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Abstract

We consider the convergence of the Lainiotis Partition Algorithm for system iden-
tification. This algorithm computes a MAP model estimate of the system. It is proven
that under certain weak conditions the algorithm converges to the “truest” (in a mean
square error sense) model. In the course of the discussion, we consider certain factors
that determine the convergence behavior of the algorithm. To illustrate the conver-
gence concepts, we apply the algorithm to the identification of the parameters of a
d.c. motor.
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1 Introduction

A popular system identification algorithm is Lainiotis’ partition algorithm [1-
4], which is characterized by good computational properties and tolerance to
imperfect knowledge of the system’s noise statistics. The algorithm has been
used for system identification of aircraft, d.c. motors [5], seismic phenomena [6]
and so forth.

The algorithm starts with a sequence of observations of a physical system
and a finite set of possible linear models to explain these observations. The
selection of the truest, i.e., the most likely, model is performed by computing
the probability of every model in the set, conditional on the observations of the
system. The model with highest probability is selected as the truest model.



This procedure is called an identification epoch. It should be noted that this is
a Bayesian Maximum A Posteriori probability (MAP) approach. A geometric
interpretation of the identification procedure is the following: each of the can-
didate models is considered as a point in an abstract space (parameter space).
One identification epoch corresponds to finding the most likely point in a re-
gion of the parameter space. We can run the algorithm for several identification
epochs, successively refining the set of possible models and obtaining truer mod-
els in later epochs. Geometrically, we are picking the most likely point from a
sequence of progressively smaller regions in the parameter space. Hopefully,
eventually the region shrinks to a point that is globally most likely in space.

An interesting question is: When does the algorithm converge? Given a
finite set of models and an unlimited amount of observations, will one of the
models have consistently highest conditional probability? Furthermore, will we
keep getting a consistently most likely model in successive identification epochs,
when the model set gets more and more refined?

Lainiotis and Sengbush [7] were the first to observe via simulation the fact
that the algorithm does indeed converge to the model closest to the true system.
Similar empirical analyses can be found in Magill [8], Hilborn and Lainiotis
[9,10], and Saridis [11]. However, little theoretical work has been done to date
on the convergence question.

The basic object of interest in the convergence analysis is the ratio of con-
ditional probabilities of two models in the model set (e.g., equation (3)). For
example, Aoki in [12] points out that such ratios form a martingale. However, he
sets forth a general analysis of Bayes procedures, without specific convergence
conditions for the partition algorithm (in fact, his book predates the algorithm).

Moore et al. derive convergence conditions for the partition algorithm in [13-
15]. Their analysis is based on a strong assumption: that the observations come
from an ergodic physical system. Stochastic dynamical systems that exhibit
oscillatory or transient behavior (for example, the d.c. motor of Section 4) are
not ergodic. Also, the type of convergence (i.p, a.s.7) is not clarified.



Tugnait also considers the convergence of the partition algorithm in [16]. He
proves powerful results without assuming ergodicity, but he assumes another
condition that is unlikely to be satisfied in practice, namely, that the error
covariance matrix is uniformly continuous as a function of the model parameters.
In fact, to guarantee this condition, Tugnait assumes, in essence, that the full
state vector is observed. This is a very restrictive condition. The d.c. motor of
Section 4 does not satisfy it; neither do many other systems of practical interest.

Here we prove two convergence theorems, using a slightly different point of
view. The first theorem guarantees convergence in the mean and the second
convergence with probability 1. Both theorems hold under very weak assump-
tions,that are likely to be satisfied for every system of practical interest. Like
other authors in the past, we base our analysis on an examination of the ratios
of conditional probabilites. However, we do not assume the actual system to be
in the model set, nor that the system can be necessarily described by any linear
model. Instead we take a purely phenomenological approach and consider the
truest model to be the one that best fits the observations. What is proven is,
essentially, that if a model consistently fits the observations with least mean
square error, it will be selected as the best model by the partition algorithm.
Depending on the conditions the model satisfies, the convergence will be in the
mean, or with probability 1 (w.p. 1). The conditions required for either theo-
rem are very weak and likely to be satisfied by any system of practical interest.



The convergence analysis also helps us in understanding what happens when the
algorithm fails to discriminate between models. In essence, when two models
perform equally well in fitting the observations, the algorithm will fail to select
one over the other. This commonsense statement is made more precise in the
course of the proof of the convergence theorems.

The paper is organized as follows: in Section 2 we present an outline of the
algorithm and discuss its operation; we also identify certain quantities that are
crucial to convergence. In Section 3 the convergence theorems are proven and
the significance of the convergence conditions is discussed. In Section 4 the
algorithm is used to identify the parameters of a real physical system (a d.c.
motor). Through successive applications of the partition algorithm, we obtain
progressively more refined estimates of the motor parameters. Eventually the
algorithm reaches its discrimination limit and further iterations yield no im-
provement of the estimates. This agrees well with the theoretical analysis of
the previous section: we have reached a point where the conditions of conver-
gence are no longer fulfilled. We conclude in section 5 with a summary of our
theoretical results and a discussion of their relevance to the practical problem
of motor identification.

2 The Identification Problem: Some Prelimi-
naries

The Identification Problem is defined as follows. Given the linear, discrete time,
stochastic system

z(n) = F(n)z(n — 1) + G(n)u(n) (1)
y(n) = H(n)z(n) +v(n) (2)

with w(n),v(n) Gaussian, zero-mean, white noise processes over a probability
space (2, F, P), with statistics:

E(u(n)) =0, E(v(n))=0
Bu(m)a (m)) = Q)(n —m),  Blo(p® (m) = R(n)8(n —m)
Blu@vT(m)) =0, mn=1,2,...

(all the processes in (1) and (2) are vectors; we take y(n) to be M —dimensional,
and the other processes to have appropriate dimensions) we want to identify the
system. That is, we want to determine the values of certain unknown elements
of F,G,H,Q, R, on the basis of observations

Y(n)=[y(1),y(2),..y(m)], n=12 ..

Remark 1. Another (perhaps more realistic) description of the problem is: Given
a sequence of observations y(1),%(2),...,y(n) (which may come from a linear or



nonlinear system), find a system of the form (1),(2) that reproduces y(1), ..., y(n)
as closely as possible.

The Lainiotis partition algorithm [17] solves the identification problem in
the following way: We postulate K possible models M; = (F;, G, H;,Q;, R;)
i =1,2,..,K. Call the set {M;, i =1,2,...,K} the model set. Collect all
the IV unknown parameters in the vector a that can take any of the values
a; = [ai1,0i2,.,a;n], ¢ = 1,2,..., K. Call this vector the parameter vector. Tt
is an element of the N-dimensional Euclidean parameter space. In this sense,
the model set is a set of points in the parameter space and our task is to find
the truest point in this set, or, in other words, to search through the parameter
space for the most likely point. We assume that M,, i = 1,2, ..., K is uniformly
completely controllable (UCC) and uniformly completely observable (UCO)
(as defined by Jazwinski [12]).

The algorithm assigns conditional probabilities on each of the K vectors
a;,as,...,ax. We write, for short, p; , = Probla=a; | Y(n)) (¢ = 1,2,..., K,
n=1,2,...). The details of the computation can be found in [10]. We will use
here the following update equation:

det(P(n | a;))"/?- exp(—% -V(n|ai)) pin-1
S, det(P(n | )V - eap(—4 - V(n | 85)) - pin -1

(3)

Pin =

where
Vn|a;)=g](n]|a)P *(n]a;)g(n]a) (4)

and g(n | a;) is the error term given by

y(n | a;) =y(n) —g(n | a;) (5)

Here g(n | a;), is the optimal linear estimate of y(n), computed by a Kalman
filter matched to the model M;. Similarly P(n | a;) is the covariance matrix
of gj (TL | aj):

P(n|a;) = B(5" (n]a;)j(n | ay)) (6)
computed by the Kalman filter matched to the model M;. As more observations
y(n), n=1,2,... come in, we update the conditional probabilities (3). At time
n, we assume the true model of the system to be the model M; such that
Pin > Pjn Vi # ¢. If this ¢ remains the same for all n with substantially higher
Pin than any pj,, then we have good reason to believe that M; is indeed the
truest model.

We proceeed to establish some preliminaries that will be useful in the conver-
gence analysis of the next section. From now on, for brevity, we will write ¢;(n)
instead of §(n | a;) and P;(n) instead of P(n | a;). Also assume p; o = + Vi.
Incidentally, note that the probabilities p;, are themselves random quantities,
dependent on the observations: y(1),...,y(n). This implies that when we talk
about their convergence properties we must specify the type of convergence. In



what follows we will be concerned with convergence in the mean (Theorem 1)
or convergence w.p. 1 (Theorem 2).

The following lemma is a consequence of the UCC-UCO property and will
be used in the proof of Theorems 1 and 2:

LEMMA: Assume Vi M; is UCC-UCO (as defined in [17]). Then Vi €
{1,2, ,K} E|’yi, (Si s.t.

PROOF: Jazwinski [12]. B

From (7) it follows that Vg # 0,Vi € {1,2,..., K },Vn integer
0 < illgll* < ¢ Pi(n)q < 6illal® (8)

0 <6 lgll* < ¢" P H(m)q < v, M lall® )

We will now define some quantities that bear on the performance of the
algorithm and will be used in the proof of the convergence theorems. The model
selection will be done on the basis of the observed error §;(n), n =1,2,... . It is
natural to consider as best the model that accumulates less error on the average
(we try to minimize Y °_, E(||g;(m)]?).

First define
>0 () 1)

o;; = limsup —
Y oo Ym EUIG (M)I)
The ay;’s, exist always and they are a measure of the goodness of a model
relative to another. Namely, the smaller «;;, the better is M, relative to M;.
Also define

A (0,m) ={a: F (exp [— PN (AGIEECE IIQJ(k)llz)D <a" Vn>m},

1
G (0,m) = inf Ay (0,m) (11)

In a trivial sense, @;;(0,m) exists always. Even when A;;(0,m) is empty, we
have &;;(0,m) = co. The more interesting question is: when is G;;(0,m) < 1
? It is always true for 8 = 1. If it is true Vm > mqg and for large values of 8,
then M is a much better model than M;, in some sense. This is so because, if
>~ 15i(K)||? is much greater, on the average, than Y, ||7;(k)||?, then we also ex-

pect exp (— Y"p_; (I|7:(k)]|*)) to be much smaller than exp (—>_i_; (/17;(k)?))
in some average sense.



3 Convergence of the Partition Algorithm

Now we will prove two theorems on convergence of the Partition Algorithm.

THEOREM 1: Given a process y(n), n = 1,2, ... (possibly generated by the
system (1),(2)) and K models, M;, i = 1,2, ..., K, all of them UCC-UCO. Then
Vi, 7 such that the following conditions hold:

Condition 1(a): Vj € {1,2,...,K},35; >0,n; s.t. Vn > n;

ECY_ g5 (m)ll?) > 8; - n (12)
m=1
Condition 1(b): Je;; > 0 s.t.
Tog (2 Lt
M - log( 5 )+ 5; (53‘ " )>0 (13)

(where «; is defined in (10)), we have V@ Ing s.t. Vn > ng

. <Prob(a =a, | Y(ﬂ))) e,

Prob(a=a; | Y(n))

PROOF: Define i

Jin

Aij,n = log

Then, applying (3) recursively, we get

N = 3 logdet(Fy(m)"* 45 3 5 om) s m) 35 m)

= logdet(Pi(m)) 2 — % S 3F ()P gi(m) (14)

Now, from (14),

~ My L e (Eml? gl



(Because of eqgs (8), (9), and the limsup equation (10)) the inequality is true
Yn > ng, some N,

n

> [nM Tos(F) + 3 Bl mI) - (5 -

m=1

Qij + €ij
i

>

)

n

1 Q5 +6ij)
2

[M Tog(3) + 5+ (5= =

Since the term in the brackets is positive for some ¢;; (by (13)), we have that

for any () Ing s.t. Vn > ng
Pin

Bliogi) > @ (15)
Pjin
Also by the fact that log is a concave function,
log(E(x)) = E(log(x)) (16)

and now (15) and (16) imply that

log(B(222)) > Q = B(2r) > @

j,n Pjn

Remark 2. Condition 1(a) is a mean value statement. It says that the mean
value of the cumulative prediction error for every model in the model set is
increasing in time at a linear rate. This will certainly be true if there is a small
additive white noise component, like u(n), v(n) in (1), (2).
Remark 3. Condition l(b) has to do with the relative rate a;; at which error
accumulates for every model in the model set. It is required that for some model
M this rate is very small. In fact, it has to be smaller than a function of the
ratio of upper and lower error bounds (;’s, §;’s, that we get from the postulated
covariance matrices P,) and the absolute rate 3;’s of error accumulation.
Remark 4. 1f the above assumptions hold, the theorem guarantees that the mean
value of p; n /pj n increases without limit as n tends to infinity. This implies that,
on the average, p;, is much greater than p;,. This is a mean value statement;
essentially it says that, on the average, one of the conditional probabilities is
much higher than the others. We may reasonably expect that the actual value
of this probability will be much larger than the values of the other probabilities,
as well, but this need not be true all the time. It can be that for some 7 the
conditional probability (3) is lower than the rest with high probability; but it
is very high on a set of small probability, so it can still have the highest average
between all the conditional probabilities.

Now we will strengthen our conditions, to obtain a result about the proba-
bility ratios themselves, rather than their mean values. This is done in the next



theorem, where convergence with probability 1 is proven.

THEOREM 2: Given a process y(n), n = 1,2, ... (possibly generated by the
system (1),(2)) and K models, M;, i = 1,2,..., K, all of them UCC-UCO. Also
Condition 2: 3(,ng  s.t.

dji(éj/'yi,n) . ((5i/’)/j)M§j <¢ <1, VYn>mng (17)
where @;; is defined in (11). Then, w.p. 1

Probla=a;,|Y(n))
Probla=a;, | Y(n))

—0

PROOF: By the same method as in Theorem 1, we can get

Bim < (6_11)”1‘4/2 - exp l Z <||yg ||2 - % [ (% )||2>] (18)

Pin Vi

Now, by (18) we have that for any § > 0

Prob( ]]3] 2> 6) <

)

Prob(<%>”M/2~exp[ % Z(m (B = 2 >||2)]>5)=

J

. 26;
pron (eap [;(ngj(k:)n?—%ngi(knﬁ)]2(@%&) <

(by the Markov inequality - see [8])

85\ M5m . e
C@)- ()Mo E (63«”29 l > (g R)))P = = leyi(k)IIQ)D :
g k=1 Y=
Here C'(6) is a constant that depends only on §. Now, by the hypothesis of the
theorem we see that
Pmb(zﬂ s 8) < C(8) - ¢ (19)

with ¢ < 1 (by (17)). But then Y 7 Prob(—L > §) < 00, for any §, and so,
by the Borel-Cantelli Lemma (see [13]) Jng such that ¥n > ng

Prob(Eim = §) =0
Pim



Remark 5. This theorem tells us that with probability 1, i.e., almost cerlainly,
one of the probabilities will be arbitrarily higher than the rest. Hence the
partition algorithm wil consistently select the corresponding model as being the
truest one in the model set.

Remark 6. The condition that ensures this is that the truest model has less
cumulative error (in the sense of mean exponent, as described by d;;) in (11),
than any other model in the model set. The “amount” by which the cumulative
error has to be least, depends on the error bounding constants «;’s, §;’s, which
we obtain from the covariance matrices ;.

4 An Example

The algorithm was tested on the following real-world problem of system iden-
tification: We want to identify the parameters of a d.c. motor operating in the
linear region. We start with a sequence of observations from a real d.c. motor
(not a computer simulation): y(1), ... , y¥(n). The observations will depend lin-
early on the state vector of the motor; there is a well-understood second order
system of differential equations describing the evolution of the state vector for
a d.c. motor operating in the linear region. We discretize time with a time step
h to obtain the following difference state equations:

][ s ) [)-

[ W hm [ ¥E§§ } (k) (20)

Here the state variables are i(k) and w(k): i(k) is the rotor current, w(k) the
shaft angular velocity . V(k), the input voltage and T'(k) , the input torque,
are the control variables. The time step (in seconds) is h. The noise u(k) =
[u1 (k) u2(k)]T is assumed zero mean, Gaussian, white. The parameters of the
system are:

1. R is the resistance measured in Ohms

2. L is the inductance measured in Henrys

3. Fg is electromotive force coeflicient measured in Volt-sec/rad
4. J is the moment of inertia measured in kg-m?

5. B is the coeflicient of friction measured in Nt-m-sec/rad



In the notation of the previous sections, the parameter vectorisa = [R L K J BJ.

We turn the motor on by applying to it an input voltage of 50 Volts and zero
torque. That is, V(k)=50 for k = 1,2,... and T(k)= 0 for k = 1,2,.... We let
the motor operate for a few seconds and observe its operation (as we mention
below, we actually measure its current). Of course, the actual motor obeys (20)
only approximately. We want to find a model of the form (20) that reproduces
the observations as closely as possible. We will use the partition algorithm to
find such a model.

We must choose what the observation y(k) will be. We expect we will get
better identification from observations of both i(k) and w(k). However, mea-
suring accurately the angular velocity requires expensive instrumentation. On
the other hand, it is easy to check that even when we are observing only the
current ¢(k), the system is uniformly completely observable, so the identification
algorithm should work. We choose to observe only the current:

y(k) = i(k) +o(k) (21)

We take 128 observations of the motor, one every 10 ms (h=.01 sec). That is,
the observations span a time of 1.28 seconds. These observations are recorded
digitally as 128 eight-bit numbers.

We proceed to compute the statistics of the observation error v(k). The
observations are digitally recorded, so there is quantization error; other than
that, the observation is perfect. We assume the error to be Gaussian, white,
and zero-mean. Now we will use information about the quantization method
to compute the variance of the observation error, R(k) = E(§(k)g” (k)). Set
three standard deviations to be equal to one-half the resolution of the quantizer.
We have an eight-bit quantizer to measure a maximum of 1 Amp current, and
the resolution is approximately 4 mAmp’s, so the standard deviation of v(k) is
approximately .7 mAmp.

We now compute, in a similar manner, the statistics of the state noise u(k).
We assume the system to be linear and so we expect, after a transient phase,
a steady state operation. Indeed, examining the (k) observations, we notice
an initial current peak, followed by a dip and then an approximately constant
current region. However, in this last region we observe fluctuations in the data
that exceed what can be explained as observation error. We attribute these
fluctuations to state noise. Assuming the maximum fluctuation from the average
value of the current to be three standard deviations, we compute the standard
deviation of the current error (u;(k)) to be 8 mAmp, i.e., 33% of the steady
state value. We assume (arbitrarily) the angular velocity error to also have a
standard deviation of 33% of the steady state to get a standard deviation of .01
rpm. Therefore, the diagonal elements of the covariance matrix (k) are .008,
.01. We assume the off-diagonal elements to be zero.

Admittedly, this is a rough estimate, but the partition algorithm is known to
perform stably even when the noise statistics are not very accurately estimated.



Having estimated the noise statistics, we proceed to define the parameter
vector. We have to make the following decisions: How many unknown parame-
ters are there? (What is N7) How many models? (What is K 7) If the ith
parameter can take K; values, then a can take K = K;-K5-...- K values. Then
we would have to implement the algorithm with K different models. Obviously,
for larger K the computational load gets bigger; so it is in our interest to keep
both N and K;, = 1,2,..,N small. We can achieve this by measuring some
of the parameters directly, by standard lab techniques, rather than using the
partition algorithm. We have fairly reliable ways to measure the resistance R
and the constant Fg; we find them to be =300 Ohm, Fr=1.2 Volt-sec/rad;
this leaves L, J, B to be identified. It must be emphasized that the values of
the L, J, B parameters are unknown to us; the only way we have to evaluate
the goodness of the identified parameters is by comparing the performance of
the true physical system with that of our computer model.

Given three unknown parameters L, J, B, the identification is essentially
a search in the three-dimensional parameter space. We are trying to find a
point (or a small neighborhood of points), that is, parameter values, such that
the corresponding model will fit to our data. We achieve this in the following
way: We choose some parameter vector in the parameter space and a big region
around the vector; we span the region by K parameter vectors (i.e., models) and
choose, with the partition algorithm, the most likely parameter vector. Now we
choose a new, smaller region around the new vector and repeat the procedure.
By successive iterations (epochs of the algorithm) we get progressively smaller
regions in the parameter space, as long as the algorithm converges for each
individual epoch. In the initial stages the models span a large region and so
they are far apart; by the arguments of the previous section, convergence is
guaranteed. As the regions get smaller, convergence is no longer guaranteed,
but we have already zeroed in to a small set of possible models, all of them
fitting the observations fairly well.

There are many ways to choose the region around the most likely parameter
vector in each epoch; below we describe the two we used

1. Simultaneous Search: Choose an initial parameter vector. Call it al =
[L' J' Bl]. Also choose parameter variations 6L, §.J, §B. Take the eight vectors
ajl7 j=1,2,...,8 defined by [L' 4+ 6L, J' + 6J, Bt £ 6B]. Apply the partition
algorithm once; that is, compute all the p;, j = 1,2,...,8, n =1,2,...,128 and
choose the “true” model to be that which has maximum p; 128. Now take the
“true” parameter vector ! = [L? J? B?] = a!, (i.e., the one that corresponds to
the most likely model) and set a? = [L? J% B?] = 4!. Take the eight vectors ajz7
j=1,2,...,8 defined by [L? £ 6L, J?>£6J,B%>+£6B]. i = 1,2,3. Go through the
next epoch of the algorithm. At the t-th epoch select the most probable vector
a’ in the parameter space and use this as a’*'. This is a way to search through
the three-dimensional parameter space in all three parameters simultaneously.

2. Sequential Search: Choose eight models: The ith model is [L1, J1, B3 +



Table 1

Parameters | L B J

Epoch 1 1.5/.05 | .0005 .00005

Epoch 2 1.5 .0011/.0001 | .00005

Epoch 3 1.5 .0011 .00009/.00001

i-6Bs], i = 1,...,8. Select the most probable one. Vary the other parameters
in the same way, one at a time. Repeat the process as many times as necessary.
This is a search in the parameter space where one of the three parameters is
searched for at a time. We cycle through the three parameters sequentially.

Initially, with both a sequential and a simultaneous search most models
perform poorly and the algorithm has no trouble selecting the one that does
much better than the rest. Eventually all models are concentrated in a small
region of the parameter space and the algorithm cannot discriminate between
them easily. There is no further convergence: the conditions of Theorems 1 and
2 are not satified.

In Figures 1-3, and 4-7 we can see the evolution of the identification algo-
rithm, epoch by epoch. In particular, we see how the recursively computed
probabilities p;; evolve as more observations are used. We see that by the time
step 128, one model has consistently higher probability than any other model;
we also see, however, that in later epochs (e.g., epoch 4 of the simultaneous
search) the second-best model has almost equal probability to that of the best
model. This is the case when the algorithm reaches its limit of discrimination.

Each one of the figures shows how in one epoch, one of the models is selected
as most likely. As we move to better approximations more than one model
closely reproduces the observed data, and so the most probable model is almost
as probable as the second runner. This corresponds to the situation where the
cumulative squre errors of two models are very close; then the a quantities of
Section 3 are not small enough to guarantee convergence. On the other hand, in
the initial epochs, one model is clearly selected as best among the eight possible
ones. Tables 1 and 2 show the models selected at different epochs for each type
of search.

Table 1 outlines the history of sequential search. The first entry in every
position of the table indicates the value for that parameter of the truest model se-
lected at the end of the corresponding epoch. When there is a slash and a second
entry, this indicates that this was the parameter varied at the particular epoch.
For example, in epoch 1 we were varying L, by a step 6L = .05, keeping B and
J constant. The best model had parameter values [L B J] = [1.5 .0005 .00005].
The truest model for which we had convergence of the algorithm was found on
epoch 3 and had [L B J] = [1.5 .0011 .00009].



Figure 1: The probabilities p;; as computed in epoch 1 of the sequential search.
1=1,...,8, 7 = 1,...,128. The probability of the truest model is shown by a
solid line.



Figure 2: The probabilities p;; as computed in epoch 2 of the sequential search.
1=1,...,8, 7 = 1,...,128. The probability of the truest model is shown by a
solid line.



Figure 3: The probabilities p;; as computed in epoch 3 of the sequential search.
1=1,...,8, 7 = 1,...,128. The probability of the truest model is shown by a
solid line.



Figure 4: The probabilities p;; as computed in epoch 1 of the simultaneous
search. i =1,...,8, 1 = 1,...,128. The probability of the truest model is shown
by a solid line.



Figure 5: The probabilities p;; as computed in epoch 2 of the simultaneous
search. i =1,...,8, 1 = 1,...,128. The probability of the truest model is shown
by a solid line.



Figure 6: The probabilities p;; as computed in epoch 3 of the simultaneous
search. i =1,...,8, 1 = 1,...,128. The probability of the truest model is shown
by a solid line.



Figure 7: The probabilities p;; as computed in epoch 4 of the simultaneous
search. i =1,...,8, 1 = 1,...,128. The probability of the truest model is shown
by a solid line.



Table 2

Parameters | L B J

Epoch 1 1.5/.25 .0010/.0001 .0001/.00005
Epoch 2 1.55/.05 .00098/.00002 | .00009/.00001
Epoch 3 1.54/.01 .00099/.00001 | .000092/.000002
Epoch 4 1.535/.005 | .00099/.00001 | .000093/.000001

Table 2 gives the same kind of information for simultaneous search. Here
every parameter is varied simultaneously, so we have in every position of the ta-
ble two entries, separated by a slash. The first entry gives the actual truest value
found in the corresponding epoch and the second one gives the step by which
this parameter was varied. The final truest model, found after four epochs, had
[L B J] = [1.535 .00099 .000093], very close to that found by the sequential
search.

In Figures 8 and 9 we see the actual output plotted against the optimal
estimates computed according to the parameters of the ”best” model chosen by
simultaneous and sequential search.

5 Conclusions

We have proven that, given a collection of possible linear models to fit a series
of observations, the partition algorithm will converge to one of the models if
certain conditions are satisfied.

Consider first Theorem 1. Two conditions are necessary: Condition 1(a)
requires that the cumulative expected error be growing linearly (even if slowly)
for every model. Condition 1(b) says that there is some model M; that has
smaller cumulative expected error (see ;). Then, according to the theorem,
the expected ratio of the probabilities pin, pjn goes to infinity for every j. The
model with less error wins on the average.

For Theorem 2, we need a stronger condition: if the expected exponentiated
difference of errors decreases exponentially, then we have convergence of the
probability ratios to 0 with probability 1. That is, one model gets almost cer-
tainly probability 1 and all the other models get probability 0. So the preferred
model, in other words the one that best fits the data, is almost certainly selected
as the true one.

As already noted, the convergence conditions are expressed in terms of in-
equalities involving certain constants (13), (17). These constants belong to two



Figure 8: The current measurements for the actual motor (dotted line) and for
the best model (solid line) selected by sequential search.



Figure 9: The current measurements for the actual motor (dotted line) and for
the best model (solid line) selected by simultaneous search.



categories. On the one hand we have “error growth” constants, such as a;,
&z, Bi. Assume that one of the models in the model set, say M, is either the
true model, i.e. the observations y(1),y(2),... are generated from it, or very
close to the true model, and all the other models are very different. Then the
error growth constants a;;, &;; will have to be small for all 7 and, conversely,
the constants aj;, dy; will be large for all j. This is just a quantitative way
to say that the error of model M; has to be “small” compared to the error of
other models. But what constitutes a small error? To determine this, we must
compare the error growth constants with some error baseline. This baseline is
provided by the 7; and §; constants, which belong to the second category and
provide bounds to the error of every model. In other words, the v; and §; con-
stants provide some baseline against which we can measure the smallness of the
error of the most succesful model.

From the above discussion, the following behavior can be expected from
the partition algorithm. In the first few epochs of identification, we start with
models that are widely different (they correspond to points in the parameter
space that are far apart from each other). Of all these models, one (the truest)
will be closest to the actual system, in the sense that it fits the observations
relatively well; the rest of the models are so different from the truest model,
that they will not fit the observations well. So the error growth rate constants
(which are expected to be large for models that are distant from the true model)
will be small for the truest model, and we will have quick convergence.

However, after several epochs we will end up with all models being in the
same relatively small part of the parameter space and hence they will be almost
equally good in fitting the observations. Then the error rate constants will all be
close to 1 and the convergence will be slower. Eventually, all the models will have
almost the same performance, and Conditions 1(b) or 2 will not be satisfied.
Then convergence is not guaranteed, and the algorithm produces conditional
probabilities that are all approximately equal; no one model has consistently
higher probability.

We observe the behavior as expected when we run the algorithm on a difficult
real system identification problem. As long as the algorithm chooses between
models that are widely different, choice is easy and performance correct. When
the choice is narrowed to a small region of the parameter space, the algorithm
reaches its discrimination limit. However, good enough parameters have been
identified at this point that a close fit to the observed data is possible. This is
reflected in the fact that the best model selected reproduces very accurately the
observed behavior of the physical d.c. motor. Note also the tolerance to the
crude modeling of the noise statistics.

In conclusion, the analysis of the convergence of partition algorithm justifies
in a precise manner the commonsense belief that “a model that fits well the
observations is very likely to be the correct model”. Also, the behavior of the
algorithm at the limit of its resolution is explained. Finally, the application of
the algorithm to a real-world problem proves its efficiency.
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