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Abstract

We develop a recursive Maximum A Posteriori Classification al-
gorithm for discrete valued Stochastic Processes modelled by Hidden
Markov Models. The classification algorithm solves recursively the fol-
lowing problem: given a collection of HMM’s (Pe,Qe)7 0 € O, and a
sequence of observations ¥y, ... , ¥, from a stochastic process {Y;}22,,
find the HMM that has Maximum Posterior Probability of producing
Y1 5., Y¢- This algorithm is a modification (for discrete valued stochas-
tic processes) of the Lainiotis Partition algorithm [10], [15]. We prove
that, subject to ergodicity and positivity assumptions on {Y;}$2,, our
algorithm will converge to the “right” (in the cross entropy sense)
HMM as t — oo, for almost all sequences y1, y2, ... . Finally, we give
an example of the application of our algorithm to the classification of

speech signals.
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1 Introduction

Consider the following classification problem. We observe a discrete valued,
stationary ergodic stochastic process for which there is a countable (finite or
infinite) number of Hidden Markov Models. At time ¢ the observations yi,

. , Yy are available, and we use these to classify the process to the model
that maximizes the Bayesian posterior probability of 1, ... , y¢. In this

paper we do the following.

1. We develop a recursive algorithm to compute the posterior probabil-
ities. This algorithm combines elements of two algorithms previously
reported in the literature: the Backward - Forward algorithm of Baum
[5, 6] and the Partition Algorithm of Lainiotis [13, 17].



2. We prove the convergence of our classification algorithm: the posterior
probability of the “best” (in a precisely defined sense) candidate model

tends to one almost surely.

3. We present examples of classification using speech data and phoneme
Hidden Markov Models.

Hidden Markov Models (HMM) are used widely for speech recognition
[1, 25, 24, 27, 28] and they have lately been introduced in a number of other
applications, e.g. shape recognition [26], arterial modelling [10], biological
applications [2], etc. Here we concentrate on HMM’s with discrete valued
hidden (or state) and observable process. The importance of these models
is underscored by recent results about their universal representation and
consistent estimation properties (see [14]).

Our classification algorithm is modelled after the Partition Algorithm of
Lainiotis, which has been used for parameter estimation of stochastic control
systems. An early version of this algorithm can be found in [13, 17]. This
is a very general algorithm, which applies to continuous- as well as discrete-
valued stochastic processes. However, details for the discrete valued case
have not been worked out in the literature. Control theoretic applications
can be found in [11, 17, 18, 19] and computational issues are treated in
[29, 30]. In all of these papers the algorithm is applied to continuous val-
ued stochastic processes; this is also the case for more recent theoretical
developments in [20, 21], as well as applications to seismic signal processing
[22, 23]. The convergence of the Partition Algorithm for continuous valued
processes is discussed in [15, 31]. To the best of our knowledge, convergence
for discrete valued processes has not been studied so far.

The classification problem can be formulated as a problem of parameter
estimation: we introduce a parameter # such that to every value of 6 corre-
sponds a HMM and it is required to estimate (see next section) the optimal
value of 6. In this sense, we present here a parameter estimation algorithm;
perhaps it should be briefly compared to the Backward-Forward (BF) para-
meter estimation algorithm by Petrie and Baum (see [5, 6, 27, 28]). While



our algorithm borrows from BF the computation of forward probabilities,
in most respects the two algorithms are quite different. Our algorithm as-
sumes a countable number of possible parameter values and proceeds to find
the optimal value by an online process; the BF algorithm can operate with
an uncountably infinite (i.e. continuous valued) set of parameters, but is
an offline algorithm. While our algorithm uses only the forward probabili-
ties, the BF algorithm (as the name indicates) uses forward and backward
probabilities. In terms of implementation, this means that our algorithm
performs only a forward integration in time and finds an ezxact maximizing
parameter value; while the BF algorithm performs a sequence of forward
and backward integrations to approximate a maximizing parameter value.
This paper is organized as follows. In Section 2 we present some defin-
itions and notation that relate to Hidden Markov Models. In Section 3 we
present our classification algorithm. In Section 4 we present our convergence
results: the algorithm converges almost surely to the best HMM, if {¥;}°,
satisfies some ergodicity and positivity conditions. The proofs of these re-
sults are deferred to the Appendix. In Section 5 we present some numerical
experiments of classification, using speech data. In Section 6 we present the
conclusions this paper. Finally, the proof of the algorithm convergence is

presented in the Appendix.

2 Preliminaries

In this section we present some definitions and notation that relate to sta-
tionary stochastic processes and Hidden Markov Models. The material is
standard (see e.g. Billingsley [7, 8]).

We study discrete valued, stationary stochastic processes, e.g. {Y;}724,
taking values in Qy = {1, 2, ..., L}. There is no loss of generality in assuming

Y; to be integer valued. We define
O = {y1.yn,yn € 1<n< N} N=1,2,..., (1)

QF ={y=v1y2-.,yn €Qy 1<n}. (2)



{Y;} has probability function p defined for all N > 0, y1ys...yny € Q¥ by
p(y1...yn) = Prob(Y1 = y1,.... Yv = yn ). (3)

By stationarity we have p(y1..yn) = Prob(Yez1 = v1, ..., Yern = yn). Note
that p is a complete description of {Y;}.

Define o(£2y) to be the smallest sigma-algebra that contains all cylinder
sets (see Billingsley [8]) of ;°. The probability function p can be used
to define a measure on the cylinder sets and this measure can be uniquely
extended on o(€y). Define this measure by 7. By the previous discussion
7 i1s determined by p; conversely we can recover p from the value of m on
cylinder sets. Hence {Y;}, p and 7 are equivalent descriptions of a discrete
valued stationary stochastic process.

We use a somewhat restricted definition of Hidden Markov Models. A
Hidden Markov Model (HMM) is a pair of stationary stochastic processes
({X:},{Y}). {X:} takes values on Qx = {1,2,..., K} and is Markov with
transition matrix P, defined by Py, = Prob(X; =z | X;—1 = x). {Yi} takes
values on Qy = {1,2,...,L} and depends instantaneously on X; via the
emission matrix Q: Qgy = Prob(Y; =y | X; = z, X;, s # t), independent of
Xs, s #£t.

In what follows we use a countable parameter set © such that for every
0 € © we have a HMM ({X?}, {Y/f}), with transition and emission matrices
(P?,Q%). We will always assume that for all @ € © P? > 0; in this case {X?}
is ergodic and has a unique stationary probability distribution (determined
by P?, see [9]), call it p?. For all x € Qx we have p?(z) = Prob(X{ = z).
Using p’(x), PY,, Q%,, ,z € Qx y € Qy we can obtain the probability func-

Tz WTY?

tions of { X} and {Y}. Hence (P?,Q?) is yet another complete description
of ({X¥}, {¥}).

We use the following rather abusive (but hopefully not confusing) nota-
tion:
PP (x1..1) = Prob(X{ = x1.. X0 = xy), (4)

P (y1.-ys) = Prob(Y{ = y1..Y{ = ys), (5)



P (21, y1oys) = Prob( XY = 21.. X0 =y, Y = 91.Y = y5),  (6)
P’ (1 | mo,90) = Prob(Y{ =y | X§ = z0, Yy = o) etc. (7)

ATTENTION: The symbol pf(y;...y¢) (i.e. with an additional ¢ subscript)
is used to denote a completely different quantity, the model posterior prob-
ability, which will be defined in the next section.

Also, we commit another gross but harmless offense: sometimes we write
“(vo | ) = Prob(Yy =yo | V! = Y=y (8
P Y | Y-1.--Y—¢ TOWYe =Y | Y 1 =Y, ¥ = Y-t)-

Now, strictly speaking, our processes are not defined for ¢ < 0. However it
is a simple matter to extend a one-sided ( 0 < ¢ < 00) stationary stochastic
process to a two-sided one (—oo < ¢t < c0) (see [7]), so the expression in
eq.(8) is meaningful.

Finally we define the entropy H(p) of a process p and the cross entropy
H(q;p) of a process ¢ with respect to a process p.

H(p) = —/10gp(y0 | y—_1y—2...)dm(yoy—1...)- (9)

H(q;p) = —/logq(yo | y-1y-—2...)dm(yoy1...) — H(p). (10)

These are formally defined in eqs.(9,10); but for any specific processes it
must be proven that the integrals above are well defined, otherwise the

definition is vacuous.

3 The Classification Algorithm

We consider the following problem of stochastic process classification. Start
with a collection of Hidden Markov Models: {(P?,Q%)}gco, where © is
a countable (finite or infinite) parameter set. Next, introduce a random
variable Z which takes values in ©®. At time t the value of Z is chosen

randomly, according to the probability distribution p) = Prob(Z = 0) ,



0 € ©. Z remains fixed for ¢ > 0, but its value is unknown to us. ' For time
t =1,2,... the HMM (PZ,Q7%) produces an observable stochastic process
{V:}22,. We observe a realization of {Y;}, call it y1, y2, ... and we want
to infer the value of Z from this sequence. A problem of this type is, for
example, phoneme classification, with © being the finite set of the English
language phonemes.

To solve this problem, we adopt a Bayesian point of view. Before any ob-
servations y1, 2, ... are available, we can express our prior belief of the value
of Z in terms of the prior probability distribution {p§lgce. At time ¢ the
observations y1, ... , ¥ are available and our knowledge of Z has improved.
This knowledge is now expressed in terms of the posterior probability (at
time ¢):

PL(Y1-ye) = Prob(Z =0 | Y1 = y1, ..., Y = y). (11)

Given pf(yj...y¢), our estimate of Z at time ¢ is
Oc(y1, -+ ye) = argmax pf (y1..-yi)- (12)

Thus, at time ¢ we claim that the data y1, ..., ¥ was produced by ét(yl, s Ut),
which maximizes the posterior probability. This is a reasonable choice, usu-
ally referred to as Maximum A Posteriori (MAP) estimate. 2

Remark: Notice the difference between Z, which is fixed for all time £ > 0
(reflecting the fact that yi,ys2, ... are indeed produced by a fixed HMM) and
0; which changes as more data is collected (reflecting our belief about what
is the true model). Our belief may change over time, so for ¢ # 7 we may
have éT #+ ét. However, it is desirable that as ¢ — oo we have ét — 7, in
some appropriate sense of stochastic convergence.

Remark: The assumption that the observations yi,y2, ... are actually
produced by a Hidden Markov Model, is not really necessary. We adopt it

here for simplicity of exposition; soon we will remove it. However, it is not

Tn what follows we assume that p§ > 0 for all 8 € ©. Tt will soon become obvious that
this can be done without loss of generality.
2For brevity of notation, sometimes we will write simply p?, 0;, dropping v ...4:.



excessively restrictive, in light of the following result (proven in [14]): sub-
ject to certain ergodicity and positivity assumptions, every discrete-valued
stochastic process can be approximated arbitrarily well by a sequence of
Hidden Markov Models; these models can also be consistently estimated.
The classification problem has now been reduced to finding an efficient
way to compute pf, 0 € ©, ¢t =1,2,... . To do this, we develop a recursive

algorithm. First, note that

Pl =Prob(Z=0|Y1=y1,., Viy1 = Ye41) =

Prob(Yei =y, Z=0Yi=y1, ... Yi=w) _
Prob(Yep1 = yer1 | Y1 =y1, - Yo = 31)
PTOb<}/;+1 — yt+17Z =0 ’ }/1 = Y1, 7}/% = yt)
ZCQ@ PTOb<Y;t+1 = Yt+1, Z = C ’ Yl =, 7Y;5 = yt) '
Also note that

(13)

Prob(Yepi =y, Z=0 | Yi=y1,.. Y =y) =

Prob(Yer1 =y | Yi=y1, 0 Yo =ye, Z=0)-Prob(Z =0 | Y1 = y1, ... Yo = yt) =
PTOb<Y;t+1 = Yt+1 ’ Yi=y,.. . Yi=y, 4 = 0) p? (14)

Now (13,14) imply the recursion:

PTOb<Y;t+1 = Yi+1 ’ Yi=y,..Yi=y, 4 = 0) pg
c

(15)
o Prov(Yeri =yep1 | Yi =y, Ye =y, Z =m) - py

0 _
Pey1 =

Remark: The last equation shows why we can assume p > 0 for all 0 € ©
without loss of generality. It is obvious that if there is a @ such that p§ = 0,
then p¢ = 0 for all £ > 0; hence models with zero prior probability need not
be discussed at all.

What remains to be done is finding a recursive way to compute the

quantity PTOb<}/%+1 = Yt+1 ’ }/1 = Y1, 7}/% = yt7Z = 0) for 0 € 67 t =



1,2, ... . Note that
Prob(Yey1 =y | Yi=y1, .. Yi=yn, £ =10) =

pe (yl---yt+1)
2 (y1-.ye)

However, if Z = 6 then the probabilities in eq.(16) can be computed

(16)

in terms of the matrices P?, Q?. We present a method for recursive com-
putation of p?(y1,...,y¢); this is developed in [25] as part of the Forward -
Backward algorithm. For every 0 € ©, define the forward probabilities for

given observations y1, y2,..., forz =1,2,..., K and t =1, 2, ....
d(x) = Prob(Yi =y1,... Vi=ye, Xe =2 | Z =0), (17)

It is easily checked that the evolution equation for the forward probabilities
is:

K
(r) = Zafﬁl(z)me 0 r=1,2..,K. (18)
z=1

TYt

Assume all initial states to be equally likely — then the initial condition for
o’ is of(z) = Prob(Xo=z | Z=0)= % forz =1,2,..., K.

Now use the a?’s to compute the p?’s:

K

p9<yl---yt) = Z 0420(95)- (19)

=1

This completes the description of the recursive classification algorithm. Putting

all the pieces together we get:

Maximum A Posteriori Classification Algorithm

Given an observation sequence y1,ys, ... and a set of HMM’s (P?, Q?), 0 € ©,
assume that the sequence has been produced by the HMM (PZ Q% ), where



Z is a random variable with probability distribution p§ = Prob(Z = 0),
0 € ©. The MAP estimate of Z at time ¢ is ét, defined as

0 = (y1... 20
¢ = argmax pj (y1...yr) (20)
where p! is defined for all @ € ©, t = 1,2, ... by

P (yr.ye) = Prob(Z =0 | Y1 = y1, ..., Y2 = yy). (21)

To obtain the MAP estimate, compute p? for § € ©, t = 1,2, .. as follows.
Fort=10
o =Prob(Z=0) 6cO. (22)

1
ad(x) = = T=L2..K 0ceo (23)

Then fort=1,2,... :

1. Compute for all 0 € ©, z=1,2,...,. K
K
Oég(x) = Z Oé§71<z)ijngt. (24)
z=1

2. Compute for all # € ©

Zf:l 04?(95)

Prob(Yi=y: | Yi=y1,.., Vi1 =91, 2 =0) = SE af (x) (25)
and
o = Prob(Yy =y | Yi=y1,.. Yo 1=y 1,.Z2=0)-p , (26)
Scco Prov(Ye =y | Yi=y1,., Yo 1 =yt-1,7Z = 0) Py
3. Finally, set
01 = argmax pl (1, ..., ). (27)

10



Remark: The process that produces the observation sequence yi, ¥a, ...
need not be Hidden Markov. The classification algorithm applies to any
discrete valued process and locates the HMM (P@7 QG) that has maximum
posterior likelihood with respect to yq, v, ... . This is the subject of
Theorems 1, 2 of Section 4. Experimental verification of this fact is given in
Section 5.

Remark: The MAP classification algorithm is the adaptation of the Lain-

iotis Partition algorithm [13, 17] to discrete valued stochastic processes.

4 Convergence of the Classification Algorithm

We now state our convergence results. Proofs will be deferred to the Ap-

pendix. The results hold true under the following assumptions.

A Take a stochastic process {Y;}2°, (with probability p) that satisfies the

following assumptions.

A1l {Y;}2, is stationary ergodic.
A2 VL Y, eQy ={1,2,...L}.
A3 Ja > 0 such that Yy = y1ya... € P, p(ye | y1...ye-1) > a.

B Also take a collection of HMM’s {(P?, Q%) }sco , © countable, that satisfy

the following assumptions.

B1 V0 c© P is K-by-K.

B2 V0 € © @ is K-by-L.

B3 33 > 0 such that V0 € ©, Vz,2 € Qx = {1,2,..., K} P?, > 3.

B4 3v > 0 such that V0 € ©, Vo € Qx = {1,2,..., K} and Yy €
Qy ={1,2,..., L} ng > .

Then we have the following

11



Theorem 1 If conditions [A1-A3] and [B1-Bj] are satisfied, then for any
0,¢ € O such that H(pS;p) < H(p?;p) we have

0
lim Pt (yl yt)

=0 (28)
% g (y1--.1)

for m-almost all y = y1y9... .

Remark: Theorem 1 is similar to martingale convergence theorems for
likelihood ratios [16], but there is an important difference: neither p’ nor
p¢ is assumed to be the true process from which y1, s, ... come. In fact, as
already mentioned, we do not even need assume that {Y;} is HMM.

From Theorem 1 we can easily get a “consistent classification” theorem.
First we need the following notation. For every 6 > 0 define ©5 = {6 € © :
H(p%p) <6} and ©° = {0 € © : H(p’;p) > §}. Obviously, V6 > 0 we have
O5UB% = O. Now we can state the following theorem.

Theorem 2 If conditions [A1-A8] and [B1-Bj] are satisfied, then

Case 1: | © |< co. Define h® = mingeg H(p’;p). Then

. 9 -
Jim > pf (yrye) = 1
9€®h0

lm > pf(yi..ys) =0

t—o00

gcoh’

for m-almost all y = y1ya... € 7.

Case 2: | © |=Ng. If there are 6, € such that 0 < 6 < ¢ and © = O5 U ©F,

then
. 9 _
lim S ) = 1 (20)
0cO;
. 9 .
Jim > 7 p(yrye) =0 (30)
fcOc

for m-almost all y = y1ya... € KF..

12



Remark: In Case 1 (finite ©) there is at least one value of 8 which achieves
the minimum cross entropy H(p’;p). There may be more than one such 6;
0©;,0 is the set of all such minimizing 0’s. If ©;, is not a singleton, it is clear
that we cannot , in general, expect 0, — 7. For instance, if model (P@7 QG)
produces the observations, and there is a model (PC7 QC) such that P¢ is a
permutation of P?, Q¢ is the same permutation of @?, then (P?, Q) and
(PC7 QC) have identical output behavior. At any rate, Theorem 2 states that
the posterior probability will almost surely concentrate all its mass on Qo
(the “good” models) as ¢ goes to infinity.

Remark: In Case 2 (countably infinite ©), it is not guaranteed that
the minimum (the infimum, really) of H(p?;p) will be achieved. A further
complication is that the “bad” values of § may give a slow increase of cross
entropy. Then (28) alone does not guarantee that all the probability mass
is concentrated on the “good” models. Therefore, we need to impose the
additional é - € condition, which ensures a sharp separation of the good and
bad 0’s. To clarify the nature of this condition, consider the case where the
observations 1, ¥2, ... are actually produced by (Pé'*7 QG*), 0* € ©. Then
" =p, H(pe*;p) = 0, and we can take 6 = 0. If there is also an € > 0 such
that ®UO¢ = O, then for all 0 in ©°¢, (P?, Q%) is at least ¢ distant from p’"
(in the cross entropy sense) and, by Theorem 2 convergence is guaranteed.
Remark: Extensions to continuous valued processes are possible. These
are the subject of current research and will be reported elsewhere. Let
us briefly mention a simple case. Consider HMM with discrete state and
continuous observable process. At every time step ¢ a y; is emitted, according
to a probability density ¢,(y), where x is the current state. If (a) ¢x(y) is
bounded below by v > 0 on an interval A, with A C (—00,00), (b) ¢,(y) =0
outside of A, and (¢) v and A are independent of x, then we can prove
convergence results in exactly the same manner as Theorems 1 and 2. A
look at the Appendix will convince the reader that the proof of the discrete-
valued case carries over to this special continuous-valued case. Extension to

more general cases, e.g. unbounded densities, is harder.

13



In Case 2 of Theorem 2 we prove convergence for the case of countably
infinite parameter set. In a real world application we cannot actually apply
the algorithm to an infinite set, because we cannot implement the compu-
tations of eqs.(20) to (27) for an infinite number of terms. Instead, we can
truncate © to a finite subset (say by removing of consideration models with
low prior probability or models that consistently perform poorly and hence
receive low pg). The question then arises: what is the relationship of the
new posterior probabilities (computed by operating on the truncated set) to
the correct ones (obtained from operating on the original, infinite set)?

To make the question precise, consider the following case. First, for
simplicity, assume that © is the set of positive integers: © = {1,2,3,...}.
There is no loss of generality in this assumption. Also assume there is only
one model of minimum cross entropy, and (again without loss of generality)
that it is the first model (# = 1). In short:

C1 H(p';p) < H(p;p) for 0 = 2,3, ... .

Then the update of p! is given as usual, by eq.(26). Since we have taken

© to be the positive integers, we can rewrite eq.(26) as

p9 B Prob(Yt =Y ! Yi=y,...Yr 1=y 1.4= 9) 'pgfl (31)
t T oo '
ZczlpTobOﬁg:yt ’ }/i:y17"7}/%71:yt*17Z:0).p%.fl
We will also use the truncated posteriors p(z’N, for 6= 1, 2, ... , N, which are
updated by
N Prob(Yy =y |Yi=y1, .. Vi1 =y 1,Z2=0)-p]"
oN _ (32)

S Prob(Yi=y | Yi=y1, . Y1 =yi-1, 2 =0) e

In other words, to compute p?’N we start from the same initial values as for
pY, but perform the summations only up to the N-th term. Since we also
compute only a finite number of truncated posteriors, the total number of
computations required is finite. This of course turns the problem to a finite
one, and by Theorem 2 we will have ptl’N — 1, p?’N — 0, and this for all

N and m-a.a. So in this sense, truncating the parameter set © causes no

14



damage. However, we now present a stronger result.

Theorem 3 Suppose conditions [A1-A3], [B1-B4] and C1 are satisfied, and
take ®=1{1,2,3,...}, Oy = {1,2,...., N}. Then for all 0 in Oy we have some
to such that ¥Vt > tg

PN o0 — PN
lim t—e =1 m—a.a. and lim %

=0 7—aa. (33)
N—ooo py N—o0 yu

Remark: Theorem 3 shows that for every € there is a value N such that
the “relative error” (between the true and the N-truncated posterior) goes
to zero. Also, by Theorem 2 we see that convergence to the “best” model
is preserved for the truncated posteriors. Hence truncation gives quite good
approximation and is an efficient method for dealing with infinite parameter

sets.

5 Numerical Experiments

We now test our algorithm on some simple classification experiments. The
observations %1, 2, ... are speech data. It must be emphasized that the
point of these experiments is not to compare our algorithm to large speech
recognizers currently in use, but simply to test our algorithm on real world
data. The algorithm might be incorporated and evaluated as a component
of a speech recognizer but this is not pursued here.

We start with an utterance of the word “one”. This is sampled at 10
KHz and gives a continuous valued signal. To keep things simple, we use
only two models: © = {601,05}. 67 corresponds to the phoneme [ah]. We
pick the relevant portion of the signal, subsample this (take every 5-th sam-
ple) and quantize at L=16 levels. We obtain two such sequences, each 120
steps long. We use one to train a HMM with K = 12 states and L = 16
observables. Note that this HMM produces output in the range {1,2, ..., L}.
In other words it reproduces the quantized speech signal, and not derivative

quantities, such as LPC or FFT coefficients. The second sequence, plotted

15



in Fig.??, is our observation sequence y1, ... , yi90. oimilarly, 69 corre-
sponds to the phoneme [n]. After subsampling and quantization, we get two
sequences, each 120 steps long. We use one to train HMM with K = 17
and L = 16. The other sequence, appearing in Fig.??. is our observation
sequence. We proceed to apply our classification algorithm.

In the first experiment we use the [ah] signal and want the probability
p?l, as computed by our algorithm, to converge to 1. This indeed happens,
as displayed in Fig.?77?.

Exactly similar results obtain in the second experiment, which is identical
to the first one, except that the sequence yq, ..., y120 is now the [n] signal and
we want the probability p?Q to go to one. This result is achieved, as displayed
in Fig.?7?.

Finally we apply the classification algorithm to a signal which has an
[ah] to [n] transition. We use the previously trained HMM’s and a sequence
form the transition region between the [ah| and [n] phonems. This sequence,
after subsampling and quantization, is plotted in Fig.??.

There is a crucial difference between this and the previous experiments.
The derivation of our algorithm was based on the assumption that the ob-
servations were produced by a single HMM. This assumption is obviously
violated in this case, and there is no theoretical guarantee that the algo-
rithm will work (Theorems 1 and 2 do not apply here). Still, for fairly long
time intervals, the observation sequence does come from a fized HMM. The
desired behavior of the of the p! probabilities is that pgl goes to 1 and stays
there for a while, then it decays to 0, while p?Q rises to 1.

The classification algorithm can, in theory, reproduce this behavior, as
is obvious from eq.(26). However, looking at this equation we discover a
practical difficulty: if p! = 0, for some @ and ¢, then p? = 0 for all s > ¢.
In practice, if p! goes below machine precision, it is set to 0. Even when no
underflow occurs, if p{, becomes too small, the classification algorithm can
be very slow to respond to a change of signal source (such as the [ah] to [n]
transition).

To avoid these problems, we introduce the ad hoc precaution of keeping

16



pY above a threshold ¢; ¢ is chosen small, but well above machine precision
(say € = 1073). So, values of p{ are not significantly changed, except when
they become so small that they do not matter anyway. In this way, underflow
and slow classification are avoided. Now we run our modified algorithm and

obtain the results of Fig.?? which are exactly what we wanted.

6 Conclusions

We have developed a MAP classification algorithm for discrete valued HM-
M’s. This algorithm is recursive (and hence suitable for online implementa-
tion) and classifies quickly and accurately, as we have demonstrated using
real speech data examples. We have also proven that it converges with

probability 1, under certain mild assumptions.

A Appendix: Proof of Theorems

Here we prove Theorems 1, 2 and 3 of Section 4. The following lemmas will
be needed; they all assume [A1-A3| and [B1-B4].

Lemma 4 For all € ©

. logp®(y1...
lim _logp (y1..ye) = H(®%;p) + H(p) T— Q. Y1Yg.-- - (34)

t—o0 t

The proof of Lemma 4 will be given last, since it requires the following

lemmas.
Lemma 5 Forall €O, l,m>0x_,, 21,20, Y_1, ..., Yy_m we have
P2 (Yo--Yms o | -1, y-1---y—-1) = P° (Yo Y, 0 | T_1) (35)
P Wo | y—1-Y-meYt:5—m) = 0" Wo | Y=1--Y-ms1,T—m).  (36)

Proof: This is a simple consequence of the Markov conditioning and can
be verified by writing out the left and right sides of eq.(35) and cancelling

equal terms. The proof of eq.(36) is similar. °
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Lemma 6 For all0 €O, k,I,m,n >0 and x,Tg, ..., Ti, Ym, - Yn we have

pe(x) > 0. (37)
P2 (g, Ymen) > 0, (38)
P’(Wo | y-1.-y-m) =, (39)

Proof: Fix some 0 € O; since it is fixed, drop it from the notation for
the rest of the proof, for simplicity. Now, since {p(z)}zcqy is the stationary

equilibrium probability of P, we have:

@)= > PP 2 {min P} > p(z) 25 1.

2eQx 2E€Qy

This proves eq.(37). Next, take any m < k <1 < n, g, ... , ; and ym, ...
UYn. We have:

P(Teee ZLy Ymewo Yn) =

E , p<xm)QmmymPaﬁmmm+1 Qs 1ym1 "'Pmk—lkamkyk"'PmlmlJrl Q$z+1yz+1 oLy 12, Qupy
x;€Qx ,m<j<k or I<j<n

This proves eq.(38) for the particular ordering of k,I,m,n that we chose.
The proof for any other ordering is exactly the same. Finally, to prove
eq.(39), note that

Po | y-1y-m)= > pWo,x0, 1|y 1.y -m)=

0, 1
(using eq.(35))

> pyo,zo |z 1) -plr 1|y 1y m) =

T0,T -1

Z P$71$0Q$oyop<xfl ’ y71...y7m) >

T0,T—1

v Y p@o,z 1|y 1.y m)=7>0

T0,T—1

18



which completes the proof of the Lemma. °
The next lemma appears in Petrie and Baum [4]; but the basic idea is

standard in the treatment of Markov chains (see, e.g. Doob [9]).
Lemma 7 For all 0 € ©, yoy—_1y—2... € B, m > 0 define

DY (y) = maXXpe(yo | Y1 Yo, Tom),

T_m€EN

d(y)= min p’(Wo | y-1- Yo, Tom).
Qx

T_m€E

Then
0 < Di(y) — dp(y) < (1—26)™ (40)

Proof: Fix some 0 € O; since it is fixed, drop it from the notation for the
rest of the proof, for simplicity. Also, choose any n, with 0 < n < m and fix
it. Now define

nz_n(Y) =20 | Y-1--Y—n, T—n),

bn,:cfn,:cfn71 (y) = p<xfn ’ yfl---yfnflvxfnfl)-

Note that, because of eq.(36) we have

ana_n(Y) =0 | Y=1--Y—n—1,T—n-1Z_n).

Also define
en(y) = minr{l}’réin i1, (Y)
x4(y) = argg}riig an,z_,. (Y)
' (y) = argmaxang_, (y)-
Now

p<y0 ’ yfl---yfnflvxfnfl) = Z bn,m,n,l,m7n<y) Anax_, (y) =

T g
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{ Z bz 1,3 (y) - Anw_rn (y)}+{bn,m*(y),ﬂ?n1 (y)—cn(y)}an’m*(y)—l—cn(y)an’m*(y) <
T _nFTx(y)

Dn<y){ Z bn,:cn1,mn<y)}+{bn,m*(y),mn1<y)_cn<y)}Dn<y)+Cn<y)dn<y) =
s _nFT(y)

Dn<y) : {Z bn,mnl,mn<y)} - Cn<y) : Dn<y) + Cn<y) : dn<y) =

(I =cay)) Duly) +cnly) -daly) =
o | y-1--Yn-1.2-n-1) <1 —cn(y)) - Dn(y) + cn(y) - dn(y). (41)

In exactly the same way we obtain
PWo | y-1-y-n-1,2-n-1) Z (L= cn(y)) - dn(y) + cn(y) - Dnly).  (42)
Taking the max / min in eq.(41) / eq.(42) we get
Drya(y) < (1 =cn(y)) - Dn(y) + cn(y) - dnly), (43)

dn1(y) = (1 = cn(y)) - dny) + cn(y) - Dnly). (44)

Eqs.(43,44) in turmn imply
0 < Dny1(y)=dni1(y) £ (1-2e(y)) (Dn(y)—dn(y)) < 1-28)-(Dnly)—dnly)) =
(by repeated application for n = 0,1,2, ...,m)

0 < Din(y) = dm(y) < (1 —26)"

which completes the proof of the Lemma. °

Lemma 8 For all 0 € ©, yoy_1y—2... € P, 0 <t < s

2o ly-1y-0) =" (wo |y 1.9 s) |< (1 —28)° (45)
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127 (o [ y-1y-¢) =07 (o | y-1y-2...) |< (1 —28)" (46)

Proof: Fix some 0 € O; since it is fixed, drop it from the notation for the

rest of the proof, for simplicity. First we prove eq.(45). We have

poly-1-9y6)=> pWoly 1y vz o)p(@ ¢y 1..y¢) <

Ty

Di(y) - Y pla—t | y-1.y-1) = De(y).

Similarly we get

po | y-1..y-¢) = di(y).

In short we have

Di(y) = p(yo | y—1---y-¢) = de(y). (47)

In the same way we get

Di(y) = p(yo | y-1.-y-5) = de(y). (48)

Notice that in both eqs.(47,48) we have Dy(y), di(y) (with a ¢ subscript),
despite the different conditioning. Combining eqs.(47,48) we have

—(De(y)—di®)) < 1" Wo | y—1--y—1)—1" (o | y—1--y—s) | < (Dely)—de(y)) =

(using Lemma 7)

—(1=28)" < [P (wo | y—1-9—¢) =" (wo | y—1-9-5) | < (1 —28)" (49)

which completes the proof of (45). This also implies that for all yo, y_1, ...
{p(yo | y—1.--y—+)}2; is a Cauchy sequence and has a limit. Define

p(yo | y—1y—2...) = tlirglop(yo | y—1..y—¢).

21



From this and eq.(49), eq.(46) follows immediately and the proof of the
lemma is completed. o
Now we will prove Lemma 4; this in turn will be used to prove Theorems
1 and 2.
Proof of Lemma 4 We have to prove three things: (a) that H(p) ex-
ists, (b) that, for all # € ©, H(p%;p) exists and (c) that for all § € ©
limy o0 — logp? (y1...y¢)/t exists and is equal to H(p?;p) + H(p).
First look at H(p). This is defined to be

H(p) = —/10gp(y0 | y—_1y—2...)dm(yoy—1...)- (50)

This integral is well defined, because, by A3 and the convergence of condi-

tional probabilities (see Billingsley [7])

0<a<plyo|y-1-v-t) —po|y-1y—2-..)

for m-a.a. yoy_1y_9.... Now we can use Dominated Convergence Theorem to
ensure the existence of (50). So H(p) is well-defined. Next pick any 6 € ©
and look at H(p’;p). This is defined by

H(p%;p) = —/10gp9(yo | y-1y—2...)dm(yoy-1...) — H(p).  (51)
Now, from Lemmas 6 and &,

P (yo | y-19-2...) = Jim p"(yo | y-1..y—1) = 8 > 0.

Once again, we can use the Dominated Convergence Theorem to ensure that
(51) is well defined. So we have proven the existence of H(p’;p).

Finally consider
log p” (y1...y1)
t

(for any N)

log p’(y1.--yn) N Siony 11080 (Ws [ ya1 1) _
¢ ¢ =

22



(using Lemma 6 and Lemma 8)

log vV N S w1 log P (Ys | Yso1.-Ys-N) | Jos(1 = 28)N
! ! ! ‘

Letting ¢ — oo and using the Ergodic Theorem we get that for m-a.a. y199...

lim
t— o0

log 2 (1...
M < /logpe(yo | y—1..y—~)dm(yoy—1...) -

Now letting N — oo, using Lemma 8, the convergence of p?(yo | y_1.--y_n)

and the Dominated Convergence Theorem we get

. log p?
lim gp (;UI yt) S /10gp9<y0 ’ y71y72”‘)d’ﬂ'<y0y71..--)-

t— o0

. . log p?(y1...y¢)
In exactly symmetric manner we can bound limy_, o, ~2& fl Y from below,
to obtain

. log p?
lim M > /logpe(yo | y—1y—2..)dm(Yoy—1....)-

t— o0

But then we must have

log p?(y1...

lim b _ /10gp9(y0 | y-1y-2...)dm(Yoy-1--..)-

t— o0 t

This, together with (50) and (51) shows that

logpl(y1-ye) _

Jim BP0 ) HG) 7 g (52)
which completes the proof of the Lemma. °

Proof of Theorem 1 We are interested in the ratio

Prod(Z=0YVi=y.Yi=y) ProbVi=y1..Yi=uy|Z=0) o
Prob(Z =C|Yi=y..Yi=y) Proo(Vi=yi.Yi=u|Z2=0) p

P (y1y) P

P (y1---9e) pg'
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Obviously the ratio p}/ pg will not affect convergence, so we can concentrate

on the ratio p? (y1....yt) /P (Y1.--32).
Now, from Lemma 4 we have

log p? (y1...41)

lim — - = H(p";p) + H(p) (53)
tim B e ) (54)

t—o0 t

Therefore

(assuming H(p?;p) > H(p%;p))

0< ¢ P(Yr--yr) s o HE p)+H® )
P (Y1)

(for all £ > 0 such that eHW"p) - HEp) 4 o < 1, for all ¢ greater than some

appropriate t.)

0< p9<y1""yt) < efH(pe;p)JrH(PC;P) +e =
“ NV (yreee) ~

(7]
0< pc(yl----yt) < (efH(p";p)JrH(pC;p) + E)t =0
(1Y)

for m-a.a. y1¥y9... as t — oo. This completes the proof of the theorem. °
Proof of Theorem 2
Case 1: | O |[< 0

S ocon PL(Y1--yt)

Zeeeho Py (y1---y1)

Z@eeho p9<y1yt) ) pg
Zeeeho P (y1---yt) -pg B
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0
(max,_gno P

(mineeeh() p9

Y1) Y geond Ph _
i) - Zeeeho P

(yl--

(yl--
9

i pi(Ql---yt) Lpcon? pg -

eeeho,g‘e@ho p (yl---yt) ZCGGho P

(from Theorem 1, for small enough ¢ > 0, ¢ > ¢.)

v 0
{ max (efH(P0§P)+H(p(;P)) + 5} . ZGL’IOPS =
gecon’ ccon, 2¢eo,0 Po

(choosing e small enough, the term in braces is smaller than one)

0
lim Z@e@ho Pt (yl"'yt)

¢ =0
00 Yo, o P (Y1t

for m-a.a. y1y2.... Since the numerator and denominator must add up to 1,
the desired result is proven.
Case 2: | © |= Ny

S ocon PL(Y1--yt)

Zeeeho Py (y1---yt) B

S ococ P (y1.yt) - pY
2(96@5 pe(yl---yt) : pg B

(supgeoe
(inf(ge 95

P’ (y1.
sup z
0cO,CcOs P (yl-

(for all e > 0, ¢t > ¢.)

p9<yl---yt)) D _peos pg <
PP(Y1-9t)) - Ypeop PO
yt) } . 2 6cor P <
yt) ZC€®5 pg

‘ > 0
0. . €
{ sup (e 11 ,p)+H(p<,p)) 5} .&pg <
0cO,CcO; Z<e®5 Po
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(eéfe _I_E)t. > pcor Ph N

¢
Zce o5 Po

(choosing e small enough, the term in parentheses is smaller than one)

1im Z@E@E pg (yl"'yt)

¢ =0
700 3 ccop Pe(Y1--t)

for m-a.a. y1y2.... Since the numerator and denominator must add up to 1,
the desired result is proven and we are done. °
Finally let us prove Theorem 3; for this we first need the following

Lemma.

Lemma 9 Under the conditions of Theorem 3 we have for all @ # 1 and 7-

a.a.

— 0. 55
t—oo pl(y1...y¢) (55)

Proof: We know that for all § and ¢

A= PE=01Y=y o Yi=y)  p(Z=01Yi=y.. Vi =y)p( =y, Ve = 1)

p<Z =1 ’ }/1 = Y1, 7}/% = yt) p<Z =1 ’ }/1 = y17"'7}/;t = yt)p<}/1 = y17"'7n = yt)

p(Z=0Yi=y,..Yi=y) Pr(Z=1) Pr(Z=0) _
p(Z=1Y1=uy1,..Ys=w) Pr(Z=0) Pr(Z=1)

(using the definition of conditional probability, with Z conditioning)
0)
1)

Since A; tends to 0 (by Theorem 1) and Pr(Z = 0)/Pr(Z = 1) is a constant,
it follows that p?(Y1 = y1,...,Y; = w)/ p (Y1 = v1,..., Yz = y;) must also

p(g(le = Y1, 7Y;5 = yt) ) PT<Z
p1<Yi :y17"'7Y;§:yt) PT<Z

tend to zero and we are done. o
Proof of Theorem 3 by dividing the update equations for p! and p} we
get

Pl Pr(Vi=y|Yii=y 1, Yi=y,Z=0) pl,

p% PT(Y; =Yt ’ Yii=y1,-Y1=n,24= 1) p%fl
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PriVi=y Y=y 1, Y1i=y,2=0) Pr(Vi i =9y 1| Ve 1=y 1, Yi=uy1,Z=10) p_» :
PriYi=y | Yeer =yt Vi=y, Z=1) Pr(Vei =y | Y1 =y1,. Y1 =y1,Z = 1) pi_y

PriYi=ysYia=ya|Ye o=y 2w Yi=9,2=0) pl_s
PriVi=y,Ye 1=y 1| Yio=y9,...Y1=01,4=1) pl,

By repeated application of the above reasoning we finally get

Pl PriVi=wyYii=y1,Yr o=y 0. Y1=y | Z=0) p) w
: — Wiy

pt PriVi=yn,Ye1=v-1.Ye2=Y-2,...Y1i=u1|Z=1) p_(l) (56)
56

where lim; o, w? = 0 for all @ # 1, by Lemma 9. From eq.(56) follows

immediately that pf= w? - p}. Using the fact that the sum of the p{’s must

equal one for every ¢, with a little algebra we finally get the expressions

1 1

Pt = w?
=
220:1 wg

—t . 57
220:1 w% ( )

and pf =

From Theorem 2 we know that p} — 1, hence there is some ¢y such that for

all t > 1o we have B, = >, wtc < o0.

Using exactly the same reasoning as in the previous paragraph we also

. . 0,N
obtain expressions for p,” . these are as follows

0
Wy

LN _
~ .
Zg:l wtc

P == (58)
Zévzl wg

0.N
and p, =

It is important to note that the w¢ in (57) and (58) are the same quantities;
the only thing that changes is the limit of summation. Now let us divide
(57) by (58); we get

p?’N - Zé‘vzl wg

= : (59)
o > wy

But for every t > g we have limy_oo Zévzl wtc = > wf < o0; from this

and (59) it follows immediately that

6,N N <

’ _qw
lim 2 — 1im Zcf—lz —1 (60)
N—oo o N—oo Zgozlwt
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and we are done; the second part of (33) follows immediately. In fact, from

(60) we also notice that the rate of convergence is the same for all 6. °
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List of Captions

Fig.??: Quantized version of [ah] signal.
Fig.??: Quantized version of [n] signal.

Fig.??: Evolution of p(zl,p?. Solid line is signal; dash-dotted line is

pgl, dashed line is p?Q.

Fig.??: Evolution of p(zl,p?. Solid line is signal; dash-dotted line is

pgl, dashed line is p?Q.
Fig.??: Quantized version of [ah] - [n] signal.

Fig.??: Evolution of pgl,pg? Solid line is signal; dash-dotted line is

pgl, dashed line is p?Q.
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