. In the training phase we did not
assume any prior knowledge of the nature of the time series; our only objective was minimization
of RMS error and avoidance of overfitting. In the case of linear predictors these objectives were
achieved with M=2. 3 Predictors of the five sources had slightly different RMS prediction errors,
but all were in the range 0.01 to 0.02. The RMS error of predictor & was used as an estimate of
o, k=1,2, ..., K. For the sigmoid predictors, we used 2-5-1 feedforward networks and trained
them with back propagation until the RMS prediction error was in the range 0.01 to 0.03; oy
was taken equal to the RMS error. The choice of a 2-5-1 network was arbitrary and satisfied the
criteria of low prediction error and no overfitting. The rest of the PA parameters were set as

explained in Section 3.1.

2. In the case of the nonpartitioned FF sigmoid classifier, we experimented with various values of
M and N; the best results were obtained for M=10, N=10.

3Choice of M did not require prior knowledge; we started with arbitrary M and used a matrix inversion routine for
least squares training. This routine gave a “matrix ill-conditioned” diagnostic whenever M > 2, which reflects the fact
that a sinusoid time series is the output of a second order AR process.
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3. In the case of the FFT classifier, after experimentation, we chose N=32, L=16.

4. In the case of the LPC classifier, after experimentation, we chose N=10, L=5b, M=2.

In the test phase we performed two groups of experiments. In all cases we used a 1800 steps time
series, where source switching took place at the 951-st step. In each experiment group we experi-
mented both with a two-member source set and a five-member source set. For each of these we used
PA classification with linear predictors, PA classification with sigmoid predictors, nonpartitioned FF
sigmoid classification and LPC and FFT classification. We also experimented with noisy versions of
the time series, adding to each original time series uniformly distributed white noise. The noise level
was expressed as the ratio of noise variance to signal variance. Hence N/S=0.0 means a noise-free time
series, N/S=0.1 means that the noise variance is one tenth of the signal variance and so on. Finally,
classification performance was measured by the success rate, which is the ratio of the correctly classified
samples X; over the total number of samples. For example, a 0.9 sucess rate means that 0.9-1800=1620
samples out of 1800 were classified to the source that actually produced them. Obviously, classification
with a five-member source set is harder than with a two-members source set, since there are more

possibilities for misclassification.

1. Success rates for the first experiment group are presented in Table 1. X1, ..., Xo50 was a sinusoid
of period 10 and Xgs1, ... ,Xi800 Was a sinusoid of period 6. We used two source sets: ©1 =
{5(6),5(10)} and ©9 = {5(6),5(8),5(10),5(12),5(14)}. Some typical classification results are
illustrated in Figs. 2 (N/5=0.0) and 3 (N/5S=0.5).

2. Success rates for the second experiment group are presented in Table 2. Xj,...,Xg50 was a
sinusoid of period 10 and Xgs1,...,X1800 Was a sinusoid of period 16. We used two source sets:
©, = {5(10),5(14)} and ©9 = {5(6),5(8),5(10),5(12), 5(14)}. In this case, the source that
produced Xgs1,...,X1g00 is actually outside the source set; we considered classification correct if

Xo51,..-,X1800 Were classified to the “closest” source in the source set, namely to S(14).

It can be seen that PA has a high (close to 1) success rate. This is true both when linear and sigmoid
predictors are used, except that, for the sigmoid predictors, classification performance deteriorates in
the case of very high noise (N/5=0.5). The feedforward nonpartitioned classifier performs completely
inadequately. LPC classification performs well, but generally not as well as PA with linear predictors.
The only method that outperforms PA is FFT classification. This was expected for the sinusoid time
series, since it is completely characterized by its frequency, exactly what FF'T measures.

Predictor type, prediction error and noise level (within certain bounds) do not have a crucial effect
on the PA performance. It appears that what is important is not absolute but relative predictive per-
formance of the predictors. Finally, training time of PA was much shorter than that of nonpartitioned

classifiers, and execution time of PA was much shorter than that of both LPC and FFT classification.
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3.3 Logistic Time Series

The next problem is to distinguish between logistic time series and white noise. The logistic time series

is given by the following equation
Xt:aj'Xt71'<1—Xt71) t= 1,2,... j:1,2,...,5.

This is a nonlinear equation which, for values of a greater than 3.6, is chaotic; statistically it looks
very similar to white noise. Here o is the source parameter 0; discussed in Section 2. We used five
different values of a (a1 =3.9, a2=3.8, a3=3.6, a4=3.3, as=3.1) to produce corresponding logistic time
series. Hence we had sources S(3.1), S(3.3) S(3.6), S(3.8) and 5(3.9). We also used a sixth source, Sp,
which produced a white noise time series, with X; ((=1,2,...) uniformly distributed in [0,1]. Training
wags similar to the sinusoid time series case. The PA parameters were determined in the same way as

in the case of sinusoid experiments.

1. In the case of the PA, we used noise-free data to train both a linear and a sigmoid predictor
for each source. The former was used for PA classification with linear predictor modules and
the latter for PA classification with sigmoid predictor modules. In the training phase we did not
assume any prior knowledge of the nature of the time series; our only objective was minimization
of RMS error and avoidance of overfitting. In the case of linear predictors we took M=25.
Predictors of the six sources had RMS prediction errors 0.29, 0.25, 0.21, 0.06, 0.02, 0.02 (for Sy,
S5(3.9), 5(3.8), S(3.6), S(3.3) and S(3.1) respectively); o was taken equal to the RMS error of
predictor &, k=1,2, ... , K. For the sigmoid predictors, we used 2-10-1 feedforward networks and
trained them with back propagation until the RMS prediction error was 0.28, 0.16, 0.12, 0.07,
0.06, 0.03 (for Sp, S(3.9), S(3.8), 5(3.6), S(3.3) and S(3.1) respectively); or was taken equal to

the RMS error. The rest of the PA parameters were set, as explained in Section 3.1.

2. In the case of the nonpartitioned FF sigmoid classifier, we experimented with various values of
M and N; the best results were obtained for M=10, N=10.

3. In the case of the FF'T classifier, after experimentation, we chose N=32, L=16.

4. In the case of the LPC classifier, after experimentation, we chose N=100, L=>50, M =10.

In the test phase we performed three groups of experiments. In all cases we used a 1900 steps time
series, where source switching took place at the 951-st step. In each experiment group we experimented
with a two-member source set and a five-members source set. For each of these we used PA classification
with linear predictors, PA classification with sigmoid predictors, nonpartitioned sigmoid classification
and LPC and FFT classification. We also experimented with noisy versions of the time series, adding
to each original time series uniformly distributed white noise. Noise-to-signal ratio and classification

performance were measured just as in the case of sinusoid time series.

1. Success rates for the first experiment group are presented in Table 3. X,...,Xg50 was a logistic

with a = 3.9 and Xg51,..., X1900 Was a white noise time series. We used two source sets: ©1 =
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{5(3.9), So} and © = {5(3.1),5(3.6),5(3.8),5(3.9), S0 }. Note that the logistic and white noise
time series appear quite similar, both visually (see Fig.4) and statistically (they have the same
mean, variance etc.). This similarity became even stronger in the noisy experiments, where we

mixed the original time series with additional noise. Typical classification results are illustrated
in Figs. 5 and 6.

2. Success rates for the second experiment group are presented in Table 4. X71,...,Xg50 was a logistic
with a3 = 3.9 and Xgs1,...,X1900 Was a logistic with cy = 3.8. We used two source sets: ©; =
{5(3.8),5(3.9)} and © = {5(3.1),5(3.6),5(3.8),5(3.9),S0}. In this group of experiments the

difference in o between the two logistics was small, which made discrimination rather hard.

3. Success rates for the final experiment group are presented in Table 5. X7, ..., Xg50 was a logistic
with ag = 3.9 and Xgs1, ..., X1900 Was white noise. We used two source sets: 01 = {5(3.8), S0}
and ©9 = {5(3.1),5(3.3), 5(3.6),5(3.8),50}. In this case the source that produced Xi,...,Xo50
was actually outside the source set; we considered classification correct if Xi, ..., Xgs9 were

classified to the “closest” source in the source set, namely the one with as = 3.8.

The logistic experiments strengthen the conclusions drawn from the sinusoid experiments. In this
case PA outperforms all the alternative methods. Sigmoid models perform very well in low noise cases,
while linear ones perform almost as well in low noise and show great robustness in the presence of

noise.

3.4 Sequential Logic Gates

This experiment group is different from the previous two in several respects. First, we only used the
PA, having concluded from the previous two experiments that it performs better than the alternative

classification methods. Second, the time series Xy, £ = 1,2, ... took discrete (0-1) rather than continuous

values. Also, we introduced an additional input time series Uy, t = 1,2, .... The source set consisted of
four sources, S(61), ... , S(64), described by the following equations, respectively.

Xt = XOR(X¢-1,Uh). (15)

Xt = NOT(Uy). (16)

Xt = NOR(X:—1,Uh). (17)

Xe = NAND(X;1,Uh). (18)

X and U; are logical variables. XOR, NOT', NOR and NAND are the usual logic gates. Xp, Uy,
Us, ... are 0 or 1 with probability 0.5; {U;}2°; is a white noise sequence. Finally at every time step
a decision was made as to which source was active (which of eqs. (15-18) generates the next X;) for
instance in Fig.7 we have a sequence of S(61) — S(62) — S(03) — S(0s1) source switchings.

The introduction of an input time series presents no problems for the PA. For each value k = 1,2, 3,4
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we have one sigmoid 2-3-1 feedforward predictor. The input-output relationship is given by
X:lnkt = sigm(v’f X1+ U; “Up + ufn) m=1,23.

Sk k whE | ok xhk ok yhE ok
Xy = sigm(wy - X1 +wy - Xy +wy - Xy +u).

Here u¥, u are thresholds. For each value k = 1,2, 3,4 we trained the respective predictor with data

from a pure S(0y) time series. Training was performed by back propagation.

Given the predictors of (15-18), and the values Xy 1, Uy we computed Xf, k=1,2,3,4. From
these and X; we computed the posterior probabilities as usual for two sequences of source switchings;
the classification results are presented in Figs. 7 and 8. Once again, in most cases the results are very
good. In a few cases the PA was a little slow in distinguishing between two logic circuits. This was
because, for the time periods and input sequences in question, both logic circuits produced identical
output; however, sooner or later a sufficiently differentiating input sequence appeared and the true

circuit was discovered.

3.5 Phoneme Classification

In this experiment, we used real speech data and, once again, we only tested the PA; no comparisons
were made to alternative classification methods. Of course there is a number of very good speech
recognition systems which perform better than our algorithm, on much harder tasks. Here we tried
a much smaller (but still fairly tough) problem, with no data preprocessing and no fine tuning of the
algorithm.

We used speech because we wanted to test the PA on some real world data. We emphasize that we
do not claim to have a competitive speech recognition method. However, it is possible that the PA can
be incorporated in a speech recognition system and give quite good results; but at the moment we do
not make any claims (positive or negative) about it.

We used the utterance “one” as test data. It was pronounced once and sampled at 10 KHz.
It contained three phonemes: [oo|, [ah] and [n]. At the plot of Fig.9 the three phonemes can be
distinguished by the different look of various parts of the time series. The three phonemes correspond

to three sources; hence we built three predictor modules. They were linear predictors of the form
XF=wh X 1+ ..+, X m k=1,2,3.

For each phoneme we used a 250 - point - segment (about 4 periods) to train a linear perceptron as
predictor. M was taken equal to 18 and the network was least - squares - trained. Then we combined
the linear predictors in a modular network. The result of the classification experiment is presented in

Fig.9. It can be seen that PA classified correctly all three phonemes.

3.6 Enzyme Classification

The final experiment we performed involved classification of a set of enzymes, called 3-lactamases. The

data and problem are described in detail in [23]; here we give a brief description. (-lactamases are a
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class of enzymes that determine the resistance of many bacteria to G-lactam antibiotics. Biomedical
researchers have expended considerable effort in developing methods for classifying G-lactamases; un-
fortunately classification by conventional methods is difficult and use of amino-acid sequencing is time
consuming (see [23]).

A new method that overcomes some of these limitations is presented in [23]; it is based on an
“inhibition” experiment where the hydrolysis rate of a chemical called nitrocefin is measured, in the
presence of a f-lactamase / (B-lactam pair. The (-lactamase enzyme causes hydrolysis of nitrocefin,
and the g-lactam inhibits the action of the enzyme and slows hydrolysis down. Henceforth we will
use the terms enzyme (in place of -lactamase) and inhibitor (in place of B-lactam). The nitrocefin
concentration was measured optically and recorded over a 40-minute interval. In this way, for every
enzyme/inhibitor pair there is a characteristic “inhibition profile”, such as those of Fig.10. The idea
is that, for a given inhibitor, the inhibition profile will characterize the enzyme. This works, and the
method has a high classification success. However, there is a problem: since the enzymes and inhibitors
are organic compounds, their properties may depend strongly on the conditions under which they were
prepared. This may result in different inhibition profiles for two different preparations of the same
enzyme/inhibitor pair. However, the dynamic properties of the profile appear to remain invariant. For
example, it is reported in [23] that enzyme classification required use not only of the final concentration
of nitrocefin, but also of the slope of the inhibition profile at various times during the 40 min duration of
the experiment. This information was used by a human operator who combined various characteristics
of the inhibition profile to obtain the final enzyme classification.

Here we automated the enzyme classification process, treating the inhibition profiles as input time
series to the PA. Eight enzymes were classified using inhibition profiles for a given inhibitor. We
separated the data set of inhibition profiles to a test set and a training set . For each enzyme we
trained a fifth order linear predictor using the corresponding inhibition profile (40 min time series)
from the training set. In the test phase, we chose an inhibition profile from the test set; the task
was to classify it, that is to determine the enzyme it corresponds to. The PA classified correctly all
eight inhibition profiles in the test set; in Fig.11 and 12 we present the posterior probability evolution
for two inhibition profiles. Alternative classification methods which we used for comparison purposes,
such as nearest neighbor and LPC classification, classified correctly only 6 and 4 enzymes, respectively.
The experiment was repeated for a different choice of inhibitor and PA classification was again 100%
correct.

In conclusion, we have succesfully used the PA to automate the enzyme classification procedure,
and obtained 100% correct classification. While the “human-operated” method also achieves 100%

correct classification, it is not automated.

4 Discussion

The experiments of the previous section reveal certain important characteristics of the PA. First, it

clearly outperforms nonpartitioned classifiers; we believe this is because the several prediction modules

4We want to thank G.A. Papanicolaou for kindly permitting us to use the inhibition profile data.
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of PA have to learn only small parts of the source space. This is the main motivation behind modular
methods, see also [9, 10]. The structure of the partition network results in reduced training time and
better utilization of neurons. It is easier for a network to learn only one time series rather than several.
Hence fewer neurons are required and they are used more efficiently. The use of fewer neurons also
reduces the chance of overfitting. The local networks are combined by the decision component, which
requires no training: it is designed in such a way as to exactly implement the MAP criterion.

Local learning is also a feature of the LPC and FFT classifiers, which can be considered partitioned
classifiers. However, they lack another important feature of the PA, namely the recursive computation
of “goodness of fit” scores, such as pf. This computation is important because it implicitly takes
into account the complete past performance of each predictor module. Such “historical” information
can be very important for correct classification, as it can be seen in, for example, Fig.6. We can
see that at several times, most notably between t=1300 and ¢=1500 the true p} decreases, due to an
increase in the respective prediction error. Presumably, this happens because the white noise time series
enters an outlier phase, which in fact resembles a logistic. However, the decrease of p¥ is tempered
by the generally good performance of the white noise predictor in previous time periods; hence no
misclassification occurs. Contrast this to the behavior of both the FFT and LPC classifier, both of
which misclassify several portions of the 1300 to 1500 time interval.

One could distinguish two types of classification errors: “transient” misclassification and “steady-
state” misclassification. Looking at Fig.6 again, we see that PA, LPC and FFT all misclassify for a
few steps around the source switching time; this is what we call “transient” misclassification. However,
past the source switch time, the PA settles into steady state, and after that point it never misclassifies;
this is clearly not true of LPC and FFT, which misclassify several portions of the steady state part of
the time series. This is true not only of Fig.6 but of most of our experiments: generally PA takes much
better account of past classification, which reduces steady state misclassification.

This is related to another point, namely that PA works even for large prediction errors. This
can be seen in the high noise experiments, such as Figs. 3 and 6. High noise results in increased
prediction error for all predictors. In fact, classification does not depend on whether a predictor is good
in an absolute sense but on whether it performs befter than other predictors. This results from the
normalization of pf in eq.(5).

The experiments presented here indicate that, except for the high noise cases, PA performance
does not crucially depend on predictor type. As explained in Section 3, a standard procedure has been
followed in determining the PA parameters. The experiments indicate that this procedure results in

good performance for a wide range of classification tasks.

5 Conclusion

‘We have presented the Partition Algorithm for classification of time series. The PA involves both off-
line and on-line learning. Off-line learning consists in training predictors to reproduce local behavior
of the time series source space. On-line learning consists in assigining credit to each predictor by
recursive application of the MAP rule. A recursive, modular, hierarchical neural network implements

the algorithm. The bottom level, i.e. the partition component is implemented by a collection of
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prediction modules. These modules can operate in parallel. The top level, i.e. the decision component,
processes the prediction errors of the bottom level and recursively updates the posterior probabilities.
In short, the algorithm is recursive, modular, hierarchical and parallelizable. We have applied the
PA to number of diverse time series classification tasks; the PA compares very favorably with several

alternative methods of time series classification. In summary the PA has the following advantages.

1. Modularity. It allows easy, piecewise training of the prediction modules. No training is necessary

for the decision module, which implements the MAP decision rule exactly.
2. Parallelism. Parallel implementation of the PA will significantly reduce execution time.

3. Robustness to predictor type, prediction error and noisy data. It appears that PA is robust due
to the competitive nature of the MAP rule: classification does not depend on whether a predictor
is good in an absolute sense but on whether it performs better than other predictors in the source

set.

4. Recursiveness. The recursive operation of the PA presents us with a method of taking into
account the complete past performance of each predictor. This temporal dependence must be

taken into account in a time series, dynamic classification task.

Also, alternative algorithms can be obtained by varying either the prediction or decision compo-
nent; in this way a class of partitioning, predictive, hierarchical, recursive algorithms for time series
classification is obtained. Experiments with different predictor types have been presented in Section
3; let us now turn to the choice of decision rules. Consider the repeated application of the probability

update rule (5); the following expression results for pf
Pt k=12, K t=1,2, ... (19)

where JF = S, | ef |*. Obviously the “best” model is the one that has least cumulative error JF.
In fact, one could use (19) directly, rather than use the posterior probability. This method is used in
[16]. But this is just one extreme in the range of rules that can be used for classification. At the other
extreme we can select the “best” model by looking only at the last error: JF =| ¥ |*. This has been
used often, for instance in [21]. In fact this is the principle used in the LPC and FFT classifiers of

Section 3. However, a more general J¥, which subsumes the two previous choices as special cases, is

t
JE= > ek, k=1,2,.,.K, t=N+1,N+2,... (20)
T=t-N
By varying IV and n in the equation above we get a whole range of classification criteria. Thresholding
can also be introduced; instead of a lower bound to posterior probabilities, h, we can use an upper
bound on total error. Other decision rules that can be used, include moving average of prediction error
(here the “threshold” parameter is the discount factor), number of times a predictor has minimum
error and so on. Note that changing the decision rule affects only the top level of the network, not the

partitioned bottom level. We have experimented with several such decision rules and found that the
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MAP rule has a higher success rate than other decision rules. In addition, application of the MAP rule

generates the posterior probabilities, which can be used for prediction.

Finally we list several questions requiring further research.

1. The PA can be used for prediction in at least two ways. One could, for every time step, after

classification is performed, use the prediction of the MAP source. This is a winner-take-all
strategy. Or else, one can use the prediction of every module and the posterior probabilities,

which have already been computed, to get a weighted average prediction.

. If there is a source switching mechanism the posterior probability equations must be modified.

This has been investigated for Markov Chain switchings in [4]; it would be interesting to extend

it to Hidden Markov Models and other more complex mechanisms.

. The source space can be countably or uncountably infinite. In this case we can use the Partition

Algorithm, in combination with a quantization scheme and a search method, to successively refine
our search of the source space, until we obtain the MAP classification. There has been some work

on this problem, in a Control Theory context, but there is space for improvement.

. Given an infinite source space, a finite but growing number of data, say 7T, and predictors with

an increasing number of parameters, say M, how should M and T be related to guarantee correct
classification? This is the problem of consistency. To avoid overfitting, we must find a rate of

increasing M, call it M(T), as more data become available.

Acknowledgements: The authors thank the anonymous referees for reading the paper and offering

many helpful comments.
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TABLES

Nr. of Method N/S| N/S| N/S| N/S| N/S| N/S| Train.

sources 0.0 0.1 0.2 0.3 0.4 0.5 Time
2 Partition, Lin.Models | 0.999 | 0.999 | 0.999 | 0.998 | 0.996 | 0.995 [ 2 x 0.11
2 Partition, Sig.Models | 1.000 | 0.999 | 0.999 | 0.997 [ 0.990 | 0.988 | 2 x 100
2 FFT coeffs 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 2 x 1
2 LPC coeffs 0.997 | 0.997 | 0.997 | 0.984 | 0.889 | 0.717 | 2 x 0.1
2 Sig.Nonpart. Classifier | 0.236 | 0.562 | 0.457 | 0.501 | 0.645 | 0.598 1200
5 Partition, Lin.Models | 0.999 | 0.998 | 0.997 | 0.996 | 0.995 | 0.993 | 5 x 0.1
5 Partition, Sig.Models | 0.999 | 0.998 | 0.995 | 0.992 | 0.752 | 0.762 | 5 x 100
5 FFT coeffs 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 5 x 1
5 LPC coeffs 0.997 | 0.997 | 0.927 | 0.712 | 0.611 | 0.543 | 5 x 0.1
5 Sig.Nonpart. Classifier | 0.218 | 0.193 | 0.505 | 0.412 | 0.302 | 0.197 3000

Table 1: Classification of two sinusoids; 77=10, 75=6

Nr. of Method N/S| N/S| N/S| N/S| N/S| N/S| Train.

sources 0.0 0.1 0.2 0.3 0.4 0.5 | Time
2 Partition, Lin.Models | 0.998 [ 0.997 | 0.991 | 0.980 | 0.964 | 0.887 | 2 x 0.1
2 Partition, Sig.Models | 0.999 | 0.996 [ 0.984 | 0.971 | 0.917 | 0.952 | 2 x 100
2 FFT coeffs 0.996 | 0.996 | 0.996 | 0.996 [ 0.996 | 0.996 | 2 x 1
2 LPC coeffs 1.000 | 0.997 | 0.739 | 0.587 | 0.526 | 0.516 | 2 x 0.1
2 Sig.Nonpart. Classifier | 0.478 | 0.443 | 0.512 | 0.605 | 0.587 | 0.483 1200
5 Partition, Lin.Models | 0.997 [ 0.996 | 0.990 | 0.980 | 0.954 | 0.747 | 5 x 0.1
5 Partition, Sig.Models | 0.999 | 0.996 [ 0.988 | 0.958 | 0.845 | 0.255 | 5 x 100
5 FFT coeffs 0.996 | 0.996 | 0.996 | 0.996 [ 0.996 | 0.996 | 5 x 1
5 LPC coeffs 0.997 | 0.966 | 0.582 | 0.229 | 0.095 | 0.042 | 5 x 0.1
5 Sig.Nonpart. Classifier | 0.203 | 0.294 | 0.187 | 0.215 | 0.226 | 0.189 3000

Table 2: Classification of two sinusoids; 77=10, 75=16

®Training time for all experiments is measured in seconds of CPU time for an Apollo 720 workstation. The figures are
approximate (£5%).
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Nr. of Method N/S| N/S| N/S| N/S| N/S| N/S| Train.

sources 0.0 0.1 0.2 0.3 0.4 0.5 Time
2 Partition, Lin.Models | 0.989 [ 0.991 | 0.981 | 0.987 | 0.979 | 0.988 | 2 x 2
2 Partition, Sig.Models | 0.970 | 0.971 | 0.980 [ 0.983 | 0.955 | 0.763 | 2 x 180
2 FEFT coeffs 0.987 | 0.964 | 0.939 | 0.864 | 0.847 [ 0.805 | 2 x 1
2 LPC coeffs 0.973 1 0.973 | 0.973 | 0.946 | 0.973 | 0.946 | 2 x 1
2 Sig.Nonpart. Classifier | 0.530 | 0.453 | 0.483 | 0.582 | 0.621 | 0.578 1200
5 Partition, Lin.Models | 0.976 | 0.979 | 0.988 | 0.976 | 0.971 | 0.865 | 5 x 2
5 Partition, Sig.Models | 0.969 | 0.965 | 0.942 | 0.945 | 0.780 | 0.296 | 5 x 180
5 FEFT coeffs 0.987 | 0.962 | 0.880 | 0.889 | 0.747 [ 0.763 | 5 x 1
5 LPC coeffs 0.973 1 0.973 | 0.946 | 0.973 [ 0.892 [ 0.811 | 5 x 1
5 Sig.Nonpart. Classifier | 0.215 | 0.301 | 0.275 | 0.317 | 0.209 | 0.186 3000

Table 3: Classification of logistic and noise; a;=3.9

Nr. of Method N/S| N/S| N/S| N/S| N/S| N/S| Train.

sources 0.0 0.1 0.2 0.3 0.4 0.5 Time
2 Partition, Lin.Models | 0.911 | 0.928 | 0.901 | 0.810 | 0.915 | 0.821 | 2 x 2
2 Partition, Sig.Models | 0.988 | 0.984 | 0.951 [ 0.797 | 0.487 | 0487 | 2 x 180
2 FEFT coeffs 0.921 | 0.887 | 0.812 | 0.754 | 0.720 [ 0.703 | 2 x 1
2 LPC coeffs 0.785 | 0.406 | 0.432 | 0.460 | 0.459 | 0.406 | 2 x 1
2 Sig.Nonpart. Classifier | 0.478 | 0.517 | 0.521 | 0.465 | 0.519 | 0.483 1200
5 Partition, Lin.Models | 0.898 | 0.856 | 0.900 | 0.675 | 0.782 | 0.657 | 5 x 2
5 Partition, Sig.Models | 0.980 | 0.978 | 0.530 [ 0.497 | 0.382 | 0.098 | 5 x 180
5 FEFT coeffs 0.437 | 0.420 | 0.337 | 0.320 | 0.238 [ 0.211 | 5 x 1
5 LPC coeffs 0.785 ] 0.433 | 0.379 | 0.486 | 0.325 [ 0.298 | 5 x 1
5 Sig.Nonpart. Classifier | 0.189 | 0.178 | 0.220 | 0.213 | 0.256 | 0.203 3000

Table 4: Classification of two logistics; a3 =3.9, apy=3.8
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Nr. of Method N/S| N/S| N/S| N/S| N/S| N/S| Train.

sources 0.0 0.1 0.2 0.3 0.4 0.5 | Time
2 Partition, Lin.Models | 0.978 | 0.990 | 0.990 | 0.986 | 0.991 | 0.879 | 2 x 2
2 Partition, Sig.Models | 0.978 | 0.980 [ 0.990 | 0.986 | 0.933 | 0.683 | 2 x 180
2 FFT coeffs 0.971 | 0.971 [ 0971 | 0.912 | 0.847 | 0.805 | 2 x 1
2 LPC coeffs 0.973 1 0.973 [ 0.973 | 0.919 | 0.838 | 0.702 | 2 x 1
2 Sig.Nonpart. Classifier | 0.523 | 0.503 | 0.486 | 0.508 | 0.501 | 0.495 1200
5 Partition, Lin.Models | 0.959 | 0.969 | 0.951 | 0.985 | 0.985 | 0.957 | 5 x 2
5 Partition, Sig.Models | 0.976 | 0.972 [ 0.986 | 0.978 | 0.845 | 0.185 | 5 x 180
5 FFT coeffs 0.971 | 0.962 [ 0.954 | 0.904 | 0.805 | 0.845 | 5 x 1
5 LPC coeffs 0.946 | 0.973 | 0.892 | 0.756 | 0.865 | 0.675 | 5 x 1
5 Sig.Nonpart. Classifier | 0.238 | 0.294 | 0.184 | 0.203 | 0.193 | 0.201 3000

Table 5: Classification of logistic and noise; a1 =3.9
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Figure 1: Sketch of partition network architecture
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Figure 2: Classification of two sinusoids. Tj=10, T5=6, N/S=0.0. (A) Evolution of posterior
probabilities:”—" is probability of S(7}),”- - is probability of S(T2). (B) Classification output: "—”"
is desired classification, ”- -” is PA classification, ”...” is FFT classification, ”-.-" is LPC classification.
(FFT and LPC classification outputs are not clearly discernible in the figure because they follow ideal

classification very closely.)
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Figure 3: Classification of two sinusoids. Tj=10, T=6, N/S=0.5. (A) Evolution of posterior
probabilities:”—" is probability of S(77), - -” is probability of S(73). (B) Classification output:
"— is desired classification, ”- -” is PA classification, ”...” is FFT classification, ”-.-” is LPC classi-
fication. (FFT and LPC classification outputs are not clearly discernible in the figure because they

follow ideal classification very closely.)
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Figure 4: Time series consist of logistic (a1 =3.9) and white noise.
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Figure 5: Classification of logistic and white noise, N/S=0.1. (A) Evolution of posterior probabilities:

2 2

”—” is probability of S(ay), ”- -7 is probability of Sp. (B) Classification output: ”— is desired

classification, ”- -” is PA classification. (C) Classification output: ”"—" is desired classification, ”- -” is

FFT classification. (D) Classification output: ”— is desired classification, ”- -” is LPC classification.
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Figure 6: Classification of logistic and white noise, N/S=0.4. (A) Evolution of posterior probabilities:

2 2

”—” is probability of S(ay), ”- -7 is probability of Sp. (B) Classification output: ”— is desired

classification, ”- -” is PA classification. (C) Classification output: ”"—" is desired classification, ”- -” is

FFT classification. (D) Classification output: ”— is desired classification, ”- -” is LPC classification.
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Figure 7: Sequential logic circuits classification. (A) Source sequence.(B) Probability evolution: “—”

“ 2

is probability of source 1, “ -7 is probability of source 2, “..”

is probability of source 3, “-.-” is

probability of source 4.

31



Figure 8: Sequential logic circuits classification. (A) Source sequence.(B) Probability evolution: “—”

“ 2

is probability of source 1, “ -7 is probability of source 2, “..”

is probability of source 3, “-.-” is

probability of source 4.
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Figure 9: Results of experiment in phoneme classification. The solid line indicates the phoneme time

“ 2

series. Probability evolution: is probability of [0o], “...” is probability of [ah], “-.-” is probability

of [n].
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Figure 10: Enzyme inhibition profiles.
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Figure 11: Posterior probability evolution for enzyme classification.
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Figure 12: Posterior probability evolution for enzyme classification.
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CAPTIONS

Figure 1: Sketch of partition network architecture

Figure 2: Classification of two sinusoids. T;=10, T5=6, N/S=0.0. (A) Evolution of posterior
probabilities:”—" is probability of S(7}),”- - is probability of S(T2). (B) Classification output: "—”"
is desired classification, ”- -” is PA classification, ”...” is FFT classification, ”-.-" is LPC classification.
(FFT and LPC classification outputs are not clearly discernible in the figure because they follow ideal
classification very closely.)

Figure 3: Classification of two sinusoids. Tj=10, T=6, N/S=0.5. (A) Evolution of posterior
probabilities:”—" is probability of S(77), - -” is probability of S(73). (B) Classification output:

"— is desired classification, ”- -” is PA classification, ”...” is FFT classification, ”-.-” is LPC classi-

fication. (FFT and LPC classification outputs are not clearly discernible in the figure because they
follow ideal classification very closely.)
Figure 4: Time series consist of logistic (a;=3.9) and white noise.

Figure 5: Classification of logistic and white noise, N/S=0.1. (A) Evolution of posterior probabilities:

”—” is probability of S(ay), ”- -7 is probability of Sp. (B) Classification output: ”— is desired

2

classification, ”- -” is PA classification. (C) Classification output: ”"—" is desired classification, ”- -” is

FFT classification. (D) Classification output: ”— is desired classification, ”- -” is LPC classification.

Figure 6: Classification of logistic and white noise, N/S=0.4. (A) Evolution of posterior probabilities:

”—” is probability of S(a;), ”- -7 is probability of Sp. (B) Classification output: ”— is desired

2

classification, ”- -” is PA classification. (C) Classification output: ”"—" is desired classification, ”- -” is

FFT classification. (D) Classification output: ”— is desired classification, ”- -” is LPC classification.

Figure 7: Sequential logic circuits classification. (A) Source sequence.(B) Probability evolution: “—”

“ 2

is probability of source 1, “ -” is probability of source 2, e

“...” s probability of source 3, “-.-" is

probability of source 4.

Figure 8: Sequential logic circuits classification. (A) Source sequence.(B) Probability evolution: “—”

“ 2

is probability of source 1, “ -7 is probability of source 2, “..”

is probability of source 3, “-.-” is

probability of source 4.
Figure 9: Results of experiment in phoneme classification. The solid line indicates the phoneme time

series. Probability evolution: “ -” is probability of [00],

of [n].
Figure 10: Enzyme inhibition profiles.

“ 2 2

is probability of [ah], “-.-” is probability

Figure 11: Posterior probability evolution for enzyme classification.

Figure 12: Posterior probability evolution for enzyme classification.
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Figuresfor the paper “Modular Neural Networks for MAP Classification of Time Series

and the Partition Algorithm”, IEEE Trans. on Neural Networks, Vol.7, No.1, pp.73-86, 1996.
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LPC Classifier Output
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