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Abstract

In this paper we study the L-fuzzy hyperoperation t, which generalizes the
crisp Nakano hyperoperation t1. We construct t using a family of crisp tp

hyperoperations as its p-cuts. The hyperalgebra (X,t,∧) can be understood
as an L-fuzzy hyperlattice.

AMS Classification: 06B99, 06D30, 08A72, 03E72, 20N20.

1 Introduction

In this paper we perform the following construction: on a generalized deMorgan
lattice (X,≤,∨,∧,′ ) we construct an L-fuzzy hyperoperation t. Then (X,t,∧)
has almost all the properties of a fuzzy hyperlattice [10]. (X,t,∧) is an exam-
ple of a L-fuzzy hyperalgebra similar to the constructions previously presented by
several authors. For example fuzzy polygroups have been presented by Zahedi and
Hasankhani in [5, 17, 18], the same authors present fuzzy hyperrings in [4]; Corsini
and Tofan present fuzzy hypergroups in [1]; Kehagias presents L-fuzzy join spaces
in [7].

2 Preliminaries

In the remainder of the paper we use some notation and results from the theory of
L-fuzzy sets.We present a few basic definitions here; some additional material can
be found in [7, 8]. Let us also note that, in the remainder of the paper, some easy
proofs are omitted because of space limitations.

In this paper we use a lattice which is defined as follows.
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Definition 2.1 A generalized deMorgan lattice is a structure (X,≤,∨,∧,′ ), where
(X,≤,∨,∧) is a complete distributive lattice with minimum element 0 and max-
imum element 1; the symbol ′ denotes a unary operation (“negation”); and the
following properties are satisfied.

1. For all x ∈ X , Y ⊆ X we have x ∧ (∨y∈Y y) = ∨y∈Y (x ∧ y), x ∨ (∧y∈Y y) =
∧y∈Y (x ∨ y). (Complete distributivity).

2. For all x ∈ X we have: (x′)′ = x. (Negation is involutory).

3. For all x, y ∈ X we have: x ≤ y ⇒ y′ ≤ x′. (Negation is order reversing).

4. For all Y ⊆ X we have (∨y∈Y y)′ = ∧y∈Y y′, (∧y∈Y y)′ = ∨y∈Y y′ (Com-
plete deMorgan laws).

The following definitions and notation will be used in the sequel.
1. A fuzzy set is a function M̃ : X → [0, 1], where [0,1] is an interval of real
numbers; a L-fuzzy set is a function M̃ : X → X . The collection of all crisp
subsets of X is denoted by P(X) (power set of X); the collection of all L-fuzzy
sets (i.e. functions M̃ : X → X) by F(X). Hence F(X) is a collection of functions
which includes, as special case, the (0/1 valued) characteristic functions of crisp
sets.
2. Given a set A ∈ P(X), we denote its inf by ∧A and its sup by ∨A.

3. Given a L-fuzzy set M̃ : X → X , the p-cut of M̃ is denoted by Mp and
defined by Mp

.
= {x : M̃(x) ≥ p}. For some basic properties of p-cuts see [15].

Two particularly important facts are [15, pp.34-35]: (a) a fuzzy set is uniquely
determined by its p-cuts; (b) a family of sets {Np}p∈X

which has certain properties

(“p-cut properties”) can be used to define a fuzzy set M̃ in a manner such that for
every p ∈ X we have Mp = Np.

A crisp hyperoperation is a mapping ◦ : X×X→ P(X); a L-fuzzy hyperoper-
ation is a mapping ◦ : X×X→ F(X).

Definition 2.2 Let ◦ : X × X → F(X) be a L-fuzzy hyperoperation .

1. For all a ∈ X , B̃ ∈ F(X) we define the L-fuzzy set a ◦ B̃ by (a ◦ B̃)(x)
.
=

∨b∈X

(
B̃(b) ∧ (a ◦ b)(x)

)

2. For all Ã, B̃ ∈ F(X) we define the L-fuzzy set Ã ◦ B̃ by (Ã ◦ B̃)(x)
.
=

∨a∈X,b∈X

(
Ã(a) ∧ B̃(b) ∧ [(a ◦ b)(x)]

)
.
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3 The Family of tp Crisp Hyperoperations

Definition 3.1 For every p ∈ X we define the hyperoperationtp : X×X → P(X)
as follows:

∀a, b ∈ X : a tp b
.
= {x : a ∨ b ∨ p′ = a ∨ x ∨ p′ = b ∨ x ∨ p′}

In the the above definition, if we set p = 1 we recover the t1 Nakano hyperop-
eration first presented in [14] and then in [2] and also studied in [3, 6, 11, 12, 13]
and several other places. The following proposition summarizes some obvious con-
sequences of the definition of tp.

Proposition 3.2 For every p, a, b, c ∈ X we have:

1. c ∈ a tp b ⇔ c ∨ p′ ∈ a tp b.

2. a tp b = (a ∨ p′) tp (b ∨ p′) = (a ∨ p′) t1 (b ∨ p′)

Proposition 3.3 For all a, b, p ∈ X there exists some f such that a tp b = [f, a ∨
b ∨ p′].

Proof. We have: ∀c ∈ a tp b : a ∨ b ∨ p′ = c ∨ a ∨ p′ = c ∨ b ∨ p′ ⇒

(a ∨ b ∨ p′) = ∧c∈atpb (c ∨ a ∨ p′) = ∧c∈atpb (c ∨ b ∨ p′) ⇒

(a ∨ b ∨ p′) =
(
∧c∈atpbc

)
∨ a ∨ p′ =

(
∧c∈atpbc

)
∨ b ∨ p′ ⇒

∧c∈atpbc ∈ a tp b

Similarly we can show ∨c∈atpbc ∈ a tp b. Next we show that a tp b is a convex
sublattice. Take any x, y ∈ a tp b. I.e.

a ∨ b ∨ p′ = a ∨ x ∨ p′ = b ∨ x ∨ p′

a ∨ b ∨ p′ = a ∨ y ∨ p′ = b ∨ y ∨ p′.

Taking the join of the above we obtain a ∨ b ∨ p′ = a ∨ x ∨ y ∨ p′ = b ∨ x ∨ y ∨ p′

and so x ∨ y ∈ a tp b. Taking the meet, we obtain

a ∨ b ∨ p′ = (a ∨ x ∨ y ∨ p′) ∧ (a ∨ x ∨ y ∨ p′) = (b ∨ x ∨ y ∨ p′) ∧ (b ∨ x ∨ y ∨ p′)

⇒ a ∨ b ∨ p′ = a ∨ (x ∧ y) ∨ p′ = b ∨ (x ∧ y) ∨ p′

and so x ∧ y ∈ a tp b. Furthermore, take any x, y, z such that x ≤ y ≤ z and
x, z ∈ a tp b. I.e.

a ∨ b ∨ p′ = a ∨ x ∨ p′ = b ∨ x ∨ p′

a ∨ b ∨ p′ = a ∨ z ∨ p′ = b ∨ z ∨ p′.
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Then a∨ b∨ p′= a∨ x∨ p′ ≤ a∨ y ∨ p′ ≤ a∨ z ∨ p′= a∨ x∨ p′ and so a∨ b∨ p′ =
a ∨ y ∨ p′. Similarly we show a ∨ b ∨ p′ = b ∨ y ∨ p′ and hence y ∈ a tp b. In short
we have shown that

a tp b = [∧c∈atpbc,∨c∈atpbc].

Let f = ∧c∈atpbc, g = ∨c∈atpbc. Since a ∨ b ∨ p′ ∈ a tp b, we have a ∨ b ∨ p′ ≤ g.
On the other hand g ∈ atp b and so a∨ b∨ p′ = a∨ g ∨ p′ = b∨ g ∨ p′ ≥ g. Hence
g = a ∨ b ∨ p′.

The following properties are related to distributivity.

Proposition 3.4 For all a, b, c, p ∈ X the following properties hold.

1. (a tp b) ∨ (a tp c) ⊆ a tp (b ∨ c) .

2. a ∧ (b tp c) ⊆ (a ∧ b) tp (a ∧ c) .

3. a ∨ (b tp c) ⊆ (a ∨ b) tp (b ∨ c) .

Proof. In this proof we make use of some distributivity properties of t1, estab-
lished in [13]. For part 1 we have:

(a tp b) ∨ (a tp c) = ((a ∨ p′) t1 (b ∨ p′)) ∨ ((a ∨ p′) t1 (c ∨ p′))

⊆ (a ∨ p′) t1 ((b ∨ p′) ∨ (c ∨ p′))

= (a ∨ p′) t1 (b ∨ c ∨ p′)

= a tp (b ∨ c) .

where the set inclusion in the second line has been obtained using the previously
mentioned results of [13]. For part 2: from b tp c = (b ∨ p′) t1 (c ∨ p′) we get

a ∧ (b tp c) = a ∧ ((b ∨ p′) t1 (c ∨ p′))

⊆ (a ∧ (b ∨ p′)) t1 (a ∧ (c ∨ p′))

= ((a ∧ b) ∨ (a ∧ p′)) t1 ((a ∧ c) ∨ (a ∧ p′))

=
(
(a ∧ b) ∨ (a′ ∨ p)

′
)
t1

(
(a ∧ c) ∨ (a′ ∨ p)

′
)

= (a ∧ b) ta′∨p (a ∧ c)

⊆ (a ∧ b) tp (a ∧ c) ;

(in the last step we have used Proposition 3.10.2). For part 3:

a ∨ (b tp c) = a ∨ ((b ∨ p′) t1 (c ∨ p′))

⊆ (a ∨ b ∨ p′) t1 (a ∨ c ∨ p′)

= (a ∨ b) tp (a ∨ c) .
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Definition 3.5 For all a, b, p ∈ X we write a ≤p b (and b ≥p a) iff a ∨ p′ ≤ b ∨ p′.

Proposition 3.6 The relation ≤p is a preorder on X . The associated relation
=p(defined by: a =p b iff a ≤p b and b ≤p a) is an equivalence relation and
we have a =p b ⇔ a ∨ p′ = b ∨ p′.

Proposition 3.7 For all a, b, c, p ∈ X we have:

(a tp c = b tp c and a ∧ c = b ∧ c) ⇒ a =p b.

Proof. Since a tp c = [x, a ∨ c ∨ p′] and b tp c = [y, b ∨ c ∨ p′] we have
a∨c∨p′ = b∨c∨p′. Hence (a ∨ p′)∨(c ∨ p′)= (b ∨ p′)∨(c ∨ p′). From a∧c= b∧c

we get (a ∧ c)∨p′= (b ∧ c)∨p′ which gives (a ∨ p′)∧ (c ∨ p′) = (b ∨ p′)∧ (c ∨ p′).
Hence, by distributivity, a ∨ p′ = b ∨ p′ .

Proposition 3.8 For all a, b, c, p ∈ X we have:

a ≤ b ⇒ (∀w ∈ a tp c ∃u : b tp c: w ≤ u) .

Proof. a ≤ b ⇒ a ∨ c ∨ p′ ≤ b ∨ c ∨ p′ . Since a tp c = [x, a ∨ c ∨ p′] and
b tp c = [y, b ∨ c ∨ p′] the required result follows immediately.

The hyperstructure (X,tp,∧,≤p) has some interesting properties.

Proposition 3.9 For all a, b, c, p ∈ X the following hold.

1. a ∈ a tp a, a = a ∧ a.

2. a tp b = b tp a, a ∧ b = b ∧ a.

3. (a tp b) tp c = a tp (b tp c), (a ∧ b) ∧ c = a ∧ (b ∧ c),

4. a ∈ (a tp b) ∧ a, a ∈ (a ∧ b) tp a,

5. b ≤p a ⇔ a ∈ a tp b.

Proof. 1 and 2 are obvious. For 3 take any y ∈ (a tp b) tp c then there exists
x ∈ a tp b such that y ∈ x tp c. Hence

x ∨ p′ ∈ (a ∨ p′) t1 (b ∨ p′)

y ∨ p′ ∈ (x ∨ p′) t1 (c ∨ p′) ⊆ ((a ∨ p′) t1 (b ∨ p′)) t1 (c ∨ p′)

= (a ∨ p′) t1 ((b ∨ p′) t1 (c ∨ p′)) = ∪z∈btpc (a ∨ p′) t1 z

= ∪z∈btpc (a ∨ p′) t1 (z ∨ p′) = ∪z∈btpca tp z = a tp (b tp c)
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(where we have used the associativity of the t1 hyperoperation1). Hence we have
shown (a tp b)tp c ⊆ atp (b tp c). Siimilarly we show atp (b tp c) ⊆ (a tp b)tp c

and we have proved the first part of 3; the second part is obvious. For 4 we have a =
((a ∨ p′) ∨ (b ∨ p′))∧a ∈ ((a ∨ p′) t1 (b ∨ p′))∧a = (a tp b)∧a. Also (a ∧ b)∨a

∨p′ = (a ∧ b)∨a ∨p′ = a∨a ∨p′ ⇒ a ∈ (a ∧ b)tpa. For 5, we have a ∈ atpb ⇔
a ∨ b ∨ p′= a ∨ a ∨ p′= b ∨ a ∨ p′ ⇔ b ∨ p′ ≤ a ∨ p′.

Hence (X,tp,∧,≤p) is “nearly” a hyperlattice [10]. The only difference is that
≤p is a preorder, not an order. Next we show that, for any a, b ∈ X , a tp b has the
p-cut properties.

Proposition 3.10 The following properties hold for all a, b, p, q ∈ X , P ⊆ X .

1. a t0 b = [0, 1].

2. p ≤ q ⇒ a tq b ⊆ a tp b.

3. a tp∨q b = (a tp b) ∩ (a tq b); more generally a t∨P b = ∩p∈P (a tp b).

Proof. 1 is obvious. For 2: p ≤ q ⇒ q′ ≤ p′. Now

x ∈ a tq b ⇒

a ∨ b ∨ q′ = a ∨ x ∨ q′ = b ∨ x ∨ q′ ⇒

a ∨ b ∨ q′ ∨ p′ = a ∨ x ∨ q′ ∨ p′ = b ∨ x ∨ q′ ∨ p′ ⇒

a ∨ b ∨ p′ = a ∨ x ∨ p′ = b ∨ x ∨ p′ ⇒

x ∈ a tp b.

Regarding 3 we will prove the (more general) a t∨P b = ∩p∈P (a tp b). Take
any P ⊆ X . Since for every p ∈ P we have p ≤ ∨P , it follows from 2 that

∀p ∈ P : a t∨P b ⊆ a tp b ⇒ a t∨P b ⊆ ∩p∈P (a tp b) .

On the other hand

x ∈ ∩p∈P (a tp b) ⇒ ∀p ∈ P : x ∈ a tp b ⇒

∀p ∈ P : a ∨ b ∨ p′ = a ∨ x ∨ p′ = b ∨ x ∨ p′ ⇒

∧p∈P (a ∨ b ∨ p′) = ∧p∈P (a ∨ x ∨ p′) = ∧p∈P (b ∨ x ∨ p′) ⇒

a ∨ b ∨ (∧p∈P p′) = a ∨ x ∨ (∧p∈P p′) = b ∨ x ∨ (∧p∈P p′) ⇒

a ∨ b ∨ (∨p∈P p)′ = a ∨ x ∨ (∨p∈P p)′ = b ∨ x ∨ (∨p∈P p)′ ⇒ x ∈ a t∨P b

where we have used complete distributivity and the fact that ∧p∈Pp′ = (∨p∈P p)′ =
(∨P )′.

1This has been established independently by Nakano [14] and Comer [2].
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Definition 3.11 We define the operation
.
∪ between intervals as follows: for all in-

tervals A, B we set
A

.
∪ B = ∩C:A⊆C,B⊆CC.

Proposition 3.12 For all a, b ∈ X , ({a tp b}
p∈X

,
.
∪, ∩, ⊆) is a lattice.

Proof. Because of Proposition 3.10, {a tp b}
p∈X

is a closure system.
Remark. Let us note that for every p ∈ X we can also define a dual hyperop-

eration up as follows:

∀a, b ∈ X : a up b = {x : a ∧ b ∧ p = a ∧ x ∧ p = b ∧ x ∧ p}]

Each up has properties analogous to the ones presented above for tp. Fur-
thermore, there are some interesting properties of the hyperstructure (X,tp,up),
especially with regard to the combination of the tpand up hyperoperations. We
postpone the study of (X,tp,up) to a future publication.

4 The L-Fuzzy Hyperoperation t

We now proceed to synthesize the L-Fuzzy hyperoperation t using the crisp hyper-
operatons tp. We will use a form of the classical construction presented in [15].

Definition 4.1 For all a, b ∈ X we define the L-fuzzy set at b by defining for every
x ∈ X: (a t b)(x)

.
= ∨{q : x ∈ a tq b}.

Proposition 4.2 For all a, b, p ∈ X we have: (a t b)p = a tp b.

Proof. See [15].

Proposition 4.3 For all a, p ∈ X , for all Ã, B̃ ∈ F(X) we have: (i) a tp Bp ⊆(
a t B̃

)
p
, (ii) Ap tp Bp ⊆

(
Ã t B̃

)
p
.

Proof. We only prove (i). Choose any x ∈ a tp Bp. Then there exists some
b ∈ Bp such that x ∈ a tp b = (a t b)p. Hence B̃(b) ≥ p and (a t b) (x) ≥ p and
so

p ≤ B̃(b) ∧ ((a t b) (x) ≤ ∨u∈X

[
B̃(u) ∧ ((a t u) (x)

]
= (a t b) (x).
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Proposition 4.4 For all a, b, c, p ∈ X we have:

(a t b) (c) ≥ p ⇔ ((a ∨ p′) t (b ∨ p′)) (c) ≥ p ⇔ (a t b) (c ∨ p′) ≥ p. (1)

Proof. (1) can be restated as

c ∈ a tp b ⇔ c ∈ (a ∨ p′) tp (b ∨ p′) ⇔ c ∨ p′ ∈ a tp b

which is simply a restatement of Proposition 3.2.
The following proposition presents some distributivity properties of t.

Proposition 4.5 For all a, b, c ∈ X we have

1. (a t b) ∨ (a t c) ⊆ a t (b ∨ c) .

2. a ∧ (b t c) ⊆ (a ∧ b) t (a ∧ c).

3. a ∨ (b t c) ⊆ (a ∨ b) t (a ∨ c) .

Proof. For 1 it suffices to note that for all p ∈ X we have (from Proposition
3.4) (a tp b)∨ (a tp c) ⊆ atp (b ∨ c) . Regarding 2, we will use the (easy to prove)

property
(
a ∧ B̃

)
p

= a ∧ Bp. Now, for all p ∈ X we have

(a ∧ (b t c))p = a ∧ (b t c)p = a ∧ (b tp c)

⊆ (a ∧ b) tp (a ∧ c)

= ((a ∧ b) t (a ∧ c))p ;

now the required result follows from the equality of all p-cuts. 3 is proved similarly
to 2.

Proposition 4.6 For all a, b, c ∈ X we have: (a t c = b t c and a ∧ c = b ∧ c) ⇒
a = b.

Proof. Suppose that at c = bt c and a∧ c = b∧ c. Then, for every p ∈ X we
have a tp c = b tp c and a ∧ c = b ∧ c. In particular we have a t1 c = b t1 c and
a ∧ c = b ∧ c and so (by Proposition 3.7) a = b.

Proposition 4.7 For all a, b, c, p ∈ X we have:

a ≤ b ⇒ (∀w : (a t c) (w) ≥ p ∃u : (b t c) (u) ≥ p : w ≤ u) .
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Proof. This is simply a restatement of Proposition 3.8.

Proposition 4.8 For all a, b, c, p ∈ X the following hold.

1. (1 t a) (1) = 1; (0 t a) (a) = 1; (a t a) (a) = 1.

2. (a t b) (a ∨ b) = 1.

Proof. For 1 we have: 1 = 1∨a ∈ 1t1a ⇒ (1 t a) (1) = ∨{p : 1 ∈ 1 tp a} ≥
1. The remaining parts of 1 are proved similarly. For 2, we have: a ∨ b ∈ a t1 b ⇒
(a t b) (a ∨ b) = ∨{p : a ∨ b ∈ a tp b} ≥ 1.

The next proposition states the basic properties of t.

Proposition 4.9 For all a, b, c, p ∈ X the following hold.

1. (a t a) (a) = 1.

2. a t b = b t a

3. a tp b tp c ⊆ (a t (b t c))p ∩ ((a t b) t c)p.

4. ((a t b) ∧ a) (a) = 1; ((a ∧ b) t a) (a) = 1.

5. b ≤p a ⇔ (a t b) (a) ≥ p.

Proof. For 1 note that a ∈ a t1 a = (a t a)
1

and so (a t a) (a) ≥ 1. 2 is
immediate. To prove 3, we apply Proposition 4.3.(i) using B̃ = btc; in this manner
we show that a tp b tp c = a tp (b tp c) = a tp (b t c)p ⊆ (a t (b t c))p; similarly
a tp b tp c ⊆ ((a t b) t c)p. and we are done. From Proposition 4.8 we have
(a t b) (a ∨ b) = 1; also (a ∨ b) ∧ a = a. Hence

((a t b) ∧ a) (a) = ∨x:x∧a=a ((a t b) (x)) ≥ (a t b) (a ∨ b) = 1

and we have proved the first part of 4. For the second part, note that a= (a ∧ b)∨a ∈
(a ∧ b) t1 a, hence ((a ∧ b) t a) (a) ≥ 1. Finally, 5 is simply a restatement of the
last part of Proposition 3.9.
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5 The Crisp Hyperalgebra (X,tp,∧) and the L-fuzzy
Hyperalgebra (X,t,∧)

In conclusion, let us note that the crisp hyperalgebra (X,tp,∧), as well as the L-
fuzzy hyperalgebra (X,t,∧) are very similar to a hyperlattice. According to the
definition given in [10], a hyperlattice is a crisp hyperalgebra (X,5,∧), where 5
is a crisp hyperoperation which satisfies (for every a, b, c ∈ X) the properties of
Table 1.

a ∈ a 5 a, a = a ∧ a

a 5 b = b 5 a, a ∧ b = b ∧ a

(a 5 b) 5 c = a 5 (b 5 c)
(a ∧ b) ∧ c = a ∧ (b ∧ c)
a ∈ (a 5 b) ∧ a

a ∈ (a ∧ b) 5 a

b ≤ a ⇔ a ∈ a ∨ b

Table 1

In the first column of Table 2 we list the basic properties (satisfied for every
a, b, c, p ∈ X) of the crisp hyperalgebra (X,tp,∧). In the second column of Table
2 we list the corresponding properties of the L-fuzzy hyperalgebra (X,t,∧).

(X,tp,∧) (X,t,∧)
a ∈ a tp a, a = a ∧ a (a t a) (a) = 1, a = a ∧ a

a tp b = b tp a, a ∧ b = b ∧ a a t b = b t a, a ∧ b = b ∧ a

(a tp b) tp c = a tp (b tp c) (a tp b) tp c ⊆ (a t (b t c))p ∩ ((a t b) t c)p

(a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∧ b) ∧ c = a ∧ (b ∧ c)
a ∈ (a tp b) ∧ a ((a t b) ∧ a) (a) = 1
a ∈ (a ∧ b) tp a ((a ∧ b) t a) (a) = 1
a ∈ a tp b ⇔ b ≤p a (a t b) (a) ≥ p ⇔ b ≤p a

Table 2

The reader will observe the similarity between the properties of (X,5,∧),
(X,tp,∧) and (X,t,∧). (X,tp,∧) is “almost” a hyperlattice; indeed the only
difference between the properties of (X,5,∧) and (X,tp,∧) is the use of the pre-
order ≤p in Table 2.
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Similarly, the properties of (X,t,∧) are the “L-fuzzy versions” of the (X,5,∧)
properties. The main differences are that t is weakly associative (this is similar to
Hv associativity [16]) and the ordering property induced by t concerns the pre-
order ≤p rather than the order ≤. Hence (X,t,∧) can be considered as an L-fuzzy
version of (X,tp,∧).

We have already mentioned the possibility of constructing a family of up hy-
peroperations; these can also be used to construct an L-fuzzy hyperoperation u.
Then one could compare the properties of the crisp hyperalgebra (X,up,∨) and the
L-fuzzy hyperalgebra (X,u, f) and conclude that (X,up,∨) and (X,u,∨) have
properties similar to those of a crisp dual hyperlattice (X,4,∨).
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des structures hypercompositionnelles y attachées”. Riv. Mat. Pura Appl. vol.
14, pp.83–114, 1994.

[14] T. Nakano, “Rings and partly ordered systems”. Math. Zeitschrift, vol.99,
pp.355-376, 1967.

[15] H.T. Nguyen and E.A. Walker. A First Course on Fuzzy Logic, CRC Press,
Boca Raton, 1997.

[16] S. Spartalis, A. Dramalides and T. Vougiouklis. “On HV -group rings”. Alge-
bras Groups Geom., vol.15, pp.47–54, 1998.

[17] M.M. Zahedi and A. Hasankhani. “F -Polygroups”. J. Fuzzy Math., vol. 4,
pp.533–548. 1996.

[18] M.M. Zahedi and A. Hasankhani. “F -Polygroups (II)”. Inf. Sciences, vol.89,
pp.225-243, 1996.

12


