The L-fuzzy Nakano "Hyperlattice"

K. Serafimidis, M. Konstantinidou and Ath. Kehagias

December 17, 2002

Abstract

In this paper we study the L-fuzzy hyperoperation \sqcup, which generalizes the crisp Nakano hyperoperation \sqcup_{1}. We construct \sqcup using a family of crisp \sqcup_{p} hyperoperations as its p-cuts. The hyperalgebra (X, \sqcup, \wedge) can be understood as an L-fuzzy hyperlattice.

AMS Classification: 06B99, 06D30, 08A72, 03E72, 20 N20.

1 Introduction

In this paper we perform the following construction: on a generalized deMorgan lattice $\left(X, \leq, \vee, \wedge,{ }^{\prime}\right)$ we construct an L-fuzzy hyperoperation \sqcup. Then (X, \sqcup, \wedge) has almost all the properties of a fuzzy hyperlattice [10]. (X, \sqcup, \wedge) is an example of a L-fuzzy hyperalgebra similar to the constructions previously presented by several authors. For example fuzzy polygroups have been presented by Zahedi and Hasankhani in [5, 17, 18], the same authors present fuzzy hyperrings in [4]; Corsini and Tofan present fuzzy hypergroups in [1]; Kehagias presents L-fuzzy join spaces in [7].

2 Preliminaries

In the remainder of the paper we use some notation and results from the theory of L-fuzzy sets. We present a few basic definitions here; some additional material can be found in $[7,8]$. Let us also note that, in the remainder of the paper, some easy proofs are omitted because of space limitations.

In this paper we use a lattice which is defined as follows.

Definition 2.1 A generalized deMorgan lattice is a structure ($X, \leq, \vee, \wedge,{ }^{\prime}$), where (X, \leq, \vee, \wedge) is a complete distributive lattice with minimum element 0 and maximum element 1 ; the symbol ' denotes a unary operation ("negation"); and the following properties are satisfied.

1. For all $x \in X, Y \subseteq X$ we have $x \wedge\left(\vee_{y \in Y} y\right)=\vee_{y \in Y}(x \wedge y)$, $x \vee\left(\wedge_{y \in Y} y\right)=$ $\wedge_{y \in Y}(x \vee y)$. (Complete distributivity).
2. For all $x \in X$ we have: $\left(x^{\prime}\right)^{\prime}=x$. (Negation is involutory).
3. For all $x, y \in X$ we have: $x \leq y \Rightarrow y^{\prime} \leq x^{\prime}$. (Negation is order reversing).
4. For all $Y \subseteq X$ we have $\left(\vee_{y \in Y} y\right)^{\prime}=\wedge_{y \in Y} y^{\prime}, \quad\left(\wedge_{y \in Y} y\right)^{\prime}=\vee_{y \in Y} y^{\prime}$ (Complete deMorgan laws).

The following definitions and notation will be used in the sequel.

1. A fuzzy set is a function $\widetilde{M}: X \rightarrow[0,1]$, where $[0,1]$ is an interval of real numbers; a L-fuzzy set is a function $\widetilde{M}: X \rightarrow X$. The collection of all crisp subsets of X is denoted by $\mathbf{P}(X)$ (power set of X); the collection of all L-fuzzy sets (i.e. functions $\widetilde{M}: X \rightarrow X)$ by $\mathbf{F}(X)$. Hence $\mathbf{F}(X)$ is a collection of functions which includes, as special case, the ($0 / 1$ valued) characteristic functions of crisp sets.
2. Given a set $A \in \mathbf{P}(X)$, we denote its inf by $\wedge A$ and its sup by $\vee A$.
3. Given a L-fuzzy set $\widetilde{M}: X \rightarrow X$, the p-cut of \widetilde{M} is denoted by M_{p} and defined by $M_{p} \doteq\{x: \widetilde{M}(x) \geq p\}$. For some basic properties of p-cuts see [15]. Two particularly important facts are [15, pp.34-35]: (a) a fuzzy set is uniquely determined by its p-cuts; (b) a family of sets $\left\{N_{p}\right\}_{p \in X}$ which has certain properties (" p-cut properties") can be used to define a fuzzy set \widetilde{M} in a manner such that for every $p \in X$ we have $M_{p}=N_{p}$.

A crisp hyperoperation is a mapping $\circ: X \times X \rightarrow \mathbf{P}(X)$; a L-fuzzy hyperoperation is a mapping $\circ: X \times X \rightarrow \mathbf{F}(X)$.

Definition 2.2 Let $\circ: X \times X \rightarrow \mathbf{F}(X)$ be a L-fuzzy hyperoperation .

1. For all $a \in X, \widetilde{B} \in \mathbf{F}(X)$ we define the L-fuzzy set $a \circ \widetilde{B}$ by $(a \circ \widetilde{B})(x) \doteq$ $\vee_{b \in X}(\widetilde{B}(b) \wedge(a \circ b)(x))$
2. For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we define the L-fuzzy set $\widetilde{A} \circ \widetilde{B}$ by $(\widetilde{A} \circ \widetilde{B})(x) \doteq$ $\vee_{a \in X, b \in X}(\widetilde{A}(a) \wedge \widetilde{B}(b) \wedge[(a \circ b)(x)])$.

3 The Family of \sqcup_{p} Crisp Hyperoperations

Definition 3.1 For every $p \in X$ we define the hyperoperation $\sqcup_{p}: X \times X \rightarrow \mathbf{P}(X)$ as follows:

$$
\forall a, b \in X: a \sqcup_{p} b \doteq\left\{x: a \vee b \vee p^{\prime}=a \vee x \vee p^{\prime}=b \vee x \vee p^{\prime}\right\}
$$

In the the above definition, if we set $p=1$ we recover the \sqcup_{1} Nakano hyperoperation first presented in [14] and then in [2] and also studied in [3, 6, 11, 12, 13] and several other places. The following proposition summarizes some obvious consequences of the definition of \sqcup_{p}.

Proposition 3.2 For every $p, a, b, c \in X$ we have:

1. $c \in a \sqcup_{p} b \Leftrightarrow c \vee p^{\prime} \in a \sqcup_{p} b$.
2. $a \sqcup_{p} b=\left(a \vee p^{\prime}\right) \sqcup_{p}\left(b \vee p^{\prime}\right)=\left(a \vee p^{\prime}\right) \sqcup_{1}\left(b \vee p^{\prime}\right)$

Proposition 3.3 For all $a, b, p \in X$ there exists some f such that $a \sqcup_{p} b=[f, a \vee$ $\left.b \vee p^{\prime}\right]$.

Proof. We have: $\forall c \in a \sqcup_{p} b: a \vee b \vee p^{\prime}=c \vee a \vee p^{\prime}=c \vee b \vee p^{\prime} \Rightarrow$

$$
\begin{aligned}
\left(a \vee b \vee p^{\prime}\right) & =\wedge_{c \in a \sqcup_{p} b}\left(c \vee a \vee p^{\prime}\right)=\wedge_{c \in a \sqcup_{p} b}\left(c \vee b \vee p^{\prime}\right) \Rightarrow \\
\left(a \vee b \vee p^{\prime}\right) & =\left(\wedge_{c \in a \sqcup_{p} b} c\right) \vee a \vee p^{\prime}=\left(\wedge_{c \in a \sqcup_{p} b} c\right) \vee b \vee p^{\prime} \Rightarrow \\
\wedge_{c \in a \sqcup_{p} b} c & \in a \sqcup_{p} b
\end{aligned}
$$

Similarly we can show $\vee_{c \in a \sqcup_{p} b} c \in a \sqcup_{p} b$. Next we show that $a \sqcup_{p} b$ is a convex sublattice. Take any $x, y \in a \sqcup_{p}$ b. I.e.

$$
\begin{aligned}
& a \vee b \vee p^{\prime}=a \vee x \vee p^{\prime}=b \vee x \vee p^{\prime} \\
& a \vee b \vee p^{\prime}=a \vee y \vee p^{\prime}=b \vee y \vee p^{\prime} .
\end{aligned}
$$

Taking the join of the above we obtain $a \vee b \vee p^{\prime}=a \vee x \vee y \vee p^{\prime}=b \vee x \vee y \vee p^{\prime}$ and so $x \vee y \in a \sqcup_{p} b$. Taking the meet, we obtain

$$
\begin{aligned}
a \vee b \vee p^{\prime} & =\left(a \vee x \vee y \vee p^{\prime}\right) \wedge\left(a \vee x \vee y \vee p^{\prime}\right)=\left(b \vee x \vee y \vee p^{\prime}\right) \wedge\left(b \vee x \vee y \vee p^{\prime}\right) \\
& \Rightarrow a \vee b \vee p^{\prime}=a \vee(x \wedge y) \vee p^{\prime}=b \vee(x \wedge y) \vee p^{\prime}
\end{aligned}
$$

and so $x \wedge y \in a \sqcup_{p} b$. Furthermore, take any x, y, z such that $x \leq y \leq z$ and $x, z \in a \sqcup_{p} b$. I.e.

$$
\begin{aligned}
& a \vee b \vee p^{\prime}=a \vee x \vee p^{\prime}=b \vee x \vee p^{\prime} \\
& a \vee b \vee p^{\prime}=a \vee z \vee p^{\prime}=b \vee z \vee p^{\prime} .
\end{aligned}
$$

Then $a \vee b \vee p^{\prime}=a \vee x \vee p^{\prime} \leq a \vee y \vee p^{\prime} \leq a \vee z \vee p^{\prime}=a \vee x \vee p^{\prime}$ and so $a \vee b \vee p^{\prime}=$ $a \vee y \vee p^{\prime}$. Similarly we show $a \vee b \vee p^{\prime}=b \vee y \vee p^{\prime}$ and hence $y \in a \sqcup_{p} b$. In short we have shown that

$$
a \sqcup_{p} b=\left[\wedge_{c \in a \sqcup_{p} b} c, \vee_{c \in a \sqcup_{p} b} c\right] .
$$

Let $f=\wedge_{c \in a \sqcup_{p} b} c, g=\vee_{c \in a \sqcup_{p} b} c$. Since $a \vee b \vee p^{\prime} \in a \sqcup_{p} b$, we have $a \vee b \vee p^{\prime} \leq g$. On the other hand $g \in a \sqcup_{p} b$ and so $a \vee b \vee p^{\prime}=a \vee g \vee p^{\prime}=b \vee g \vee p^{\prime} \geq g$. Hence $g=a \vee b \vee p^{\prime}$.

The following properties are related to distributivity.
Proposition 3.4 For all $a, b, c, p \in X$ the following properties hold.

1. $\left(a \sqcup_{p} b\right) \vee\left(a \sqcup_{p} c\right) \subseteq a \sqcup_{p}(b \vee c)$.
2. $a \wedge\left(b \sqcup_{p} c\right) \subseteq(a \wedge b) \sqcup_{p}(a \wedge c)$.
3. $a \vee\left(b \sqcup_{p} c\right) \subseteq(a \vee b) \sqcup_{p}(b \vee c)$.

Proof. In this proof we make use of some distributivity properties of \sqcup_{1}, established in [13]. For part 1 we have:

$$
\begin{aligned}
\left(a \sqcup_{p} b\right) \vee\left(a \sqcup_{p} c\right) & =\left(\left(a \vee p^{\prime}\right) \sqcup_{1}\left(b \vee p^{\prime}\right)\right) \vee\left(\left(a \vee p^{\prime}\right) \sqcup_{1}\left(c \vee p^{\prime}\right)\right) \\
& \subseteq\left(a \vee p^{\prime}\right) \sqcup_{1}\left(\left(b \vee p^{\prime}\right) \vee\left(c \vee p^{\prime}\right)\right) \\
& =\left(a \vee p^{\prime}\right) \sqcup_{1}\left(b \vee c \vee p^{\prime}\right) \\
& =a \sqcup_{p}(b \vee c) .
\end{aligned}
$$

where the set inclusion in the second line has been obtained using the previously mentioned results of [13]. For part 2: from $b \sqcup_{p} c=\left(b \vee p^{\prime}\right) \sqcup_{1}\left(c \vee p^{\prime}\right)$ we get

$$
\begin{aligned}
a \wedge\left(b \sqcup_{p} c\right) & =a \wedge\left(\left(b \vee p^{\prime}\right) \sqcup_{1}\left(c \vee p^{\prime}\right)\right) \\
& \subseteq\left(a \wedge\left(b \vee p^{\prime}\right)\right) \sqcup_{1}\left(a \wedge\left(c \vee p^{\prime}\right)\right) \\
& =\left((a \wedge b) \vee\left(a \wedge p^{\prime}\right)\right) \sqcup_{1}\left((a \wedge c) \vee\left(a \wedge p^{\prime}\right)\right) \\
& =\left((a \wedge b) \vee\left(a^{\prime} \vee p\right)^{\prime}\right) \sqcup_{1}\left((a \wedge c) \vee\left(a^{\prime} \vee p\right)^{\prime}\right) \\
& =(a \wedge b) \sqcup_{a^{\prime} \vee p}(a \wedge c) \\
& \subseteq(a \wedge b) \sqcup_{p}(a \wedge c)
\end{aligned}
$$

(in the last step we have used Proposition 3.10.2). For part 3:

$$
\begin{aligned}
a \vee\left(b \sqcup_{p} c\right) & =a \vee\left(\left(b \vee p^{\prime}\right) \sqcup_{1}\left(c \vee p^{\prime}\right)\right) \\
& \subseteq\left(a \vee b \vee p^{\prime}\right) \sqcup_{1}\left(a \vee c \vee p^{\prime}\right) \\
& =(a \vee b) \sqcup_{p}(a \vee c) .
\end{aligned}
$$

Definition 3.5 For all $a, b, p \in X$ we write $a \leq_{p} b\left(\right.$ and $\left.b \geq_{p} a\right)$ iff $a \vee p^{\prime} \leq b \vee p^{\prime}$.
Proposition 3.6 The relation \leq_{p} is a preorder on X. The associated relation $=_{p}$ (defined by: $a=_{p} b$ iff $a \leq_{p} b$ and $\left.b \leq_{p} a\right)$ is an equivalence relation and we have $a={ }_{p} b \Leftrightarrow a \vee p^{\prime}=b \vee p^{\prime}$.

Proposition 3.7 For all $a, b, c, p \in X$ we have:

$$
\left(a \sqcup_{p} c=b \sqcup_{p} c \text { and } a \wedge c=b \wedge c\right) \Rightarrow a={ }_{p} b .
$$

Proof. Since $a \sqcup_{p} c=\left[x, a \vee c \vee p^{\prime}\right]$ and $b \sqcup_{p} c=\left[y, b \vee c \vee p^{\prime}\right]$ we have $a \vee c \vee p^{\prime}=b \vee c \vee p^{\prime}$. Hence $\left(a \vee p^{\prime}\right) \vee\left(c \vee p^{\prime}\right)=\left(b \vee p^{\prime}\right) \vee\left(c \vee p^{\prime}\right)$. From $a \wedge c=b \wedge c$ we get $(a \wedge c) \vee p^{\prime}=(b \wedge c) \vee p^{\prime}$ which gives $\left(a \vee p^{\prime}\right) \wedge\left(c \vee p^{\prime}\right)=\left(b \vee p^{\prime}\right) \wedge\left(c \vee p^{\prime}\right)$. Hence, by distributivity, $a \vee p^{\prime}=b \vee p^{\prime}$.

Proposition 3.8 For all $a, b, c, p \in X$ we have:

$$
a \leq b \Rightarrow\left(\forall w \in a \sqcup_{p} c \quad \exists u: b \sqcup_{p} c: w \leq u\right) .
$$

Proof. $a \leq b \Rightarrow a \vee c \vee p^{\prime} \leq b \vee c \vee p^{\prime}$. Since $a \sqcup_{p} c=\left[x, a \vee c \vee p^{\prime}\right]$ and $b \sqcup_{p} c=\left[y, b \vee c \vee p^{\prime}\right]$ the required result follows immediately.

The hyperstructure ($X, \sqcup_{p}, \wedge, \leq_{p}$) has some interesting properties.
Proposition 3.9 For all $a, b, c, p \in X$ the following hold.

1. $a \in a \sqcup_{p} a, a=a \wedge a$.
2. $a \sqcup_{p} b=b \sqcup_{p} a, a \wedge b=b \wedge a$.
3. $\left(a \sqcup_{p} b\right) \sqcup_{p} c=a \sqcup_{p}\left(b \sqcup_{p} c\right),(a \wedge b) \wedge c=a \wedge(b \wedge c)$,
4. $a \in\left(a \sqcup_{p} b\right) \wedge a, a \in(a \wedge b) \sqcup_{p} a$,
5. $b \leq_{p} a \Leftrightarrow a \in a \sqcup_{p} b$.

Proof. 1 and 2 are obvious. For 3 take any $y \in\left(a \sqcup_{p} b\right) \sqcup_{p} c$ then there exists $x \in a \sqcup_{p} b$ such that $y \in x \sqcup_{p} c$. Hence

$$
\begin{aligned}
x \vee p^{\prime} & \in\left(a \vee p^{\prime}\right) \sqcup_{1}\left(b \vee p^{\prime}\right) \\
y \vee p^{\prime} & \in\left(x \vee p^{\prime}\right) \sqcup_{1}\left(c \vee p^{\prime}\right) \subseteq\left(\left(a \vee p^{\prime}\right) \sqcup_{1}\left(b \vee p^{\prime}\right)\right) \sqcup_{1}\left(c \vee p^{\prime}\right) \\
& =\left(a \vee p^{\prime}\right) \sqcup_{1}\left(\left(b \vee p^{\prime}\right) \sqcup_{1}\left(c \vee p^{\prime}\right)\right)=\cup_{z \in b \sqcup_{p} c}\left(a \vee p^{\prime}\right) \sqcup_{1} z \\
& =\cup_{z \in b \sqcup_{p} c}\left(a \vee p^{\prime}\right) \sqcup_{1}\left(z \vee p^{\prime}\right)=\cup_{z \in b \sqcup_{p} c} a \sqcup_{p} z=a \sqcup_{p}\left(b \sqcup_{p} c\right)
\end{aligned}
$$

(where we have used the associativity of the \sqcup_{1} hyperoperation ${ }^{1}$). Hence we have shown $\left(a \sqcup_{p} b\right) \sqcup_{p} c \subseteq a \sqcup_{p}\left(b \sqcup_{p} c\right)$. Siimilarly we show $a \sqcup_{p}\left(b \sqcup_{p} c\right) \subseteq\left(a \sqcup_{p} b\right) \sqcup_{p} c$ and we have proved the first part of 3; the second part is obvious. For 4 we have $a=$ $\left(\left(a \vee p^{\prime}\right) \vee\left(b \vee p^{\prime}\right)\right) \wedge a \in\left(\left(a \vee p^{\prime}\right) \sqcup_{1}\left(b \vee p^{\prime}\right)\right) \wedge a=\left(a \sqcup_{p} b\right) \wedge a$. Also $(a \wedge b) \vee a$ $\vee p^{\prime}=(a \wedge b) \vee a \vee p^{\prime}=a \vee a \vee p^{\prime} \Rightarrow a \in(a \wedge b) \sqcup_{p} a$. For 5, we have $a \in a \sqcup_{p} b \Leftrightarrow$ $a \vee b \vee p^{\prime}=a \vee a \vee p^{\prime}=b \vee a \vee p^{\prime} \Leftrightarrow b \vee p^{\prime} \leq a \vee p^{\prime}$.

Hence $\left(X, \sqcup_{p}, \wedge, \leq_{p}\right)$ is "nearly" a hyperlattice [10]. The only difference is that \leq_{p} is a preorder, not an order. Next we show that, for any $a, b \in X, a \sqcup_{p} b$ has the p-cut properties.

Proposition 3.10 The following properties hold for all $a, b, p, q \in X, P \subseteq X$.

1. $a \sqcup_{0} b=[0,1]$.
2. $p \leq q \Rightarrow a \sqcup_{q} b \subseteq a \sqcup_{p} b$.
3. $a \sqcup_{p \vee q} b=\left(a \sqcup_{p} b\right) \cap\left(a \sqcup_{q} b\right)$; more generally $a \sqcup_{\vee P} b=\cap_{p \in P}\left(a \sqcup_{p} b\right)$.

Proof. 1 is obvious. For 2: $p \leq q \Rightarrow q^{\prime} \leq p^{\prime}$. Now

$$
\begin{aligned}
x & \in a \sqcup_{q} b \Rightarrow \\
a \vee b \vee q^{\prime} & =a \vee x \vee q^{\prime}=b \vee x \vee q^{\prime} \Rightarrow \\
a \vee b \vee q^{\prime} \vee p^{\prime} & =a \vee x \vee q^{\prime} \vee p^{\prime}=b \vee x \vee q^{\prime} \vee p^{\prime} \Rightarrow \\
a \vee b \vee p^{\prime} & =a \vee x \vee p^{\prime}=b \vee x \vee p^{\prime} \Rightarrow \\
x & \in a \sqcup_{p} b .
\end{aligned}
$$

Regarding 3 we will prove the (more general) $a \sqcup_{\vee P} b=\cap_{p \in P}\left(a \sqcup_{p} b\right)$. Take any $P \subseteq X$. Since for every $p \in P$ we have $p \leq \vee P$, it follows from 2 that

$$
\forall p \in P: a \sqcup_{\vee P} b \subseteq a \sqcup_{p} b \Rightarrow a \sqcup_{\vee P} b \subseteq \cap_{p \in P}\left(a \sqcup_{p} b\right) .
$$

On the other hand

$$
\begin{aligned}
x & \in \cap_{p \in P}\left(a \sqcup_{p} b\right) \Rightarrow \forall p \in P: x \in a \sqcup_{p} b \Rightarrow \\
\forall p & \in P: a \vee b \vee p^{\prime}=a \vee x \vee p^{\prime}=b \vee x \vee p^{\prime} \Rightarrow \\
\wedge_{p \in P}\left(a \vee b \vee p^{\prime}\right) & =\wedge_{p \in P}\left(a \vee x \vee p^{\prime}\right)=\wedge_{p \in P}\left(b \vee x \vee p^{\prime}\right) \Rightarrow \\
a \vee b \vee\left(\wedge_{p \in P} p^{\prime}\right) & =a \vee x \vee\left(\wedge_{p \in P} p^{\prime}\right)=b \vee x \vee\left(\wedge_{p \in P} p^{\prime}\right) \Rightarrow \\
a \vee b \vee\left(\vee_{p \in P} p\right)^{\prime} & =a \vee x \vee\left(\vee_{p \in P} p\right)^{\prime}=b \vee x \vee\left(\vee_{p \in P} p\right)^{\prime} \Rightarrow x \in a \sqcup_{\vee P} b
\end{aligned}
$$

where we have used complete distributivity and the fact that $\wedge_{p \in P} p^{\prime}=\left(\vee_{p \in P} p\right)^{\prime}=$ $(\vee P)^{\prime}$.

[^0]Definition 3.11 We define the operation \cup between intervals as follows: for all intervals A, B we set

$$
A \dot{\cup} B=\cap_{C: A \subseteq C, B \subseteq C} C .
$$

Proposition 3.12 For all $a, b \in X,\left(\left\{a \sqcup_{p} b\right\}_{p \in X}, \dot{\cup}, \cap, \subseteq\right)$ is a lattice.
Proof. Because of Proposition 3.10, $\left\{a \sqcup_{p} b\right\}_{p \in X}$ is a closure system.
Remark. Let us note that for every $p \in X$ we can also define a dual hyperoperation Π_{p} as follows:

$$
\left.\forall a, b \in X: a \sqcap_{p} b=\{x: a \wedge b \wedge p=a \wedge x \wedge p=b \wedge x \wedge p\}\right]
$$

Each Π_{p} has properties analogous to the ones presented above for \sqcup_{p}. Furthermore, there are some interesting properties of the hyperstructure $\left(X, \sqcup_{p}, \sqcap_{p}\right)$, especially with regard to the combination of the \sqcup_{p} and \sqcap_{p} hyperoperations. We postpone the study of $\left(X, \sqcup_{p}, \sqcap_{p}\right)$ to a future publication.

4 The L-Fuzzy Hyperoperation \sqcup

We now proceed to synthesize the L-Fuzzy hyperoperation \sqcup using the crisp hyperoperatons \sqcup_{p}. We will use a form of the classical construction presented in [15].

Definition 4.1 For all $a, b \in X$ we define the L-fuzzy set $a \sqcup b$ by defining for every $x \in X:(a \sqcup b)(x) \doteq \vee\left\{q: x \in a \sqcup_{q} b\right\}$.

Proposition 4.2 For all $a, b, p \in X$ we have: $(a \sqcup b)_{p}=a \sqcup_{p} b$.
Proof. See [15].
Proposition 4.3 For all $a, p \in X$, for all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we have: (i) $a \sqcup_{p} B_{p} \subseteq$ $(a \sqcup \widetilde{B})_{p}$, $(i i) A_{p} \sqcup_{p} B_{p} \subseteq(\widetilde{A} \sqcup \widetilde{B})_{p}$.

Proof. We only prove (i). Choose any $x \in a \sqcup_{p} B_{p}$. Then there exists some $b \in B_{p}$ such that $x \in a \sqcup_{p} b=(a \sqcup b)_{p}$. Hence $\widetilde{B}(b) \geq p$ and $(a \sqcup b)(x) \geq p$ and so

$$
p \leq \widetilde{B}(b) \wedge\left((a \sqcup b)(x) \leq \vee_{u \in X}[\widetilde{B}(u) \wedge((a \sqcup u)(x)]=(a \sqcup b)(x)\right.
$$

Proposition 4.4 For all $a, b, c, p \in X$ we have:

$$
\begin{equation*}
(a \sqcup b)(c) \geq p \Leftrightarrow\left(\left(a \vee p^{\prime}\right) \sqcup\left(b \vee p^{\prime}\right)\right)(c) \geq p \Leftrightarrow(a \sqcup b)\left(c \vee p^{\prime}\right) \geq p \tag{1}
\end{equation*}
$$

Proof. (1) can be restated as

$$
c \in a \sqcup_{p} b \Leftrightarrow c \in\left(a \vee p^{\prime}\right) \sqcup_{p}\left(b \vee p^{\prime}\right) \Leftrightarrow c \vee p^{\prime} \in a \sqcup_{p} b
$$

which is simply a restatement of Proposition 3.2.
The following proposition presents some distributivity properties of \sqcup.
Proposition 4.5 For all $a, b, c \in X$ we have

1. $(a \sqcup b) \vee(a \sqcup c) \subseteq a \sqcup(b \vee c)$.
2. $a \wedge(b \sqcup c) \subseteq(a \wedge b) \sqcup(a \wedge c)$.
3. $a \vee(b \sqcup c) \subseteq(a \vee b) \sqcup(a \vee c)$.

Proof. For 1 it suffices to note that for all $p \in X$ we have (from Proposition 3.4) $\left(a \sqcup_{p} b\right) \vee\left(a \sqcup_{p} c\right) \subseteq a \sqcup_{p}(b \vee c)$. Regarding 2 , we will use the (easy to prove) property $(a \wedge \widetilde{B})_{p}=a \wedge B_{p}$. Now, for all $p \in X$ we have

$$
\begin{aligned}
(a \wedge(b \sqcup c))_{p} & =a \wedge(b \sqcup c)_{p}=a \wedge\left(b \sqcup_{p} c\right) \\
& \subseteq(a \wedge b) \sqcup_{p}(a \wedge c) \\
& =((a \wedge b) \sqcup(a \wedge c))_{p} ;
\end{aligned}
$$

now the required result follows from the equality of all p-cuts. 3 is proved similarly to 2 .

Proposition 4.6 For all $a, b, c \in X$ we have: $(a \sqcup c=b \sqcup c$ and $a \wedge c=b \wedge c) \Rightarrow$ $a=b$.

Proof. Suppose that $a \sqcup c=b \sqcup c$ and $a \wedge c=b \wedge c$. Then, for every $p \in X$ we have $a \sqcup_{p} c=b \sqcup_{p} c$ and $a \wedge c=b \wedge c$. In particular we have $a \sqcup_{1} c=b \sqcup_{1} c$ and $a \wedge c=b \wedge c$ and so (by Proposition 3.7) $a=b$.

Proposition 4.7 For all $a, b, c, p \in X$ we have:

$$
a \leq b \Rightarrow(\forall w:(a \sqcup c)(w) \geq p \quad \exists u:(b \sqcup c)(u) \geq p: w \leq u)
$$

Proof. This is simply a restatement of Proposition 3.8.
Proposition 4.8 For all $a, b, c, p \in X$ the following hold.

1. $(1 \sqcup a)(1)=1 ;(0 \sqcup a)(a)=1 ;(a \sqcup a)(a)=1$.
2. $(a \sqcup b)(a \vee b)=1$.

Proof. For 1 we have: $1=1 \vee a \in 1 \sqcup_{1} a \Rightarrow(1 \sqcup a)(1)=\vee\left\{p: 1 \in 1 \sqcup_{p} a\right\} \geq$ 1. The remaining parts of 1 are proved similarly. For 2, we have: $a \vee b \in a \sqcup_{1} b \Rightarrow$ $(a \sqcup b)(a \vee b)=\vee\left\{p: a \vee b \in a \sqcup_{p} b\right\} \geq 1$.

The next proposition states the basic properties of \sqcup.
Proposition 4.9 For all $a, b, c, p \in X$ the following hold.

1. $(a \sqcup a)(a)=1$.
2. $a \sqcup b=b \sqcup a$
3. $a \sqcup_{p} b \sqcup_{p} c \subseteq(a \sqcup(b \sqcup c))_{p} \cap((a \sqcup b) \sqcup c)_{p}$.
4. $((a \sqcup b) \wedge a)(a)=1 ;((a \wedge b) \sqcup a)(a)=1$.
5. $b \leq_{p} a \Leftrightarrow(a \sqcup b)(a) \geq p$.

Proof. For 1 note that $a \in a \sqcup_{1} a=(a \sqcup a)_{1}$ and so $(a \sqcup a)(a) \geq 1.2$ is immediate. To prove 3, we apply Proposition 4.3.(i) using $\widetilde{B}=b \sqcup c$; in this manner we show that $a \sqcup_{p} b \sqcup_{p} c=a \sqcup_{p}\left(b \sqcup_{p} c\right)=a \sqcup_{p}(b \sqcup c)_{p} \subseteq(a \sqcup(b \sqcup c))_{p}$; similarly $a \sqcup_{p} b \sqcup_{p} c \subseteq((a \sqcup b) \sqcup c)_{p}$. and we are done. From Proposition 4.8 we have $(a \sqcup b)(a \vee b)=1$; also $(a \vee b) \wedge a=a$. Hence

$$
((a \sqcup b) \wedge a)(a)=\vee_{x: x \wedge a=a}((a \sqcup b)(x)) \geq(a \sqcup b)(a \vee b)=1
$$

and we have proved the first part of 4. For the second part, note that $a=(a \wedge b) \vee a \in$ $(a \wedge b) \sqcup_{1} a$, hence $((a \wedge b) \sqcup a)(a) \geq 1$. Finally, 5 is simply a restatement of the last part of Proposition 3.9.

5 The Crisp Hyperalgebra $\left(X, \sqcup_{p}, \wedge\right)$ and the L-fuzzy Hyperalgebra (X, \sqcup, \wedge)

In conclusion, let us note that the crisp hyperalgebra $\left(X, \sqcup_{p}, \wedge\right)$, as well as the Lfuzzy hyperalgebra (X, \sqcup, \wedge) are very similar to a hyperlattice. According to the definition given in [10], a hyperlattice is a crisp hyperalgebra (X, ∇, \wedge), where ∇ is a crisp hyperoperation which satisfies (for every $a, b, c \in X$) the properties of Table 1.

$a \in a \nabla a, a=a \wedge a$
$a \nabla b=b \nabla a, a \wedge b=b \wedge a$
$(a \nabla b) \nabla c=a \nabla(b \nabla c)$
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$
$a \in(a \nabla b) \wedge a$
$a \in(a \wedge b) \nabla a$
$b \leq a \Leftrightarrow a \in a \vee b$

Table 1

In the first column of Table 2 we list the basic properties (satisfied for every $a, b, c, p \in X)$ of the crisp hyperalgebra $\left(X, \sqcup_{p}, \wedge\right)$. In the second column of Table 2 we list the corresponding properties of the L-fuzzy hyperalgebra (X, \sqcup, \wedge).

$\left(X, \sqcup_{p}, \wedge\right)$	(X, \sqcup, \wedge)
$a \in a \sqcup_{p} a, a=a \wedge a$	$(a \sqcup a)(a)=1, a=a \wedge a$
$a \sqcup_{p} b=b \sqcup_{p} a, a \wedge b=b \wedge a$	$a \sqcup b=b \sqcup a, a \wedge b=b \wedge a$
$\left(a \sqcup_{p} b\right) \sqcup_{p} c=a \sqcup_{p}\left(b \sqcup_{p} c\right)$	$\left(a \sqcup_{p} b\right) \sqcup_{p} c \subseteq(a \sqcup(b \sqcup c))_{p} \cap((a \sqcup b) \sqcup c)_{p}$
$(a \wedge b) \wedge c=a \wedge(b \wedge c)$	$(a \wedge b) \wedge c=a \wedge(b \wedge c)$
$a \in\left(a \sqcup_{p} b\right) \wedge a$	$((a \sqcup b) \wedge a)(a)=1$
$a \in(a \wedge b) \sqcup_{p} a$	$((a \wedge b) \sqcup a)(a)=1$
$a \in a \sqcup_{p} b \Leftrightarrow b \leq_{p} a$	$(a \sqcup b)(a) \geq p \Leftrightarrow b \leq_{p} a$

Table 2

The reader will observe the similarity between the properties of (X, ∇, \wedge), $\left(X, \sqcup_{p}, \wedge\right)$ and $(X, \sqcup, \wedge) .\left(X, \sqcup_{p}, \wedge\right)$ is "almost" a hyperlattice; indeed the only difference between the properties of (X, ∇, \wedge) and $\left(X, \sqcup_{p}, \wedge\right)$ is the use of the preorder \leq_{p} in Table 2.

Similarly, the properties of (X, \sqcup, \wedge) are the "L-fuzzy versions" of the (X, ∇, \wedge) properties. The main differences are that \sqcup is weakly associative (this is similar to H_{v} associativity [16]) and the ordering property induced by \sqcup concerns the preorder \leq_{p} rather than the order \leq. Hence (X, \sqcup, \wedge) can be considered as an L-fuzzy version of $\left(X, \sqcup_{p}, \wedge\right)$.

We have already mentioned the possibility of constructing a family of Π_{p} hyperoperations; these can also be used to construct an L-fuzzy hyperoperation \sqcap. Then one could compare the properties of the crisp hyperalgebra $\left(X, \sqcap_{p}, \vee\right)$ and the L-fuzzy hyperalgebra (X, \sqcap, \curlywedge) and conclude that (X, \sqcap_{p}, \vee) and (X, \sqcap, \vee) have properties similar to those of a crisp dual hyperlattice (X, \triangle, \vee).

References

[1] P. Corsini and I. Tofan. "On fuzzy hypergroups". PU.M.A. vol.8, pp.29-37, 1997.
[2] S.D. Comer, "Multi-valued algebras and their graphical representations", preprint, Dep. of Mathematics and Computer Science, The Citadel, 1986.
[3] G. Cualuguareanu and V. Leoreanu. "Hypergroups associated with lattices". Ital. J. Pure Appl. Math, vol. 9, pp.165-173, 2001.
[4] A. Hasankhani and M.M. Zahedi. " F-Hyperrings". Ital. Journal of Pure and Applied Math., vol. 4, pp.103-118, 1998.
[5] A. Hasankhani and M.M. Zahedi. "On F-polygroups and fuzzy sub- F polygroups". J. Fuzzy Math., vol. 6, pp. 97-110, 1998.
[6] Ath. Kehagias, K. Serafimidis and M. Konstantinidou. "A note on the congruences of the Nakano superlattice and Some Properties of the Associated Quotients". Rend. Circ. Mat. Palermo, vol.51, pp.333-354, 2002.
[7] Ath. Kehagias. "An example of L-fuzzy join space". Rend. Circ. Mat. Palermo, vol. 51, pp.503-526, 2002.
[8] Ath. Kehagias. "L-fuzzy meet and join hyperoperations". (In this volume).
[9] Ath. Kehagias. "The lattice of fuzzy intervals and sufficient conditions for its distributivity". arXiv:cs.OH/0206025, at http://xxx.lanl.gov/find/cs.
[10] M. Konstantinidou and J. Mittas. "An introduction to the theory of hyperlattices". Math. Balkanica, vol.7, pp.187-193, 1977.
[11] M. Konstantinidou and K. Serafimidis. "Hyperstructures dérivées d'un trellis particulier". Rend. Mat. Appl. vol. 7, pp. 257-265, 1993.
[12] V. Leoreanu. "Direct limits and inverse limits of hypergroups associated with lattices". To appear in Italian J. of Pure and Appl. Math.
[13] J. Mittas and M. Konstantinidou. "Contributions à la théorie des treillis avec des structures hypercompositionnelles y attachées". Riv. Mat. Pura Appl. vol. 14, pp.83-114, 1994.
[14] T. Nakano, "Rings and partly ordered systems". Math. Zeitschrift, vol.99, pp.355-376, 1967.
[15] H.T. Nguyen and E.A. Walker. A First Course on Fuzzy Logic, CRC Press, Boca Raton, 1997.
[16] S. Spartalis, A. Dramalides and T. Vougiouklis. "On H_{V}-group rings". Algebras Groups Geom., vol.15, pp.47-54, 1998.
[17] M.M. Zahedi and A. Hasankhani. "F-Polygroups". J. Fuzzy Math., vol. 4, pp.533-548. 1996.
[18] M.M. Zahedi and A. Hasankhani. " F-Polygroups (II)". Inf. Sciences, vol.89, pp.225-243, 1996.

[^0]: ${ }^{1}$ This has been established independently by Nakano [14] and Comer [2].

