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Abstract

A noninvertible function of a first order Markov process, or of a

nearest- neighbor Markov random field, is called a hidden Markov

model. Hidden Markov models are generally not Markovian. In fact,

they may have complex and long range interactions, which is largely

the reason for their utility. Applications include signal and image

processing, speech recognition, and biological modeling. We show

that hidden Markov models are dense among essentially all finite-

state discrete-time stationary processes and finite-state lattice-based

stationary random fields. This leads to a nearly universal parameter-

ization of stationary processes and stationary random fields, and to a

consistent non-parametric estimator. We show the results of attempts

to fit simple speech and texture patterns.

1 Introduction

If X = X1, X2, ... is a Markov process and Y = Y1, Y2, ... is a deterministic or

stochastic function of X, then Y is called a hidden Markov model (HMM),

or sometimes a hidden Markov process. Usually, the dependency of Yt on

X is more-or-less local, as when Yt = f(Xt) for some function f , or Yt =

g(Xt, Xt+1, ηt) for some function g and an iid process {ηt}, independent of

X. In any case, Y itself is generally not Markov, and may in fact have a

complicated dependency structure. Nevertheless, the conditional distribution

of X given Y may remain simple, as in the above two examples where X given

Y is still first-order Markov. The combination of a rich marginal structure
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for Y and a simple posterior structure for X makes hidden Markov processes

a common modeling tool.

Example: Filtering (cf. [33]). Although the general (nonlinear) filter prob-

lem falls within this framework, let us specialize to the linear case: X (known

as the state process) is not only Markov, but satisfies a simple linear (stochas-

tic) difference equation

Xt+1 = aXt + ωt

where {ωt} is iid. The observation process Y is an HMM, linearly related to

X, as in

Yt = bXt + ω′t

where {ω′t} is another iid noise process, independent of {ωt}. The object

is to estimate the state Xt from the observations {Ys}, s ∈ [0, T ]. This is

termed smoothing if 0 ≤ t < T , filtering if t = T , and prediction if t > T .

In any case, the fact that X given Y is still Markov is central to obtaining

practical estimation formulas. Beyond this, linearity is exploited to derive

efficient recursive estimators (e.g. the Kalman filter) for a host of “on-line”

applications in tracking and control.

Example: Speech Recognition (See, for example, [1] and [41]). X is a

Markov chain with finite (but very large) state space. In principle, the state

of Xt represents all of the information relevant to predicting utterances of a

speaker at times τ > t. In practice, this information is modeled by repre-

senting, jointly, the word (and, sometimes, word pair), phoneme, and part of

phoneme (e.g. beginning, middle, or end) being articulated at time t. The

transition matrix for X is built hierarchically, by successively modeling the
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variations in pronunciation of parts of phonemes, phonemes, and words, as

well as (some of) the constraints and regularities in word sequences (syntax).

Observations are of the acoustic signal, or some transformation or simpli-

fication, and are represented by Y . A stochastic model for Yt given Xt is

developed (or estimated more-or-less nonparametrically). The result is an

HMM for the observable acoustic signal (or its transformation) Y , and the

object is to estimate X (especially the word sequence) given Y . The pos-

terior is Markov, which is fortunate since this simple dependency structure

admits dynamic-programming-like computational tools for the calculatio (or

at least approximation) of an optimal estimator for X, as well as for com-

puting expectations of various sufficient statistics involved in the estimation

of the model parameters. This HMM set up, or some of its variations, is the

basis for the most successful speech recognition systems.

Example: Ion Channel Kinetics (See [3], [2], [23], and [35]). Nerve cells

can propagate electrical activity without attenuation over long distances.

Loss-less conduction involves an active process of opening and closing selec-

tive membrane ion channels, and thereby exchanging selected ions between

inter and intra cellular spaces. Experiments can be devised to measure the

changing conductance of one or a small number of channels in response to

various chemical or electrical stimuli. These experiments reveal that ion

channels typically move through only a few effective states, being, for ex-

ample, simply “open” or “closed” with essentially no intermediate levels of

conductance. The actual molecular basis for these measurable states is more

complicated, and is often modeled as a Markov process with multiple states.

The observable conductance is then a function of this process, through which,
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for example, certain of the molecular states manifest themselves as an open

channel, and others as a closed channel. Thus the observable conductance is

an HMM. Purported mechanisms for channel kinetics can be tested by using

observed channel conductances to infer the structure and transition proba-

bilities of the (hidden) molecular Markov process. In these applications, the

time parameter is generally continuous.

Example: Amino Acid Sequence Analysis. Hundreds or thousands of

amino acids strung linearly together constitute a protein. Typically, there

are only twenty distinct types of amino acids found, but there are of course

a very large number of possible sequences. The particular sequence of amino

acids that constitutes a protein is known as its “primary” structure. The

determination of primary structure is known as sequencing, a process that

has been increasingly automated; the result is a large existing data bank

of primary structures. The function of a protein is largely determined by

the folded three-dimensional (or “tertiary”) structure that the amino acid

chain assumes in vivo. Tertiary structure can sometimes be determined by

experimental and imaging techniques, but the process is laborious and the

number of sequenced proteins far exceeds the number of proteins with known

tertiary structure. Hence, a fundamental problem in biology is the prediction

of tertiary structure from primary structure.

One general approach is to search through sequences with known tertiary

structures in order to find a “good match” to a sequence with unknown

tertiary structure. Similar sequences tend to have similar structure, and in

fact there are broad categories of structure that most proteins (or portions

thereof) fall into. In an effort to exploit these structural categories, Krogh
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et al. [37] build probabilistic models for amino acid sequences conditional on

structural classes. These models are built up from known structure-sequence

pairs, and then used to infer a likely structural class for a novel amino acid

sequence. Thus, for example, a stochastic model is built for the sequence

of amino acids constituting a typical globin (protein that transports oxygen

and carbon dioxide). A new amino acid sequence can be evaluated under

the globin model to determine its fit, and thereby to predict whether or not

it will exhibit a globin-like tertiary structure. Preliminary tests have been

highly successful.

The actual models constructed by Haussler et al. are HMM’s, with the

amino acids constituting the observables, and a Markov process, with care-

fully constructed state space and restricted transitions, constituting the hid-

den process. (A very similar approach is taken by Churchill [15] in con-

structing HMM’s for the sequence of bases constituting a DNA molecule.)

Transition probabilities are estimated from existing data bases, as are state-

dependent distributions on the twenty available amino acids. Here again the

conditional Markov structure of the unobserved (in fact, virtual) process is

heavily exploited to develop computationally-feasible estimation and infer-

ence algorithms (involving various dynamic programming-like procedures).

Example: Texture Models. This is just a proposal, but it serves to intro-

duce a generalization that will be a primary focus of our theoretical develop-

ment. Consider a digitized image of a textured pattern such as cloth, wood,

or sand. The image can be thought of as a realization of a stochastic process

{Yt}, t ∈ Λ = {(i, j) : 1 ≤ i ≤ N, 1 ≤ j ≤ M}, where N = M = 512 for

example. Yt is the grey level observed at picture element (or pixel) t. Many
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authors (for example, [18], [32], and [20]) have proposed modeling {Yt}, con-

ditioned on the texture type and the imaging parameters (distance to cam-

era, orientation, discretization, etc.), as a Markov random field. Since there

is usually an organization to the texture that essentially rules out nearest-

neighbor models, this approach demands that one either pick, more-or-less

arbitrarily, a neighborhood structure, or attempt to estimate the neighbor-

hood structure. In either case, there is then the requirement of choosing (or

estimating) parameters that determine the associated clique functionals.

A different approach to obtaining the necessary structure would be to em-

ploy a hidden Markov random field, using a simple nearest-neighbor process

for the underlying Markov structure. Thus Yt = f(Xt), f a fixed “hid-

ing function,” where Xt is a nearest-neighbor Markov random field. As

in the one-dimensional examples discussed previously, Y will not generally

be Markov, although the conditional distribution on X, given Y , is still a

nearest-neighbor Markov random field. Is it possible to introduce sufficiently

rich structure into the Y process to capture the regularity/variability of real

textures through this mechanism? We will return to this shortly.

The last example, especially, raises the issue of generality: How general

is the class of processes that can be well-approximated by a hidden Markov

model? To be concrete, we shall restrict ourselves to nearest-neighbor pro-

cesses (which is to say, first-order Markov when working in one dimension)

and we will only allow instantaneous and deterministic “hiding” functions:

Yt = f(Xt).
1 Furthermore, Xt (and hence also Yt) will always have finite state

1In one dimension, many variations are popular: Yt might depend, randomly or de-

terministically, on Xt or, simultaneously, on Xt and Xt−1. Restricting to finite state

6



space. So, for example, consider a stationary process Zt ∈ {0, 1}, t = 1, 2, ...,

which we shall try to model (or “fit”) with an HMM of the form Yt = f(Xt),

where Xt is first-order Markov, Xt ∈ {0, 1, ...N}, f : {0, 1, ...N} → {0, 1}.

By varying N, f, and the transition probability matrix for X, how close can

we get (how similar to Z can we make Y )?

The answer depends very much on the measure of similarity. Ornstein

and Weiss [38], for example, study related questions under a strong notion of

similarity: Given two discrete-state stationary processes Y and Z, d(Y, Z) ≤

ε if there exists a stationary process Ψ = {Ψt} = {(Y ′
t , Z

′
t)} such that

1. Y ′ and Z ′ have the same distributions as Y and Z respectively, and

2. P (Y ′
1 6= Z ′

1) ≤ ε.

The Ornstein-Weiss distance, d, between Y and Z is the infimum over all

such ε. The results of Ornstein and Weiss indicate that the class of Z which

can be arbitrarily well approximated by HMM’s Y , relative to d, is highly

restricted.

On the other hand, in terms of weak convergence, every stationary Z is

the limit of a sequence of HMM’s: There exists Xn, first order Markov on

{0, 1, ...Nn}, fn : {0, 1, ...Nn} → {0, 1}, such that Y n = fn(Xn) converges

weakly to Z as n → ∞ (i.e., for every m, the distribution of (Z1, ...Zm) is

the limit of the distributions of (Y n
1 , ...Y n

m)). This is fairly easy. Basically

spaces, it is not difficult to show that these four classes are equivalent, in the sense that

the set of achievable distributions, for the observable process Y , is identical in each case

(see [5], [34]). One constructs an explicit distribution-preserving transformation from an

HMM of one type to an HMM of another type.
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the idea is to define Xn taking values in {0, 1}n (Xn
t ∈ {0, 1}n for each

t = 1, 2, ...) in such a way that Xn
t+1, given Xn

t , has the same distribution

as (Zt−n+2, Zt−n+3, ...Zt+1) given (Zt−n+1, Zt−n+2, ...Zt). Then Y n
t is just the

last component of Xn
t (see [38] and [34], and see [39] for versions of this for

continuous-valued processes.)

The issue of approximating stationary processes by weak limits of HMM’s

is more complicated in higher dimensions. Let S = Zd be the d-dimensional

(discrete) square lattice. Let Z = {Zt}t∈S be stationary with finite state

space E (Zt ∈ E, ∀t ∈ S). X = {Xt}t∈S is a nearest-neighbor Markov

random field (MRF) if the distribution on Xt given {Xs}s 6=t, s∈S is the same

as the distribution on Xt given {Xs}s∈Nt , where Nt is the set of 2 · d nearest

neighbors of t (see [36]). When d = 1, this is equivalent to the usual first-

order Markov property. Given stationary Z, can we choose an N , an X, and

an f , such that X is a nearest-neighbor MRF, with values in {0, 1, ...N},

f : {0, 1, ...N} → E, and the process Y defined by Yt = f(Xt) approximates

Z? As we shall see shortly (§2), there always exists a sequence of these

hidden nearest-neighbor Markov random fields that converges weakly to Z.

(We use a similar idea as for one dimension: We choose as Xn
t the vector

with components Zs where s belongs to a block of pixels of size n around

t. Actually, we will insist that our hidden process Xn be Gibbs—see §2,

in addition to being Markov. This entails a modification to enforce strict

positivity of the conditional probabilities, Xn
t given {Xn

s }s 6=t.)

Given a stationary process Z = {Zt}t∈S, S = Zd, taking values in E

(!E! < ∞), one way to actually build a model for Z would be to try and

exploit the above-mentioned result about the (weak) density of HMM’s:
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Search for an N , a nearest-neighbor process X = {Xt}t∈S, and a func-

tion f : {0, 1...N} → E such that Y = {Yt}t∈S, Yt = f(Xt), has distri-

bution similar to Z. Actually, f can be fixed, a priori. For example, if

E = {0, 1, ...M − 1}, and f(x) = x mod M, then the collection of HMM’s

Yt = f(Xt), where Xt is a finite state ({0, 1, ...N}, some N) nearest-neighbor

Markov random field on S, is weakly dense among all stationary Z (with

state space {0, 1, ...M − 1}) on S. Therefore, the construction of a model

of this type amounts to choosing a suitable N and an associated process X.

If d = 1, then X is determined by a transition probability matrix P , which

requires specifying approximately N2 parameters. If d > 1, then we can rep-

resent X as a Gibbs distribution (see §2), which will involve one pair-clique

function for each dimension—roughly d ·N2 parameters.

In §3 we address the problem of modeling Z by estimating these param-

eters via maximum likelihood (ML), or a closely-related methodology. We

establish a kind of consistency result: Imagine that we are given a sequence

of partial observations from a single realization of Z, of the form {Zt}t∈Vn ,

where {Vn}∞n=1 is a sequence of increasing sublattices in Zd. The number N

of states in the hidden process X amounts to a regularization or smoothing

parameter, and, as is usual in nonparametric estimation, it will be necessary

to relax the smoothing constraint as we accommodate more observations:

N = Nn ↑ ∞. We will present conditions under which a maximum likelihood

(or closely-related) choice of the parameters of the X-process, under the hid-

den model Yt = f(Xt), guarantees a consistent estimation of Z, provided

Nn ↑ ∞ sufficiently slowly. Convergence is of a relative entropy (between

Z and Y ), and is almost sure with respect to the distribution on Z. Unfor-
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tunately, we can offer no practical recipes for choosing Nn, or for actually

calculating (global) ML estimates. Nevertheless, we performed some estima-

tion experiments, fixing Nn = N and Vn = V , involving acoustic signals from

speech and simple binary textures; these are presented in §3 as well.

Related Work. We have already cited a few related papers. Addition-

ally, several authors have addressed the problem of identifiability: given an

HMM Y, describe the (generally large) class of Markov processes X that

could, through a suitable hiding function f , generate the distribution of Y .

Blackwell and Koopmans [10] seem to have been the first to address the

problem. Their results were improved upon by Gilbert [28]. More recently,

Ito et al. [30] obtained an essentially complete solution. Another related

line of research has been the attempt to characterize, in terms of distribu-

tional properties, processes Y that are exactly functions of Markov chains.

Dhamadhikari [19] gave some sufficient conditions, and Fredkin and Rice [22]

gave some (rather severe and surprising) necessary conditions. A complete

algebraic characterization is known, but it is not very manageable—see Chap-

ter III of Rosenblatt [42]. Berbee and Bradley ( [7], [11]) have constructed

examples that show that even very rapidly mixing processes need not be

HMM’s. Brockett’s calculations [12] indicate that good approximations of a

stationary process by an HMM may require very large state spaces for the

underlying Markov process, particularly when the stationary process has a

nearly periodic covariance.

Concerning estimation, Baum and Petrie [5] established consistency of

maximum likelihood estimation of an HMM when the state space of the

(hidden) Markov process is known, and more recently Bickel and Ritov [8]
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extended these results to include information about asymptotic distributions.

The problem is, of course, harder when the hidden process (again, with known

state space) is a Markov random field, but there has been progress here as

well—see Comets and Gidas [16] and Frigessi and Piccioni [24]. The issue of

how to actually compute maximum likelihood parameter estimators, both for

hidden Markov processes as well as hidden Markov random fields, is discussed

by Qian and Titterington [40], who suggest several variations on the E-M

algorithm ([4], [6]), [17]), and Younes [43], who derives a stochastic gradient

ascent algorithm. Finally, we mention the results of Ji [31], who studies

nonparametric estimation of certain Gibbs fields. These are related to our

estimation results, since our results amount to a recipe for nonparametrically

estimating essentially arbitrary (stationary) random fields (see §3), although,

unlike Ji, we give no information about rates of convergence.

2 Approximation

2.1 Notation and Preliminaries

As in §1, S will represent Zd, the d-dimensional discrete square lattice. Given

any finite set E (such as the state space for either the hidden or observ-

able process), the corresponding “configuration space” is Ω = ES = {x =

{xt}t∈S : xt ∈ E ∀t ∈ S}. The topology on Ω is, as usual, the product

topology arising from the discrete topology on E. Similarly, if E ′ is another

finite set, then Ω′ = E ′S, again with the product topology. Finally, if V ⊆ S,

and x ∈ Ω, then xV = {xt}t∈V .
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Gibbs measures (on Ω) are special cases of Markov random fields. We will

show that the class of hidden finite-state first-order stationary Gibbs mea-

sures is weakly dense among finite-state stationary processes. In particular,

this implies the result announced in §1, since first-order Gibbs measures are

nearest-neighbor Markov random fields.

Gibbs measures arise from potentials. For our purposes we will use only

shift-invariant and summable potentials. By this we mean a collection of

functions Φ = {ΦV }V⊂S, V finite, such that

1. ΦV : EV → R,

2. ΦV +t = ΦV ∀t ∈ S,

3.
∑

V 30 supx∈Ω |ΦV (xV )| < ∞.

A Gibbs measure with potential Φ is any probability measure µ on Ω such

that, for any finite V ⊂ S and x ∈ Ω:

µ[XV = xV |XV C = xV C ] =
1

Z
exp{−

∑
W⊂S

W∩V 6=∅

ΦW (xW )}

where V C = S \ V , and Z (which depends on V and x) normalizes the

conditional distribution:

Z =
∑
xV

exp{−
∑

W⊂S

W∩V 6=∅

ΦW (xW )}.

Define δV = {t ∈ S\V : ∃s ∈ V, W ⊂ S, |W | < ∞, 3 ΦW 6= 0 and t, s ∈

W}, which is the boundary of V under the neighborhood relation induced
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by Φ. Then µ[XV = xV |XV C = xV C ] depends only on xδV , so µ is an MRF

relative to the neighborhood system

Nt = {s ∈ S : s 6= t, s, t ∈ W some W ⊂ S, |W | < ∞, ΦW 6= 0}.

In particular, if ΦV = 0 except for V = {t} or V = {t, s}, where s and t

are nearest neighbors in Zd (so Φ is a “nearest-neighbor potential”), then µ

is a nearest-neighbor Markov random field. A “stationary first-order Gibbs

measure” is a stationary Gibbs measure with nearest-neighbor potential.

2.2 Statement of Result

Given E and E ′ finite, and a function f : E ′ → E, denote by f̄ the function

from Ω′ to Ω defined by

f̄({xt}t∈S) = {f(xt)}t∈S.

Given a measure ν on Ω′, define µ = ν ◦ f̄−1 on Ω by

µ(A) = ν(f̄−1(A)).

Now fix E and consider the following sets of probability measures:

Ms = {µ on Ω : µ stationary}

Mg(E
′) = {µ on Ω′ : µ stationary first− order Gibbs}

Mh = {µ on Ω : µ = ν ◦ f̄−1, for some E ′ finite, ν ∈Mg(E
′), f : E ′ → E}

Mh is the set of hidden finite-state first-order stationary Gibbs measures.

Theorem 2.2.1 Mh is weakly dense in Ms.
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Remark: In one dimension, X = {Xt}t∈{0,±1,...} is first-order Markov with

positive transition probabilities iff X is a first-order Gibbs. Hence, by the

theorem, {Y : Yt = f(Xt), some f and some Xt (finite − state) first −

order Markov with positive transition probabilities} is weakly dense among

finite-state stationary processes. This special case is fairly easy to get (along

the lines of the argument outlined in §1). Furthermore, in this case there are

results about approximation in the sense of relative entropy—see [34].

2.3 Proof

The idea is essentially this: Gibbs measures are known to be dense in Ms.

Any Gibbs measure can be approximated by a Gibbs measure with potential

having finite range: Φ = {ΦV }, where ΦV = 0 whenever diameter(V ) > B,

for some bound B. Finally, hidden first-order Gibbs measures approximate

Gibbs measures with finite-range potentials.

In general, there is more than one Gibbs measure with a given poten-

tial Φ (“phase transition”), and, even though Φ is shift-invariant, a Gibbs

measure with potential Φ need not be stationary. Denote by Gs(Φ) the set

of all stationary Gibbs measures with potential Φ. Let U denote the set of

potentials for which Gs(Φ) is a singleton, and let

Mu = {µ on Ω : {µ} = Gs(Φ) for some Φ ∈ U}.

Then the following is known (Georgii [27], 16.40):

Proposition 2.3.1 Mu is weakly dense in Ms.
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Hence, it is sufficient to show that Mh is weakly dense in Mu. The next

step is to truncate Φ in order to have a finite range potential: Let

ΦN
V =


ΦV if V is contained in CN + t for some t ∈ S

0 otherwise

where CN is the cube {−N,−N + 1, . . . , N}d ⊂ S. Then, in light of the

following proposition, it will be sufficient to approximate for each N some

member of Gs(Φ
N) by a sequence in Mh.

Proposition 2.3.2 Suppose that Φ ∈ U and that we have a sequence of

potentials (ΦN) such that
∑
V 30

sup
x

!ΦV (xV ) − ΦN
V (xV ) −→ 0, as N → ∞.

Then for any sequence (µN) with µNµNn → µ weakly, where µ is the unique

element of Gs(Φ).

Proof of Proposition 2.3.2. The hypothesis on (ΦN) implies that the

conditional probabilities

ΠN
V (xV !xV c) :=

1

ZN
V

exp(−
∑

W∩V 6=∅
convergeinthesup− normto

ΠV (xV !xV c) := Z−1
V exp(−∑

W∩V 6=∅ ΦW (xW ))foranyV.BecauseΩ is compact,

we may assume that µN → ν weakly for some ν ∈ Ms. We have to show

that ν ∈ Gs(Φ). First, we observe that it is enough to show∫
fdν =

∫
ΠV fdν (1)

for any V and any f which depends only on xV . (Here, ΠV f(x) is defined

as
∑

ξ∈EV

ΠV (ξ!xV c)f(ξ).) Reason as follows: for any V ⊆ W ⊆ S, and f1
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depending only on xV , and f2 depending only on xW\V ,

ΠW f1f2 = ΠW f2ΠV f1.

Now integrate both sides under ν measure, and apply (1):∫
f2f1dν =

∫
f2ΠV f1dν

which implies that ν has the right conditional probabilities (i.e. ΠV ) on EV ,

which, in turn, implies that ν ∈ Gs(Φ). So, we need to prove (1).

Because ΠN
V → ΠV , we have sup

x
!ΠN

V f(x)− ΠV f(x)! → 0, so

!
∫

fdν −
∫

ΠV fdν! ≤!
∫

fdν −
∫

fdµN !+!
∫

fdµN if

Nislargeenough.ThefirsttermgoestozerobecauseµN → ν, and the second

term is zero because µN ∈ G(ΦN). q.e.d.

Hence the theorem follows from

Proposition 2.3.3 Suppose Φ is a potential whose range is contained in

some CN . Then there is a sequence {νβ} of stationary first-order Gibbs

measures with state space E ′ = ECN and a function f : E ′ → E such that

Proof of Proposition 2.3.3. Since N is fixed we write C instead of CN . If

{xt} ∈ Ω = ES, then we define {yt} ∈ Ω
′
= E ′S by

yt = xC+t. (2)

We index the components of yt by r ∈ C, rather than choosing an arbitrary

enumeration. So the r-th component of yt, yt,r, is equal to xt+r. We will

use the symbol y always to denote an element of Ω
′

of the form given by
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(2). An arbitrary element of Ω
′

will be written as z or ξ. An equivalent

way to express that y is of the form (2), is via the following compatibility

constraints:

yt,r = ys,r+t−s ∀r, t, s with r ∈ C and r + t− s ∈ C. (3)

Moreover the following apparently weaker form is also equivalent to (??) and

(2):

yt,r = ys,r+t−s ∀r, t, s with t− s= 1, r ∈ C

and r + t− s ∈ C.
(4)

This can be seen by connecting t and s through a chain t = t0, t1, . . . , tn = s

such that ti+1 − ti = 1 and r + ti+1 − ti ∈ C.

We now turn to the definition of the approximating potential Φβ (which

will define a first-order Gibbs measure on Ω
′
). To motivate this definition,

note that {yt} is a sample from a first-order Markov random field if {xt} is a

sample from some µ ∈ Gs(Φ). Howe because of the hard constraints (4). We

change these hard constraints into soft ones by introducing potentials with

value β for each of the constraints (4) which is violated. By letting β tend

to infinity we hope to recover (4) and at the same time to obtain the right

distribution on the configurations satisfying (4). We show that this is indeed

the case.

We seek to approximate the potential Φ. Without limitation of generality

we may assume:

ΦV ≡ 0 if V 6= t + C, some t ∈ S.
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Then we define Φβ as follows

Φβ
{t}(zt) = ΦC(zt)

Φβ
{t,s}(zt, zs) = βΨ(zt, zs) := β

∑
r,

r∈C and1[zt,r 6=zs,r+t−s]

if t− s= 1

Φβ
V = 0 otherwise

We denote by πβ
V the conditional probabilities associated with Φβ and choose

some νβ ∈ Gs(Φ
assumethatνβ → ν weakly as β →∞. We zt,0. The following

lemma is the key.

Lemma 2.3.1 For arbitrary V consider the event A = {z ∈ Ω
′
!Ψ(zt, zs) =

0 ∀t, s ∈ V,t− s= 1}. Then ν(A) = 1, i.e. the compatibility constraints are

fulfilled a.s.

We defer the proof of this lemma to the end and consider the conditional

distribution of z0,0 given zs,0 s 6= 0, under ν. W is the size of the box which

contains the potential Φ) and put

Λ = CK\CN

Λ̄ = CK+N\{0}.

We want to show that

ν(z0,0 = x0!zs,0 = xs, s ∈ Λ̄) ∝ exp{−
∑
t∈C

Φ (5)
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Note that knowing xs, s ∈ Λ is the same as knowing ys, s ∈ Λ. Hence by

Lemma 2.3.1 above

ν(zs,0 = xs, s ∈ Λ) = ν(zs = ys, s ∈ Λ).

Moreover if this probability is positive, then by weak convergence of νβ to ν

ν(z0,0 = x0!zs = ys, s ∈ Λ) = lim
β→∞

νβ(z0,0 = x0!zs = ys, s ∈ Λ)

=
∑
zC

z0,0=x0

lim
β

Πβ
C(zC !yΛ)

But by the definition of Φβ we have with x0 = z0,0

Πβ
C(zC !yΛ) = Zβ(yΛ)−1 exp

{
−

∑
t∈C

Φβ
{t}(zt)

−
∑

s,t∈C
s−t=1

Φβ
{s,t}(zs, zt)−

∑
s∈C
t∈Λ

s−As

β →∞ this converges to

It remains to prove Lemma 2.3.1.

Proof of Lemma 2.3.1. For any Λ, define the energy in Λ given the

boundary conditions by

Hβ
Λ(z) =

∑
W∩Λ6=∅

Φβ
W (zW ).

Choose Λ such that V + 2C = V + C + C ⊂ Λ. We will show that we

can modify an arbitrary configuration z 6∈ A to one which belongs to A, has
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the same boundary conditions with respect to Λ, and whose energy in Λ is

smaller by an amount β. Hence

Πβ
Λ[A!zS\Λ] → 1 as βuniformlyin

zS\Λ. By integrating over the boundary conditions we thus obtain

νβ[A] → 1 as β →∞.

The modification mentioned above goes as follows: Let g : Ω
′ → Ω

′
be defined

by

g(z)s,r = zs+r,0 if r ∈ C and s+

g(z)s,r = zs,r otherwise

then it is clear that g(z)s = zs if s 6∈ V + 2C, and thus the boundary

condition does not change. Also, it is seen easily that g(z) belongs to A. So

let us compare the energies Hβ
Λ(z) and Hβ

Λ(g(z)) for z 6∈ A:

∑
t∈Λ

Φβ
{t}(g(z)t) ≤

∑
t∈Λ

Φ

where δ = sup ΦC(xC) − inf ΦC(xC)becauseg(z)t = zt if t 6∈ V + 2C.

Moreover, because z 6∈ A and g(z) ∈ A

∑
t,s∈V
t−s=1

Ψ(zt, zs) ≥ 1,
∑

t,s∈V
t−s=1

Ψ(g(z)t, g(z)s) = 0

Now take a t 6∈ V and s arbitrary with t − s = 1. If t + r ∈ V + C and

r + t − s ∈ C, then g(z)t,r = g(z)s,r+t−s, and if ttheng(z)t,r = zt,r and

g(z)s,r+t−s = zs,r+t−s. Hence Ψ(g(z)TogetherweobtainHβ
Λ(g(z)) ≤ Hβ

Λ(z) −

β+!V + 2C!δ.Thiscompletestheproofofthelemma. q.e.d.

20



3 Estimation

The approximation result of §2 suggests modeling stationary processes with

hidden nearest-neighbor MRF’s, or simply (hidden) first-order Markov pro-

cesses in the one-dimensional case. A single sample path from an ergodic

stationary process should be sufficient to determine the parameters for an

approximation of this type, and this is confirmed, roughly speaking, by our

consistency results: Given a sequence of observations from a single sample

of an ergodic stationary process, we use Grenander’s method of sieves [29] to

construct a sequence of hidden first-order processes with distributions con-

verging (in the sense of relative entropy) to the stationary process.

Actually, we will need to restrict the class of stationary processes, some-

what when working in one dimension, and somewhat more when working in

higher dimensions; see §3.1.

Two sets of experiments were performed. Data from speech signals and

textures were used to fit hidden nearest-neighbor processes, via maximum

likelihood, and the resulting models were sampled and compared to the orig-

inal data. See §3.2.

3.1 Consistency

There are two theorems, for random processes (S = Z) and random fields

(S = Zd, d > 1), respectively. The two proofs follow the same general plan,

which we will present, in brief outline, for the one-dimensional (S = Z) case.

The full details are available in a technical report; see [26].

We imagine observing a stationary process Z with state space E =
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{0, 1, ...M − 1}, for some (finite) M > 1. Let µo be the (unknown) dis-

tribution, or law, of Z. Following the notation of §2, the process Z is to be

approximated by a hidden process Y = f̄(X), where X is nearest-neighbor

with state space E ′ = {0, 1, ...N}. Henceforth, the hiding function f (and

consequently f̄ as well) is fixed: f(x) = x mod M. Specializing to the one-

dimensional problem (S = Z), X is first-order Markov, and we will adopt

the standard representation in terms of transition probability matrices rather

than using potentials and the Gibbs representation. Let

MN = {m = {mij}N
i,j=0 : m trans. prob. matrix,

and mij ≥ e−N ∀ 0 ≤ i, j ≤ N}.

N will serve as a “regularization” or “smoothing” parameter, and will even-

tually be tied to the number n of observations, Z0 = z0, Z1 = z1, ...Zn = zn,

through an increasing function. For any m ∈ MN , denote by µm the distri-

bution of the hidden Markov process Y = {Yt}, Yt = f(Xt), where {Xt} is

the unique stationar Markov process with transition matrix m. The results

of §2 suggest that µo can be approximated by a distribution µm, for suitable

m and large enough N . Having observed Z0 = z0, Z1 = z1, ...Zn = zn, we

denote by MLN,n the set of maximum likelihood matrices from within MN :

MLN,n = MLN,n(z) = {m ∈MN : µm(z0, z1, . . . zn) = sup
q∈MN

µq(z0, z1, . . . zn)}.

(In general, MLN,n has more than one element. In any case, it is never empty:

MN is compact and µq is continuous in q.) Under an additional condition
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on Z, there exists a sequence Nn such that the set of HMM’s associated with

MLNn,n is consistent for µo:

Theorem 3.1.1 Let {Zt}∞t=−∞ be a stationary ergodic process with finite

state space, Zt ∈ {0, 1, . . . M − 1}, M < ∞, and distribution function µo. If

∃ δ > 0 3 µo(z0|z1, . . . z−t) ≥ δ ∀ t, (z0, . . . z−t) ∈ {0, 1, . . . M − 1}t+1, then

for all Nn ↑ ∞ sufficiently slowly

sup
m∈MLNn,n

∫
log

µo(z0!z−1, z−2, . . .)

µm(z0!z−1, z−2, . . .)
dµo(z) → 0 a.s. (µo)

Remarks.

1. More precisely, there exists a sequence Nn ↑ ∞ such that the assertion

holds for all sequences N ′
n ↑ ∞ satisfying N ′

n ≤ Nn ∀n.

2. Unfortunately, Nn = Nn(µo); roughly speaking, {Zt} can yield infor-

mation arbitrarily slowly.

3. There is nothing special about the regularization mij ≥ e−N . If instead,

mij ≥ g(N), where g(N) ↓ 0, then there will be a relationship between

g(N) and Nn such that the faster g(N) ↓ 0 the slower Nn ↑ ∞, in order

to insure consistency.

The corresponding result for Z on S = Zd, d > 1, is somewhat more

complicated, even to state. First, we make the additional assumption that µo,

the distribution of Z, is in fact a (ergodic and stationary) Gibbs measure (see

§2). In other words, we shall assume that µo is a measure on {0, 1, . . . M−1}S

satisfying
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i. µo is stationary and ergodic,

ii. for every finite V ⊂ S

µo[ZV = zV |ZV c = zV c ] ∝ exp{−
∑

W⊂S

W∩V 6=∅

ΦW (zW )}

where Φ = {ΦV } V ⊂ S, finite, is a (shift-invariant, summable) potential, as

defined in §2.2

We can no longer index the approximating measures by transition prob-

abilities; instead we replace MN by a set of “regularized” potentials PN :

PN = {nearest neighbor potentials Ψ = (Ψ0, Ψ1, . . . Ψd)

on {0, 1, . . . N} with bounds !Ψ0(k)! ≤ N,

!Ψi(j, k)! ≤ N, 1 ≤ i ≤ d},

with the understanding that Ψ0 : {0, 1, . . . N} → R is the one-point potential

Φ{t} and Ψi : {0, 1, . . . N}2 → R are the pair potentials Φ{t,t+ei} (1 ≤ i ≤

d), where ei is the vector with d − 1 zeroes and a single one at the i’th

component. All other potentials ΦV are identically zero. A Gibbs measure

ν with potential Ψ ∈ PN is then defined as in §2.1. Evidently, ν is then

nearest-neighbor Markov.

2Obviously ii implies that the conditional distributions are bounded from below as was

required already in Theorem 3.1.1. In addition ii also implies that the conditional distri-

butions are continuous in z. As a converse, boundedness and continuity of the conditonal

distributions imply ii (Georgii [27], 2.30). Furthermore, by Proposition 2.3.1 above we

also know that the set of µo’s satisying i and ii is weakly dense in the set of stationary

measures since uniqueness of a Gibbs measure implies that it is stationary and ergodic

(Georgii [27], 5.11 and 14.15).
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For any Ψ ∈ PN , let Gs(Ψ) be the set of stationary Gibbs measures

with potential Ψ. Gs(Ψ) is always nonempty, but may contain more than

one measure. Therefore, there is a set of hidden Gibbs measures associated,

through f , with each Ψ ∈ PN ; we denote this set by H(Ψ):

H(Ψ) = {L(Y ) : Yt = f(Xt), L(X) ∈ Gs(Ψ)}

where L(·) is the distribution (or law) of a process.

Now suppose that we observe ZV = zV , where L(Z) = µo and V ⊂ S

finite. The idea is to choose a maximum likelihood potential Ψ from within

PN , in other words to choose Ψ ∈ PN in such a way that the associated

hidden Gibbs measures assign maximum probability (likelihood) to zV . Un-

fortunately, given a candidate potential Ψ ∈ PN , the likelihood of zV under

the hidden Gibbs model associated with Ψ is not necessarily well-defined;

different elements of H(Ψ) may assign different likelihoods to zV . Further-

more, even when Gs(Ψ) contains only one measure, the actual calculation of

the probability of zV under the associated hidden measure is intractable. For

these reasons we will employ the following modification of the likelihood:

Fix, once and for all, a configuration x ∈ Ω = {0, 1, . . . M − 1}S. For any

Ψ ∈ PN , define the (conditional) log-likelihood

LV (Ψ, zV ) = log{
∑

ξV : ξt∈f−1(zt)

t∈V

µ[ξV !xV C ]},

where µ ∈ Gs(Ψ). L is well defined: it is independent of which µ ∈ Gs(Ψ) we

choose. Furthermore, L depends only on xδV , where δV is the boundary of

V under the nearest-neighbor system in Zd.
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Finally, define MN,V to be the set of maximum likelihood potentials within

PN :

MN,V = MN,V (z) = {Ψ ∈ PN : LV (Ψ, zV ) = sup
Φ∈PN

LV (Φ, zV )},

and for any two stationary probability measures µ and ν, define h(µ, ν) to

be the specific relative entropy (see e.g. Georgii [27]):

h(µ, ν) = lim inf
V ↑S

1

!V !
Eµ[log

µ[xV ]

ν[xV ]
].

By Jensen’s inequality, h(µ, ν) ≥ 0, and h(µ, ν) = 0 if µ = ν. Conversely,

if ν is Gibbs with summable potential and h(µ, ν) = 0, then also µ is Gibbs

with the same potential as ν (Georgii [27], 15.37).

Theorem 3.1.2 Let µo be an ergodic stationary Gibbs measure on {0, 1, . . . M−

1}S, S = Zd, and let {Vn} be an increasing sequence of finite subsets of S,

such that S =
⋃∞

n=1 Vn and !δV !/!V ! → 0. For all sequences Nn ↑ ∞ suffi-

ciently slowly

sup
Ψ∈MLNn,Vn

sup
µ∈H(Ψ)

h(µo, µ) → 0 a.s. (µo)

Remarks.

1. For d = 1 the claim of Theorem 3.1.2 is the same as of Theorem 3.1.1,

i.e.

h(µo, µ) =
∫

log(µo(z0!z−1, . . .)/µ(z0!z−1, . . .))dµo(z)

for the law µ of any hidden Markov process. This is easily seen by an

argument following the Shannon-McMillan-Breiman theorem since for

any such µ

µ(z0!z−1, . . . , z−k) −→ µ(z0!z−1, . . .)
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uniformly in z (cf. [26]).

2. Unfortunately we do not know whether we have convergence also with

respect to the weak topology of measures.

Proof (outline). The approach is substantially the same for both consis-

tency results. Let us consider the case of µo defined on {0, 1, . . . M − 1}Z

(i.e. dimension one), and go through a brief outline of the proof. (The de-

tails, for both the consistency theorems, are available through the technical

report [26].)

The proof is based upon two lemmas. The first is a kind of uniform

law of large numbers for the probabilities µm, m ∈ Mn, reminiscent of the

Shannon-McMillan-Breiman Theorem (cf. Billingsley [9]):

Lemma 3.1.1

lim
n→∞

sup
m∈MNn

!
1

n
log µm(z0, z1, . . . zn)−

∫
log µm(z0!z−1, z−2, . . .)dµo(z)! = 0 a.s. (µo)

for all Nn ↑ ∞ sufficiently slowly.

The second lemma insures that there is some sequence mN ∈MN such that

µmN
approaches µo:

Lemma 3.1.2 There exists a sequence of matrices mN ∈MN such that

lim
N→∞

∫
log µmN

(z0!z−1, z−2, . . .)dµo(z) =
∫

log µo(z0!z−1, z−2, . . .)dµo(z).

(The proof of lemma 3.1.2 is by construction.)

Now assume that the lemmas are true. By Jensen’s inequality,∫
log µm(z0!z−1, . . .)dµo(z) ≤

∫
log µo(z0!z−1
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for all N and m ∈ MN , so it is enough to show that

lim inf
n→∞

inf
m∈MLNn,n

∫
log µm(z0!z−1, . . .)dµo(z) ≥

∫
µo(z0!z−1, . . .)dµo(z) a.s.

By application of the lemmas:

lim inf
n→∞

inf
m∈MLNn,n

∫
log µm(z0!z−1, . . .)dµo(z)

= lim inf
n→∞

inf
m∈MLNn,n

{(
∫

log µm(z0!z−1, . . .)dµo(z)− 1

n
log µm(z0, z1, . . . zn))

+
1

n
log µm(z0, z1, . . . zn)}

≥ lim inf
n→∞

inf
m∈MLNn,n

{ 1

n
log µm(z0, z1, . . . zn)−!

1

n
log µm(z0, z1, . . . zn)

−
∫

log µm(z0!z−1, . . .)dµo(z)!}

= lim inf
n→∞

inf
m∈MLNn,n

1

n
log µm(z0, z1, . . . zn) (a.s., by lemma 3.1.1)

≥ lim inf
n→∞

1

n
log µmNn

(z0, z1, . . . zn)

= lim inf
n→∞

∫
log µmNn

(z0!z−1, . . .)dµo(z) (again, a.s., by lemma 3.1.1)

=
∫

log µo(z0!z−1, . . .)dµo(z) (by lemma 3.1.2)

3.2 Experiments

Consistency is reassuring, but it tells us too little about performance on real

(finite) data. We have therefore run some simple experiments in order to

asses the “finite sample” promise of the proposed models. There were two

kinds of experiments: one-dimensional estimation experiments from speech

waveforms and two-dimensional estimation experiments from simple binary

textures.
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3.2.1 Speech Waveforms

Segments of two phonemes were extracted from a single utterance of the word

“one”—see Figure 1. The acoustic signal was sampled at xx kilohertz (one

sample every xx milliseconds) and 256 amplitude levels, although each ampli-

tude was later rounded to one of eight equally-spaced values. Panel A shows

a xx millisecond segment from the phoneme [ah] which follows the initial [ou]

and precedes the final [nn] in the pronunciation of “one.” There are 200 data

points, each having one of eight values. Panel B shows an analogous segment

from the final [nn] of the same utterance. The nearly-periodic waveforms

are characteristic of so-called voiced phonemes, and derive ultimately from

more-or-less periodic oscillations of the vocal chords.

We treated each signal as a sample, z1, z2, ...z200, from an eight-valued

stationary process, which we attempted to fit with a series of hidden Markov

models of increasing size. In each case, we employed the “hiding function”

f(x) = 1+x mod 8, and computed approximate maximum-likelihood N×N

transition probability matrices, for N = 10, 20, 30, 40, 50, and 60. Maxi-

mum likelihood computations were made via the Baum re-estimation formula

([4], [6]), which is an instance of the EM procedure ([17]). Estimates were

only approximately maximum likelihood since this is an iterative hill-climbing

algorithm; it can approach a local maximum and, as a practical matter, it

must be terminated short of convergence. We began each run (one run for

each value of N) with a randomly-generated transition probability matrix,

and continued until there were only negligible changes in the transition ma-

trix.
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The results are most easily judged by viewing samples from the resulting

HMM’s. Figures 2A (for the [ah] sequence) and 2B (for the [nn] sequence)

show random samples from Yt = f(XN
t ), where {XN

t }200
t=1 is first-order Markov

on {0, 1, ...N − 1} with the estimated N × N transition probability matrix,

and XN
1 = 1 (N = 10, 20, 30, 40, 50, and 60). In both sets of experiments,

the results appear to deteriorate at the largest values of N . Since there are

only 200 (highly correlated) samples, the likely explanation is the familiar

problem of over-fitting, although there may be computational problems (per-

haps related to local maxima) with the iteration procedure. In any case, it

would be interesting to perform similar experiments with larger data sets;

essentially infinite amounts of data are easily available.

It may also be interesting to splice together such signals, as a novel ap-

proach to speech synthesis. In this regard, one would need to fit, as well, the

non-stationary speech units associated with various consonants. Because we

are after a signal of only finite duration, it is not impossible, and perhaps not

unreasonable to speculate, that exactly the same models would be effective

for fitting consonants.

An obvious alternative approach would be to fit each signal with an N ’th-

order Markov process. However, even at the modest eight-level discretization

used in our experiments, this would involve estimating 7 · 8N parameters,

which evidently places a severe restriction on the process order. It may be

true, in contrast, that the hidden process provides an efficient coding of the

nearly-periodic structure by dedicating single or multiple states to positions

within the cycle, although we have performed no systematic experiments to

test this conjecture.
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3.2.2 Binary Textures

The experiments with two-dimensional processes were more difficult and less

successful. We adopted the modest goal of fitting some simple binary tex-

tures. These were derived from real textures, borrowed from the well-used

Brodatz collection ([13]), by simply thresholding grey-level pictures. A suit-

able threshold produces substantial islands of “ones” positioned among a sea

of “zeros.” The shape and pattern of the islands, of course, depends upon

the texture. Figure 3 has two examples, straw and paper. In each, there are

60× 80 = 4800 pixels; “ones” are depicted with dots and “zeros” with stars.

Following our approach to the speech data, we viewed these images as

samples from stationary (spatial) processes, and attempted to fit these pro-

cesses with N -state hidden Markov models. Specifically, we employed the

hiding function f(x) = x mod 2, and a four-nearest-neighbor Gibbs represen-

tation for the hidden process, Xt, t ∈ S = {(i, j) : 1 ≤ i ≤ 60, 1 ≤ j ≤ 80}.

In both experiments, N was fixed at 10, so that Xt ∈ {0, 1, ...9}.

For each texture we fit two matrices αh = {αh
kl} and αv = {αv

kl}, where

0 ≤ k, l ≤ 9, and h stands for “horizontal” and v for “vertical.” These

matrices represent the Gibbs potential for X, as follows:

Π(Xi,j = k|Xi−1,j = l1, Xi+1,j = l2, Xi,j−1 = l3, Xi,j+1 =

∝ exp−{αv
l1k + αv

kl2
+ αh

l3k + αh
kl4
},

except that terms are dropped when they reference outside of the 60 × 80

array (“free boundary conditions”). Given a sample z = {zt}t∈S, the partial

derivative with respect to αh
kl (0 ≤ k, l ≤ 9) of the log-likelihood of z, under
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the model {f(Xt)}t∈S, is

E[Nh
kl]− E[Nh

kl|f(Xt) = zt, t ∈ S] (6)

where

Nh
kl = #{(i, j) : 1 ≤ i ≤ 60, 1 ≤ j ≤ 79, Xi,j = k,Xi,j+1 = l}

(a “sufficient statistic”). An analogous expression governs partial derivatives

with respect to the components of αv. One way to estimate the matrices

αh and αv is via a discrete gradient ascent: compute (6) at the “current”

parameter values, take a small step in the direction of the gradient, recompute

(6), and so on. Unfortunately, the computation of (6) is notoriously difficult.

We resorted to Monte Carlo methods (cf. Metropolis et al. [?]xxx) and

Besag and Green [?]xx)), repeatedly using the Gibbs Sampler to estimate

both expectations.

The approach is unsatisfactory. It is slow and it is difficult to judge

convergence, both within an iteration (computation of the expectations) and

overall (when to stop?). There have been many suggestions for improving the

efficiency of the calculations—see for example Younes ([43]) and Qian and

Titterington ([40]). We experimented with a variety of alternatives, without

much success. In the end we settled on the approach outlined above, which

we view as decidedly brute-force and last-resort.

Having estimated potential functions (αh and αv) for both the (binarized)

straw and paper textures, we drew samples from the corresponding Gibbs

distributions—again, via the Gibbs Sampler. The results, viewed through

the hiding function f , are shown in Figure 4.
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As with the problem of synthesis in speech, texture synthesis is made

intriguing by the availability of unlimited amounts of data. Despite this

favorable circumstance, there are as of yet no fully satisfactory solutions,

especially if one wants to render samples at arbitrary angles and resolution.

We have offered a solution, in principle: nearest-neighbor HMM’s are dense

and can be estimated. Evidently, however, the approach is a long way from

being practical. In any case, others have already made good progress— we

would cite [14], [25], [18], [21], [32], and [20], for some state-of-the-art

work on texture estimation and synthesis.
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Figure Legends.

Figure 1. Panel A: xxx millisecond segment from the phoneme [ah]. Panel

B: xxx millisecond segment from the phoneme [nn].

Figure 2. Panel A: HMM estimated from data in Figure 1A. Panel B: HMM

estimated from data in Figure 1B.

Figure 3. Panel A: thresholded image of straw. Panel B: thresholded image

of paper.

Figure 4. Panel A: HMM estimated from data in Figure 3A. Panel B: HMM

estimated from data in Figure 3B.
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