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Abstract—This work presents a Fuzzy Inference System (FIS) 
as a look-up table for function approximation by interpolation 
involving Fuzzy Interval Numbers or FINs for short. It is 
shown that the cardinality of the set F of FINs equals ℵ1, that 
is the cardinality of the totally ordered lattice R of real 
numbers. Hence a FIS can implement in principle all 
ℵ2= >ℵ12ℵ 1 real functions, moreover a FIS is endowed with a 
capacity for local generalization. It follows a unification of 
Mamdani- with Sugeno-type FIS. Based on lattice theory novel 
interpretations are introduced and, in addition, a tunable 
metric distance dK between FINs is shown. Several of the 
proposed advantages are demonstrated experimentally. 

I. INTRODUCTION 
 Even though the notion “fuzzy set” can be defined on 
any universe of discourse, nevertheless fuzzy sets are 
typically defined on the real number R universe of 
discourse, where the name fuzzy number/interval is used to 
denote a convex, normal fuzzy set. For reasons to be 
explained below, the term Fuzzy Interval Number or FIN 
for short is employed here instead of fuzzy number/interval. 
 Various Fuzzy Inference Systems (FIS) have been 
developed in practice based mainly either on expert 
knowledge [13] or on measurements [21]. It turns out that 
FIS are frequently used in practice for function 
approximation [23]. In particular a FIS is frequently used 
for approximating a function f: RN→RM, e.g in automatic 
control applications [5, 15]. Several publications have 
compared FIS with various networks for function 
approximation and learning [7, 12, 14]; note that an account 
of the latter networks appears in [17]. 
 It is worthwhile noting that the set R of real numbers 
has emerged from the measurement process. Furthermore 
note that R is a totally ordered lattice whose cardinality is 
denoted by ℵ1. This work proposes novel perspectives and 
tools for FIS analysis and design based on a synergy of set 
theory and mathematical lattice theory. 
 A critical set-theoretic result here regards the cardinality 
of FINs, where cardinality means how many FINs are there. 
It turns out that there are as many as ℵ1 FINs. It follows 
that a FIS can implement in principle all ℵ2= >ℵ12ℵ 1 real 

functions; moreover a FIS is endowed with a capacity for 
local generalization. Based on lattice theory this work 
introduces a tunable metric distance in the space F of FINs, 
where an integrable mass function can be used for tuning. 
The utility of novel tools is illustrated geometrically on the 
plane. 
 The layout of this paper is as follows. Section II 
summarizes basic Fuzzy Inference Systems (FIS) operation 
principles. Section III presents useful enhancements in the 
theory of fuzzy lattices. Section IV deals with Fuzzy 
Interval Numbers (FINs). Section V shows novel 
perspectives as well as tools for an enhanced FIS analysis 
and design. Experimental results are demonstrated in 
section VI. Section VII summarizes the contribution of this 
work including a discussion of future work. 

II. A SUMMARY OF FIS OPERATION PRINCIPLES 
 A fuzzy inference system (FIS) includes a number of 
fuzzy rules. For example Fig.1 shows a “Mamdani type” 
FIS, where the antecedent (IF part) of a rule is the 
conjunction of N fuzzy statements moreover the consequent 
(THEN part) of a rule is a single fuzzy statement. A typical 
input vector x∈RN may activate in parallel all the rules by a 
fuzzification procedure. The fuzzy consequents of all 
activated rules are combined and, finally, a single number is 
produced by a defuzzification procedure. 
 Other types of FIS than a Mamdani type can be 
obtained for different types of rule consequents. For 
instance, using an algebraic expression y= f(x1,…,xN) as a 
consequent to a rule, a Sugeno type FIS results in [21]. 
 A FIS is frequently used in practice as a device for 
implementing a function f: RN→RM. The design of a FIS 
concerns, first, the computation of the parameters which 
specify both the location and the shape of the fuzzy sets 
involved in the (fuzzy) rules of a FIS and, second, it may 
also concern the computation of the parameters of the 
consequent algebraic equations involved in a Sugeno type 
FIS. In the aforementioned sense the design of a FIS boils 
down to an optimal parameter estimation problem, 
frequently with constraints, moreover a linguistic 
interpretation is retained [23, 24]. 
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III. FUZZY LATTICES REVISITED 
 The framework of fuzzy lattices has been proposed for 
unifying the treatment of disparate types of data [10]. This 
section summarizes instrumental lattice-theoretic notions 
and tools, moreover novel tools are presented. 
 A lattice is a partially ordered set L any two of whose 
elements have a greatest lower bound or “meet” denoted by 
x∧y, and a least upper bound or “join” denoted by x∨y. We 
say that x and y are comparable when either x≤y or y≤x; 
otherwise x and y are incomparable symbolically x||y. 
 The interest here is in fuzzy numbers defined on the real 
number R universe of discourse. Note that R is a totally 
ordered lattice, i.e. for x,y∈R it is either x≤y or y<x. 
 The notion fuzzy lattice has been introduced in order to 
extend the crisp lattice ordering relation (≤) to all pairs (x,y) 
in L×L including incomparable lattice elements [10]. Such 
an extended relation may be regarded as a fuzzy set on the 
universe of discourse L×L. 
 
Definition 1: A fuzzy lattice is a pair 〈L,µ〉, where L is a 
lattice and µ is a fuzzy relationship µ: L×L →[0,1] such that  
µ(x,y)=1 ⇔ x≤y. 
 

 Definition 1 is different from the “standard” definition 
of a fuzzy lattice first introduced in [1] and later used and 
generalized by many authors (for a recent review see [22]). 
It is also different from the approach in [11] regarding the 
synthesis of fuzzy multivalued connectives. A fuzzy lattice 
here is defined through an inclusion measure function. 
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Fig. 1 A Mamdani type FIS with two (fuzzy) rules R1 and R2, two inputs x1 and x2, one output y1. The above FIS, including

both a fuzzification and a defuzzification procedure, can be used for implementing a function f: R2→R. In the context of
this work an input may be a fuzzy set for capturing ambiguity in an input. 

 
Definition 2: Given a lattice L, an inclusion measure is a 
fuzzy relation σ: L×L→[0,1] such that the following 
conditions are satisfied for every for u,w,x,y∈L. 
C1.  σ(x,x)=1. 
C2.  x∧y<x ⇒ σ(x,y)<1. 
C3.  z≤x ⇒ σ(y,z)≤σ(y,x)  - Consistency Property 
 
 We remark that various “inclusion measures” have been 
presented in the literature for dealing with a lattice of sets 
[3, 11, 19]. Our definition here is more general, since it 
applies not only to fuzzy sets but to elements of a general 
lattice. In this context σ(x,y) can be interpreted as the 
(fuzzy) degree to which x is less than y; therefore the 
notations σ(x,y) and σ(x≤y) will be used interchangeably.
 The definitions for both a metric distance and a positive 
valuation function are shown in the following. 
 



Definition 3: A metric distance in a set S is a real function 
d: S×S→R which satisfies: (MD0) d(x,y) ≥ 0, (MD1) 
d(x,y)=0 ⇔ x=y, (MD2) d(x,y) = d(y,x) , and (MD3) d(x,y) 
≤ d(x,z) + d(z,y) - Triangle Inequality, x,y,z ∈S. 
 
Definition 4: A valuation in a lattice L is a function v: L→R 
such that v(x)+v(y)=v(x∧y)+v(x∨y), x,y∈L. A valuation is 
called positive if, for all x,y∈L, we have x<y ⇒ v(x)<v(y). 
 
 If L is a lattice and v is a positive valuation function 
then function d(x,y)= v(x∨y)-v(x∧y) is a metric distance [2]. 
Next we define two useful inclusion measures. 
 
Definition 5: Let L be a lattice and v be a positive valuation. 
Then both the functions k(x,u)=v(u)/v(x∨u), and 
s(x,u)=v(x∧u)/v(x) are inclusion measures. 
 
 Note that the inclusion measure k(x,u) is a typical 
example of degree of “subsethood” [10, 11]. 

IV. FUZZY INTERVAL NUMBERS (FINS) 
This section summarizes, in an improved notation, useful 
mathematical tools introduced elsewhere [8, 9, 16]. Novel 
results are also introduced here. 
 
A.  Metric Lattices Mh of Generalized Intervals 
 
Definition 6: A generalized interval of height h is a 
mapping given by 

1) If x1≤x2 then , else 


 ≤≤

=
otherwise

xxxh
xhxx ,0

,
)(µ 21

],[ 21

2) µ , where h∈(0,1]. 


 ≥≥−

=
otherwise

xxxh
xhxx ,0

,
)( 21

],[ 21

 
 A generalized interval will be denoted, more compactly, 
as [x1,x2]h. More specifically, if x1≤x2 (x1>x2) then [x1,x2]h is 
called positive (negative) generalized interval. The set of 
positive (negative) generalized intervals of height h will be 
denoted by M  (M ). The set of positive (negative) 

generalized intervals will be denoted by  (M ). 

h
+

h
−

+M −
 The support (of a generalized interval) is a function, 
which maps a generalized interval to its conventional 
interval support set. An ordering relation can be defined in 
Mh, h∈(0,1] as shown in the following. 
 
(OR1) [a,b]h≤[c,d]h ⇔ support([a,b]h) ⊆ support([c,d]h), 

for [a,b]h, [c,d]h ∈M  h
+

(OR2) [a,b]h≤[c,d]h ⇔ support([c,d]h) ⊆ support([a,b]h), 
for [a,b]h, [c,d]h ∈M , and h

−

(OR3) [a,b]h≤[c,d]h⇔support([a,b]h)∩support([c,d]h)≠∅ 
for [a,b]h ∈M , [c,d]h

−
h ∈M . h
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 It can be shown that the partially ordered set Mh of 
generalized intervals is a mathematical lattice. More 
specifically, [a,b]h∧[c,d]h= [a∨c,b∧d]h and [a,b]h∨[c,d]h= 
[a∧c,b∨d]h. 
 In the totally-ordered lattice R of real numbers any 
strictly increasing function is a positive valuation function, 
the latter can be used for introducing a positive valuation 
function in Mh. 
 
Proposition 7: Let fh: R→R be a strictly increasing 
function, namely underlying positive valuation function. 
Then function v: Mh→R given by v([a,b]h)= fh(b)-fh(a) is a 
positive valuation function in Mh. 
 
 It follows a novel metric distance dh([a,b]h,[c,d]h) 
between two generalized intervals [a,b]h and [c,d]h given by 
dh([a,b]h,[c,d]h)= [fh(a∨c)-fh(a∧c)] + [fh(b∨d)-fh(b∧d)]. An 
underlying positive valuation function fh: R→R will be 
constructed here from an integrable, positive mass function 

mh: R→R+ using formula fh(x)= . We point out 

that the latter integral is positive (negative) for x>0 (x<0). 
For example note that mass function m

∫
x
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h(t)=h implies the 
metric distance dh([a,b]h,[c,d]h)= h(|a-c|+|b-d|) between two 
generalized intervals [a,b]h and [c,d]h. 
 
B.  The Metric Lattice F of FINs 
 
Definition 8: A Fuzzy Interval Number (FIN) is a function 
either F: (0,1]→  (positive FIN), or F: (0,1]→  
(negative FIN) such that (1) F(h)∈M

+M −M
h, and (2) h1≤h2 ⇒ 

support(F(h1)) ⊇ support(F(h2)). 
 
 The set of FINs is denoted by F; more specifically the 
sets of positive (negative) FINs will be denoted, 
respectively, by  (F ). We remark that a FIN is not a 
fuzzy set, rather a FIN is an abstract mathematical notion. 
There are certain algebraic advantages for negative FINs. 
Positive FINs can be interpreted as fuzzy sets. An ordering 
relation has been introduced in the set F of FINs as follows: 
F

+F −

1 ≤ F2 ⇔ F1(h) ≤ F2(h), h∈(0,1]. The following 
proposition introduces a metric in lattice F. 
 
Proposition 9: Let F1 and F2 be FINs in lattice F. A metric 
distance function dK: F×F→R is given by dK(F1,F2)= 

, where d∫
1

0
21h ))(),(( dhhFhFd h(F1(h),F2(h)) is a metric 

distance between generalized intervals F1(h) and F2(h). 
 
 The metric distance dK(.,.) has several advantages over 
alternative metric distances defined between fuzzy sets [4, 
6]. For instance in the following we compare metric 



distance dK with another well-known metric distance 
between convex fuzzy sets given by the following 

Minkowski metric dp(u,v)=  whose 

calculation is based on the Hausdorf metric distance d
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between the a-cuts [u]a and [v]a of two fuzzy sets u and v 
[4]. The metrics dH and dh produce quite different results in 
the space R1. More specifically, dH([a,b],[c,d])= max{|a-c|, 
|b-d|}, whereas using mass function m(t)=1 it follows that 
dh([a,b],[c,d])= |a-c|+|b-d|. There are both theoretical and 
practical advantages for the employment of dK over dp. In 
particular, from a theoretical point of view, there are ℵ0 
different metrics dp for all different integer values 

p=1,2,3,… whereas there exist ℵ1=  > ℵ0 different 
metrics dK. From a practical point it turns out that the 
capacity to calculate metric dK based on any strictly 
increasing function fh can potentially produce a much larger 
(finite) number of metrics dK thus taking full advantage of 
the existing digital computer memory resources [9]. 
 
C.  The Cardinality of FINs 
 
Theorem 10: The cardinality card(I[a,b]) of the set I[a,b] of 
non-decreasing functions on the closed interval [a,b] equals 
card(I[a,b])= ℵ1. 
 
 From theorem 10 it follows the major novel theoretical 
result of this work, that is the cardinality of the set F of 
FINs equals ℵ1 as it will be detailed rigorously elsewhere. 

V. ADVANTAGES IN FUNCTION APPROXIMATION 
 By “function approximation” here is meant an induction 
of a function f: RN→RM from n pairs (x1,y1),…,(xn,yn) of 
training data vectors such that both a minimum mean 

square error MSE= ∑
=

−
n

i
ii yxf

1

2||)(||  and a useful 

capacity for generalization are attained. Various 
instruments have been employed in the literature for 
function approximation including polynomials, ARMA 
models, statistical regression models, multilayer 
perceptrons, etc. Lately FIS have proliferated in function 
approximation applications. 
 A function approximation problem initially includes a 
“training phase” involving an optimal estimation of a model 
parameters, the latter can be regarded as an optimal 
selection of a model in a family of models. For instance, an 
optimal (in the MSE sense) estimation of the coefficients of 
an “order n polynomial” can be regarded as the selection of 
the best among all polynomials of order n. The question 
now is how many polynomials of order n are there to 
choose from? It follows that there are ℵ =ℵ  such 

polynomials [20], where ℵ  is the cardinality of the set R 

of real numbers. Based on similar arguments as above it can 
be shown that the cardinality of all ARMA models equals 

, furthermore the cardinality of all multilayer 
perceptrons equals ℵ

n
1 1

1

1ℵ

1 [8]. The next theoretical question is 
how many real functions f: RN→RM are there to be 
approximated? It turns out that there are ℵ2= 1

1
ℵℵ =  > 

ℵ

12ℵ

1 real functions [20]. In other words the cardinality of all 
aforementioned “conventional” models is an order of 
infinity less than the cardinality of all real functions. 
However, the aforementioned models retain an important 
advantage that is their capacity for generalization. 
 The previous section has shown that the cardinality of 
the family F of FINs equals ℵ1. It follows that the 
cardinality of the family of functions f: FN→FM equals ℵ2. 
Each one of the latter functions can be regarded as a 
Mamdani type FIS. Hence, there is a one-one 
correspondence between FIS and real functions f: RN→RM. 
Furthermore, a fuzzification/ defuzzification procedure [18] 
may imply a capacity for local generalization. 
 The previous analysis did not adhere to FINs of a 
specific membership function shape. It appears that any 
family of shapes, e.g. triangular, bell-shaped, etc., would be 
equally good because every aforementioned family has 
cardinality ℵ1. Furthermore the previous results are 
retained by Sugeno type FIS because the fuzzy rule 
consequents in Sugeno type FIS include ℵ1 algebraic 
expressions y= f(x1,…,xN). In addition, there is a practical 
advantage of FIS in a function approximation application. 
That is, using the tunable metric distance dK(.,.) between 
FINs it is possible to choose among more metric distance 
functions [9]. 
 Finally note that conventional fuzzification procedures 
employ exclusively the inclusion measure function s(.,.) as 
it will be detailed elsewhere. 

VI. EXPERIMENTAL RESULTS 
 Consider Fig.1, where a Mamdani type FIS is shown 
including two rules R1 and R2. An input pair (x1,x2) is 
presented including, respectively, a number and a fuzzy set. 
 None of the fuzzy rules in Fig.1 would be activated 
using fuzzy logic. Nevertheless, using the distance dK(.,.), it 
is possible to compute rigorously a degree of activation of a 
rule. For instance, consider the FINs X22, x2, and X12 
copied in Fig.2(a) from Fig.1. We will compute in the 
following the metric distances dK(X22,x2) and dK(X12,x2) 
using the two different mass functions shown, respectively, 
in Fig.2(b) and Fig.2(c). On the one hand, the mass function 
mh(t)= h, h∈(0,1] in Fig.2(b) assumes that all the real 
numbers are equally important. On the other hand, the mass 
function mh(t)= h2e-(t-6)/(1+e-(t-6))2 in Fig.2(c) emphasizes 
the numbers around t=6; the corresponding positive 
valuation function is fh(x)= h[(2/(1+e-(x-6)))-1], namely 
logistic (sigmoid) function. 
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Fig. 2 (a)  The FINs X12, X22, and x2 have been copied from Fig.1. 
 (b)  The mass function mh(t)= h, for h=1. 
 (c)  The mass function mh(t)= h2e-(t-6)/(1+e-(t-6))2, for h=1. 
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Fig. 3 (a) The metric distance functions dK(X22(h),x2(h)) and dK(X12(h),x2(h)) are plotted in solid and dashed lines, 
respectively, using the mass function mh(t)= h shown in Fig.2(b). The area under either curve equals the 
corresponding distance between two FINs. It turns out dK(X22,x2) ≈ 3.0 > 2.667 ≈ dK(X12,x2). 

 (b) The metric distance functions dK(X22(h),x2(h)) and dK(X12(h),x2(h)) are plotted in solid and dashed lines, 
respectively, using the mass function mh(t)= h2e-(t-6)/(1+e-(t-6))2 shown in Fig.2(c). The area under either curve 
equals the corresponding distance between two FINs. It turns out dK(X22,x2) ≈ 0.328 < 1.116 ≈ dK(X12,x2). 

 
 
 
 
 
 
 



 Fig.3(a) plots both functions dK(X22(h),x2(h)) and 
dK(X12(h),x2(h)) in solid and dashed lines, respectively, 
using the mass function mh(t)= h. The area under a curve 
equals the corresponding distance between two FINs. It 
turns out dK(X22,x2) ≈ 3.0 > 2.667 ≈ dK(X12,x2). Fig.3(a) 
illustrates that for smaller values of h dK(X12(h),x2(h)) is 
larger than dK(X22(h),x2(h)) and the other way around for 
larger values of h as expected from Fig.2(a) by inspection. 
 Fig.3(b) plots both functions dK(X22(h),x2(h)) and 
dK(X12(h),x2(h)) in solid and dashed lines, respectively, 
using the mass function mh(t)= h2e-(t-6)/(1+e-(t-6))2. It turns 
out dK(X22,x2) ≈ 0.328 < 1.116 ≈ dK(X12,x2). 
 This example has demonstrated a number of useful tools 
for tuning FIS design including, first, a mass function mh(t) 
can be used for introducing non-linearities in an 
application. Second, using a metric distance dK(.,.) it is not 
necessary to have the whole data domain covered with 
fuzzy rules. Third, an input to a FIS might be a fuzzy set for 
dealing with ambiguity in the input data. 

VII. DISCUSSION AND CONCLUSION 
 This work has introduced novel perspectives and tools 
for Fuzzy Inference System (FIS) analysis and design based 
on a synergy of set theory and mathematical lattice theory. 
 A FIS was presented as a look-up table for function 
approximation by interpolation involving Fuzzy Interval 
Numbers (FINs). The set F of FINs, including the fuzzy 
numbers, was shown to be a metric mathematical lattice. In 
particular, a tunable metric distance dK(.,.) was presented in 
F based on an integrable mass function mh(t). Furthermore 
it was shown that the cardinality of the set F of FINs equals 
ℵ1, that is the cardinality of the set R of real numbers. 
Hence a FIS can implement in principle all ℵ2=  > ℵ12ℵ 1 

functions f: RN→RM; moreover a FIS is endowed with a 
capacity for local generalization. Several of the proposed 
advantages have been demonstrated experimentally 
including geometric interpretations on the plane. 
 It has been a common practice in conventional FIS 
design to optimize the shape and/or the location of the 
positive FINs involved. This work has presented an 
additional means for tuning the performance of a FIS by a 
mass function mh(t) to be employed in future applications. 
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