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Abstract

In this paper we study the L-fuzzy hyperoperation LJ, which generalizesthe
crisp Nakano hyperoperation Li;. We construct LI using afamily of crisp LI,
hyperoperations as its p-cuts. The hyperalgebra (X, LI, A) can be understood
as an L-fuzzy hyperlattice.

AMS Classification: 06B99, 06D30, 08A72, 03E72, 20N 20.

1 Introduction

In this paper we perform the following construction: on a generalized deMorgan
lattice (X, <,V,A,) we construct an L-fuzzy hyperoperation LI. Then (X, U, A)
has almost all the properties of a fuzzy hyperlattice [10]. (X, U, A) is an exam-
ple of a L-fuzzy hyperalgebra similar to the constructions previously presented by
several authors. For example fuzzy polygroups have been presented by Zahedi and
Hasankhani in [5, 17, 18], the same authors present fuzzy hyperrings in [4]; Corsini
and Tofan present fuzzy hypergroups in [1]; Kehagias presents L-fuzzy join spaces
in[7].

2 Prdiminaries

In the remainder of the paper we use some notation and results from the theory of
L-fuzzy sets.We present a few basic definitions here; some additional material can
be found in [7, 8]. Let us also note that, in the remainder of the paper, some easy
proofs are omitted because of space limitations.

In this paper we use a lattice which is defined as follows.



Definition 2.1 A generalized deMorgan lattice is a structure (X, <, V, A,”), where
(X, <,V, A) is a complete distributive lattice with minimum element 0 and max-
imum element 1; the symbol ’ denotes a unary operation (“negation’); and the
following properties are satisfied.

1. Porallz € X, Y C X wehave x A (Vyeyy) = Vyey (T AY), 2V (Ayeyy) =
Nyey (z V y). (Complete distributivity).

2. Forall z € X we have: (2/)" = . (Negation is involutory).
3. Forall z,y € X we have: x <y = 3" <2’. (Negation is order reversing).

4. Porall Y € X we have (Vyeyy) = Ayevy’,  (Ayevy) = Vyeyy' (Com-
plete deMorgan laws).

The following definitions and notation will be used in the sequel.

1. A fuzzy set is a function M: X — [0, 1], where [0,1] is an interval of real
numbers; a L-fuzzy set is a function M : X — X. The collection of all crisp
subsets of X is denoted by P(.X) (power set of X); the collection of all L-fuzzy
sets (i.e. functions M : X — X) by F(X). Hence F(X) is a collection of functions
which includes, as special case, the (0/1 valued) characteristic functions of crisp
sets.

2. Givenaset A € P(X), we denote its inf by AA and its sup by VA.

3. Given a L-fuzzy set M : X — X, the p-cut of M is denoted by M, and
defined by M, = {z : M (x) > p}. For some basic properties of p-cuts see [15].
Two particularly important facts are [15, pp.34-35]: (a) a fuzzy set is uniquely
determined by its p-cuts; (b) a family of sets {N,,}peX which has certain properties

(“p-cut properties”) can be used to define a fuzzy set M in a manner such that for
every p € X we have M, = N,

A crisp hyperoperation is a mapping o : X x X — P(X); a L-fuzzy hyperoper-
ation is a mapping o : X x X — F(X).

Definition 2.2 Leto : X x X — F(X) be a L-fuzzy hyperoperation .

1. Foralla € X, B € F(X) we define the L-fuzzy set a o B by (a o B)(z) =
Viex (B(b) A (aeb)(@))

2. For all A, B € F(X) we define the L-fuzzy set A o B by (A o B)(z) =
Vaexsex (Ala) A B(b) A l(a o b)(x)])



3 TheFamily of U, Crisp Hyperoperations

Definition 3.1 For every p € X we define the hyperoperationL, : X x X — P(X)
as follows:

Va,be X :allyb={z:aVvVbVp =avazVvp =bVvaVvyp}

In the the above definition, if we set p = 1 we recover the LI; Nakano hyperop-
eration first presented in [14] and then in [2] and also studied in [3, 6, 11, 12, 13]
and several other places. The following proposition summarizes some obvious con-
sequences of the definition of Li,,.

Proposition 3.2 For every p,a,b,c € X we have:

l.ceal,bsceVp €allyb.

2. alyb=(aVp)U, (bVYp)=(aVyp)U (bVp)
Proposition 3.3 For all a,b,p € X there exists some f such thata U, b= [f,a V
bV p'l.

Proof. We have: Ve € aU,b:aVbVDp =cVaVp =cVbVp =
(aVbVD) = Nccau (cVaVp) = Acass (cVOV D)=
(aVbVp) = (Accassc) VaVp = (Aceaupc) VOV =

/\CEaLIpr ca l—lp b

Similarly we can show V. cq ¢ € a L, b. Next we show that a LI, b is a convex
sublattice. Take any z,y € a U, b. l.e.

aVbVvp =aVvazVvp =bvaVvy
avVbVvp =avVyVvp =bVvyVvy.

Taking the join of the above we obtainavbVvp =aVvaVyvp =bvaVvyVvy
and so x V y € a L, b. Taking the meet, we obtain

avVbvp =(@vaVyVvp)A(avaeVvyVvp)=ObVaVyVp)AbVzVyVy)
=aVbVpy =aV(@Ay)Vp =bV(zAy)Vp

and so x Ay € a U, b. Furthermore, take any z,y, z such that = < y < z and
xr,z €all,b le.

avVbVvp =avazVvp =bvaVvy
avVbVvp =aVvVzVp =bVvzVvyp.



ThenaVvbVvp=aVvaeVp <aVyVp <aVzVp=aVzVvp andsoaVbVvyp =
aVyVp'. Similarly weshowaVbVyp' =bVyVp andhence y € a L, b. In short
we have shown that

a |—|p b= [/\CEaupbca vcEaupr]-
Let f = AccaupC 9 = Veeau,sC. SinC€ a VbV p' € all, b,wehavea VbV p' < g.
Onthe otherhand g € aU,bandsoaVbVyp =aVgVp =bVgVvyp > g. Hence
g=aVbVvy. m
The following properties are related to distributivity.

Proposition 3.4 For all a, b, ¢, p € X the following properties hold.
1. (aU,b)V(aUy,c) Cal, (bVe).
2. aN(bUyc) C(aNb)U,(aNc).
.av(bl,c)C(aVvb)L,(bVe).

Proof. In this proof we make use of some distributivity properties of Li;, estab-
lished in [13]. For part 1 we have:

(alpb) V(aly,c) = ((aVp)ur (bVp)) Vv ((aVp)us(cvp))
C(avp)u ((bVvp)Vi(eVvy))
=(aVyp)Uy (bVeVyp)
=al,(bVe).
where the set inclusion in the second line has been obtained using the previously
mentioned results of [13]. For part 2: from b U, c = (b V p') Uy (¢ V p') we get
an(bU,)=aA((bVp)L (VD))
C(an(bvp))ui(an(cVyp))
=((anb)V(anp)) i ((anc)V(anp))
((anb) V(@ Vvp))ui ((anc) Vv (d Vp))
= (aAb) Ugvp (aAc)
Clandb)u,(anc);

(in the last step we have used Proposition 3.10.2). For part 3:
V(bU,e)=aV ((bVp)L (cVD))
ClavbVvp)Ui(aVveVyp)
=(aVb)U,(aVec).



Definition 3.5 Forall a,b,p € X we write a <, b (and b >, a) iffa Vv p’' <bV p'.

Proposition 3.6 The relation <, is a preorder on X. The associated relation
=,(defined by: a =, biff a <, band b <, a) is an equivalence relation and
wehavea=,b&aVp =bVy.

Proposition 3.7 For all a, b, c,p € X we have:
(aUy,c=bUy,candaANc=bAc)=a=,b.

Proof. Since alU,c = [z,aVeVvpland b, c = [y,bV cV p'| we have
aVeVp =bVevy'. Hence (aVp)V(evp)=(0bVp)V(cVp). FromaAc=bAc
we get (a A c)Vp'=(bAc)Vp whichgives (aVp' )A(eVp)=(bVp)A(cV D).
Hence, by distributivity,a Vp' =bVp' . m

Proposition 3.8 For all a,b, c,p € X we have:
a<b=(NMweal,c Ju:bU,ciw < u).

Proof. a <b=aVvVeVp <bVeVvyp .Sinceal,c=[zr,aVcVyp]and
blU,c=[y,bVcVYp|therequired result follows immediately. m
The hyperstructure (X, LI, A, <,) has some interesting properties.

Proposition 3.9 Forall a,b, c,p € X the following hold.
l.acalya,a=aAla.
2. al,b=0bU,a,aNb=0bAa.
(aU,b)U,c=al, (bU,c), (aAb)Ac=aAN (bAc),

a€(aly,b)Na,a € (aNnb)U,a,

o > w

b<,a&acaly,b.

Proof. 1 and 2 are obvious. For 3 take any y € (a U, b) L, ¢ then there exists
x € al,bsuchthaty € x L, c. Hence

zVp e(avy)U (bVY)

yVp € (@Vp)Ui(evp) C((aVvp)ui (bVp)) Ui (cVp)
=(aVp ) (bVD)Lh (eVD)) =Useru,e (@ V') Ly 2
= Usenpe (@V D) Uy (2V D) = Usapy,ea Uy 2 = all, (DU, €)



(where we have used the associativity of the LI; hyperoperation'). Hence we have
shown (a U, b)U,c C all, (bU, c). Siimilarly we show all, (bU, ¢) C (a U, b) U, c
and we have proved the first part of 3; the second part is obvious. For 4 we have a =
((avp)vvp))rnae((avp)u (bVY))ANa=(all,b)Aa. Also(aAb)Va
Vp'= (aANb)VaVvp = aVaVp = a € (a Ab)Uya. For5, we have a € all,b <
aVbVp=aVvaVvp=bVvaVvp bvp <aVp.m

Hence (X, U,, A, <,) is “nearly” a hyperlattice [10]. The only difference is that
<, is a preorder, not an order. Next we show that, for any a,b € X, a Li, b has the
p-cut properties.

Proposition 3.10 The following properties hold for all a, b, p,q € X, P C X.
1. allyb=[0,1].
2.p<g=alybCallb.
3. alpy,b=(al,b)N (allb); moregenerally a Llyp b= Nyep (a L, b).
Proof. 1 is obvious. For2: p < ¢ = ¢’ < p’. Now

rcalyb=
avVbvgd=avVazVvq¢d=bVaVvq=
avVovgVvp =avVzvgdVvp =bvaVvgVvyp =
avVbVvp =avVzVp =bVvaVvyp =
x €all,b.

Regarding 3 we will prove the (more general) a Uyp b = Nyep (a L, b). Take
any P C X. Since for every p € P we have p < VP, it follows from 2 that

VpeP:alypbCal,b=alypbC Nyep(all,bd).
On the other hand
T € Mpeplalyb) =VpeP:xecall,b=
VpeP:avVbVvp =avzVvp =bVvzVp =
Npep (aNV OV D) = Npep (aV VD)= Nep DV VD)=
aVbV (Npepp) =aVaV (Nepp) =bV eV (Apepp) =
aVbV (Vpepp) =aVaV (Voepp) =bVaV (Vpepp) =1 €allypb

where we have used complete distributivity and the fact that A,cpp’ = (Voepp) =
(VP). m

1This has been established independently by Nakano [14] and Comer [2].
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Definition 3.11 We define the operation U between intervals as follows: for all in-
tervals A, B we set
AUB = ﬂC;AQC,Bgcc.

Proposition 3.12 Forall a,b € X, ({a U, b} ., U, N, C) is a lattice.

Proof. Because of Proposition 3.10, {a LI, b} _ \ is a closure system. m
Remark. Let us note that for every p € X we can also define a dual hyperop-
eration 1, as follows:

Va,be X caMyb={x:aANbAp=aANzAp=bAxAp}

Each 11, has properties analogous to the ones presented above for Li,. Fur-
thermore, there are some interesting properties of the hyperstructure (X, L, M,),
especially with regard to the combination of the Li,and 11, hyperoperations. We
postpone the study of (X, LI, 1M,) to a future publication.

4 Thel-Fuzzy Hyperoperation LI

We now proceed to synthesize the L-Fuzzy hyperoperation LI using the crisp hyper-
operatons LI,. We will use a form of the classical construction presented in [15].

Definition 4.1 For all a,b € X we define the L-fuzzy set a LI b by defining for every
reX:(alb)(z)=V{qg:z €all,b}.

Proposition 4.2 For all a,b,p € X we have: (aUb), = a L, b.
Proof. See [15]. =

Proposition 4.3 For all a,p € X, for all A, B € F(X) we have: (i) a L, B, C
(aué) (i) A, L, B, C (Zué) .
p p
Proof. We only prove (i). Choose any = € a U, B,. Then there exists some
b€ B,suchthatz € al, b= (aUb),. Hence B(b) > pand (aUb) (z) > pand
o)

p< BO) A ((@UD) () < Vaex [Blu) A ((Uw) ()] = (aUb) ()



Proposition 4.4 Forall a,b,c,p € X we have:
(aUd)(c) >p & ((aVp)UBVH)) () > ps (aUb) (V) >p L)
Proof. (1) can be restated as
cealybsce(avp)U,(bVY)ecevp eall,b

which is simply a restatement of Proposition 3.2. =
The following proposition presents some distributivity properties of LI

Proposition 4.5 For all a, b, c € X we have
1. (aUb)V(alUc)Cal(bVe).
2. aN(bUc) C(anb)U(aNec).

.avbuc)C(avbU(aVve).

Proof. For 1 it suffices to note that for all p € X we have (from Proposition
34) (al,b)V(al,c) Call,(bVc).Regarding 2, we will use the (easy to prove)

property (a A §) = a A B,. Now, for all p € X we have
p

(an(bUc)),=aA(bUc),=aA (bL,c)
C(and)U,(aNc)
=((anb)U(aNC)), ;

D I

now the required result follows from the equality of all p-cuts. 3 is proved similarly
to2. m

Proposition 4.6 Forall a,b,c € X wehave: (aUc=bUc andaAc=bAc) =
a=b.

Proof. Suppose thatalUc=0bU ¢ and a A c = b A c. Then, for every p € X we
have a L, c =bU, c and a A c = b A c. In particular we have a Ll; c = b L ¢ and
a A c=0bAcandso (by Proposition3.7)a =b. m

Proposition 4.7 For all a,b, c,p € X we have:

a<b= NVw:(alc)(w)>p Ju:(Uc)(u) >p:w<u).



Proof. This is simply a restatement of Proposition 3.8. m
Proposition 4.8 For all a, b, ¢,p € X the following hold.

1. (1Ua)(l)=1;(0Ua)(a)=1;(aUa)(a) = 1.

2. (alUb)(aVb)=1.

Proof. Forlwehave: 1 =1Va € lLha= (1Ua)(1)=V{p:1€ll,a} >
1. The remaining parts of 1 are proved similarly. For 2, we have: a Vb € all; b=
(aub)(avb)=V{p:avbeal,b} >1. =

The next proposition states the basic properties of L.

Proposition 4.9 For all a, b, ¢, p € X the following hold.
1. (aUa)(a) = 1.
2. aldb=bUa
3. alybl,cC(al(blc)),N((alib)Uc),
4. ((aUb)ANa)(a)=1; ((anb)Ua)(a) =1.
5. 0<,a< (aUb)(a) > p.

Proof. For 1 note thata € aU; a = (aUa), and so (aUa)(a) > 1. 2is
immediate. To prove 3, we apply Proposition 4.3.(i) using B = bUc; in this manner
we show that a L, b L, c=a U, (bU,c)=all, (bUc), C (aU (bUc)),; similarly
all,bl,cC ((aUb)Uc), and we are done. From Proposition 4.8 we have
(aUb) (aVb)=1;also (aVb) Aa=a. Hence

((aUb) Aa)(a) = Vezra=e ((aUDb) (x)) > (aUb) (aVb) =1

and we have proved the first part of 4. For the second part, note that a= (a A b) Va €
(a Ab) Ly a, hence ((a Ab)Ua) (a) > 1. Finally, 5 is simply a restatement of the
last part of Proposition 3.9. m



5 TheCrisp Hyperalgebra (X, L, A) and theL-fuzzy
Hyperalgebra (X, LI, A)

In conclusion, let us note that the crisp hyperalgebra (XX, L,, A), as well as the L-
fuzzy hyperalgebra (X, U, A) are very similar to a hyperlattice. According to the
definition given in [10], a hyperlattice is a crisp hyperalgebra (X, </, A), where 7
is a crisp hyperoperation which satisfies (for every a,b, ¢ € X) the properties of

Table 1.

aca/a,a=ala

aJb=bya,aNb=bANa

(avb)ve=av (bve

(anb)ANc=aA(bAc)

ac(ayb) Na

ac(andb)vva

b<a<acaVb

Table 1

In the first column of Table 2 we list the basic properties (satisfied for every
a,b,c,p € X) of the crisp hyperalgebra (X, L,, A). In the second column of Table
2 we list the corresponding properties of the L-fuzzy hyperalgebra (X, LI, A).

(X, Uy, A)

(X, L, N)

acaly,a,a=ala

al,b=0U,a,aNb=0bAa

alb=bUa,aANb=bAa

(aU,b)Uyc=all, (bU,c)

(anb)ANc=aN (bAc)

all,b)U,cC(alU(bUc)),N((alb)Uc),
aNb)ANc=aN (bAc)

a€(alyb)Na

a€c(anb),a

aAb)Ua)(a)=1

acal,b&eb<,a

(
(
((aud)ANa)(a) =1
E(

alb)(a) >peb<,a

Table 2

The reader will observe the similarity between the properties of (X, <7, ),
(X, Uy, A) and (X, U, A). (X,U,, A) is “almost” a hyperlattice; indeed the only
difference between the properties of (X, 7, A) and (X, U,, A) is the use of the pre-

order <, in Table 2.
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Similarly, the properties of (X, LI, A) are the “L-fuzzy versions” of the (X, </, A)
properties. The main differences are that LI is weakly associative (this is similar to
H, associativity [16]) and the ordering property induced by LI concerns the pre-
order <, rather than the order <. Hence (X, LI, A) can be considered as an L-fuzzy
version of (X, L,, A).

We have already mentioned the possibility of constructing a family of r,, hy-
peroperations; these can also be used to construct an L-fuzzy hyperoperation 1.
Then one could compare the properties of the crisp hyperalgebra (X, M, V) and the
L-fuzzy hyperalgebra (X, A) and conclude that (X,,,V) and (X, 1, V) have
properties similar to those of a crisp dual hyperlattice (X, A, V).
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