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Abstract the degree to which objects belong to sets; on the other
hand the manner in which fuzzy sets a@mbined(e.g.
We present a procedure for constructimglti-valuedt- by unions, intersections etadpes not involve any uncer-
norms and t-conorms. Our construction uses a pairtafnty. For example, given two fuzzy setsandB and an
single-valued t-norms and the pair of dual t-conorms &ementr, the degree to whick belongs to bothd and
construct interval-valued t-normis and t-conorms.. In B is given byA (z) A B (z); no uncertainty is involved in
this manner we can combine desirable characteristicstloé application of the\ connective. A natural extension
different t-norms and t-conorms; furthermore if we ussf the principle of fuzziness is to considencertain con-
the t-normA and t-conormyv, then (X, M, 1) is a super- nectivesthe use of multi-valued t-norms and t-conorms is
lattice, i.e. the multivalued analog of a lattice. a simple step in this direction.
Hence the plan of this paper is as follows. We work
. in the context of a deMorgan lattigeX, A, V,” ) (where’
1 Introduction is negatior), hence our results will hold equally for fuzzy
and L-fuzzysets. We introduce multi-valued operations
The fuzzy literature contains many examples-abrms M: X x X — P (X) andU : X x X — P (X) (where
which are a generalization of (classical) set intersectidP(X) is the power setof X). Then we show thafl
All of these t-norms are (as far as we knosingle- has properties which are analogous (in the multi-valued
valued To be precise: given a set (of membership vatontext) of the properties usually required of t-norms;
ues, truth values etc.)X, a t-norm is a binary function similarly LI has properties analogous to those usually re-
T : X x X — X satisfying certain properties. Henceguired of t-conorms. Finally, we show that the structure
given two elements ok, call themz, y, thenT (z,y) is (X, M, L) is the analog (in the multi-valued context) of a
also an element oK. Note that this is also true in thelattice.
context of interval-valued fuzzy sets, fuzzy sets of type The last remark requires some additional explanation.
2 and other variants. For example, a t-norm which opet us first remark that there is an extensive literature in
erates on interval-valued fuzzy sets combines two intéfie study of multi-valued algebraic operations (catgd
vals to produceneinterval. Similar remarks can be mad@eroperationyand the corresponding algebraic structures
about t-conorms, which are a generalization of (classicgiyperalgebras The books [1, 2] present an extensive
set union. We will refer to both t-norms and t-conorms &sudy of hyperalgebras. As will be seen in Section 3, our
connectives (X,m,U) is asuperlattice[4].

In this paper we introduceulti-valuedconnectives. In - While multi-valued operations have been studied exten-
other words, we are interested in binary functions whigively in the hyperalgebraic literature, we believe (as al-
map elements ok to subset®f X. Before formally pre- ready mentioned) that they have not been previously dis-
senting our results let us briefly discuss the reasons fussed in the fuzzy literature. However, our approach is
introducing multi-valued connectives. quite similar to the one used by Jenei in [3]. Indeed, the

Fuzzy theorists have often argued that a major motisetual construction of the interval-valued t-norms and t-
behind the theory of fuzzy sets has been the treatmentohorms is the same as the one used by us (indeed Jenei’s
uncertainty Many examples appear in the literature; fggaper has been a major inspiration to us). Jenei argues that
instance Nguyen [5] mentions classes with vaguely deis connectives are preferrable to classical ones because
fined boundaries and numbers which are only known tteey combine a large number of desirable properties; this
lie within an interval as two examples where fuzzy setemark also holds for oun andL and can be considered
can be fruitfully applied. as an additional reason for their introduction. We will dis-

The above examples (and many similar ones appeauss the relation of our results to those obtained by Jenei
ing throughout the literature) involve uncertainty aboin Section 5.



2 Preliminaries 4. 2 <y=5S(xz2) <8y 2).

We will present our results in the context of L-fuzzy setJotation 2.5 We  will write T (z,y,2) for

i.e. all the results presented below hold when membersHig? (x,y),z) = T (x,T (y,z)) and S (z,y,z) for

takes values in a lattice (rather than in the unit interval(S (z,y), z) = S (x, S (v, 2)) (by associativity).

of real numbers). This generality can be obtained at no

additional cost, i.e. the proofs of our results are essentidgfinition 2.6 Given a t-normI” and a t-conorms, we

the same for the cases of real numbers and general fattié@y thatl" and S are dual (with respect to the negatioh
Hence, in what follows we assume the existence if (7 (z,9)) =S («,y).

a deMorgan lattice X, A, V,”) (where’ denotesnega- o )

tion) with a minimum element 0 and a maximum eld2€finition 2.7 For every [z,y] < I(X), we define

ment 1. The order compatible with,V will be de- [yl = {2} era )

noted by<. Lattice intervals are defined in the stan-

dard manner: for every,y € X with z < y we define

[z,y] = {2 : @ < 2 < y}. Theemptyinterval is the empty

set() and can be symbolized &s y] for any pairz, y such

thatz £ y. The collection of all intervals of(, includ-

ing the empty interval, will be symbolized Hy(X). We

define, in standard manner, an ordeddiX).

Remark. In the sequel we will occasionally make
use of certain well-known properties of t-norms and t-
conorms which follow from Definitions 2.3 and 2.4. For
exampleT (0,z) =0,5 (L,z) =1,z <y=T(z,2) <
T(z,y),z <y=S(z2z) < S(zvy) etc. Also, using
Definition 2.7 it is straightforward thdt:, y]" = [v/, 2]
Finally, proofs of the following propositions can be found

Definition 2.1 For every[z,y], [u,v] € I(X) we write " [5]

= iff 2 < <w. . : o
ly] < [, o] M2 Swandy < v Proposition 2.8 A is at-norm andv is its dual t-conorm.
Proposition 2.2 < is an order onI (X) and (I(X), <)

is a lattice where Proposition 2.9 Given a t-nornil” and a t-conorms, for

everyz,y € X we have:T (z,y) <z Ayandz Vy <
inf([$7y]a[u7v]):[x/\u,y/\’u], S(x,y)

sup ([z,y], [u,v]) =[xV u,y Vo] Proposition 2.10 For all 2,y € X we have:T (z,y) <

< )
for every[z, y], [u,v] € I(X). z< S (z,y)
We now present some material relatingygperopera-

In the lattice context we can define a t-ndfhto be any tions For more details see [1]

functionT : X x X — X which satisfies the following

properties. Definition 2.11 A hyperoperatioris a mapping: : X x

L . ) X — P (X), whereP (X) is th - .
Definition 2.3 A functionT : X x X — X is at-norm — P (X), whereP (X) is the power-set ok

iff it satisfies the following for every, y, z € X. Remark. In other words, while an operation maps ev-

ery pair of elements to an element, a hyperoperation maps

L TQz) =z every pair of elements toset The following is a standard
2. T (x,y) =T (y,z). notation used in the hyperoperations literature.
3. T(x, T (y,2) =T (T (x,y),2). Notation 2.12 If x is a hyperoperation otX, then for ev-

eryz,y,z € X we define
4 2 <y=T(x,2) <T(y,2).
Tk (y*z)= UneyszT * U,
Similarly, a t-conormS' is any functionS : X x X —

. . g . . * * 2 =U * 2.
X which satisfies the following properties. ()2 uCzryt* 2

A particular hyperstructure of interest in this paper is

Definition 2.4 A functionS : X x X — X is at-conorm the superlatticel4].

iff it satisfies the following for every, y, z € X:
Definition 2.13 Given  hyperoperations v7,/A on

1. 5(0,z) ==x. (X, A, V), we say that X, 57, A) is a superlatticdff the
2. S(z,y) =S (y,z). following properties hold for alk:, y, z € X.
3. 5(x,S(y,2)) =5(S(x,y),2). Al zex Az, x€xya.

Lin what follows we omit proofs because of space limitatons. A2 x Ay=yAz,x2Jy=9y < T.



A3 (zlhy)ANz=axzA(yAz), (rvy) VvV z=axy Proposition3.6 Forall z,y € X we have:

z).
(y v 2) l.xexNe,ze€xlUa.

Adze(xlhy)vrze vy A, 2.zexzN(zUy),z €z U (zMNy).

ASzsysycrvysrserly. zlysyezllys ey,

Obviously this is a generalization of the concept of laproposition 3.7 For all 2,y € X we have:(z Uy) =
tice to the context of hyperoperations; in particular, every r/ and (z My)’ = 2/ Uy/.

lattice can be seen as a superlattice with “trivial” (single-

valued) hyperoperations. Proposition 3.8 For all z,y, z € X we have:
3 Interval-Valued t-Norms and t- T (z,yV2),2A(yV2)]
Conorms Cxn(yuz)n((zny)U(znz))

In the following T (=, ) will denote an arbitrary t-norm and
and S (z,y) its dual t-conorm (with respect to some ar- [V (yA2),S (z,yAz)
bitrary negationz’). The only condition we impose on o

T (2, ) andsS (z, y) is the following. C@Unz))n(@Uy)n(zuz).

Condition 3.1 For all x,y, 2 € X we have: 4 Generalizations

1. T( ) =T We can generalize the construction of the multi-valued

2.T(xANy,2)=T connectives (Definition 3.3) in the following manner.
Suppose that}, T are t-norms and, Sy their dual t-

3..5( )=15 ) conorms. Furthermore, suppose that forzal) € X we

haveT (z,y) < Ts (z,y) andS; (z,y) < S; (z,y). For

4. S( )=S8 ). .

all z,y € X define

Proposition 3.2 Condition 3.1 is automatically satisfied _

for everyT, S pair if X is the interval[0, 1] of real num- My = [T (2,y), T2 (@, y)], ally = [$2 (2, 9), 51 (J:,(yl))] :

bers.

i . . Thenitis still possible that, LI have the t-norm, t-conorm
We now define the interval-valued fuzzy connectives . "
. properties of Proposition 3.5. As an example take

e . . Tl(m,y):max(o,m+y—1),
Definition 3.3 For all z,y € X we definex Ny = Ty (2,y) =
[T (z,y),x Ayl,z Uy = [zVy,S(z,y) 2( =
T,y

Sl ) ):mln(l,x—ky),
Proposition 3.4 For all z,y,z € X such thaty < z, Sy (z,y) = a4y — ay.
we have: z M [y, z]= [T (x,y),x Az] and z U [y, z]=
[z2Vy,S(z,2)]. Itis easy to check that all the properties of Proposition 3.5
still hold.

The following proposition shows thdt, Ll have the = However, an additional attractive point of our construc-
analogs of t-norm, t-conorm properties (in the context 6bn is that(X, M, ) behaves similarly to a lattice (i.e. it

hyperoperations). is a superlattice). Can we obtain this behaviorfordif-
ferent fromA and S, different fromv? A first answer
Proposition 3.5 For all z,y, z € X we have: turns out to be negative.
l.zelnz,0e0Na,ze0Uz,1ella. Proposition 4.1 Suppose thatl}, 7> are t-norms and
S1, 99 their dual t-conorms. Furthermore, suppose that
2.xNy=yNz,zly=yUz. for all z,y € X we haveT) (v,y) < T (z,y) and

Sy (z,y) < S1(z,y). Forall z,y € X definex My
andzUyasin (1). ThenVe,y € X : Ty (z,y) = x A y)
4. (xﬂy)ﬂz:zﬂ(yﬂz):[T(;L"y’z)’x/\y/\z} if and Only if (Vz,yEX:zgy@szﬂy);

also (Vz,ye X :Ss(z,y)=aVy) if and only if
5. (zUy)Uz=azU(yUz)=[zVyVzS(@y2)]. (VayeX:z<ysycaly).

3. fe <y, thenznz<yMNzandz Uz <y Uz



From the above proposition we see that M, L) is a
superlatticeeompatible with the original ordex iff x My
andz U y are defined according to Definition 3.3.

However it may still be possible to defin€ly andxLiy

Let us close with some issues which require further
research. First, it will be interesting to obtain further
“deMorgan-like” properties of X, M, L") and develop a
logic based on multi-valued connectives. Of particular in-

in such a manner thafX, M, L) is a superlattice in a moreterest is the study of the resulting implication operator,
general sense. Namely, suppose thhtA4 are satisfied the law of excluded middle and the law of contradiction.

andAS5 is replaced by the following conditions.
Ab yeaxyyerzexAy.
A7 (zeaxvyyandycaxvvy) =z =y.

A8 (rexvyyandycyvz)=>ze€avy 2.

Second, note that the fuzzy implication operator is closely
connected to théuzzy inclusion measurso it would be
interesting to consider interval-valued inclusion measures.
Third, we are interested in analyzigg, 1, ) from a ge-
ometric point of view, paying special attention to issues
such as metric properties, continuity, convexity and be-
tweenness. Finally, it will be interesting to develop a pro-

If A1-A4 andA6-A8 hold, then we can define a relatiorsedure for developing mily of interval-valued t-norms

< onX as follows: %t < yiff y € x 7 ¢". It turns out
that usingA6-A8 it can be shown thaf is an order on¥,
which will, in general, be different fronx; in factA1-A4

{Ma},ep0,1) Which have ther-cut properties because the
My's can then be used to construchazy-valued t-norm
. Similarly, one could use a famil{t. },¢ o ;) to con-

andA6-A8 do not use< at all, hence the hyperoperationstruct afuzzy-valued t-conorm.

Vv, A can be defined in a general sét(not necessarily a

lattice).
In this light, it may be possible for some paifs, T

and S, S, to definels andr as in (1) and then show tha

Al-A4 andA6-A8 hold; in such a case andr will define
anorder: < yonX as follows: ¢ < yiff y € 2Uy" and

U, M are reasonable candidates for multi-valued t-no
and t-conorm onX. However, we emphasize again that

U, M will not fully respect the “intrinsic” ordek.

5 Conclusion

We have presented a procedure for constructmgti-
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