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Abstract

We present a procedure for constructingmulti-valuedt-
norms and t-conorms. Our construction uses a pair of
single-valued t-norms and the pair of dual t-conorms to
construct interval-valued t-normsu and t-conormst. In
this manner we can combine desirable characteristics of
different t-norms and t-conorms; furthermore if we use
the t-norm∧ and t-conorm∨, then(X,u,t) is a super-
lattice, i.e. the multivalued analog of a lattice.

1 Introduction

The fuzzy literature contains many examples oft-norms,
which are a generalization of (classical) set intersection.
All of these t-norms are (as far as we know)single-
valued. To be precise: given a set (of membership val-
ues, truth values etc.)X, a t-norm is a binary function
T : X × X → X satisfying certain properties. Hence,
given two elements ofX, call themx, y, thenT (x, y) is
also an element ofX. Note that this is also true in the
context of interval-valued fuzzy sets, fuzzy sets of type
2 and other variants. For example, a t-norm which op-
erates on interval-valued fuzzy sets combines two inter-
vals to produceoneinterval. Similar remarks can be made
about t-conorms, which are a generalization of (classical)
set union. We will refer to both t-norms and t-conorms as
connectives.

In this paper we introducemulti-valuedconnectives. In
other words, we are interested in binary functions which
map elements ofX to subsetsof X. Before formally pre-
senting our results let us briefly discuss the reasons for
introducing multi-valued connectives.

Fuzzy theorists have often argued that a major motive
behind the theory of fuzzy sets has been the treatment of
uncertainty. Many examples appear in the literature; for
instance Nguyen [5] mentions classes with vaguely de-
fined boundaries and numbers which are only known to
lie within an interval as two examples where fuzzy sets
can be fruitfully applied.

The above examples (and many similar ones appear-
ing throughout the literature) involve uncertainty about

the degree to which objects belong to sets; on the other
hand the manner in which fuzzy sets arecombined(e.g.
by unions, intersections etc.)does not involve any uncer-
tainty. For example, given two fuzzy setsA andB and an
elementx, the degree to whichx belongs to bothA and
B is given byA (x)∧B (x); no uncertainty is involved in
the application of the∧ connective. A natural extension
of the principle of fuzziness is to consideruncertain con-
nectives; the use of multi-valued t-norms and t-conorms is
a simple step in this direction.

Hence the plan of this paper is as follows. We work
in the context of a deMorgan lattice(X,∧,∨,′ ) (where′

is negation), hence our results will hold equally for fuzzy
and L-fuzzysets. We introduce multi-valued operations
u : X ×X → P (X) andt : X ×X → P (X) (where
P (X) is the power setof X). Then we show thatu
has properties which are analogous (in the multi-valued
context) of the properties usually required of t-norms;
similarly t has properties analogous to those usually re-
quired of t-conorms. Finally, we show that the structure
(X,u,t) is the analog (in the multi-valued context) of a
lattice.

The last remark requires some additional explanation.
Let us first remark that there is an extensive literature in
the study of multi-valued algebraic operations (calledhy-
peroperations) and the corresponding algebraic structures
(hyperalgebras). The books [1, 2] present an extensive
study of hyperalgebras. As will be seen in Section 3, our
(X,u,t) is asuperlattice[4].

While multi-valued operations have been studied exten-
sively in the hyperalgebraic literature, we believe (as al-
ready mentioned) that they have not been previously dis-
cussed in the fuzzy literature. However, our approach is
quite similar to the one used by Jenei in [3]. Indeed, the
actual construction of the interval-valued t-norms and t-
conorms is the same as the one used by us (indeed Jenei’s
paper has been a major inspiration to us). Jenei argues that
his connectives are preferrable to classical ones because
they combine a large number of desirable properties; this
remark also holds for ouru andt and can be considered
as an additional reason for their introduction. We will dis-
cuss the relation of our results to those obtained by Jenei
in Section 5.

1



2 Preliminaries

We will present our results in the context of L-fuzzy sets,
i.e. all the results presented below hold when membership
takes values in a lattice (rather than in the unit interval
of real numbers). This generality can be obtained at no
additional cost, i.e. the proofs of our results are essentially
the same for the cases of real numbers and general lattice1.

Hence, in what follows we assume the existence of
a deMorgan lattice(X,∧,∨,′ ) (where ′ denotesnega-
tion) with a minimum element 0 and a maximum ele-
ment 1. The order compatible with∧,∨ will be de-
noted by≤. Lattice intervals are defined in the stan-
dard manner: for everyx, y ∈ X with x ≤ y we define
[x, y] = {z : x ≤ z ≤ y}. Theemptyinterval is the empty
set∅ and can be symbolized as[x, y] for any pairx, y such
thatx � y. The collection of all intervals ofX, includ-
ing the empty interval, will be symbolized byI (X). We
define, in standard manner, an order onI (X).

Definition 2.1 For every[x, y], [u, v] ∈ I (X) we write
[x, y] � [u, v] iff x ≤ u andy ≤ v.

Proposition 2.2 � is an order onI (X) and (I (X) ,�)
is a lattice where

inf ([x, y] , [u, v]) = [x ∧ u, y ∧ v] ,
sup ([x, y] , [u, v]) = [x ∨ u, y ∨ v]

for every[x, y], [u, v] ∈ I (X).

In the lattice context we can define a t-normT to be any
functionT : X × X → X which satisfies the following
properties.

Definition 2.3 A functionT : X × X → X is a t-norm
iff it satisfies the following for everyx, y, z ∈ X.

1. T (1, x) = x.

2. T (x, y) = T (y, x) .

3. T (x, T (y, z)) = T (T (x, y) , z) .

4. x ≤ y ⇒ T (x, z) ≤ T (y, z).

Similarly, a t-conormS is any functionS : X ×X →
X which satisfies the following properties.

Definition 2.4 A functionS : X ×X → X is a t-conorm
iff it satisfies the following for everyx, y, z ∈ X:

1. S (0, x) = x.

2. S (x, y) = S (y, x) .

3. S (x, S (y, z)) = S (S (x, y) , z) .

1In what follows we omit proofs because of space limitations.

4. x ≤ y ⇒ S (x, z) ≤ S (y, z).

Notation 2.5 We will write T (x, y, z) for
T (T (x, y) , z) = T (x, T (y, z)) and S (x, y, z) for
S (S (x, y) , z) = S (x, S (y, z)) (by associativity).

Definition 2.6 Given a t-normT and a t-conormS, we
say thatT andS are dual(with respect to the negation′)
iff (T (x, y))′ = S (x′, y′).

Definition 2.7 For every [x, y] ∈ I (X), we define
[x, y]′ = {z′}z∈[x,y].

Remark. In the sequel we will occasionally make
use of certain well-known properties of t-norms and t-
conorms which follow from Definitions 2.3 and 2.4. For
example,T (0, x) = 0, S (1, x) = 1, x ≤ y ⇒ T (z, x) ≤
T (z, y), x ≤ y ⇒ S (z, x) ≤ S (z, y) etc. Also, using
Definition 2.7 it is straightforward that[x, y]′ = [y′, x′].
Finally, proofs of the following propositions can be found
in [5].

Proposition 2.8 ∧ is a t-norm and∨ is its dual t-conorm.

Proposition 2.9 Given a t-normT and a t-conormS, for
everyx, y ∈ X we have:T (x, y) ≤ x ∧ y andx ∨ y ≤
S (x, y).

Proposition 2.10 For all x, y ∈ X we have:T (x, y) ≤
x ≤ S (x, y).

We now present some material relating tohyperopera-
tions. For more details see [1].

Definition 2.11 A hyperoperationis a mapping∗ : X ×
X → P (X), whereP (X) is the power-set ofX.

Remark. In other words, while an operation maps ev-
ery pair of elements to an element, a hyperoperation maps
every pair of elements to aset. The following is a standard
notation used in the hyperoperations literature.

Notation 2.12 If ∗ is a hyperoperation onX, then for ev-
eryx, y, z ∈ X we define

x ∗ (y ∗ z) = ∪u∈y∗zx ∗ u,

(x ∗ y) ∗ z = ∪u∈x∗yu ∗ z.

A particular hyperstructure of interest in this paper is
thesuperlattice[4].

Definition 2.13 Given hyperoperations 5,4 on
(X,∧,∨), we say that(X,5,4) is a superlatticeiff the
following properties hold for allx, y, z ∈ X.

A1 x ∈ x4 x, x ∈ x5 x.

A2 x4 y = y4 x, x5 y = y5 x.
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A3 (x4 y) 4 z = x 4 (y4 z), (x5 y) 5 z = x 5
(y5 z).

A4 x ∈ (x4 y)5 x, x ∈ (x5 y)4 x.

A5 x ≤ y ⇔ y ∈ x5 y ⇔ x ∈ x4 y.

Obviously this is a generalization of the concept of lat-
tice to the context of hyperoperations; in particular, every
lattice can be seen as a superlattice with “trivial” (single-
valued) hyperoperations.

3 Interval-Valued t-Norms and t-
Conorms

In the followingT (x, y) will denote an arbitrary t-norm
andS (x, y) its dual t-conorm (with respect to some ar-
bitrary negationx′). The only condition we impose on
T (x, y) andS (x, y) is the following.

Condition 3.1 For all x, y, z ∈ X we have:

1. T (x ∨ y, z) = T (x, z) ∨ T (y, z) .

2. T (x ∧ y, z) = T (x, z) ∧ T (y, z) .

3. S (x ∨ y, z) = S (x, z) ∨ S (y, z) .

4. S (x ∧ y, z) = S (x, z) ∧ S (y, z) .

Proposition 3.2 Condition 3.1 is automatically satisfied
for everyT, S pair if X is the interval[0, 1] of real num-
bers.

We now define the interval-valued fuzzy connectives
u,t.

Definition 3.3 For all x, y ∈ X we definex u y =
[T (x, y) , x ∧ y], x t y = [x ∨ y, S (x, y)].

Proposition 3.4 For all x, y, z ∈ X such thaty ≤ z,
we have: x u [y, z]= [T (x, y) , x ∧ z] and x t [y, z]=
[x ∨ y, S (x, z)] .

The following proposition shows thatu,t have the
analogs of t-norm, t-conorm properties (in the context of
hyperoperations).

Proposition 3.5 For all x, y, z ∈ X we have:

1. x ∈ 1 u x, 0 ∈ 0 u x, x ∈ 0 t x, 1 ∈ 1 t x.

2. x u y = y u x, x t y = y t x.

3. If x ≤ y, thenx u z � y u z andx t z � y tz.

4. (x u y) u z = x u (y u z) = [T (x, y, z) , x ∧ y ∧ z]

5. (x t y)t z = xt (y t z) = [x ∨ y ∨ z, S (x, y, z)] .

Proposition 3.6 For all x, y ∈ X we have:

1. x ∈ x u x, x ∈ x t x.

2. x ∈ x u (x t y), x ∈ x t (x u y).

3. x ≤ y ⇔ y ∈ x t y ⇔ x ∈ x u y.

Proposition 3.7 For all x, y ∈ X we have:(x t y)′ =
x′ u y′ and(x u y)′ = x′ t y′.

Proposition 3.8 For all x, y, z ∈ X we have:

[T (x, y ∨ z) , x ∧ (y ∨ z)]
⊆ (x u (y t z)) ∩ ((x u y) t (x u z))

and

[x ∨ (y ∧ z) , S (x, y ∧ z)]
⊆ (x t (y u z)) ∩ ((x t y) u (x t z)) .

4 Generalizations

We can generalize the construction of the multi-valued
connectives (Definition 3.3) in the following manner.
Suppose thatT1, T2 are t-norms andS1, S2 their dual t-
conorms. Furthermore, suppose that for allx, y ∈ X we
haveT1 (x, y) ≤ T2 (x, y) andS2 (x, y) ≤ S1 (x, y). For
all x, y ∈ X define

xuy = [T1 (x, y) , T2 (x, y)] , xty = [S2 (x, y) , S1 (x, y)] .
(1)

Then it is still possible thatu,t have the t-norm, t-conorm
properties of Proposition 3.5. As an example take

T1 (x, y) = max (0, x + y − 1) ,

T2 (x, y) = xy,

S1 (x, y) = min (1, x + y) ,

S2 (x, y) = x + y − xy.

It is easy to check that all the properties of Proposition 3.5
still hold.

However, an additional attractive point of our construc-
tion is that(X,u,t) behaves similarly to a lattice (i.e. it
is a superlattice). Can we obtain this behavior forT2 dif-
ferent from∧ andS2 different from∨? A first answer
turns out to be negative.

Proposition 4.1 Suppose thatT1, T2 are t-norms and
S1, S2 their dual t-conorms. Furthermore, suppose that
for all x, y ∈ X we haveT1 (x, y) ≤ T2 (x, y) and
S2 (x, y) ≤ S1 (x, y). For all x, y ∈ X definex u y
andxty as in (1). Then(∀x, y ∈ X : T2 (x, y) = x ∧ y)
if and only if (∀x, y ∈ X : x ≤ y ⇔ x ∈ x u y);
also (∀x, y ∈ X : S2 (x, y) = x ∨ y) if and only if
(∀x, y ∈ X : x ≤ y ⇔ y ∈ x t y) .
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From the above proposition we see that(X,u,t) is a
superlatticecompatible with the original order≤ iff xuy
andx t y are defined according to Definition 3.3.

However it may still be possible to definexuy andxty
in such a manner that(X,u,t) is a superlattice in a more
general sense. Namely, suppose thatA1-A4 are satisfied
andA5 is replaced by the following conditions.

A6 y ∈ x5 y ⇔ x ∈ x4 y.

A7 (x ∈ x5 y andy ∈ x5 y) ⇒ x = y.

A8 (x ∈ x5 y andy ∈ y5 z) ⇒ x ∈ x5 z.

If A1-A4 andA6-A8 hold, then we can define a relation
6 on X as follows: “x 6 y iff y ∈ x5 y”. It turns out
that usingA6-A8 it can be shown that6 is an order onX,
which will, in general, be different from≤; in factA1-A4
andA6-A8 do not use≤ at all, hence the hyperoperations
5,4 can be defined in a general setX (not necessarily a
lattice).

In this light, it may be possible for some pairsT1, T2

andS1, S2 to definet andu as in (1) and then show that
A1-A4 andA6-A8 hold; in such a caset anduwill define
an orderx 6 y onX as follows: “x 6 y iff y ∈ xty” and
t, u are reasonable candidates for multi-valued t-norm
and t-conorm onX. However, we emphasize again that
t, u will not fully respect the “intrinsic” order≤.

5 Conclusion

We have presented a procedure for constructingmulti-
valued t-norms and t-conorms. Our construction uses
a pair of single-valued t-norms and the pair of dual t-
conorms and constructs interval-valued t-normsu and t-
conormst. In this manner we can combine desirable
characteristics of different t-norms and t-conorms; fur-
thermore if we use the t-norm∧ and t-conorm∨, then
(X,u,t) is a superlattice, i.e. the multivalued analog of
a lattice.

The results of Section 3 have been presented earlier by
Jenei [3], but from a different point of view. As already
mentioned, Jenei introduces fuzzy connectives which op-
erate onintervals. While (I (X) ,�) is a lattice, the asso-
ciated inf and sup operators donotbelong to the family of
Jenei connectives, except if we take the somewhat trivial
case of using thesamet-norm (namely∧) as lower and up-
per bound of the interval (and similarly for the t-conorm).
In fact, if it is required that a single-valued t-norm and a
a single-valued t-conorm generate a lattice structure, then
the only choice for the t-norm (resp. t-conorm) is the “nat-
ural” inf operator (resp. “natural” sup operator). We be-
lieve the main contribution of the current paper is to point
out that the use ofmulti-valuedt-norms and t-conorms al-
lows the introduction of a moregeneralordered structure,
namely thesuperlattice.

Let us close with some issues which require further
research. First, it will be interesting to obtain further
“deMorgan-like” properties of(X,u,t,′ ) and develop a
logic based on multi-valued connectives. Of particular in-
terest is the study of the resulting implication operator,
the law of excluded middle and the law of contradiction.
Second, note that the fuzzy implication operator is closely
connected to thefuzzy inclusion measure, so it would be
interesting to consider interval-valued inclusion measures.
Third, we are interested in analyzing(X,u,t) from a ge-
ometric point of view, paying special attention to issues
such as metric properties, continuity, convexity and be-
tweenness. Finally, it will be interesting to develop a pro-
cedure for developing afamily of interval-valued t-norms
{ua}a∈[0,1] which have thea-cut properties, because the
ua’s can then be used to construct afuzzy-valued t-norm
u. Similarly, one could use a family{ta}a∈[0,1] to con-
struct afuzzy-valued t-conormt.
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