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This paper describes work in progress about using AI technologies to support diagnostic decision making. In
particular, we analyse clinical data of past cases to develop a data-driven prediction model for future cases.
To do so, we use a versatile AutoML platform that applies a multitude of machine learning algorithms and
their configurations. Our results show initial promise, but also point to limitations of currently available data,
opening up avenues for further research.
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1 INTRODUCTION
Autism spectrum disorder (ASD) is characterized by pervasive difficulties in reciprocal social
cognition, alongside apparent strict repetitive behaviors and interests. Currently, no biomarker
for diagnosing ASD exists. Because of this, the diagnostic process tends to be time consuming and
costly for health services. The recommendation is that diagnosis of ASD in adulthood is reached
on a consensus of expert opinion from observations by multidisciplinary teams, which include
observations of current behaviours and cognitive abilities, alongside detailed history taking.

The process of diagnosing ASD in adulthood can be complex for a variety of reasons, which can
lead to underdiagnosis and missed treatment opportunities. Ideally, information from a variety of
sources is required, and if the contribution of information from a primary caregiver is not available,
it may be difficult to build an accurate interpretation, as self-insight from patients themselves may
be unreliable. Further, it requires a high level of specialisation by professionals, as ASD symptoms
can overlap with other disorders.
With pressure on health services to deliver efficient and effective care for patients, employing

screening measures can facilitate a timely and economical system for specialist services to identify
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those who are more likely to have the condition in question. Whilst a varied collection of ASD
screening measures is available for both developmental and adulthood populations [7], for ASD
in adulthood, the most generally used screening measures for ASD is the Autism Questionnaire
presented in [2], which forms the basis of the analysis in this work. The objective of this work
is to apply machine learning for analysing Autism Questionnaire results and investigating the
components of the assessment, in relation to diagnostic outcome in a clinical setting. Analysis
results in turn can offer insights for decision support for Autism diagnosis.

The remainder of this paper is organised as follows. The assessment data is presented in Section 2.
The analysis procedure and results are presented in Section 3. Conclusions and directions of future
work are presented in Section 4.

2 DATA DESCRIPTION
The dataset consists of autism assessment results for 192 patients, from Adult ADHD and Autism
Service, South West Yorkshire Partnership NHS Foundation Trust, in the South and West Yorkshire
geographical area, between 2017 and 2018. The Adult ADHD and Autism Service is a specialist
Service in diagnosing ADHD and Autism in adulthood. Patients are referred to the Service by health
care professionals, whom deem it appropriate based on patient’s history and current difficulties.
Inclusion criteria dictated that participants were over the age of 18 years (no cut off), had a good
comprehension of the English language, and IQ within normal range. The assessment is designed
to identify adults who may benefit from a full diagnostic assessment for autism spectrum disorder.

The assessment procedure adopts the procedure proposed in [2] and consists of two parts. The
first part consists of a test that the examined individual completes based on AAA AQ and AAA EQ
parts. The second part (AAA RQ score) is the result of answers of persons familiar with the examined
individual, typically close relatives. Related to the diagnosis are social aspects, communication,
imagination and obsessions of the examined individual (these are features CLASS SOCIAL, CLASS
COMMUNICATION, CLASS IMAGINATION and CLASS OBSESSIONS, respectively) and they are
defined from responses to AAA AQ, EQ and RQ and clinician’s input. These parts of the AAA
examination in turn are the Autism-Spectrum Quotient (AQ) score [3] and the Empathy Quotient
(EQ) score [1], in addition to Relatives Quotient (RQ). Given the AAA AQ, AAA EQ and AAA RQ
responses clinicians confirm answers (Yes=1), which count towards CLASS classification. Thus,
CLASS classification is a function of AAA responses and clinician’s assessment. The last feature
of the dataset is the diagnostic outcome which is a binary categorical feature that the machine
learning model has to predict. Overall the dataset is unbalanced with 28 of the examined patients
out of 192 (14.58%) being diagnosed with autism after a full assessment is completed. Thus, in total
the dataset consists of seven numerical input features (three consisting solely of questionnaire’s
results and four based on questionnaire’s results and clinician’s input) and an output categorical
feature.

3 DATA ANALYSIS
The objective of data analysis is to create a model for predicting the diagnostic outcome given
the AAA test data [2] as input. Specifically the input data are AAA test results consisting of AAA
AQ, AAA EQ and AAA RQ scores. In addition the input data include the features CLASS SOCIAL,
CLASS OBSESSIONS, CLASS COMMUNICATION and CLASS IMAGINATION derived from AAA
test responses as defined in [2]. The dataset consists of exam results of 192 individuals, with 85.42%
of diagnostic outcomes being negative. In this work, various classification methods have been used
for the analysis.
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Table 1. Classification Results using non interpetable algorithms of Weka

Model Total Positive Rate ROC Area
Multilayer Perceptron 0.885 0.805
SMO 0.854 0.500
Random Forest 0.859 0.870

3.1 Analysis using WEKA
The fist part of the analysis consisted of the application of six machine learning algorithms using
Weka [6] over the dataset. Three of the algorithms are non interpretable and three are interpretable.
The non-interpretable algorithms are Myltilayer Perceptron (the Neural Network implementation
inWeka), SMO (Sequential Minimal Optimization algorithm for training a Support Vector Classifier)
and Random Forest. The interpetable algorithms are the Decision Tree (J48), Logistic Regression
and Semantic Artificial Neural Networks (SANN) [4]. SANN is a variant of Neural Networks with
labeled hidden layer nodes which can be interpreted as logistic regression over each layer given
the previous one. In all experiments, pre-processing has been applied by replacing missing values
with the average value, while performance estimation and model selection was based on 10-fold
cross validation.

The results of experiments using the non-interpetable classification algorithms of Weka and the
default hyperparameters are presented in Table 1 (optimal values as marked in bold). Although Ta-
ble 1 presents some basic results using the non-interpetable algorithms, the imbalance of the dataset
and the relative importance of the different diagnostic outcomes and corresponding consequences
makes the overall precision of algorithms one (but not the only) factor to take into account in the
analysis. Thus, a detailed examination is required in order to assess the true usability of a data
driven analysis in the decision process. Specifically, the cost of error varies given its type, typically
it is a more serious error to predict a negative diagnostic outcome when it is actually positive
(namely, a false negative) resulting in the patient not receiving the needed treatment, compared
to predicting a positive diagnosis when in fact it is negative (namely, a false positive) with the
cost being that of conducting a full assessment that eventually leads to a negative diagnosis. This
observation in turn changes the use of a machine learning model in practice.

Typically, when each class is considered equally important and having similar costs for all types
of errors a classifier selects the class having the higher probability. However, when classes have
different importance and also different costs in case of classification errors, then the selection
threshold of an algorithm must be adjusted accordingly. Data driven analysis may help making
such policies more accurate and efficient. In practice, up to a certain degree, it is better to make an
additional assessment of positive diagnosis to the patient rather than to select a negative diagnostic
outcome (which could actually be positive).

After taking the above observations into account the detailed results for each algorithm are the
following: SMO actually assigns all instances as having negative diagnostic outcome where the total
positive rate is 0.854 (percentage of instances with negative diagnostic outcome) and the Receiver
Operating Characteristic (ROC) curve (or Area Under the Curve - AUC) is 0.500 corresponding
to a random classification, thus this model cannot be used in practice. Random forest achieved
better results with total positive rate 0.859 and the ROC curve is 0.870. In this case, the classifier
can be useful in practice. For example, given a policy that assigns much higher cost to a false
negative error than to a false positive, the diagnostic outcome can be classified as positive even
if the probability is low, in order to avoid false negative errors. Subsequently, if an assessment
result is positive even if the probability of such outcome is according to classifier just 1% then all
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Table 2. Classification Results using interpetable algorithms of Weka

Model Total Positive Rate ROC Area
Logistic Regression 0.844 0.814
Decision Tree (J48) 0.870 0.775
SANN 0.875 0.870

28 positive cases will be classified correctly and so are 47 of the negative ones, with the cost of
having to provide full assessment in the 117 remaining negative cases. Thus the classifier can be
used for making a decision for filtering out some cases, but also providing full assessment to all
cases that have a positive diagnosis. By increasing the threshold to 2% the classification is correct
for 26 out of the 28 positive cases and 69 out of 164 negative cases (still 95 negative cases will have
full assessment). Thus reduction of false positives is combined with increase of false negatives and
the relative cost of errors is used for defining the proper threshold and decision policy rather than
the threshold value that maximizes classification accuracy, that is reported in Table 1. In case of
Multilayer Perceptron (Neural Network) the total positive rate is 0.885 and the ROC curve is 0.805,
thus offering the possibility of implementing a selection policy minimizing the cost of errors, but
without creating an interpetable model.

Even though non-interpretable algorithms can assist in decision making by producing models
that can predict the probability (given the results of an assessment) of a specific diagnostic outcome,
thus facilitating the definition of a decision policy given the relative costs of errors, interpetability of
the prediction model is often an important issue. Compliance to legal requirements and regulations
means that specific rules have been taken into account when applying an AI-based system and this
in turn means that the system’s functionality is transparent and interpretable. A proposed approach
is to employ interpretable machine learning algorithms, such as logistic regression and decision
trees [5]. These algorithms are often efficient but not always as performing as non-interpretable
ones, such as Support Vector Machines (SVM) and neural networks.

In the case of Neural Networks, using existing knowledge for building neural networks was first
proposed in [8] and further developed in [9], introducing the Knowledge-Based Artificial Neural
Networks (KBANN). These networks are constructed based on knowledge represented using logic
rules, and in [4] a variant of KBANN called SANNs is proposed. SANNs are neural networks with
labeled hidden layer nodes as KBANNs, but the construction of such neural networks is based on
knowledge graphs rather than rules. In this work the interpetable algorithms applied to the autism
assessment dataset are: Logistic regression, J48 decision tree and SANN. The SANN is constructed
by introducing to the hidden layers nodes representing the AAA score (combining AAA AQ, AAA
EQ and AAA RQ scores) and the CLASS score (combining the CLASS SOCIAL, CLASS OBSESSIONS,
CLASS COMMUNICATION and CLASS IMAGINATION scores). The resulting network is presented
in Figure 1.

The results using the interpetable algorithms of Weka are presented in Table 2 (optimal values as
marked in bold). Inmedical diagnosis, interpreting themodels is significant for decisionmaking, thus
we select to present the two categories of algorithms separately, since in case that interpretability
is not an option but a strict requirement then only the corresponding algorithms can be used.
Decision Tree (J48) achieved total positive rate of 0.870 and ROC curve of 0.775.
In the case of logistic regression the coefficients for predicting a negative diagnosis result are

AAA AQ: 0.0381, AAA EQ: -0.0064, AAA RQ: -0.1282, CLASS SOCIAL: -0.585, CLASS OBSESSIONS:
-0.2791, CLASS COMMUNICATION: -0.371, CLASS IMAGINATION: -0.6105 and Intercept: 7.344.
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Fig. 1. SANN for classification on autism dataset.

These coefficients indicate factors correlated positively or negatively with negative diagnosis and
the degree of this correlation (with CLASS features and AAA RQ having more weight).
The third algorithm, SANN, (using the network of Figure 1) achieved total positive rate 0.875

and ROC curve of 0.870 outperforming the other two interpretable algorithms. There are two
hidden layer nodes in the SANN, the AAA Score node representing the cumulative AAA score and
CLASS Score node representing cumulative CLASS score. The output node representing negative
diagnostic output has weights 3.21 at input from the AAA Score Node and 4.84 at input from CLASS
Score node, while the corresponding weights at positive diagnostic outcome node are -3.21 and
-4.48, respectively. Thus, the positive diagnostic outcome has lower probability when cumulative
AAA and CLASS scores are higher. The AAA Score in turn has weights 5.07 from AAA AQ input,
-10.10 from AAA EQ and -12.39 from AAA RQ indicating that overall the higher the AAA AQ the
lower the probability of a positive diagnosis and that lower AAA EQ and AAA RQ scores increase
the probability of positive diagnostic outcome. Furthermore AAA EQ and AAA RQ scores have
more weight than AAA AQ. The corresponding weights for the cumulative CLASS Score are for
CLASS SOCIAL: -12.70, CLASS OBSESSIONS: -3.24, CLASS COMMUNICATION: -3.81 and CLASS
IMAGINATION: -2.81 indicating that lower CLASS scores increase probability of positive diagnostic
outcome.

Depending on the relative cost of classification errors, by setting a low threshold for accepting a
positive diagnosis, the created model can be used to filter out cases which have a negative diagnostic
outcome with very high probability. For example setting a threshold for classifying a case as positive
to 1% then 26 out of 28 positive cases are classified correctly and so are 86 out of 164 negative
cases (so a full assessment is applied for 78 negative cases). Thus, practically more than half of
negative cases can be exempted from further examination while keeping almost all of positive
cases. This is actually similar to the clinical assessment practice. For example in this dataset, out of
the 192 cases, 28 are positive and 164 negative. In the screening process 125 cases went through
full assessment and 67 did not. Out of these 125 cases, finally 26 were positive and 99 negative.
Out of the 67 cases not further assessed, 65 were negative and 2 positive. Thus the policy adopted
in clinical practice corresponds to that of applying a low threshold classifier, minimizing false
negatives for the positive diagnosis class. Notice that, although SANN achieved high performance
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Table 3. Area Under the Curve (AUC) results using JAD Bio

Interpetability required Interpetability not required
Feature Selection No Feature Selection Feature Selection No Feature Selection

Preliminary 0.756 0.794 0.750 0.833
Typical 0.778 0.807 0.798 0.830
Extensive 0.794 0.806 0.833 0.823

and is interpretable, a disadvantage of this method is that the construction of network topology
must be done manually, thus this algorithm is incompatible with a fully automated data analysis
process.

3.2 Analysis using JAD Bio
Even though tools such as Weka can be used whether interpretability is required or not, when
using a tool such as Weka there are two disadvantages; first the user must be familiar with machine
learning which is not always the case in an environment such as the medical domain and second
the analyst must apply various algorithms and also has to tune their hyperparamets in order to
achieve optimal results. Overall this is a time consuming process, and in addition to this it is also
uncertain, especially in case of a large search space for hyperparameter’s values, with respect to
the optimal selection of hyperparameters. This is the reason why systems automating machine
learning are very important for wide scale adoption of machine learning for data analysis and
decision support in the medical domain.

In this work in addition to the analysis done manually using Weka, the automated analysis tool
called JAD Bio [10] has been used as well. By using JAD Bio, users simply upload their data and
provide their preferences, subsequently the system selects the optimal model. In an application
domain such as medical diagnosis where expertise on machine learning may not be available and
a series of trials with many algorithms and their hyperparameters may not be an option due to
limitations over resources such as time, the use of tools that automate machine learning tasks is
expected to be widespread. JAD Bio allows for setting user preferences related to feature selection
(optional or required), interpetability (optional or required) and time preference (preliminary, typical
and extensive). Results using the above preferences are summarized in Table 3.
When using the JAD Bio system, in case that interpetability is not required, a Support Vector

Machines (SVM) is the optimal model selected when combined with feature selection (and extensive
time preference) and Classification Random Forests training 100 trees is the optimal algorithm when
feature selection is not applied. In case the algorithm must be interpretable then Ridge Logistic
Regression is the best performing algorithm when combined with feature selection (and extensive
time preference) and without feature selection (and typical time preference). Feature selection,
pre-processing and hyperparameter selection is performed automatically by the JAD Bio system.

Specifically, after examining various possible settings the JAD Bio system applied in preprocess-
ing is constant removal and standardization. Then in feature selection the algorithm applied is
Statistically Equivalent Signature (SES) algorithm with hyper-parameters: maxK = 2, and alpha = 0.1.
JAD Bio selected 3 out of the total number of features in the original dataset: CLASS SOCIAL, AAA
RQ and CLASS COMMUNICATION. Performance when using all features instead of only these
three remained almost identical. The feature selection was applied by estimating the performance
decrease when the feature was removed.

The best predictive model was Support Vector Machines (SVM) of type C-SVC with Polynomial
Kernel and hyper-parameters: cost = 0.001, gamma = 10.0, degree = 3 having anArea Under the Curve
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Fig. 2. ROC Curve of best performing model using
JAD Bio.

Fig. 3. ROC Curve of best performing interpretable
model with feature selection using JAD Bio.

(AUC) of 0.833. Notice that the corresponding algorithm using Weka (SMO) has lower performance
because of the different hyperparameter selection. The ROC curve of the best performing model
using JAD Bio is presented in Figure 2. Using the diagram the user can specify the true positive
rate for a specific class (in the case its class 2 indicating a positive diagnostic outcome) given the
threshold selected.

The best interpretable model with feature selection was Ridge Logistic Regression with penalty
hyper-parameter lambda = 100.0, with AUC (ROC) 0.794. The ROC curve for Ridge Logistic Regres-
sion is presented in Figure 3. Based on the curve, we can see that when setting the threshold to
9.4%, the true positive rate for the positive diagnostic outcome class is 0.969 and false negatives
rate is 0.005. Taking into account the trade-off between false positive error rate and false negative
error rate and the corresponding costs the optimal threshold can be defined for cost minimization.
Notice that JAD Bio adopts the bootstrap corrected cross validation performance estimation

protocol presented in [11]. The objective of bootstrap corrected cross validation is to overcome the
optimistic bias of cross validation, that is the typical method for performance estimation and model
selection in machine learning (notice that 10-fold cross validation was used as performance metric
in the experiments using Weka). The performance estimation is a task both difficult and critical,
especially in medical applications were the reliability of the prediction model is a crucial parameter
in decision making. This means that the performance metric of JAD Bio is less optimistic than this
of Weka, but also this stricter performance evaluation is desirable in critical applications.

Overall the JAD Bio system produced models (including interpretable models) that offered high
performance in addition to fully automating the analysis process which is a great advantage over
traditional systems such as Weka. Although the dataset was not balanced and the two classes were
difficult to separate (this is illustrated by the poor performance of SMO algorithm using Weka),
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by selecting carefully the threshold value of the classification model, after taking into account
corresponding costs, the performed analysis can assist the decision making process. Notice also
that depending on the cost estimation, a cost benefit analysis, when combined with an examination
of the classification models, may lead to a decision to revise the assessment or even discontinue it in
case there is no benefit of applying this assessment before the full assessment. This for example can
be the case when the cost of making a false negative prediction regarding the diagnostic outcome
is far greater than this of false positives.

4 CONCLUSIONS AND FUTUREWORK
This paper presented a data driven analysis over a dataset for autism assessment. Preliminary
results showed that various algorithms achieved high performance although the diagnostic outcome
classification was not an easy task because of the dataset characteristics (unbalanced, having some
features that were not useful and not easily separable i.e. in a linear way). Furthermore, when
applying such an analysis in practice, there are other crucial factors besides the total performance,
such as the requirement of interpretability and automation of the analysis process, in addition
to optimal performance for specific classes and the relative cost of various types of errors when
specifying the decision process.

Future work will proceed in various directions. A particular direction will be to consider richer
clinical data; there are even ideas to capture neurological data and/or facial expressions through
video. Another interesting idea is to expand the AI technologies used by capturing and representing
explicitly, through declarative rules, medical knowledge about how clinical data should be inter-
preted. Such a knowledge model could be used in conjunction with a machine learning model as
discussed in this paper, thus deploying a hybrid AI approach.
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