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Abstract

We consider a discrete-time, infinite-horizon, one-good stochastic growth model,
and we solve the central planner’s optimization problem by applying a stochastic
version of Pontryagin’s maximum principle for Markov controls. An approxima-
tion method is used in order to extend to an infinite horizon a stochastic maximum
principle derived by Arkin and Evstigneev (1987) for the finite-horizon case. We
obtain efficiency conditions which are expressed in terms of stochastic multipliers,
i.e., “shadow”-price functions, and a transversality condition.

We interpret these conditions by treating uncertainty as a source of heterogene-
ity, i.e., by considering different realizations of the capital stock as different types
of capital. A connection can then be established between the stochastic one-good
model and a deterministic model with heterogeneous capital goods, where the di-
mension of the state space increases over time reflecting the history of the stochastic
shock. In such a context, the variations of the prices of the realizations, which can
be interpreted as capital gains, are shown to play an explicit role, besides rentals,
in the conditions for efficiency, both along the optimal path and in the stochastic
steady state; in addition, such capital gains reflect not only intertemporal, but also
interstate price variations, capturing insurance elements related to the presence of
risk.

Introducing generations, we show how the insurance theme appears not only in
the conditions for efficiency in the intertemporal allocation of resources, but also in
the conditions for Pareto optimality in the distribution of aggregate consumption
between generations, which are stated in terms of a stochastic marginal rate of
substitution.
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1. Introduction

The problem of characterizing the efficiency properties of a stochastic, dynamic
economy has recently received increasing attention, especially within the overlapping-
generations literature. The renewed interest in the subject is due to the fact that assessing
dynamic efficiency is crucial not only for determining long-run economic policy, but also
for analyzing a variety of theoretical questions, such as the existence of speculative
bubbles, the operativeness of bequest motives and the sustainability of national debt. !

However, the issue being discussed goes beyond the realm of the model with gen-
erations, and concerns directly also the classical growth model, which is the framework
within which the question was originally posed by Malinvaud (1953). The overlapping-
generations model can be seen as a special application, where the question of dynamic
efficiency is faced jointly with the problem of Pareto optimality of resource distribution,
which is conventionally examined separately after Samuelson’s pure-exchange seminal
contribution.

Recent contributions include the following. Abel et al. (1989) address the problem
within a stochastic version of the Diamond (1965) model; starting from the consideration
that a comparison between the safe rate of interest and the average growth rate is not
sufficient in order to detect efficiency under uncertainty, both because of the existence of
a risk premium relating the safe rate of interest and the marginal product of capital, and
because of the relevance of capital gains and losses; they develop and test an alternative
criterion based on flows of investment and return to capital. Zilcha (1988), introducing
the notion of stochastic dominance in a similar model, derives a characterization of
dynamic efficiency again in terms of interest rates and growth rates, along the lines

1See Tirole (1985), Weil (1987) and Bertocchi (1988).



of Cass (1972). In a pure exchange framework with overlappinggenerations, optimality
questions have been examined by Peled (1982, 1984), Manuelli (1988), and Aiyagari and
Peled (1988). Related work by Balasko and Shell (1981), who deal with a deterministic
model with many goods, is also relevant to our approach.

The scope of this paper is to characterize efficient allocations for a dynamic, sto-
chastic model, both in an optimal growth version and in a version with overlapping
generations. Following a tradition initiated by Cass (1965), we solve the optimization
problem of a central planner by applying a stochastic version of the maximum principle
derived by Pontryagin et al. (1962). Hamiltonian dynamical systems, as shown by Cass
and Shell (1976a,b) both in a continuous and discrete time version, provide a useful
framework for the analysis of economic growth and dynamics. A discrete time version
of the maximum principle, which turns out to be crucial for extensions involving a gen-
erational structure, is developed in further detail by Weitzman and Schmidt (1971) and
Weitzman (1973) for a deterministic, infinite economy. In a stochastic context, Arkin
and Evstigneev (1987) derive necessary conditions for a stochastic maximum principle
in discrete time; however, their results are limited to a finite horizon.

Using an approximation argument, in Section 2 we extend Arkin and Evstigneev’s
results to a stochastic, infinite model; our conditions for optimality involve the max-
imization of the conditional expected value of the Hamiltonian function, and a set of
canonical equations for the multipliers, i.e., the “shadow”-price functions.

Next, we suggest the following interpretation of the resulting efliciency conditions:
by treating uncertainty as a source of heterogeneity in an otherwise homogeneous state
space, different realizations of the single capital good can be viewed as different “types”
of capital. A similarity can then be established between the stochastic, one-capital model
and a deterministic, heterogeneous-capital model where the dimension of the state space
increases with time, reflecting the entire history of the shock. This exercise allows us
to interpret the efficiency conditions as equilibrium conditions for the capital market,
which equalize gross return, i.e., rental plus capital gain, for each “type” of capital.
Such capital gains are shown to be generated by intertemporal, as well as interstate,
variations of the “shadow” prices, reflecting an insurance element due to the presence of
risk; in addition, they do not fade away in a stochastic steady state, which is defined as
a stationary distribution for the capital stock.

In Section 3, we introduce generations and we apply our results to characterize
Pareto optimal programs Since uncertainty creates a source of heterogeneity also with
respect to the agents’ characteristics, we construct a welfare index which assigns different
weights to different individual “types”, where each “type” is again defined by the past
history of the shock. Our welfare index is general enough to encompass increasing degrees
of strength for the implied Pareto optimality criterion, depending on the interpretation
of the weights. With respect to the resulting conditions for efficiency, the considerations
previously advanced for the growth model also apply to the model with generations. In
addition, we find the condition for Pareto optimality, expressed in terms of a stochastic



marginal rate of substitution, also reflects the presence of insurance aspects associated
with the potential lack of intertemporal risk sharing.

Finally, in Section 4 we summarize the conclusions of this paper and suggest some
questions for further research.

9. A Classical Growth Model

In this section we do the following: In 2.1 we define the infinite-horizon stochas-
tic problem we want to solve. In 2.2 we define and solve an associated finite-horizon
stochastic problem. In 2.3 we show how to obtain a suboptimal solution to the infinite
horizon problem from a sequence of finite-horizon problems; we also prove that the sub-
optimal solution can give a level of welfare arbitrarily close to the optimal one. In 2.4
we show that the stochastic one-capital problem can be interpreted as a deterministic
heterogeneous capital problem.

2.1 The Optimization Problem: Infinite Horizon

Consider the following infinite-horizon optimization problem: given a discrete-
time, stochastic growth model, the optimization problem of the central planner consists
of the maximization of the following welfare function

ﬁEoﬂtu(ct) (2.1)

where Fj is the expected value operator, given the information available at time 0;
is a discount factor, such that 0 < 3 <1, ¢; is consumption per capita and the utility
function w satisfies the following assumptions: «(0) =0, u/(¢;) > 0, and u”(¢;) < 0.

The resource constraint is given by the following stochastic difference equation in
intensive form

keyr = f(kft, 61&) — Gt (2-2)

for t=0,1,..., where k;y; is investment at time ¢ and f(k;, 0;) is output at time ¢, as
a function of the stock of capital k; and of a stochastic shock 6;. Capital completely
depreciates in one period. We impose the following assumptions on the technology:
f(0,0) = 0, forall 0; f'(k,0) > 0 and f"(k,0) < 0 for all k& > 0; f'(c0,0) = 0,
1(0,0) = oo for all 0; where f', f” are the first and second derivatives of f with
respect to k; in addition, f and f’ are assumed to be continuous in both arguments;
finally, fo(k,0) > 0, where f; is the first derivative of f with respect to 6.

The random variables 6; are independent and identically distributed; there
exists a finite number N of states of nature; the realizations of @; are on a set
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Se = {oq, a9, ..., ay}, such that 0 < a < @ < co, where a and @ are the
minimum and the maximum values of the realizations of 6;. Let p = [p;...,p,] be a
probability measure such that Prob(¢; = a,,) = p,, for n=1,2 ..., N. Finally, define
0" = (69,04, ...,0;) as the history of the shock up to time ¢, and S**' =z! |S; as the
cartesian product of S;, with dimension N

A central planner maximizes (2.1) subject to (2.2) and the non-negativity con-
straints

Ct,kft Z 0 (23)

for £t =0,1,..., given an initial condition kg > 0.

The problem can be solved by applying a stochastic version of Pontryagin’s max-
imum principle. We shall proceed in two steps. First, we apply a result derived by
Arkin and Evstigneev (1987) to a truncation of the model described above, to obtain a
set of necessary optimality conditions for a finite-horizon problem. Secondly, we use an
approximation argument to show how similar conditions yield a suboptimal policy for
an infinite-horizon model; this suboptimal policy can be chosen to guarantee a level of
welfare arbitrarily close to the optimal one.

2.2 The Optimization Problem: Finite Horizon

For a finite-horizon T, the welfare function becomes

T—

—_

FoB'u(cy) (2.4)

t=0

to be maximized subject to the resource constraint

kerr = [ (ke ) — (2.5)
for t=0,1,....,,T — 1, and to the non-negativity constraints
ke >0 (2.6)

for £t =0,1,...,T, given an initial condition kg > 0 and a final condition kr > 0.

The problem described above will be called the constrained optimization prob-
lem. If we remove the positivity constraint (2.6), we get a similar (but not identical)
problem, which will be called the unconstrained optimization problem.

Let us consider some properties of the solution to the constrained optimization
problem. First of all, by strict concavity, there is always a unique solution, for any
ko > 0; such solution is given by an optimal consumption policy {c;}1 ', where each
¢; 1s based only upon the information available at time t. The optimal consumption
¢; can be written in the form

cr = c(ky, Or) (2.7)
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and it is associated with an optimal investment k; 1 given by
kiyr = f(ke, 00) — c(ke, 00) = h(ky, 0) (2.8)

The values c¢; and ky,; are random variables, and the sequence of capital stocks {k;}L,
is a first-order Markov process.?

We proceeed to describe necessary optimality conditions that the solution must
satisfy. We are going to apply a stochastic maximum principle for a simple Markov
control problem. Such a principle is described in Arkin and Evstigneev (1987); however,
it applies to the unconstrained problem. To extend it to the constrained problem, we
need certain preliminary definitions.

Consider the set of solutions to the constrained problem:
C = {{c:}L4 : ¢ maximizes (2.4), subject to (2.5),(2.6) and (2.7) given kg > 0}.
Analogously, we can define the set of solutions to the unconstrained problem:
C* = {{ci 314+ ¢ maximizes(2.4), subject to (2.5) and (2.7), given ko > 0}.

In general, C' and C* have different elements, i.e. the solutions to the constrained problem
need not be solutions of the unconstrained problem and vice versa. However, if there
exists a {c, k¢ } belonging to C* which is strictly positive (i.e. ¢, kipy > 0 Vt), then it
will also belong to €. That is: a strictly positive solution to the unconstrained problem
is also a solution to the constrained problem. We call this special class of solutions
interior solutions. In what follows, we assume that for every T there exists an interior
solution of the constrained problem. By strict concavity this solution will be the unique
element of C. Now we proceed, in Theorem 1, to give necessary conditions the interior
solution to the constrained problem must satisfy; these are, in fact, exactly the same as
the necessary conditions for a solution to the unconstrained problem.

Theorem 1 Define a Hamiltonian function Hy as follows:

Ht+1<ct7 Ky, Mt+1<9t+17 k‘t+1); 0y, 9t+1)
= Fulce) + pes1 (O, kea) [ (e, 0r) — 4] (2. 9)

for t=0,1,...,T — 1, where the functions pi1(0ei1,ker1) are the multipliers.
Then, for {(ci, ke 1)} o Lo be an interior solution of the constrained problem, it is
necessary that the conditional expected value of the Hamiltonian, given by the expression

Et{Ht+1 (Cm ke, et <8t+17 kt+1); 0s, 9t+1) ’91&7 k’t} (2-10)

2Theorem 1, p. 83, in Arkin and Evstigneev (1987) establishes the sufficiency of Markov controls.




is maximized, i.e., the following first-order conditions are satisfied

OB Hyyi(co, ke, pror (Orr, ker), 0r, 0c1 )04, Ko }
8Ct

for t =0,1,....,T — 1. In addition, the multipliers must satisfy the conjugate system
given below

—0 (2.11)

OB A Hy1(co, ke, proy1(Ori1, keia), Or, 00110, ke }

ks = 114 (04, kit (2.12)
OB Hey1(co, ke, pov1(0e1, kivn), 01, 04110, ki) _
= ki1 (2.13)
Oprer1 Oy, Keqr)
for t=0,1,....T — 1, and the transversality condition
/LT<8T, l{?T) = 0. (214)

Proof:

By definition, an interior solution of the constrained problem is a positive solution of
the unconstrained problem. Then, the necessary conditions for an interior solution are
the same as the ones for a solution to the unconstrained problem. Now, by Arkin
and Evstigneev (1987, Theorem 3, p.94) (2.9)-(2.14) are necessary conditions for such a
solution. ]

It will be useful to rewrite (2.10) as

E{Brulcs) + pep1(Ocy1, keyd)[f (ke, 00) — |0, e}
= Bulc) + Belper1(0ci1, k)]0, ke S (ke 00) — ¢4

= ﬂtu(ct) + Z:Pnﬂt+1(04n, kt+1)[f<kt; 91&) - Ct] (2- 15)

for t=0,1,....,7 — 1. * Conditions (2.11) - (2.13) then become simply

N
tu/<ct) = anNtJrl(Oén;k:tJrl) (2.16)
n=1
N
ZPthH(am kt+1)f/<kt79t) = Mt(etu k) (2.17)
n=1
l{ft+1 = f(kft, Qt) — Ct (218)

3Note that the second equality follows from the fact that keyy = f(ks,0;) — c(k, 0;).
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2.3 The Approximation Argument: From Finite to Infinite Hori-
zon

In this section, we use an approximation method in order to extend the conditions
derived above to a problem with an infinite horizon. In such a context, we show that an
appropriately defined suboptimal policy can be chosen in such a way that guarantees a
level of welfare arbitrarily close to the optimal one.

Assume that for every positive integer 1" there is an interior solution to the con-
strained optimization problem with finite horizon T, initial condition k3 > 0 and final
condition kp = 0. Denote this solution by ¢ = {eI'}1 L

Assume, also, that there exists a solution for the infinite-horizon optimization
problem, described in 2.1. Denote this solution by ¢> = {c{°}22,.

Now consider for the infinite-horizon problem a sequence of suboptimal solutions
' = {cl'}°,, such that

cof =c¢l for t=0,1, .., T (2.19)

and

/=0 for t=T+1, T+2, .. (2.20)

It is obvious that every one of the suboptimal solutions satisfies both the resource
constraints (2.2) and the non-negativity constraints (2.3). On the other hand these
solutions are suboptimal: let J(c) be the welfare function for an infinite-horizon problem
associated with a policy ¢. Obviously, since {c¢°} is the optimal solution, we have

J(c>®) > J(ch). (2.21)

However, we will show that we can get arbitrarily close to the global maximum
J(¢>) using suboptimal solutions of the form (2.19)-(2.20):

Theorem 2 Define f(k:t) = f(k, @), where @ is the maxzimum of {ay,...,an}. Assume
there exist constants K', K" and 6, with 1 <6< %, such that

FUFCf ko)) < K+ K"&' (2.29)

t ttmes

Then for any € > 0, there exists a time T" such that
J(e) +e> J(e®) > J(T) (2.22)

Proof:



Step 1. Assume there exist constants A, B and 6, with 1 < § < 87! such that
u(cy) < A+ Bé&". (2.23)

Then we have the following inequality

S Buc) <A Y. BB Y (B6) (2.2

t=T+1 t=T+1 t=T+1

where the right-hand side tends to 0 as T tends to infinity. So, we obtain

T o0 T
J(e*) = Y Bule)+ 3 Pule?) < Bule)
t=0 t=T+1 t=0
+ A DY f+B Y (B (2. 25)
t=T+1 t=T+1

where the first part of the inequality obtains because {c!'} is the optimal solution to
the finite horizon problem, while the second part follows from (2.23).
On the other hand, we have

T 00
S Au(dl) = 3 fuldl) = T (2.26)
t=0 t=0
because ¢/ =0 and w(c!) =0 for t > T. Therefore, we obtain
J() < TJ(e>) < J()+A D> f'+B Y (86 (2.27)
=T+1 t=T+1

which, since § and (6 are less than one, implies that for any ¢ > 0 there exists a T’
such that
J(e) < J(e®) < J(eh) + ¢ (2.28)

which confirms (2.22).

Step 2. Therefore, in order to complete the proof we need to show the existence of A,
B and ¢ such that (2.23) holds. By the conditions of the theorem, there exist constants
K', K" and 6, with 1 <é< %, such that

FUf(f(ko)) < K"+ K"6" (2.29)
—_
t times
Also, since u"(¢;) < 0,
m{gx)u’(ct) ='(0) = M. (2.30)
cee|0,00



Moreover, by concavity, we have
u(e) — u(0) < ' (0)(cp — 0). (2.31)

So, (2.30) and (2.31) imply that
u(e) < Mey (2.32)

Now, clearly, the policy that maximizes ¢z, for a fixed time ¢ is to invest all
capital until ¢ =7 —1 and set ¢;=kz ;. In that case, we have

< f(f(-f (ko)) < K'+ K"8" (2.33)
N——

t times

where the inequality follows from (2.29), and in turn implies
u(e;) < M(K'+ K"6") = MK+ MK"§", (2.34)

Now, (2.23) is satisfied with A= MK’ and B= MK". ]

Remark 1. We have shown that it is possible to construct an infinite-horizon, subopti-
mal consumption policy which guarantees a level of welfare within an ¢ > 0 of the level
which would be associated with the infinite-horizon, optimal consumption policy.
Remark 2. The conditions which characterize this suboptimal policy are given by
equations (2.11) - (2.14), as established by Arkin and Evstigneev (1987) for a finite-
horizon, optimal policy.

The above analysis completes the description of a suboptimal solution to the dis-
crete time, infinite horizon, stochastic classical growth model.

2.4 Uncertainty as a Source of Heterogeneity

Intuitively, the presence of a stochastic shock in a one-capital growth model can be
interpreted as a source of heterogeneity within an otherwise homogeneous state space.
Namely, following Debreu (1959), ch. 7, a state variable can be defined not only by its
physical properties and its date, but also by the event on the occurrence of which it is
conditional: different realizations of the single capital stock can then be viewed as stocks
of different types of capital, as illustrated in Figure 1.

The figure shows the evolution of the space of the state variable k;, for a case
where the shock takes on only two possible values, o and (3; the dimension of the space
of the subsequent realizations will depend both on the number of the states of nature,
in this case N = 2, and by the timing: given a unique initial condition kg, at ¢ =10
the shock 0y will occur, determining two possible realizations for the stock of capital
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at t =1, k(o) and ki(03); at t =2, it is the entire history of the stochastic process,
0! = (6y,0,) that determines the four possible realizations of k.

Exploiting this simple intuition, which was also suggested by Peled (1982) for a
pure exchange model, we can “rewrite” a stochastic, one-capital model as a deterministic
model with heterogeneous capital goods, where the dimension of the state space increases
with time reflecting the entire history of the shock.

In this section, the intuitive connection that can be established between a de-
terministic model with many capital goods and a stochastic one-capital model will be
made more rigorous and explicitly exploited in order to suggest an interpretation for the
optimality conditions previously derived.

The following additional notation will be useful. Let oy be a realization of the
random variable 6;; since 0; takes values on the set S = {ay,qs,...,any}, 01 can also
take on N possible values on S; let o' = (09, 07,...,0;) denote a history of realizations
up to time ¢.

Consider now again the solution we obtained for the stochastic one-capital model
with finite horizon: at the final date 7T, we have N7 sequences of past realizations of
the shock, given by of ! = (09, 01,...,07_1), where o7 ! belongs to an N7 -dimensional
set ST. Each sequence ol ! is associated to an optimal consumption and investment
policy {(ci(eT 1), key1(cT )} and to a sequence of multipliers {psy1(c7 1)} 4,
such to satisfy the following relationships, for ¢ =0,1,...,7 — 1.

B (ce(0")) = §Pnﬂt+1(@m/€t+1(0t))- (2.35)
Z:lpnum(oém keri(0)) [ (ke(0'™1), 00) = pe(oe, ke(0")). (2.36)
keri(0") = f(ke(0"1), 00) — er(0”). (2.37)

It should be noted that c;(¢7 1) really depends only on o' = (0y, 074, ...,0¢); this
justifies the notation ¢;(¢") introduced above.

It can now be noted that the expressions obtained are in fact the necessary con-
ditions for optimization of a deterministic problem based on the maximization of the
following welfare function

i > p(0o)...p(e)Bulce(0")) (2.38)

=0 gtegttl

where p(0;) is a function p: {a,9,...,a,} — [0,1], defined by p(o;) = p, for
0; =0, 1=0,1, ..., T'—1, subject to the constraints

keri(0f) = [(ke(0"1), 00) — col0”) (2.39)
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for t =0,1,...,T—1, which are dynamical equations in k; on an expanding state space
(the state vector k; is of size NY).

The solution to the problem is given by a set of N'+ N2 + ...+ NT°1 control
variables ¢,(o%), t = 0,1,...,T — 1, such that (2.38) is maximized subject to (2.39)
and the non-negativity constraints. In particular, each realization of k;, which can be
interpreted as a different type of capital, is appropriately weighted within the welfare
function according to the probability of occurrence of the history o' (by independence,
p(c*) = p(0p)...p(0¢)). The problem, which is now free of randomness and therefore
formally identical with a purely deterministic problem, can be solved by application of
the deterministic maximum principle (Pontryagin et al., (1962)): define the Hamiltonian

H,

Hy =Y jiegtr1 p(00)..p(0y) Biuley(at))
(2.40)

+ Xgeresere fur1 (@[ (ke(0™1), 00) — eu(0")]
where the fizy1(0'"!) are the multipliers.

Then, the first-order conditions for optimality are given in terms of maximizing
H;. Taking derivatives and proceeding in the standard manner, we get:

p(00)--p(0) B () = 3 fua(0™) (2.41)

O't+1€s
(0 = 5 (0" k(o ), ) (2.2
O't+1€s
for t=0,1,....,T — 1.
Define now K -
A (O_t+1) = i1 (O_ ) (243)

p(00)...p(0¢11)
Substituting (2.43) into (2.41) and (2.42), we obtain

Bl (eu(0")) = ZSP<Ut+1)Nt+1<Ut+1) (2.44)
pe(0’) = ZSP(Ut+1)Mt+1(Utﬂ)f/(k‘t(gt*l)aUt) (2.45)

which correspond to expressions (2.16) and (2.17).
In particular, (2.45) can be conveniently rearranged to yield

pe(o’) — Y orireS p<0t+1)ﬂt+1<0t+1)

k(o™ Y, 0) =1+
<t< )»0t) Zat+1esp<0t+1)ﬂt+l<0t+l>

(2.46)

which can be interpreted as an equilibrium condition for the capital market.
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Remark 3. Consistently with standard results in multi-capital models (see for example
Shell and Stiglitz, 1967), two elements appear in the expression above: the marginal
product of each “type” of capital, i.e., the rental, and the capital gain generated by
intertemporal variations of prices, which are represented here by the multipliers. How-
ever (as already noticed by Jeanjean, 1974), there exists a qualitative difference between
deterministic and stochastic multipliers: the latter, in fact, reflect not only intertempo-
ral, but also interstate variations of relative prices, and therefore capture an insurance
element due the presence of risk.

Remark 4. Another important departure from the purely deterministic setup, where
the degree of heterogeneity of the state space is invariant, becomes apparent when sta-
tionarity is imposed: in the standard heterogeneous-capital model, in fact, with station-
ary prices capital gains disappear, and the optimality conditions are simply characterized
by the equalization of rentals; on the other hand, in a stochastic model, where a sta-
tionary state is defined in terms of a stationary distribution which involves lagged values
of the capital stock and of its price, the optimality conditions never reduce to a simple
equalization of rentals. The “stochastic golden rule” for this model is in fact described
by (2.45), if restricted on the support for the stationary distribution of the capital stock;
the corresponding system of stationary prices is implicitly defined , through (2.44), by
the marginal utilities of consumption over the possible levels of capital which constitute
such support.

Example. A simple example will be useful at this stage. Consider the system of
equations given by (2.46), and set t =0 and N = 2, ie., o, = {«,(}; this implies
Nt*=1 and N'H! = 2. The history at time 0 is simply 0° = (0y), and can take on
two values, « or (; the history at time 1 is given by o' = (09, 0y), which can take
on values (o, ), (o, 3), (8,¢), (8,0). The system is, therefore, given by the following
expression

/ Zglp(gl)m(gl) - Mo(Oé) o Doy P(Ul)ﬂl(gl) - Mo(ﬂ)
Pl = om0 ey

where 3, p(o1)pa(o') = p(a)p(a, o) + p(B)pa(a, B) + p(a)pa (B, @) + p(B) 1 (8, B).

Remark 5. At time 1, there exist two types of capital, one for each realization of the

current stock, given ko : the equation derived above dictates that gross returns, i.e.,
the sum of the own rates of return and the capital gains have to be the same for both
types of capital.

3. An Overlapping-Generations Model
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In this section we apply our results to characterize Pareto optimal programs in an
overlapping-generations model, and to explore the connection between Pareto optimality
in the distribution among consumers and dynamic efficiency of resource allocation. In
3.1 we define a stochastic optimization problem for the central planner and we obtain a
suboptimal solution by solving a finite-horizon approximation. The method is exactly
analogous to that used in the previous section. In 3.2 we discuss the resulting conditions.
In 3.3 we consider Pareto optimality.

3.1 The Optimization Problem

We introduce now an overlapping-generations structure into the infinite-time model
previously developed. In period ¢ there are [L; identical individuals who live for two
periods, ¢ and 4 1. Without loss of generality, we shall refer to a single representative
agent for each generation. The population growth rate is assumed to be equal to zero,
ie., Ly = L. Each young individual is endowed with one unit of labor, which he
supplies inelastically; utility is derived from consumption in each period, according to a
time-additive utility function with standard concavity properties, given by

ulep) + Bw(cd) (3.1)

where ¢! and ¢? are the levels of consumption in the first and in the second period,
respectively, and u(0) =0, ' >0, ' <0, v(0) =0, v/ >0, v" <0.

The technology is unchanged, and so is the stochastic process assumed for the pro-
duction shock 0;. The model, therefore, represents a stochastic version of the Diamond
(1965) model.

Once again, it is possible to treat uncertainty of a source of heterogeneity: each
generation, in fact, is characterized by a specific history of realizations of the random
variable. In particular, at time ¢ we can distinguish between S'*! different “types”
of individuals, each characterized by an history o' = {09,071, ...,0¢} of realizations of
0" = {0o,01, ..., 0 }.

An appropriate welfare index for the central planner would then involve the ex-
pected utility of each type, which is indexed by o' and can be written as

W(o") = ule; (6) + Bw(c(a’, 0i11)) (3.2)

for ¢t =0,1, ... . Given the intrinsic heterogeneity of the individuals, at each t the
central planner will assign to each type a positive weight w(c?); introducing a social
discount factor R such that 0 < R < 1, we obtain the following social welfare function

v(cg)—l—iRt > W(dhw(a"). (3.3a)

ote g+l
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where v(c2) is the utility of the agent who was born old at time 0. Denote the value of

the welfare function under the policy ¢ = {¢;}$°, by J(¢). Consider also the finite-horizon
social welfare function:

v(eg) + >R > W(a"w(ah). (3.3b)

t=0 stegt+l

We will denote by ¢7 the finite-horizon policy {¢I'}] ¢} and by ¢ the infinite-horizon
policy {cI'}2°,, with ¢, = ¢, for t = 0,1,....T — 1, ¢, = 0 for t = T, T + 1,.... Denote
the value of the welfare function under the finite-horizon policy by J(¢*) and note that
J(er)y = J(c").

The set of resource constraints is given by

keri(0") = f(ki(0"™ 1), 00) — ¢ (0") — ¢f_4(0") (3.4)

for t =0,1, ..., o't € S* and o' € S*"!. The policy must also satisfy the non-negativity
constraints
et el kg >0 (3.5)
The infinite-horizon problem consists of the maximization of (3.3a) under (3.4)
and (3.5), given an initial condition ko > 0,. The finite-horizon problem consists of
the maximization of (3.3b) under (3.4)-(3.5), initial condition k¢ > 0 and final condition
kr = 0. We can solve the infinite-horizon problem in a way that is directly analogous
to the one employed in Section 2; namely by a a sequence of finite-horizon solutions we
can approximate the optimal infinite-horizon welfare level. The solution is summarized
in the following theorem, which corresponds to Theorems 1 and 2:

Theorem 3 Assume that for every positive integer T the finite-horizon problem has an
interior solution ¢*. Assume that the infinite horizon problem has a solution c. Finally,
define f as in Theorem 2 and assume the existence of constants K', K and 6 that salisfy
(2.29). Then for any € > 0 there is a time T such that

J(e) +e> J(e®) > J(T) (2.22)

Here ¢ is an infinite-horizon policy with ¢l = él. for t =0,1,....T — 1 and ¢l = 0 for

t="T,1,.... Also ¢T is chosen to mazimize the Hamiltonian function:

Hii(cl, 2 ke, Mpa(0),0") = RV S jec g w(ot)[u(cl (o))
+EtU(C?(Ut7 O0t11))] + Xprrrege )\t+1(0t+1)[f(/ft(0t71)a o) — Ctl(‘ft) (3.6)

—6371(&)]

for t=0,1,..T —1,0"t € St ot € St ott! € S1H2,
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The necessary conditions for optimization of (3.6) are:

Rhw (o) (¢;(0")) = UH%M A (o) (3.7)

R w(o" p(o)v/ (¢4 (o)) = UH%M Ara(o) (3.8)
M(o) = UH%;W A (o) f (k0" 1), 00) (3.9)

ke (o) = f(k(0" ), 00) = ci(0") = ¢/ (o) (3.10)
Ar(c") =0 (3.11)

Proof:

The proof is similar to the proof of optimality for the classical growth problem, so only a
sketch will be given. The approximation argument of Theorem 2 allows us to construct
a suboptimal solution for the infinite-horizon problem from optimal interior solutions
to the finite horizon problem. This suboptimal solution, as explained in Theorem 2,
will give a welfare level that is within € of the optimal level. The interior solution {¢!'}
to the problem with finite horizon T’ must satisfy the necessary optimality conditions

(3.6)-(3.11). n

The analogy between a stochastic onecapital problem and a deterministic hetero-
geneous capital problem holds in this case, too. Define

t+1) )‘t+1<‘7t+1)

ha(o't) = Z (3.12)
which can be substituted into (3.7) - (3.9) to yield
R W (o) = 3 (oY ha(o) (3.13)
Ot+1E€ES
R w(a® Dplo)e/ (6] 1(0") = 3 w0 Aga(o™) (3.14)
O't+1€s
w(oY (o) = 3 w(@™) A (") (ke(ot, 07) (3.15)

0t41€8
which represent the analogue of equations (2.44) and (2.45), previously derived for the
growth model. In particular, since in the overlapping-generations model we have two
variables representing consumption for different generations, (3.13) and (3.14) correspond
to (2.44), while (3.15) corresponds to (2.45).

A closer examination of the above conditions leads to the following considerations.

16



3.2 Efficiency and Pareto Optimality

Consider first the condition for dynamic efficiency given by (3.15), which has to
be satisfied simultaneously with the condition for Pareto optimality given by (3.13) and
(3.14). The interpretation is analogous to the one previously suggested within a classi-
cal growth model. In summary, (3.15) can be interpreted as a capital market-clearing
condition, which involves rentals and capital gains; the latter are due to intertemporal
as well as interstate variations of the “shadow” prices, and do not fade away even in the
steady state.

Next, we observe that (3.13) and (3.14) taken together imply the following condi-
tion for a Pareto-optimal distribution of consumption between generations

w(ch(o") _ wlo' p(o)
I (0")  wloh)R

where the left-hand side is the intertemporal marginal rate of substitution. As noted by
Manuelli (1988), such expression is not the conventional one, since at the denominator
we find the marginal utility in old age of the individual born at ¢ — 1, rather than at
t : in other words, rather than a ratio of marginal utilities for the same individual in
two different periods, we have a ratio of marginal utilities for individuals of different ages

(3.16)

who coexist at time ¢.
A precise relationship between the two alternative definitions of the marginal rate
of substitution is given by
W) _ (o) () )
V(e a(oh)  v(c(otth)) V(e 1(0")) '
where the first element on the right-hand side corresponds to the conventional definition
of the marginal rate of substitution.
It is worth noting that in a deterministic model, stationarity would imply that

the second element on the right-hand side is equal to 1, since ¢? = ¢ |. Introducing

uncertainty, however, the equivalence between intertemporal and interpersonal transfers
which characterizes the deterministic case breaks down, since individuals are affected
by different realizations of the random variable. The resulting expression for the in-
tertemporal marginal rate of substitution therefore includes an additional element which
reflects the presence of risk.*

Consider now the right-hand side of equation (3.16). Again, a comparison with the
corresponding expression for a deterministic stationary state can be useful: the marginal
rate of substitution would in fact be equalized to the rate of population growth. In the

4As shown in Manuelli (1988), the insurance aspect which is captured by the intertemporal marginal
rate of substitution in a stochastic model has important implications for the conditions that allow money
to be valued.
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stochastic case, instead, we find a complex expression which involves the ratio of the
weights that the central planner assigns to subsequent generations. (Obviously, such
ratio would be equal to one in the deterministic, stationary case).

However, it is interesting to note that, if the weight w(c") are normalized to
sum up to one, they can be interpreted as probabilities. In other words, rather than
arbitrarily selecting the weights at each ¢, the planner could set them according to the
following criterion

w(o") = p(o") (3.18)

where p(o') = p(og)p(o1)...p(0¢) by independency. Substituting (3.18) into (3.16), we

obtain a more familiar expression given by
1{a1f <t

1

v(cia(ot) R

There is in fact a precise economic interpretation of (3.18): it corresponds to the

selection of a stronger, non-conditional Pareto optimality criterion (see Muerch, 1977,

Peled, 1982, and Peck, 1988), according to which the planner maximizes, at each time ¢

Eolu(cy (o)) + v(c/ (0", 0c)] = D p(o")[uley (0")) + v(ci (0", 0ry1)] (3.20)

otesttl

Summing (3.20) over time yields (3.3). To conclude, condition (3.16) reflects the se-
lection of the welfare weights, and the welfare function given by (3.3) turns out to be
general enough to encompass different degrees of strength for the implied Pareto crite-
rion, depending on the interpretation given to such weights.

1. Summary and Conclusions

We have studied the question of dynamic efficiency in a discrete-time, infinite-
horizon, one-capital stochastic model.

In an optimal-growth version of the model, we have derived efficiency conditions
expressed in terms of “shadow”-price functions. By treating each possible realization of
the capital good, for any given history of the shock, as a different “type” of capital, our
efficiency conditions can be interpreted as market-clearing conditions for the capital mar-
ket, which dictate that gross returns, i.e., rentals plus capital gains, should be equalized
for each “type” of capital. However, there exists a qualitative difference between deter-
ministic “shadow” prices and stochastic ones: the latter, in fact, reflect an additional
insurance element. Introducing generations, the same insurance theme appears also in
the conditions for Pareto optimality, which are stated in terms of a stochastic marginal
rate of substitution.
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Our results can be applied in order to investigate phenomena such as the existence
of money, the feasibility of speculative bubbles and the sustainability of national debt in
a stochastic, production economy.
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