The L-fuzzy Nakano "Hyperlattice"

K. Serafimidis, M. Konstantinidou and Ath. Kehagias

December 17, 2002

Abstract

In this paper we study the L-fuzzy hyperoperation \sqcup , which generalizes the crisp Nakano hyperoperation \sqcup_1 . We construct \sqcup using a family of crisp \sqcup_p hyperoperations as its p-cuts. The hyperalgebra (X, \sqcup, \wedge) can be understood as an L-fuzzy hyperlattice.

AMS Classification: 06B99, 06D30, 08A72, 03E72, 20N20.

1 Introduction

In this paper we perform the following construction: on a generalized deMorgan lattice $(X, \leq, \vee, \wedge, ')$ we construct an *L-fuzzy hyperoperation* \sqcup . Then (X, \sqcup, \wedge) has almost all the properties of a fuzzy *hyperlattice* [10]. (X, \sqcup, \wedge) is an example of a *L-fuzzy hyperalgebra* similar to the constructions previously presented by several authors. For example *fuzzy polygroups* have been presented by Zahedi and Hasankhani in [5, 17, 18], the same authors present *fuzzy hyperrings* in [4]; Corsini and Tofan present *fuzzy hypergroups* in [1]; Kehagias presents *L-fuzzy join spaces* in [7].

2 Preliminaries

In the remainder of the paper we use some notation and results from the theory of L-fuzzy sets. We present a few basic definitions here; some additional material can be found in [7, 8]. Let us also note that, in the remainder of the paper, some easy proofs are omitted because of space limitations.

In this paper we use a lattice which is defined as follows.

Definition 2.1 A generalized deMorgan lattice is a structure $(X, \leq, \vee, \wedge,')$, where (X, \leq, \vee, \wedge) is a complete distributive lattice with minimum element 0 and maximum element 1; the symbol ' denotes a unary operation ("negation"); and the following properties are satisfied.

- 1. For all $x \in X$, $Y \subseteq X$ we have $x \land (\lor_{y \in Y} y) = \lor_{y \in Y} (x \land y)$, $x \lor (\land_{y \in Y} y) = \land_{y \in Y} (x \lor y)$. (Complete distributivity).
- 2. For all $x \in X$ we have: (x')' = x. (Negation is involutory).
- 3. For all $x, y \in X$ we have: $x \le y \Rightarrow y' \le x'$. (Negation is order reversing).
- 4. For all $Y \subseteq X$ we have $(\vee_{y \in Y} y)' = \wedge_{y \in Y} y'$, $(\wedge_{y \in Y} y)' = \vee_{y \in Y} y'$ (Complete deMorgan laws).

The following definitions and notation will be used in the sequel.

- 1. A fuzzy set is a function $M: X \to [0,1]$, where [0,1] is an interval of real numbers; a L-fuzzy set is a function $\widetilde{M}: X \to X$. The collection of all crisp subsets of X is denoted by $\mathbf{P}(X)$ (power set of X); the collection of all L-fuzzy sets (i.e. functions $\widetilde{M}: X \to X$) by $\mathbf{F}(X)$. Hence $\mathbf{F}(X)$ is a collection of functions which includes, as special case, the (0/1 valued) characteristic functions of crisp sets.
- **2**. Given a set $A \in \mathbf{P}(X)$, we denote its inf by $\wedge A$ and its sup by $\vee A$.
- 3. Given a L-fuzzy set $\widetilde{M}: X \to X$, the p-cut of \widetilde{M} is denoted by M_p and defined by $M_p \doteq \{x: \widetilde{M}(x) \geq p\}$. For some basic properties of p-cuts see [15]. Two particularly important facts are [15, pp.34-35]: (a) a fuzzy set is uniquely determined by its p-cuts; (b) a family of sets $\{N_p\}_{p\in X}$ which has certain properties ("p-cut properties") can be used to define a fuzzy set \widetilde{M} in a manner such that for every $p\in X$ we have $M_p=N_p$.

A crisp hyperoperation is a mapping $\circ: X \times X \to \mathbf{P}(X)$; a L-fuzzy hyperoperation is a mapping $\circ: X \times X \to \mathbf{F}(X)$.

Definition 2.2 Let $\circ: X \times X \to \mathbf{F}(X)$ be a L-fuzzy hyperoperation.

- 1. For all $a \in X$, $\widetilde{B} \in \mathbf{F}(X)$ we define the L-fuzzy set $a \circ \widetilde{B}$ by $(a \circ \widetilde{B})(x) \doteq \bigvee_{b \in X} \left(\widetilde{B}(b) \wedge (a \circ b)(x) \right)$
- 2. For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we define the L-fuzzy set $\widetilde{A} \circ \widetilde{B}$ by $(\widetilde{A} \circ \widetilde{B})(x) \doteq \bigvee_{a \in X, b \in X} \left(\widetilde{A}(a) \wedge \widetilde{B}(b) \wedge [(a \circ b)(x)] \right)$.

3 The Family of \sqcup_{v} Crisp Hyperoperations

Definition 3.1 For every $p \in X$ we define the hyperoperation $\sqcup_p : X \times X \to \mathbf{P}(X)$ as follows:

$$\forall a, b \in X : a \sqcup_p b \doteq \{x : a \vee b \vee p' = a \vee x \vee p' = b \vee x \vee p'\}$$

In the the above definition, if we set p=1 we recover the \sqcup_1 Nakano hyperoperation first presented in [14] and then in [2] and also studied in [3, 6, 11, 12, 13] and several other places. The following proposition summarizes some obvious consequences of the definition of \sqcup_p .

Proposition 3.2 For every $p, a, b, c \in X$ we have:

- $I. \ c \in a \sqcup_p b \Leftrightarrow c \vee p' \in a \sqcup_p b.$
- 2. $a \sqcup_p b = (a \vee p') \sqcup_p (b \vee p') = (a \vee p') \sqcup_1 (b \vee p')$

Proposition 3.3 For all $a, b, p \in X$ there exists some f such that $a \sqcup_p b = [f, a \vee b \vee p']$.

Proof. We have: $\forall c \in a \sqcup_p b : a \vee b \vee p' = c \vee a \vee p' = c \vee b \vee p' \Rightarrow$

$$(a \lor b \lor p') = \land_{c \in a \sqcup_{p} b} (c \lor a \lor p') = \land_{c \in a \sqcup_{p} b} (c \lor b \lor p') \Rightarrow$$
$$(a \lor b \lor p') = (\land_{c \in a \sqcup_{p} b} c) \lor a \lor p' = (\land_{c \in a \sqcup_{p} b} c) \lor b \lor p' \Rightarrow$$
$$\land_{c \in a \sqcup_{p} b} c \in a \sqcup_{p} b$$

Similarly we can show $\vee_{c \in a \sqcup_p b} c \in a \sqcup_p b$. Next we show that $a \sqcup_p b$ is a convex sublattice. Take any $x, y \in a \sqcup_p b$. I.e.

$$a \lor b \lor p' = a \lor x \lor p' = b \lor x \lor p'$$

 $a \lor b \lor p' = a \lor y \lor p' = b \lor y \lor p'.$

Taking the join of the above we obtain $a \lor b \lor p' = a \lor x \lor y \lor p' = b \lor x \lor y \lor p'$ and so $x \lor y \in a \sqcup_p b$. Taking the meet, we obtain

$$a \lor b \lor p' = (a \lor x \lor y \lor p') \land (a \lor x \lor y \lor p') = (b \lor x \lor y \lor p') \land (b \lor x \lor y \lor p')$$

$$\Rightarrow a \lor b \lor p' = a \lor (x \land y) \lor p' = b \lor (x \land y) \lor p'$$

and so $x \wedge y \in a \sqcup_p b$. Furthermore, take any x,y,z such that $x \leq y \leq z$ and $x,z \in a \sqcup_p b$. I.e.

$$a \lor b \lor p' = a \lor x \lor p' = b \lor x \lor p'$$

 $a \lor b \lor p' = a \lor z \lor p' = b \lor z \lor p'.$

Then $a \lor b \lor p' = a \lor x \lor p' \le a \lor y \lor p' \le a \lor z \lor p' = a \lor x \lor p'$ and so $a \lor b \lor p' = a \lor y \lor p'$. Similarly we show $a \lor b \lor p' = b \lor y \lor p'$ and hence $y \in a \sqcup_p b$. In short we have shown that

$$a \sqcup_p b = [\wedge_{c \in a \sqcup_p b} c, \vee_{c \in a \sqcup_p b} c].$$

Let $f = \wedge_{c \in a \sqcup_p b} c$, $g = \vee_{c \in a \sqcup_p b} c$. Since $a \vee b \vee p' \in a \sqcup_p b$, we have $a \vee b \vee p' \leq g$. On the other hand $g \in a \sqcup_p b$ and so $a \vee b \vee p' = a \vee g \vee p' = b \vee g \vee p' \geq g$. Hence $g = a \vee b \vee p'$.

The following properties are related to distributivity.

Proposition 3.4 For all $a, b, c, p \in X$ the following properties hold.

- 1. $(a \sqcup_p b) \vee (a \sqcup_p c) \subseteq a \sqcup_p (b \vee c)$.
- 2. $a \wedge (b \sqcup_p c) \subseteq (a \wedge b) \sqcup_p (a \wedge c)$.
- 3. $a \lor (b \sqcup_p c) \subseteq (a \lor b) \sqcup_p (b \lor c)$.

Proof. In this proof we make use of some distributivity properties of \sqcup_1 , established in [13]. For part 1 we have:

$$(a \sqcup_p b) \vee (a \sqcup_p c) = ((a \vee p') \sqcup_1 (b \vee p')) \vee ((a \vee p') \sqcup_1 (c \vee p'))$$

$$\subseteq (a \vee p') \sqcup_1 ((b \vee p') \vee (c \vee p'))$$

$$= (a \vee p') \sqcup_1 (b \vee c \vee p')$$

$$= a \sqcup_p (b \vee c).$$

where the set inclusion in the second line has been obtained using the previously mentioned results of [13]. For part 2: from $b \sqcup_p c = (b \vee p') \sqcup_1 (c \vee p')$ we get

$$a \wedge (b \sqcup_{p} c) = a \wedge ((b \vee p') \sqcup_{1} (c \vee p'))$$

$$\subseteq (a \wedge (b \vee p')) \sqcup_{1} (a \wedge (c \vee p'))$$

$$= ((a \wedge b) \vee (a \wedge p')) \sqcup_{1} ((a \wedge c) \vee (a \wedge p'))$$

$$= ((a \wedge b) \vee (a' \vee p)') \sqcup_{1} ((a \wedge c) \vee (a' \vee p)')$$

$$= (a \wedge b) \sqcup_{a' \vee p} (a \wedge c)$$

$$\subseteq (a \wedge b) \sqcup_{p} (a \wedge c);$$

(in the last step we have used Proposition 3.10.2). For part 3:

$$a \vee (b \sqcup_{p} c) = a \vee ((b \vee p') \sqcup_{1} (c \vee p'))$$

$$\subseteq (a \vee b \vee p') \sqcup_{1} (a \vee c \vee p')$$

$$= (a \vee b) \sqcup_{p} (a \vee c).$$

4

Definition 3.5 For all $a, b, p \in X$ we write $a \leq_p b$ (and $b \geq_p a$) iff $a \vee p' \leq b \vee p'$.

Proposition 3.6 The relation \leq_p is a preorder on X. The associated relation $=_p(defined\ by:\ a=_p\ b\ iff\ a\leq_p\ b\ and\ b\leq_p\ a)$ is an equivalence relation and we have $a=_p\ b\Leftrightarrow a\lor p'=b\lor p'$.

Proposition 3.7 *For all* $a, b, c, p \in X$ *we have:*

$$(a \sqcup_p c = b \sqcup_p c \text{ and } a \wedge c = b \wedge c) \Rightarrow a =_p b.$$

Proof. Since $a \sqcup_p c = [x, a \vee c \vee p']$ and $b \sqcup_p c = [y, b \vee c \vee p']$ we have $a \vee c \vee p' = b \vee c \vee p'$. Hence $(a \vee p') \vee (c \vee p') = (b \vee p') \vee (c \vee p')$. From $a \wedge c = b \wedge c$ we get $(a \wedge c) \vee p' = (b \wedge c) \vee p'$ which gives $(a \vee p') \wedge (c \vee p') = (b \vee p') \wedge (c \vee p')$. Hence, by distributivity, $a \vee p' = b \vee p'$.

Proposition 3.8 For all $a, b, c, p \in X$ we have:

$$a \le b \Rightarrow (\forall w \in a \sqcup_p c \qquad \exists u : b \sqcup_p c : w \le u).$$

Proof. $a \leq b \Rightarrow a \vee c \vee p' \leq b \vee c \vee p'$. Since $a \sqcup_p c = [x, a \vee c \vee p']$ and $b \sqcup_p c = [y, b \vee c \vee p']$ the required result follows immediately.

The hyperstructure $(X, \sqcup_p, \land, \leq_p)$ has some interesting properties.

Proposition 3.9 For all $a, b, c, p \in X$ the following hold.

- 1. $a \in a \sqcup_p a$, $a = a \wedge a$.
- 2. $a \sqcup_p b = b \sqcup_p a$, $a \wedge b = b \wedge a$.
- 3. $(a \sqcup_p b) \sqcup_p c = a \sqcup_p (b \sqcup_p c), (a \wedge b) \wedge c = a \wedge (b \wedge c),$
- 4. $a \in (a \sqcup_p b) \land a, a \in (a \land b) \sqcup_p a,$
- 5. $b \leq_p a \Leftrightarrow a \in a \sqcup_p b$.

Proof. 1 and 2 are obvious. For 3 take any $y \in (a \sqcup_p b) \sqcup_p c$ then there exists $x \in a \sqcup_p b$ such that $y \in x \sqcup_p c$. Hence

$$x \vee p' \in (a \vee p') \sqcup_{1} (b \vee p')$$

$$y \vee p' \in (x \vee p') \sqcup_{1} (c \vee p') \subseteq ((a \vee p') \sqcup_{1} (b \vee p')) \sqcup_{1} (c \vee p')$$

$$= (a \vee p') \sqcup_{1} ((b \vee p') \sqcup_{1} (c \vee p')) = \bigcup_{z \in b \sqcup_{p} c} (a \vee p') \sqcup_{1} z$$

$$= \bigcup_{z \in b \sqcup_{p} c} (a \vee p') \sqcup_{1} (z \vee p') = \bigcup_{z \in b \sqcup_{p} c} a \sqcup_{p} z = a \sqcup_{p} (b \sqcup_{p} c)$$

(where we have used the associativity of the \sqcup_1 hyperoperation¹). Hence we have shown $(a \sqcup_p b) \sqcup_p c \subseteq a \sqcup_p (b \sqcup_p c)$. Similarly we show $a \sqcup_p (b \sqcup_p c) \subseteq (a \sqcup_p b) \sqcup_p c$ and we have proved the first part of 3; the second part is obvious. For 4 we have $a = ((a \vee p') \vee (b \vee p')) \wedge a \in ((a \vee p') \sqcup_1 (b \vee p')) \wedge a = (a \sqcup_p b) \wedge a$. Also $(a \wedge b) \vee a \vee p' = (a \wedge b) \vee a \vee p' = a \vee a \vee p' \Rightarrow a \in (a \wedge b) \sqcup_p a$. For 5, we have $a \in a \sqcup_p b \Leftrightarrow a \vee b \vee p' = a \vee a \vee p' = b \vee a \vee p' \Leftrightarrow b \vee p' \leq a \vee p'$.

Hence $(X, \sqcup_p, \land, \leq_p)$ is "nearly" a hyperlattice [10]. The only difference is that \leq_p is a preorder, not an order. Next we show that, for any $a, b \in X$, $a \sqcup_p b$ has the p-cut properties.

Proposition 3.10 *The following properties hold for all* $a, b, p, q \in X$, $P \subseteq X$.

- 1. $a \sqcup_0 b = [0, 1]$.
- 2. $p \leq q \Rightarrow a \sqcup_q b \subseteq a \sqcup_p b$.
- 3. $a \sqcup_{p \vee q} b = (a \sqcup_p b) \cap (a \sqcup_q b)$; more generally $a \sqcup_{\vee P} b = \cap_{p \in P} (a \sqcup_p b)$.

Proof. 1 is obvious. For 2: $p \le q \Rightarrow q' \le p'$. Now

$$x \in a \sqcup_q b \Rightarrow$$

$$a \vee b \vee q' = a \vee x \vee q' = b \vee x \vee q' \Rightarrow$$

$$a \vee b \vee q' \vee p' = a \vee x \vee q' \vee p' = b \vee x \vee q' \vee p' \Rightarrow$$

$$a \vee b \vee p' = a \vee x \vee p' = b \vee x \vee p' \Rightarrow$$

$$x \in a \sqcup_p b.$$

Regarding 3 we will prove the (more general) $a \sqcup_{\vee P} b = \cap_{p \in P} (a \sqcup_p b)$. Take any $P \subseteq X$. Since for every $p \in P$ we have $p < \vee P$, it follows from 2 that

$$\forall p \in P : a \sqcup_{\vee P} b \subseteq a \sqcup_n b \Rightarrow a \sqcup_{\vee P} b \subseteq \cap_{n \in P} (a \sqcup_n b).$$

On the other hand

$$x \in \bigcap_{p \in P} (a \sqcup_{p} b) \Rightarrow \forall p \in P : x \in a \sqcup_{p} b \Rightarrow$$

$$\forall p \in P : a \lor b \lor p' = a \lor x \lor p' = b \lor x \lor p' \Rightarrow$$

$$\land_{p \in P} (a \lor b \lor p') = \land_{p \in P} (a \lor x \lor p') = \land_{p \in P} (b \lor x \lor p') \Rightarrow$$

$$a \lor b \lor (\land_{p \in P} p') = a \lor x \lor (\land_{p \in P} p') = b \lor x \lor (\land_{p \in P} p') \Rightarrow$$

$$a \lor b \lor (\lor_{p \in P} p)' = a \lor x \lor (\lor_{p \in P} p)' = b \lor x \lor (\lor_{p \in P} p)' \Rightarrow x \in a \sqcup_{\lor P} b$$

where we have used complete distributivity and the fact that $\wedge_{p \in P} p' = (\vee_{p \in P} p)' = (\vee P)'$.

This has been established independently by Nakano [14] and Comer [2].

Definition 3.11 We define the operation $\dot{\cup}$ between intervals as follows: for all intervals A, B we set

$$A \dot{\cup} B = \cap_{C:A \subseteq C,B \subseteq C} C.$$

Proposition 3.12 For all $a, b \in X$, $(\{a \sqcup_p b\}_{p \in X}, \dot{\cup}, \cap, \subseteq)$ is a lattice.

Proof. Because of Proposition 3.10, $\{a \sqcup_p b\}_{p \in X}$ is a *closure system*. \blacksquare **Remark**. Let us note that for every $p \in X$ we can also define a dual hyperoperation \sqcap_p as follows:

$$\forall a, b \in X : a \sqcap_p b = \{x : a \land b \land p = a \land x \land p = b \land x \land p\}\}$$

Each \sqcap_p has properties analogous to the ones presented above for \sqcup_p . Furthermore, there are some interesting properties of the hyperstructure (X, \sqcup_p, \sqcap_p) , especially with regard to the combination of the \sqcup_p and \sqcap_p hyperoperations. We postpone the study of (X, \sqcup_p, \sqcap_p) to a future publication.

4 The L-Fuzzy Hyperoperation ⊔

We now proceed to synthesize the L-Fuzzy hyperoperation \sqcup using the crisp hyperoperatons \sqcup_p . We will use a form of the classical construction presented in [15].

Definition 4.1 For all $a, b \in X$ we define the L-fuzzy set $a \sqcup b$ by defining for every $x \in X$: $(a \sqcup b)(x) \doteq \vee \{q : x \in a \sqcup_q b\}$.

Proposition 4.2 For all $a, b, p \in X$ we have: $(a \sqcup b)_p = a \sqcup_p b$.

Proof. See [15]. ■

Proposition 4.3 For all $a, p \in X$, for all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we have: (i) $a \sqcup_p B_p \subseteq \left(a \sqcup \widetilde{B}\right)_p$, (ii) $A_p \sqcup_p B_p \subseteq \left(\widetilde{A} \sqcup \widetilde{B}\right)_p$.

Proof. We only prove (i). Choose any $x \in a \sqcup_p B_p$. Then there exists some $b \in B_p$ such that $x \in a \sqcup_p b = (a \sqcup b)_p$. Hence $\widetilde{B}(b) \geq p$ and $(a \sqcup b)(x) \geq p$ and so

$$p \leq \widetilde{B}(b) \wedge ((a \sqcup b)(x) \leq \vee_{u \in X} \left[\widetilde{B}(u) \wedge ((a \sqcup u)(x)) \right] = (a \sqcup b)(x).$$

Proposition 4.4 For all $a, b, c, p \in X$ we have:

$$(a \sqcup b)(c) \ge p \Leftrightarrow ((a \lor p') \sqcup (b \lor p'))(c) \ge p \Leftrightarrow (a \sqcup b)(c \lor p') \ge p.$$
 (1)

Proof. (1) can be restated as

$$c \in a \sqcup_p b \Leftrightarrow c \in (a \vee p') \sqcup_p (b \vee p') \Leftrightarrow c \vee p' \in a \sqcup_p b$$

which is simply a restatement of Proposition 3.2. ■

The following proposition presents some distributivity properties of \sqcup .

Proposition 4.5 For all $a, b, c \in X$ we have

- 1. $(a \sqcup b) \lor (a \sqcup c) \subseteq a \sqcup (b \lor c)$.
- 2. $a \wedge (b \sqcup c) \subseteq (a \wedge b) \sqcup (a \wedge c)$.
- 3. $a \lor (b \sqcup c) \subseteq (a \lor b) \sqcup (a \lor c)$.

Proof. For 1 it suffices to note that for all $p \in X$ we have (from Proposition 3.4) $(a \sqcup_p b) \vee (a \sqcup_p c) \subseteq a \sqcup_p (b \vee c)$. Regarding 2, we will use the (easy to prove) property $(a \wedge \widetilde{B})_p = a \wedge B_p$. Now, for all $p \in X$ we have

$$(a \wedge (b \sqcup c))_p = a \wedge (b \sqcup c)_p = a \wedge (b \sqcup_p c)$$

$$\subseteq (a \wedge b) \sqcup_p (a \wedge c)$$

$$= ((a \wedge b) \sqcup (a \wedge c))_p;$$

now the required result follows from the equality of all p-cuts. 3 is proved similarly to 2. \blacksquare

Proposition 4.6 For all $a, b, c \in X$ we have: $(a \sqcup c = b \sqcup c \text{ and } a \land c = b \land c) \Rightarrow a = b$.

Proof. Suppose that $a \sqcup c = b \sqcup c$ and $a \wedge c = b \wedge c$. Then, for every $p \in X$ we have $a \sqcup_p c = b \sqcup_p c$ and $a \wedge c = b \wedge c$. In particular we have $a \sqcup_1 c = b \sqcup_1 c$ and $a \wedge c = b \wedge c$ and so (by Proposition 3.7) a = b.

Proposition 4.7 *For all* $a, b, c, p \in X$ *we have:*

$$a \le b \Rightarrow (\forall w : (a \sqcup c)(w) \ge p$$
 $\exists u : (b \sqcup c)(u) \ge p : w \le u).$

Proof. This is simply a restatement of Proposition 3.8.

Proposition 4.8 For all $a, b, c, p \in X$ the following hold.

1.
$$(1 \sqcup a)(1) = 1$$
; $(0 \sqcup a)(a) = 1$; $(a \sqcup a)(a) = 1$.

2.
$$(a \sqcup b) (a \vee b) = 1$$
.

Proof. For 1 we have: $1 = 1 \lor a \in 1 \sqcup_1 a \Rightarrow (1 \sqcup a) (1) = \lor \{p : 1 \in 1 \sqcup_p a\} \ge 1$. The remaining parts of 1 are proved similarly. For 2, we have: $a \lor b \in a \sqcup_1 b \Rightarrow (a \sqcup b) (a \lor b) = \lor \{p : a \lor b \in a \sqcup_p b\} \ge 1$.

The next proposition states the basic properties of \sqcup .

Proposition 4.9 For all $a, b, c, p \in X$ the following hold.

- 1. $(a \sqcup a)(a) = 1$.
- $a \sqcup b = b \sqcup a$
- 3. $a \sqcup_p b \sqcup_p c \subseteq (a \sqcup (b \sqcup c))_p \cap ((a \sqcup b) \sqcup c)_p$.
- 4. $((a \sqcup b) \land a)(a) = 1$; $((a \land b) \sqcup a)(a) = 1$.
- 5. $b \leq_p a \Leftrightarrow (a \sqcup b)(a) \geq p$.

Proof. For 1 note that $a \in a \sqcup_1 a = (a \sqcup a)_1$ and so $(a \sqcup a)(a) \geq 1$. 2 is immediate. To prove 3, we apply Proposition 4.3.(i) using $\widetilde{B} = b \sqcup c$; in this manner we show that $a \sqcup_p b \sqcup_p c = a \sqcup_p (b \sqcup_p c) = a \sqcup_p (b \sqcup c)_p \subseteq (a \sqcup (b \sqcup c))_p$; similarly $a \sqcup_p b \sqcup_p c \subseteq ((a \sqcup b) \sqcup c)_p$. and we are done. From Proposition 4.8 we have $(a \sqcup b)(a \vee b) = 1$; also $(a \vee b) \wedge a = a$. Hence

$$((a \sqcup b) \land a) (a) = \bigvee_{x:x \land a=a} ((a \sqcup b) (x)) \ge (a \sqcup b) (a \vee b) = 1$$

and we have proved the first part of 4. For the second part, note that $a=(a \wedge b) \vee a \in (a \wedge b) \sqcup_1 a$, hence $((a \wedge b) \sqcup a) (a) \geq 1$. Finally, 5 is simply a restatement of the last part of Proposition 3.9.

5 The Crisp Hyperalgebra (X, \sqcup_p, \wedge) and the L-fuzzy Hyperalgebra (X, \sqcup, \wedge)

In conclusion, let us note that the crisp hyperalgebra (X, \sqcup_p, \wedge) , as well as the L-fuzzy hyperalgebra (X, \sqcup, \wedge) are very similar to a *hyperlattice*. According to the definition given in [10], a hyperlattice is a crisp hyperalgebra (X, ∇, \wedge) , where ∇ is a crisp hyperoperation which satisfies (for every $a, b, c \in X$) the properties of Table 1.

$a \in a \bigtriangledown a, a = a \land a$	
$a \bigtriangledown b = b \bigtriangledown a, a \land b = b \land a$	
$(a \bigtriangledown b) \bigtriangledown c = a \bigtriangledown (b \bigtriangledown c)$	
$(a \wedge b) \wedge c = a \wedge (b \wedge c)$	
$a \in (a \bigtriangledown b) \land a$	
$a \in (a \land b) \bigtriangledown a$	
$b \le a \Leftrightarrow a \in a \vee b$	

Table 1

In the first column of Table 2 we list the basic properties (satisfied for every $a,b,c,p\in X$) of the crisp hyperalgebra (X,\sqcup_p,\wedge) . In the second column of Table 2 we list the corresponding properties of the L-fuzzy hyperalgebra (X,\sqcup,\wedge) .

(X,\sqcup_p,\wedge)	(X,\sqcup,\wedge)
$a \in a \sqcup_p a, a = a \wedge a$	$(a \sqcup a) (a) = 1, a = a \wedge a$
$a \sqcup_p b = b \sqcup_p a, a \wedge b = b \wedge a$	$a \sqcup b = b \sqcup a, a \wedge b = b \wedge a$
$(a \sqcup_p b) \sqcup_p c = a \sqcup_p (b \sqcup_p c)$	$(a \sqcup_p b) \sqcup_p c \subseteq (a \sqcup (b \sqcup c))_p \cap ((a \sqcup b) \sqcup c)_p$
$(a \wedge b) \wedge c = a \wedge (b \wedge c)$	$(a \wedge b) \wedge c = a \wedge (b \wedge c)$
$a \in (a \sqcup_p b) \wedge a$	$((a \sqcup b) \land a) (a) = 1$
$a \in (a \land b) \sqcup_p a$	$((a \land b) \sqcup a) (a) = 1$
$a \in a \sqcup_p b \Leftrightarrow b \leq_p a$	$(a \sqcup b)(a) \ge p \Leftrightarrow b \le_p a$

Table 2

The reader will observe the similarity between the properties of (X, ∇, \wedge) , (X, \sqcup_p, \wedge) and (X, \sqcup, \wedge) . (X, \sqcup_p, \wedge) is "almost" a hyperlattice; indeed the only difference between the properties of (X, ∇, \wedge) and (X, \sqcup_p, \wedge) is the use of the preorder \leq_p in Table 2.

Similarly, the properties of (X, \sqcup, \wedge) are the "L-fuzzy versions" of the (X, ∇, \wedge) properties. The main differences are that \sqcup is weakly associative (this is similar to H_v associativity [16]) and the ordering property induced by \sqcup concerns the preorder \leq_p rather than the order \leq . Hence (X, \sqcup, \wedge) can be considered as an L-fuzzy version of (X, \sqcup_p, \wedge) .

We have already mentioned the possibility of constructing a family of \sqcap_p hyperoperations; these can also be used to construct an L-fuzzy hyperoperation \sqcap . Then one could compare the properties of the crisp hyperalgebra (X, \sqcap_p, \vee) and the L-fuzzy hyperalgebra (X, \sqcap, \curlywedge) and conclude that (X, \sqcap_p, \vee) and (X, \sqcap, \vee) have properties similar to those of a crisp *dual* hyperlattice (X, \triangle, \vee) .

References

- [1] P. Corsini and I. Tofan. "On fuzzy hypergroups". *PU.M.A.* vol.8, pp.29-37, 1997.
- [2] S.D. Comer, "Multi-valued algebras and their graphical representations", preprint, Dep. of Mathematics and Computer Science, The Citadel, 1986.
- [3] G. Cualuguareanu and V. Leoreanu. "Hypergroups associated with lattices". *Ital. J. Pure Appl. Math*, vol. 9, pp.165–173, 2001.
- [4] A. Hasankhani and M.M. Zahedi. "F-Hyperrings". Ital. Journal of Pure and Applied Math., vol. 4, pp.103-118, 1998.
- [5] A. Hasankhani and M.M. Zahedi. "On *F*-polygroups and fuzzy sub-*F*-polygroups". *J. Fuzzy Math.*, vol. 6, pp. 97–110, 1998.
- [6] Ath. Kehagias, K. Serafimidis and M. Konstantinidou. "A note on the congruences of the Nakano superlattice and Some Properties of the Associated Quotients". *Rend. Circ. Mat. Palermo*, vol.51, pp.333-354, 2002.
- [7] Ath. Kehagias. "An example of L-fuzzy join space". *Rend. Circ. Mat. Palermo*, vol. 51, pp.503-526, 2002.
- [8] Ath. Kehagias. "L-fuzzy meet and join hyperoperations". (In this volume).
- [9] Ath. Kehagias. "The lattice of fuzzy intervals and sufficient conditions for its distributivity". *arXiv:cs.OH/0206025*, at http://xxx.lanl.gov/find/cs.
- [10] M. Konstantinidou and J. Mittas. "An introduction to the theory of hyperlattices". *Math. Balkanica*, vol.7, pp.187-193, 1977.

- [11] M. Konstantinidou and K. Serafimidis. "Hyperstructures dérivées d'un trellis particulier". *Rend. Mat. Appl.* vol. 7, pp. 257–265, 1993.
- [12] V. Leoreanu. "Direct limits and inverse limits of hypergroups associated with lattices". To appear in *Italian J. of Pure and Appl. Math.*
- [13] J. Mittas and M. Konstantinidou. "Contributions à la théorie des treillis avec des structures hypercompositionnelles y attachées". *Riv. Mat. Pura Appl.* vol. 14, pp.83–114, 1994.
- [14] T. Nakano, "Rings and partly ordered systems". *Math. Zeitschrift*, vol.99, pp.355-376, 1967.
- [15] H.T. Nguyen and E.A. Walker. *A First Course on Fuzzy Logic*, CRC Press, Boca Raton, 1997.
- [16] S. Spartalis, A. Dramalides and T. Vougiouklis. "On H_V -group rings". *Algebras Groups Geom.*, vol.15, pp.47–54, 1998.
- [17] M.M. Zahedi and A. Hasankhani. "F-Polygroups". J. Fuzzy Math., vol. 4, pp.533–548. 1996.
- [18] M.M. Zahedi and A. Hasankhani. "F-Polygroups (II)". Inf. Sciences, vol.89, pp.225-243, 1996.