V. Petridisand Ath. Kehagias
" A Recurrent Network Implementation of Bayesian Time Series
Classification".

This paper has appeared in the journal:
Neural Computation, vol.8, pp.357-372, 1996.



A Recurrent Network Implementation of

Time Series Classification

Vas. Petridis
Div. of Electronics and Comp. Eng., Dept. of Electrical Eng.
Aristotle University of Thessaloniki
540 06 Thessaloniki, Greece
and
Ath. Kehagias
Div. of Electronics and Comp. Eng., Dept. of Electrical Eng.
Aristotle University of Thessaloniki
540 06 Thessaloniki, Greece
and
Dept. of Mathematics
American College of Higher Studies
540 06 Pylea, Greece

e-mail: kehagias@egnatia.ee.auth.gr

15 June 1996

Abstract

An Incremental Credit Assignment (ICRA) scheme is introduced
and applied to time series classification. It has been inspired from
Bayes’ rule, but the Bayesian connection is not necessary either for its
development or proof of its convergence properties. The ICRA scheme
is implemented by a recurrent, hierarchical, modular neural network,
which consists of a bank of predictive modules at the lower level, and
a decision module at the higher level. For each predictive module,

a credit function is computed; the module which best predicts the



observed time series behavior receives highest credit. We prove that
the credit functions converge (with probability one) to correct values.

Simulation results are also presented.
amstex

This paper appears in Neural Computation, vol.8, pp.357-372, 1996.

1 Introduction

Consider the following problem of time series classification. A time series
yt, t = 1,2, ... is produced by a source S(0y), where 0y, is a parameter taking
values in a finite set © = {01, ..., O} and the “true” or “best” value of 6
is sought. This problem appears in many practical applications, e.g. speech
recognition (Rabiner & Schafer, 1988), enzyme classification (Papanicolaou
& Medeiros, 1990) etc. An extensive list of applications can be found in
(Hertz, Krogh & Palmer, 1991). In this paper we present an Incremen-
tal CRedit Assignment (ICRA) scheme which assigns credit to each source
according to its predictive power. This approach yields a hierarchical archi-
tecture with a prediction level at the bottom and a decision level at the top.
We present a recurrent, hierarchical, modular neural network implementa-
tion of this architecture. A bank of local prediction modules are trained,
each on data from a particular source S()). The prediction modules can
be implemented by several different kinds of feedforward neural networks:
sigmoid, linear, Gaussian, polynomial etc. The decision module is imple-
mented by a recurrent Gaussian network which combines the outputs of the
prediction modules. The overall structure of the network is presented in
Fig. 1. We prove that the credit functions converge with probability one
to correct values, namely, to one for the module with maximum predictive
power and to zero for the remaining modules. Moreover ICRA has an easy
neural network implementation (using only adders and multipliers). ICRA
has been inspired by classification based on the Bayesian posterior probabil-
ities of the candidate sources, but the Bayesian connection is not necessary

for developing ICRA or for proving its convergence properties.



The idea of combining local models into a large modular network has
recently become very popular. It is used for prediction as well as for classi-
fication of both static and dynamic (time series) patterns. Early examples
of this idea are, for example, (Farmer & Sidorowich, 1988; Moody, 1989)
where a time series prediction problem is solved by partitioning the input
space into a number of regions and training a local predictor for each region;
in every instance, the local predictor used is explicitly determined by past
input values, hence it is not necessary to assign credit to each predictor.
A later development is the combination of local models using a weighted
sum; the weights can be interpreted as conditional probabilities or as credit
functions. This is the approach taken in (Jacobs et al., 1991; Jordan &
Jacobs, 1992; Neal, 1991; Nowlan, 1990) where the terms local experts and
probability mixztures are used; the term committees appears in (Schwarze &
Hertz, 1992); the term neural ensembles in (Perrone & Cooper, 1993), and
so on. Our point of view is similar to that of the above papers, insofar we
also use local models (predictors) and credit functions. However, ICRA is
a recursive scheme for online credit assignment, so that classification at a
given time depends on past classifications. This is particularly appropriate
for classification of dynamic patterns, such as time series, where the history
of the signal must be taken into account. In contrast, the abovementioned
papers use offline credit assignment and are applied either to static problems
or “staticized” dynamic problems, where preprocessing is used to transform
a time-evolving signal to a static feature vector (FFT or LPC coefficients
etc.). However, static feature vectors may not capture all the dynamic prop-
erties of a time series, especially in case of source switchings. On the other
hand, while our method assumes that the classes to be used are given in
advance, several of the abovementioned papers present algorithms that dis-
cover an expedient partition of the source space. In fact, there are several
neural algorithms which combine local models and adaptive partitioning; for
example (Ayestaran & Prager, 1993; Baxt, 1992; Jordan & Jacobs, 1994;
Kadirkamanathan & Niranjan, 1992; Schwarze & Hertz, 1992; Shadafan &

Niranjan, 1993) etc. However, while such algorithms perform adaptive par-



titioning, they do not perform, as far as we know, adaptive classification,
since they do not use classification results recursively.

In short, our ICRA algorithm is applicable to problems of time series
classification, where past classification results must be used for future clas-

sification, and classes are given in advance.

2 Bayesian Time Series Classification

A random variable Z which takes values in © = {61, ...,0x} is introduced.
The time series y1, Y2, ... is produced by source S(Z). For instance, if
7 = 64, then the time series y1, yo, ... is produced by S(61). At every time
t a decision rule produces an estimate of Z, denoted Z,. For instance, if at
time t we believe that the time series y1, ... ¥ has been produced by 64, then
Zp = 04. Clearly, Z may change with time, as more observations become
available.

The conditional posterior probability p% for k = 1,2, ..., K, t = 1,2, ...
is defined by

b = Prob(Z =0y | ye, . v1);

also the prior probability ph for k = 1,2, ... , K is defined by
Ph = Prob(Z =0y | at t=0). (1)

pk reflects our prior knowledge of the value of Z. In the absence of any prior
information we can just assume all models to be equiprobable: p§ = 1/K
for k=1,2,..., K. pf reflects our belief (after observing data yi, ...,y¢) that
the time series is produced by S(6y). We choose Zy = argmaxg, ce pF. In
other words, at time ¢ we consider that yq, ..., y: has been produced by source
S (Zt), where Z; maximizes the posterior probability. So the classification
problem has been reduced to computing p¥, t = 1,2,...., k = 1,2,..., K.
This computation (Hilborn & Lainiotis, 1969; Lainiotis & Plataniotis, 1994)



is based on Bayes’ rule:

ok = Prob(ye, Z = 0 | ye—1, ..., y1)
! Zf:l PTOb<yt7 Z = 0] ’ Yt—1, -"7y1)

Also
Prob(ys, Z =0k | Yt -1, 91) = Prob(ye | ye 191, 2 =0x) -pf 1. (3)
Now (2), (3) imply the following recursion for k =1,2, ..., K, ¢t =0, 1, 2, ... :

ko PTOb<yt ’ Yt—1, -"7y17Z = Qk) 'pffl
k= —
S Prob(y | Y1, -yt 4 =0;) - py_y

(4)

and we only need (for each ¢ and k) to compute Prob(y: | y¢—1,....,y1, 4 =
0r). This probability depends on the form of the predictor; the predictors

have a general parametric form f(-;0;), k=1, ... , K:

Yr = F(Yr-1, s YN Op). (5)

Typically, f(-;0r) would be a feedforward (linear, sigmoid, Gaussian, poly-
nomial) neural network trained on data from source S(6y). This predictor
approximates y; when the time series is produced by S(0y). Fork =1,2, ..., K
the prediction error €f, k =1, ... , K, t=1,2, ... is defined by

e =Y —yy- (6)
It is assumed that ef is a white, Gaussian noise process, with conditional

probability of the form

k
€t

NS

Prob(ef | o1,y yn; Z = 0g) = C(0o) - exp(— |



It then follows immediately from (5), (6) and (7) that

Prob(y | Yot eesyi 2 = 00) = Coy) - exp(— | “Y ). (g)

V20,
The probability assumption of (7) is arbitrary, but works well in practice,
as will be seen in Section 5. The parameter o2 is the variance and C'(oy,) is
a normalizing constant. Extensions for vector valued y; and ef are obvious.
The posterior probability pf of source S(6;), k = 1,2, ..., K, for time ¢ =
1,2, .., can be computed by means of the above equations. At time £ the time

series is classified to the source that maximizes the posterior probability:

7, = 9
f argmggpt (9)

The recursion for p¥ is obtained from (1), (4), (5), (8) and (9).

3 Incremental Credit Assignment Scheme

In this section we introduce an Incremental CRedit Assignment (ICRA)
scheme to be used for time series classification. ICRA is motivated from the
Bayesian scheme but it is simpler in implementation, requiring only adders
and multipliers. In addition ICRA classifies as well, and sometimes better,
than the Bayesian scheme, as will become obvious in Section 5. Finally,
ICRA has desirable convergence properties which can be mathematically
proved. Hence ICRA is an attractive alternative to Bayesian classifica-
tion.To develop ICRA, start by defining

gle) =C exp(— 10
(e) = Clok) - exp(— | \/_O'k %) (10)
Now consider the following difference equation

Qf — qul

> =g(el) - pf_1 — Zptl glel) | - df 1, (11)



with initial condition (k = 1,2, ..., K)

K
qg >0, Z qz; =1 (12)
k=1

It is clear that if the ¢%’s converge, in equilibrium (qf o fol) we will have
qF =~ glef)-pk ) Z]K:l g(el) - pl_,. Since the pf ;’s in (11) are unknown,

let us substitute them by the g ;’s. After some rewriting, eq.(11) becomes

K
gf =S 147 |glel) — [ D a1 9(ed) gy . (13)
)

Eq.(13) is the important part of the ICRA scheme. Even though we have
started with a Bayesian point of view, this can now be abandoned. We
consider the ¢’s to be credit functions: the highest ¢f gets, the most likely
is S(0r) to be the “true” source. From eq.(13) we see that the credit fuctions
¢¥ are updated in an incremental manner, similar to a steepest descent

procedure. At time ¢ the time series is classified to source S(Z;), where
7} = argmax gf’. 14
t g ey 4t (14)

Of course the use of eq.(14) requires some justification; namely we must
prove that if the “true” or “best” source is S(6p,), then ¢f" is greater than
q¥, k # m. This justification will be provided in the next section. Namely,
we will prove that the ¢f’s as given by (13) are convergent; in particular,
the ¢ associated with source S(6,,) of highest predictive power, converges
to one, while all other ¢’s converge to zero. Therefore the credit functions
¢ can be used for classification.

In summary, the ICRA scheme is based on equations (12), (5), (6), (10),
(13), (14), which can be implemented by the recurrent, hierarchical, modu-
lar network of Fig. 1. The bottom, prediction level of the hierarchy consists
of a bank of predictive modules, each one implementing a predictor of the

form (5), for a specific value 0. Typically these modules are feedforward



neural networks (sigmoid, linear, Gaussian etc.) The top, decision level of
the hierarchy consists of a module that implements (13); this module can
be built from Gaussian neurons. At this point we should emphasize that
within this context the Gaussian form g(ef) ceases to be an assumption
about the statistical properties of error ef and becomes a matter of design
regarding the credit assignment scheme. Also, we emphasize that ICRA can
be implemented using only adders and multipliers, hence implementation is
simpler than that of the Bayesian scheme. Finally, it should be mentioned
that implementation of the ICRA scheme requires computation of eq.(13)
for k=1, 2, ..., K, which obviously scales linearly with K, the number of
classes. Hence, time requirements of ICRA are O(K): to handle 100 classes
takes only ten times more than to handle 10 classes if the algorithm is im-
plemented serially. It should also be noted that eq.(13) is fully parallelizable
(see also Fig.1) resulting in O(1) (constant) execution time for parallel im-
plementation. Memory requirements are also O(K), since only the current

¢"’s need to be retained at every time step. !

4 Convergence

We will now show that (13) has the following property: if 6, is the “best”
value of 0 (i.e., source S(6,) best predicts the data observed) then ¢ con-
verges to 1 and g converges to 0 for k # m. We start with the following

lemma.
Lemma 1 If 25:1 qs =1, then 25:1 @ =1fort=1,2,..

Proof: Proof will be by induction. Supposing 25:1 ¢ =1, it will
be shown that YK ¢¥ = 1 as well. Summing (13) over k (and using

!The same time and memory requirements hold for the Bayesian classifier of Section

2.



She1 gk =1) we get:

kz::l qu 1t qu 1-9(e qu L 9(€d) [qu 1]

K

Z =1+~ qu 1 g qu 1 gej -1 =1. (15)

k=1 k=1

Since the proposition is true for ¢ = 0, applying (15) repeatedly for s= 1,2,
. proves the Lemma. o

Now we can state and prove the following convergence theorem.

Theorem 2 Define a;, = FE(g(et)), k=1, ..., K. Suppose a, is the unique
maximum of a1, ... , ax. If g > 0, then ¢ — 1 and qf — 0 for k # m,
with probability 1.

Remarks: First, note that g(ef ) is a random variable, since it is a function
of the error ef. Assuming e to be stationary, ay = F(g(el)), i.e. the
expectation of g(eF), is time independent. Since g(e) is a decreasing function
of |e|, a large value of aj implies good predictive performance. In this sense,
ar can be viewed as a prediction quality index and it is natural to consider
as optimal the predictor m that has maximum a,,. In the course of the
proof it will become clear that any function g(|e|) could be used as long as
g(Je|) is a decreasing function of |e|. The theorem can be generalized to the
case where there is more than one predictor that achieves maximum a,,;
then the total posterior probability of all such predictors will converge to 1.
The proof for that case is similar to the one presented here, and is omitted
for economy of space. Finally, note that the credit functions ¢ are random
variables, as they depend on 1, s, ..., 3. Hence, gF converge in a stochastic
sense, in this case with probability one.

Proof: For t = 0,1,2, ..., define 7; to be the sigma- field generated by g§
and {e*}¢_,, with k = 1,..., K. Define by F., = U¥F;. Now, q¢f is Fi-



measurable, for all k,¢. 2 This is so because ¢F is a function of ¢}, ... , ef

and of ¢ 1, ... , ¢f%;. But ¢} {, ... , ¢/, are in turn functions of ¢} 4, ...
el and of ¢ o, ... , ¢y and so on. In short, ¢f is a function of i, ...
ef, e, ... eff. Hence it is clearly F;- measurable. Also, for k = 1,2, ..., K,
t=0,1,2, ... , define 7f = E(qf). In (13) let k=m and take conditional
expectations with respect to Fy_1. For all k and ¢ we have E(g¢F | | F;—1) =
a1, BE(g(el) | Fi-1) = BE(g(e¥))= ag. In other words, g(ef) is independent
of F;—1. This is so because we assumed the noise process {ef}2°, to be

white, hence ¢f is independent of €, I = 1,..., K, s = 1,...,t — 1. Finally,

3

from Lemma 1, Zszl qg;1 =1, hence

K
E(g" | Fe1) = {1+ |am — qufl'aj g =
j=1
K .
E(g | Foa) 281+ [am —am- | > a1 || ¢ a1 =
=1
E(q" | Feo1) > ¢y (16)

From (16) follows that {¢"}:°, is a submartingale. Since 0 < E(| ¢7* |) <1,
we can use the Submartingale Convergence Theorem and conclude that, with
probability 1, the sequence {g;" }$°, converges to some random variable, call
it ¢, where ¢ is F,,- measurable. We have assumed that ¢j* > 0; from
this, and eq.(13) it follows that for all £ we have ¢J* > 0. From this it is
easy to prove that the limit ¢ > 0. Hence, convergence of ¢i" does not
depend on the initial values q(’)“7 kE=1,2,.., K, as long as qf" is greater than
zero. However, we still do not know whether the sequences {qF},, k # m,

converge. Similarly, since ¢j* — ¢, we can take expectations and obtain

2A sigma-field F generated by random variables ui, ug, ... is defined to be the set
of all sets of events dependent only on ui1, u2, .... A random variable v is said to be
F-measurable if knowledge of w1, usg,... completely determines v; in other words, either v
is one of w1, U2, ... or it is a function of them: ’U(’LL1, U2, ) Note that the total number of
U1, Uz, ... may be finite, countably infinite or even uncountably infinite. For more details
see (Billingsley, 1986).

10



E(¢™) — E(q™) = 7#™; but we do not know whether E(qF) converges for
k # m. However, since S°h_, ¢f=1 for all ¢, we have that B ysmat) =
1—E(¢") — 1 —x". Now, if in (13) we set & = m and take the limit as

t — 00, we obtain
{1+7 g(ef) (th 1 get)” qmll- (17)

Since ¢™ = limy_, o0 g > 0, (17) implies

g(ei") (th] 1 get)]}'qm§ (18)

the important point is that the quantity in curly brackets has a limit. Since

g™ > 0, it can be cancelled on both sides of (18); then we get

1 =1+ hm {g er’) (th 1 g(e] )] = 0= hm {g er") (th 1 g(el )]

Jim [oe}") - (1= gf")] = Jim [Z = 'g@)] B

t—oo .
Jj#Fm

q" = lim
t—o00

(taking expectations and using the Dominated Convergence Theorem 3)
oim [ - (1 —2,)] = Jim {Z - ] -
j#m
(define a; = maxy4pm, a; and note that a; < a,)
Jim [ 1 = 7] < o Jim [z ] (=) S (177,

J#Fm
(19)

3The Dominated Convergence Theorem states that, under appropriate conditions,

limy oo B(f:) = E(lim¢_o fi). See also (Billingsley, 1986).

11



From (19) it follows immediately that 7™ = 1; otherwise we could cancel
1 —7™ from both sides of (19) and obtain a,, < a;, which is a contradiction.
Hence 1 = 7™ = limy_ 00 71", 1.6, 1= limy 00 F(g]") = E(limy_ o0 ¢f*). Since
lims— oo g7 < 1, we must have lim;—, " = 1 with probability 1; it follows

that limy o qg = 0, for j # m, which completes the proof. °

5 Examples

1. Logistic Classification. A logistic time series is produced by the

following recursion (the source parameter is a)
zipr =z - (L—x) t=1,2,...

1.1 In the first set of experiments, a test time series has been generated by
running a logistic with a=3.8, for 182 time steps and then switching « to
3.6 and running the logistic for another 182 steps. Zero-mean white noise,
uniformly distributed in the interval [—é, %] has been added to the data.
We have used 4=0.00, 0.05, ... , 0.50. We plot the time series (at noise
level A=0.2) in Fig.2. The task is to detect the active value of a. We use
our ICRA scheme and compare it to the Bayesian scheme. In both cases
we use the same type of predictor modules. Ten predictor modules (18-5-1
sigmoid, feedforward neural networks) have been trained on logistics with
a= 3.0, 3.1, ..., 3.9, respectively. Average predictor training time was 2.5
min on a Sun Sparc IPC workstation. The o parameter is the same for
both classifiers; we take it equal to the experimentally computed standard
deviation of predictor error. For all prediction modules this is approximately
equal to 0.25; so we have 01 = ... = o019 = 0.25. A probability threshold
parameter h = 0.01 is also used. For the ICRA method we also use v = 0.99.
Different values of v do not affect classification performance, as long as they
are not too low. In general, small values of o and large values of v result in
faster update of the pf and ¢f (see eq.(13)), hence in faster response of the
algorithm. Finally, it should be mentioned that choice of pf, g& does not

affect the convergence, as remarked in the previous section. This conclusion

12



was supported by our experiments: while we tried several values for p&, g&
classification performance was not affected. In the experiments reported
here, we have always used p§ = 1/K, ¢§ = 1/K.

In Fig.3 the evolution of the ¢f’s is plotted for a typical experiment.
(Classification to the true logistic takes very few time steps: at t=2 ¢ > ¢F,
k # 9 and at t=8 it reaches its steady state value; then at =183 we have
the a transition and by time =189 we have ¢/ > qF, k # 7; at t=194 ¢/ has
reached steady state (the whole transition takes 12 time steps). Location
and width of the transition points of this experiment are typical; all the
classification experiments we have run gave similar results. It should be
emphasized that no training is required for the decision module; its online
operation only requires computation of eqs.(5), (13) for all ten predictors
(k=1, ... , 10). Classification of each time step requires 0.08 sec on a Sun
Sparc IPC workstation.

Classification performance is measured by dividing the number of time
steps for which « is correctly identified and dividing by 364, the total number
of time steps. Thus we obtain two figures of merit: one for the Bayesian and
one for the ICRA method. The results, for various noise levels A are sum-
marized in Fig.4. We see that in the noise-free case both schemes perform
very well, the Bayesian scheme slightly outperforming the ICRA scheme.
However, the ICRA scheme is more robust to higher noise levels.

1.2 In the second set of experiments we want to evaluate classification per-
formance when the actual a parameter is not in our search set. To this end
we train ten linear predictors on a= 3.0, 3.1, ... , 3.9 values. Training time
per predictor was slightly over 1 sec on a Sun Sparc IPC workstation. Then
we generate five 364-steps test logistics with an « transition at step 182.
The a transitions are 3.7—da to 3.9+d6a, where da takes the values 0.00,
0.01, 0.02, 0.03, 0.04. Hence éa measures the difference between the o on
which we trained our search set and the actual o value which generates the
test time series. Note that for éa = 0.05 we get a= 3.65, exactly halfway
between the search set o’s 3.6 and 3.7. All the other parameters of the

experiments are the same as in the previous paragraph. With the exception
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of the first case, the true values of o are not in our search set. The results
of these experiments are summarized in Fig. 5. Classification at a time step
is considered to be correct when the time series is classified to the value of
a in the search set which is closest to the true value of «. In other words,
for all five time series correct classification should be: a=3.7 for the first
182 steps and a=3.9 for the last 182 steps. In Fig. 5 we plot classifica-
tion figure of merit vs. da. We see that the ICRA scheme performs better
than the Bayesian scheme: it is more robust to parameter variations. Of
course, an additional conclusion of this experiment set is that classification
can be succesfully performed using linear predictors. Finally, let us note
that classification of each time step requires 0.04 sec on a Sun Sparc IPC
workstation.

2. Enzyme Classification. This experiment involves classification of the
B-lactamase enzymes. The data and problem are described in (Papanicolaou
& Medeiros, 1990); here we give a short overview. (-lactamases determine
resistance to B-lactam antibiotics. Classification of 8-lactamases is a prob-
lem which has received considerable attention by biomedical researchers. A
classification method, presented in (Papanicolaou & Medeiros, 1990) uses
an “inhibition” experiment. The (-lactamase enzyme causes hydrolysis of
a chemical called nitrocefin, and the (-lactam slows hydrolysis down by in-
hibiting the action of the enzyme. In the following paragraphs we use the
terms enzyme (in place of B-lactamase) and inhibitor (in place of B-lactam).
For every enzyme / inhibitor pair an “inhibition profile” is obtained, which
(for a given inhibitor) characterizes the enzyme. This method has a high
classification success, but the following problem occurs: the properties of en-
zymes and inhibitors heavily depend on the conditions under which they are
prepared, and this results in varying inhibition profiles for different prepara-
tions of the same enzyme/inhibitor pair. However some dynamic properties
of the profile remain invariant; in (Papanicolaou & Medeiros, 1990) it is
reported that enzyme classification depends on the slope of the inhibition
profile at various times during the experiment, as well as on the final con-

centration of nitrocefin. This information was used by a human operator,
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who classified the enzyme by combining the various characteristics of an
inhibition profile.

We use the ICRA and Bayesian schemes to automate the enzyme classi-
fication process. The inhibition profiles are used as input time series. Eight
enzymes are classified. The data set of inhibition profiles is separated into
a test set and a training set?. We use two data sets, consisting of inhibition
profiles for two different inhibitors and all eight enzymes. In Fig. 6 we
plot inhibition profiles for three enzymes from the training set and the same
three enzymes from the test set. In all cases the same inhibitor has been
used. It is noted that for the same enzyme, the test profile can differ signif-
icantly from the training profile, for the reasons explained in the previous
paragraph. For each enzyme a sixth order linear predictor is trained on the
corresponding inhibition profile from the training set. (These profiles are 40
min long time series; each time step represents 0.5 min of real time.) This
is the offline training phase, which takes less than 1 sec per predictor on a
Sun Sparc IPC workstation. Mean square prediction error is approximately
0.05 for all profiles. Next, we choose an inhibition profile from the test set
and proceed to determine the enzyme it corresponds to. Both Bayesian and
ICRA scheme are used; in Fig. 7 we present ¢ evolution for a particular
enzyme inhibition profile. In this task final classification uses values gy,
Qo - B0 (Pho> Plos - 5 Pho, Tespectively). Classification performance of
the Bayesian scheme is measured by c¢,, the number of correctly classified
enzymes (at time t=40 min) divided by eight, the total number of enzymes.
A similar number, ¢;, is computed for the ICRA scheme. For the Bayesian
scheme we find ¢, = 0.875, i.e. seven out of eight enzymes were correctly
classified. For the ICRA scheme we find ¢, = 1.000, i.e. all eight enzymes
were correctly classified. Therefore, in this experiment the ICRA scheme
classifies better than the Bayesian scheme. Classification of each time step

requires 0.03 sec on a Sun Sparc IPC workstation.

4We want to thank G.A. Papanicolaou for kindly permitting us to use the inhibition
profile data.
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6 Conclusions

We have presented ICRA, an incremental credit assignment scheme for time
series classification. ICRA is implemented by a recurrent, hierarchical, mod-
ular neural network which consists of a decision module and a bank of pre-
dictive modules. The decision module implements a Gaussian function g(e)
(where e is prediction error) but any function g(-) can be used, as long as it
is a decreasing function of |e|. The predictive modules can be sigmoid, lin-
ear, Gaussian etc. feedforward networks. In fact, because of the competitive
nature of the ICRA scheme, classification depends on relative, not absolute
predictive performance, making ICRA robust to noise and prediction error.
We have proven that, under mild conditions, ICRA converges to the correct
result, i.e. it detects the time series source that best predicts the observed
data. The ICRA classifier is recursive, appropriate for online time series
classification which must be updated at every time step, taking into account
past classification as well as the dynamic behavior of the time series. ICRA
is modular and parallelizable, which means that offline training (of the pre-
dictor modules) as well as online operation scale linearly with the number of
classes handled. No online training is necessary. Hence, to train and classify
100 logistics would take ten times as long as to train and classify 10 logistics;
in principle there is no limit to the number of classes that can be handled.
Online operation time is O(K) (where K is the number of classes) for ser-
ial operation and O(1) for parallel operation, i.e. all per step classification
times reported in the previous section would be reduced by approximately
1/K if ICRA was implemented in parallel.

The above paragraph summarizes the basic features of ICRA classifi-
cation. These also hold for the Bayesian classifier of Section 2. However,
the experiments of Section 5 indicate that ICRA classification is more accu-
rate and robust than Bayesian classification. In addition, unlike Bayesian,
the ICRA classifier can be implemented using only adders and multipliers;
hence a simple and fast hardware implementation is possible. This is a
further advantage over the Bayesian classification scheme, which requires a

more complicated implementation. In short, the advantages listed in this

16



and the previous paragraph make ICRA an attractive recursive method for

time series classification problems, where past classification results must be

used for future classification, and classes are given in advance.
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CAPTIONS
Figure 1. The Network architecture. Summation neurons are denoted by
>.. Gaussian neurons are denoted by (' , identity neurons are denoted by
I . The symbol < denotes weights determined by ¢f. The block denoted
DECISION MODULE implements eq.(13).
Figure 2. Plots of logistic time series: for =1, 2, ..., 182 we have a=3.8;
for t= 183, ..., 364 we have a=3.6. Noise level is A=0.2.
Figure 3. Logistic classification for ten sources (a= 3.0, 3.1, 3.2, ... , 3.9),
t=1, 2, ... , 364. The solid line corresponds to ¢? (a= 3.8) and the dotted
line corresponds to ¢/ (a=3.6). For k # 7,9 ¢F go to zero very rapidly and
are not discernible in the figure.
Figure 4. Figures of merit for logistic classification at various noise levels.
A denotes the noise level. Here ICRA figure of merit (respectively Bayesian
figure of merit) denotes fraction of correctly classified time steps (out of a
total 364) by ICRA (respectively Bayesian) scheme. We observe that while
in the noise free case the Bayesian scheme performs slightly better than the
ICRA scheme, ICRA is more robust to noise. (In all experiments we use
h=0.01, 0=0.25, v=0.99.)
Figure 5. Logistic classification for a outside the search set. ICRA figure
of merit (respectively Bayesian figure of merit) denotes fraction of correctly
classified time steps (out of a total 364) by ICRA (respectively Bayesian)
scheme. This is plotted against difference 6a. We observe that when the
actual a values are in the search set (6a=0.0) the Bayesian scheme is slightly
better than the ICRA scheme. However, ICRA is more robust to increased
Sa. (In all experiments we use h=0.01, 0=0.25, y=0.99.)
Figure 6. Enzyme inhibition profiles for enzymes 1 (solid lines), 2 (dashed
lines) and 3 (dash-dotted lines). la, 2a, 3a are training data, 1b, 2b, 3b are
test data.
Figure 7. Enzyme classification. The dotted line corresponds to the credit
function ¢} of the correct enzyme. The solid line corresponds to overlapping

plots of ¢Z, ... , ¢¢ . Classification is based on the final value of ¢;.
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