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Abstract

In this paper we study two fuzzy hyperoperations, denoted by g (which
can be seen as a generalization of ∨) and f (which can be seen as a gener-
alization of ∧). g is obtained from a family of crisp ∨p hyperoperations and
f is obtained from a family of crisp ∧p hyperoperations. The hyperstructure
(X,g,∧) resembles a hyperlattice and the hyperstructure (X,∨,f) resem-
bles a dual hyperlattice.

AMS Classification: 06B99, 06D30, 08A72, 03E72, 20N20.

1 Introduction

Starting with a generalized deMorgan lattice (X,≤,∨,∧,′ ) we construct two L-
fuzzy hyperoperations: g and f; g is a fuzzified version of the join ∨ and f is a
fuzzified version of the meet ∧. The fuzzy hyperalgebra (X, g,∧) can be understood
as a fuzzy hyperlattice and (X, f,∨) can be seen as a fuzzy dual hyperlattice. The
work presented here is related to previous work in fuzzy hyperalgebras: Zahedi
and Hasankhani have studied fuzzy polygroups in [3, 9, 10] and fuzzy hyperrings in
[2]; Corsini and Tofan have studied fuzzy hypergroups in [1]; Kehagias has studied
L-fuzzy join spaces in [4].

2 Preliminaries

Here we present notation and standard results which we will use in the sequel1.
DeMorgan Lattices. In this paper we use a lattice which is defined as follows.

1Let us also note that in the rest of the paper some easy proofs are omitted because of space
limitations.
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Definition 2.1 A generalized deMorgan lattice is a structure (X,≤,∨,∧,′ ), where
(X,≤,∨,∧) is a complete distributive lattice with minimum element 0 and max-
imum element 1; the symbol ′ denotes a unary operation (“negation”); and the
following properties are satisfied.

1. For all x ∈ X , Y ⊆ X we have x ∧ (∨y∈Y y) = ∨y∈Y (x ∧ y), x ∨ (∧y∈Y y) =
∧y∈Y (x ∨ y). (Complete distributivity).

2. For all x ∈ X we have: (x′)′ = x. (Negation is involutory).

3. For all x, y ∈ X we have: x ≤ y ⇒ y′ ≤ x′. (Negation is order reversing).

4. For all Y ⊆ X we have (∨y∈Y y)′ = ∧y∈Y y′, (∧y∈Y y)′ = ∨y∈Y y′ (Com-
plete deMorgan laws).

Intervals. We will be especially interested in (closed) intervals of the lattice (X,≤).
Recall the following facts regarding intervals.
1. The collection of all closed lattice intervals of X is denoted by I(X), i.e. the set
of all sets [a, b] = {x : a ≤ x ≤ b}. I(X) includes X = [0, 1] and ∅, which can be
written as [a, b] for any a, b such that a � b.
2. ∪,∩ will denote the usual set-theoretic union and intersection. In addition, we
will use

.
∪ to denote the following set operation: A

.
∪ B

.
= ∩C:C⊆A,C⊆BC. Let

[a1, a2], [b1, b2] be two closed intervals of (X,≤); then we have: [a1, a2]∩ [b1, b2] =
[a1 ∨ b1, a2 ∧ b2], [a1, a2]

.
∪ [b1, b2] = [a1 ∧ b1, a2 ∨ b2]. Also (I(X),

.
∪,∩,⊆,′ ) is a

generalized deMorgan lattice (here ′ means set complement).
3. For every [a1, a2], [b1, b2], ∈ I(X), we write [a1, a2] � [b1, b2] iff a1 ≤ b1 and
a2 ≤ b2. Then � is an order on I(X) and (I(X),�) is a lattice.
4.Since (X,≤,∨,∧) is a distributive lattice, the following properties hold (for all
a, b, x, y ∈ X such that x ≤ y, a ≤ b):

a ∨ [x, y] = [a ∨ x, a ∨ y]; a ∧ [x, y] = [a ∧ x, a ∧ y];
[a, b] ∨ [x, y] = [a ∨ x, b ∨ y]; [a, b] ∧ [x, y] = [a ∧ x, b ∧ y].

(1)

Sets. The following definitions and notation will be used in the sequel.
1. A fuzzy set is a function M̃ : X → [0, 1], where [0,1] is an interval of real
numbers; a L-fuzzy set is a function M̃ : X → X .
2. The collection of all crisp subsets of X is denoted by P(X) (power set of X);
the collection of all L-fuzzy sets (i.e. functions M̃ : X → X) by F(X). Hence
F(X) is a collection of functions which includes, as special case, the (0/1 valued)
characteristic functions of crisp sets.
3. Given a set A ∈ P(X), we denote its inf by ∧A and its sup by ∨A.
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4. Given a L-fuzzy set M̃ : X → X , the p-cut of M̃ is denoted by Mp and defined
by Mp

.
= {x : M̃(x) ≥ p}. For some basic properties of p-cuts see [7]. Two

particularly important facts are [7, pp.34-35]: (a) a fuzzy set is uniquely determined
by its p-cuts; (b) a family of sets {Np}p∈X

which has certain properties (“p-cut

properties”) can be used to define a fuzzy set M̃ in a manner such that for every
p ∈ X we have Mp = Np.

A crisp hyperoperation is a mapping ◦ : X×X→ P(X); a L-fuzzy hyperoper-
ation is a mapping ◦ : X×X→ F(X).

Definition 2.2 Let ◦ : X × X → F(X) be a L-fuzzy hyperoperation .

1. For all a ∈ X , B̃ ∈ F(X) we define the L-fuzzy set a ◦ B̃ by (a ◦ B̃)(x)
.
=

∨b∈X

(
B̃(b) ∧ (a ◦ b)(x)

)

2. For all Ã, B̃ ∈ F(X) we define the L-fuzzy set Ã ◦ B̃ by (Ã ◦ B̃)(x)
.
=

∨a∈X,b∈X

(
Ã(a) ∧ B̃(b) ∧ [(a ◦ b)(x)]

)
.

The above definition also covers some special cases. For instance, if ◦ is a crisp
hyperoperation (i.e. a ◦ b is a crisp set for every a, b) and B is a crisp set, then Defi-
nition 2.2 reduces to the classical hyperoperation definition a◦B = ∪b∈Ba◦b (pro-
vided that we understand B̃(x) to denote the characteristic function of the set B and
(a ◦ b) (x) to denote the characteristic function of set a ◦ b). Similarly if ◦ is a crisp
operation (i.e. a ◦ b is an element) and B is a crisp set, then Definition 2.2 reduces
to a ◦ B = ∪b∈B {a ◦ b} which is the same as {x : ∃b ∈ B such that x = a ◦ b} .

3 The ∨p and ∧p Crisp Hyperoperations

Definition 3.1 For all p ∈ X we define the hyperoperation ∨p : X × X → P(X)
as follows: for all a, b ∈ X: a ∨p b

.
= [(a ∨ b) ∧ p, (a ∨ b) ∨ p′].

Proposition 3.2 For all a, b, c, p ∈ X we have: a∨p [b, c] = [(a ∨ b)∧p, (a∨c)∨p′].

Proof. By definition, a∨p[b, c] = ∪b≤z≤ca∨pz = ∪b≤z≤c[(a ∨ z)∧p, (a∨z)∨p′].
Take any u ∈ a ∨p [b, c]. Then there exists some z such that: b ≤ z ≤ c and
(a ∨ z)∧p ≤ u ≤ (a ∨ z)∨p′. Hence (a ∨ b)∧p ≤ (a ∨ z)∧p ≤ u ≤ (a ∨ z)∨p′ ≤
(a ∨ c)∨p′, i.e. u ∈ [(a ∨ b)∧p, (a∨c)∨p′]. So a∨p [b, c] ⊆ [(a ∨ b)∧p, (a∨c)∨p′].
On the other hand, take any u ∈ [(a ∨ b)∧p, (a∨c)∨p′] and define z = (u∨b)∧c =
(u∧c)∨b (by distributivity). Clearly b ≤ z ≤ c. Also z∨a∨p′ = (u∧c)∨b∨a∨p′ =
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(u∨b∨a∨p′)∧ (c∨b∨a∨p′). Since u ≤ u∨b∨a∨p′ and u ≤ c∨a∨p′ = c∨b∨a∨p′,
it follows that u ≤ z∨a∨p′. Also (z ∨ a)∧p = ((u ∧ c) ∨ b ∨ a)∧p = (u∧c∧p)∨
((b∨a)∧p). Since u∧c∧p ≤ u and (b∨a)∧p ≤ u, it follows that (z ∨ a)∧p ≤ u.
Hence we have shown (z ∨ a) ∧ p ≤ u ≤ z ∨ a∨ p′ and so u ∈ a∨p z ⊆ a∨p [b, c].
I.e. [(a ∨ b) ∧ p, (a ∨ c) ∨ p′] ⊆ a ∨p [b, c].

Definition 3.3 For all a, b, p ∈ X we write a ≤p b (and b ≥p a) iff a ∧ p ≤ b ∧ p.

Proposition 3.4 For all a, b, c, p ∈ X the following hold.

A1 a ∈ a ∨p a.

A2 a ∨p b = b ∨p a.

A3 (a ∨p b) ∨p c = a ∨p (b ∨p c) .

A4 a ∈ (a ∨p b) ∧ a, a ∈ (a ∧ b) ∨p a.

A5 b ≤p a ⇔ a ∈ a ∨p b.

Proof. A1 and A2 are obvious. For A3 we have:

(a ∨p b) ∨p c = ∪x∈[(a∨b)∧p,(a∨b)∨p′ ][(x ∨ c) ∧ p, (x ∨ c) ∨ p′]

= [(((a ∨ b) ∧ p) ∨ c) ∧ p, (((a ∨ b) ∨ p′) ∨ c) ∨ p′]

= [(a ∨ b ∨ c) ∧ p, (a ∨ b ∨ c) ∨ p′]

where we have used Proposition 3.2. Similarly we can show a∨p (b ∨p c) = [(a∨b∨
c)∧ p, (a∨ b∨ c)∨ p′ ]. For A4 we have (a ∨p b)∧ a= [(a∨ b)∧ p, (a∨ b)∨ p′]∧ a=
[(a ∨ b) ∧ a ∧ p, ((a ∨ b) ∨ p′) ∧ a] = [a ∧ p, a] 3 a; we have used (1). Also:
(a ∧ b) ∨p a = [((a ∧ b) ∨ a) ∧ p, (a ∧ b) ∨ a ∨ p′] = [a ∧ p, a ∨ p′]3 a. For A5,
b ≤p a ⇒ b ∧ p ≤ a ∧ p ≤ a ⇒ (b ∧ p)∨ (a ∧ p) ≤ a ⇒ (b ∨ a) ∧ p ≤ a ⇒
a ∈ [(b ∨ a) ∧ p, (b ∨ a) ∨ p′] = a ∨p b.On the other hand, assume a ∈ a ∨p b.
Then (b ∨ a)∧ p ≤ a ≤ (b ∨ a) ∨ p′ ⇒ (b ∨ a) ∧ p ≤ a ∧ p ⇒ (b ∧ p)∨ (a ∧ p) ≤
a ∧ p ⇒ b ∧ p ≤ a ∧ p.

The next proposition shows that {a ∨p b}
p∈X

has the “p-cut properties”.

Proposition 3.5 The following properties hold for all a, b ∈ X .

B1 a ∨1 b = {a ∨ b} , a ∨0 b = [0, 1].

B2 For all p, q ∈ X: p ≤ q ⇒ a ∨q b ⊆ a ∨p b.
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B3 For all p, q ∈ X: a ∨p∨q b = (a ∨p b) ∩ (a ∨q b); for all P ⊆ X: a ∨∨P b =
∩p∈P (a ∨p b).

B4 For all p, q ∈ X: a ∨p∧q b = (a ∨p b)
.
∪ (a ∨q b).

Proof. B1 is obvious. For B2 assume p ≤ q. Then also q ′ ≤ p′ hence (a ∨ b) ∧
p ≤ (a ∨ b) ∧ q and (a ∨ b) ∨ q′ ≤ (a ∨ b) ∧ p′. So [(a ∨ b) ∧ q, (a ∨ b) ∨ q′] ⊆
[(a ∨ b) ∧ p, (a ∨ b) ∧ p′] and we are done. Next, we will prove the (more general)
second part of B3. We have

∩p∈P (a ∨p b) = ∩p∈P [(a ∨ b) ∧ p, (a ∨ b) ∧ p′]

= [∨p∈P ((a ∨ b) ∧ p) ,∧p∈P ((a ∨ b) ∧ p′)]

= [(a ∨ b) ∧ (∨p∈P p) , (a ∨ b) ∧ (∧p∈P p′)]

= [(a ∨ b) ∧ (∨P ) , (a ∨ b) ∧ (∨P )′] = a ∨∨P b.

Finally, with respect to B4 we have

a ∨p∧q b = [(a ∨ b) ∧ (p ∧ q) , (a ∨ b) ∨ (p ∧ q)′]

= [((a ∨ b) ∧ p) ∧ ((a ∨ b) ∧ q) , ((a ∨ b) ∨ p′) ∨ ((a ∨ b) ∨ q′)]

= [(a ∨ b) ∧ p, (a ∨ b) ∨ p′]
.
∪ [a ∨ b) ∧ q, (a ∨ b) ∨ q′]

= (a ∨p b)
.
∪ (a ∨q b) .

Proposition 3.6 For all a, b, c, p ∈ X the following properties hold.

1. a ∨p (b ∧ c) = (a ∨p b) ∧ (a ∨p c) .

2. a ∧ (b ∨p c) = (a ∧ b) ∨p (a ∧ c) .

Proof. Omitted for the sake of brevity.

Proposition 3.7 For all a, b, c, p ∈ X we have: a ≤ b ⇒ a ∨p c � b ∨p c.

Proof. Indeed, if a ≤ b then (a ∨ c)∧p ≤ (b ∨ c)∧p and (a∨c)∨p′ ≤ (b∨c)∨p′

and so [(a ∨ c) ∧ p, (a ∨ c) ∨ p′] � [(b ∨ c) ∧ p, (b ∨ c) ∨ p′].
The family of crisp hyperoperations ∧phas properties analogous to the ones of

∨p; hence proofs of the following propositions are omitted.

Definition 3.8 For all p ∈ X we define the hyperoperation ∧p : X × X → P(X)
as follows. For all a, b ∈ X: a ∧p b

.
= [(a ∧ b) ∧ p, (a ∧ b) ∨ p′]
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Proposition 3.9 For all a, b, c, p ∈ X we have: a∧p[b, c] = [(a ∧ b)∧p, (a ∧ c)∨p′].

Definition 3.10 For all a, b, p ∈ X we write a ≤p b (and b ≥p a) iff a∨ p′ ≤ b∨ p′.

Proposition 3.11 For all a, b, c, p ∈ X the following hold.

C1 a ∈ a ∧p a.

C2 a ∧p b = b ∧p a.

C3 (a ∧p b) ∧p c = a ∧p (b ∧p c) .

C4 a ∈ (a ∧p b) ∨ a, a ∈ (a ∨ b) ∧p a.

C5 b ≤p a ⇔ a ∈ a ∧p b.

Proposition 3.12 The following properties hold for all a, b ∈ X .

D1 a ∧1 b = {a ∧ b} , a ∧0 b = [0, 1].

D2 For all p, q ∈ X: p ≤ q ⇒ a ∧q b ⊆ a ∧p b.

D3 For all p, q ∈ X: a ∧p∨q b = (a ∧p b) ∩ (a ∧q b); for all P ⊆ X: a ∧∨P b =
∩p∈P (a ∧p b).

D4 For all p, q ∈ X: a ∧p∧q b = (a ∧p b)
.
∪ (a ∧q b)

Proposition 3.13 For all a, b, c, p ∈ X the following properties hold.

1. a ∨ (b ∧p c) = (a ∨ b) ∧p (a ∨ c) .

2. a ∧p (b ∨ c) = (a ∧p b) ∨ (a ∧p c) .

Proposition 3.14 For all a, b, c, p ∈ X we have: a ≤ b ⇒ a ∧p c � b ∧p c.

Proposition 3.15 For all a, b, c, p, q ∈ X the following properties hold.

1. a ∨p (b ∧q c) ⊆ (a ∨p∧q b) ∧p∨q (a ∨p∧q c) (when p ≤ q, the ⊆ becomes =).

2. a ∧p (b ∨q c) ⊆ (a ∧p∧q b) ∨p∨q (a ∧p∧q c) (when p ≤ q, the ⊆ becomes =).

3. (a ∨p∨q b) ∧p∧q (a ∨p∨q c) = (a ∧p∧q b) ∨p∨q (a ∧p∧q c).

4. (a ∧p∧q b) ∨p∨q (a ∧p∧q c) = (a ∧p∨q b) ∨p∧q (a ∧p∨q c).
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5. a ∨p∨q b ∨p∨q c ⊆

{
(a ∨q b) ∨p c

a ∨q (b ∨p c)

}
⊆ a ∨p∧q b ∨p∧q c.

6. a ∧p∨q b ∧p∨q c ⊆

{
(a ∧q b) ∧p c

a ∧q (b ∧p c)

}
⊆ a ∧p∧q b ∧p∧q c.

Proof. Omitted for the sake of brevity.
The next proposition shows that ∨p and ∧p have a “deMorgan” property.

Definition 3.16 For every A ∈ P(X), we define A′ .
= {x′}x∈A.

Proposition 3.17 For every p, a, b ∈ X we have: (i) (a ∨p b)′ = a′ ∧p b′, (ii)
(a ∧p b)′ = a′ ∨p b′.

Proof. We only prove (i) ((ii) is proved similarly). We have

(a ∨p b)′ = {x′ : (a ∨ b) ∧ p ≤ x ≤ a ∨ b ∨ p′}

= {x′ : ((a ∨ b) ∧ p)′ ≥ x′ ≥ (a ∨ b ∨ p′)
′
}

= {z : a′ ∧ b′ ∧ p ≤ z ≤ (a′ ∧ b′) ∨ p′} = a′ ∧p b′.

4 The g and f L-fuzzy Hyperoperations

We now construct the L-fuzzy hyperoperations g and f using the ∨p and ∧p fami-
lies as their p-cuts. This is possible because of Propositions 3.5 and 3.12.

Definition 4.1 For all a, b ∈ X we define the L-fuzzy sets a g b and a f b as
follows: for every x ∈ X set (a g b)(x)

.
= ∨{q : x ∈ a ∨q b} and (a f b)(x)

.
=

∨{q : x ∈ a ∧q b}.

Proposition 4.2 For all a, b, p ∈ X we have (a g b)p = a ∨p b, (a f b)p = a ∧p b.

Proof. Follows from the construction of a g b, a f b [7, pp.34-35].

Proposition 4.3 For all a, p ∈ X , for all Ã, B̃ ∈ F(X) we have

1. a ∨p Bp ⊆
(
a g B̃

)
p
, Ap ∨p Bp ⊆

(
Ã g B̃

)
p
.

2. a ∧p Bp ⊆
(
a f B̃

)
p
, Ap ∧p Bp ⊆

(
Ã f B̃

)
p
.
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Proof. We only prove the first part of 1 (the remaining items are proved simi-
larly). Choose any x ∈ a ∨p Bp; then there exists b ∈ Bp such that x ∈ a ∨p b.
Now x ∈ a ∨p b = (a g b)p implies that (a g b) (x) ≥ p. Also, B(b) ≥ p.

Then (a g B) (x)= ∨u (B(u) ∧ [(a g u) (x)]) ≥ B(b) ∧ [(a g b) (x)] ≥ p, hence
x ∈ (a g B)p .

Proposition 4.4 For all a ∈ X the following hold.

1. (1 g a) (1) = 1, (1 f a) (a) = 1.

2. (0 g a) (a) = 1, (0 f a) (0) = 1.

3. (a f b) (a ∧ b) = 1, (a g b) (a ∨ b) = 1.

Proof. For 1 we have: (1 g a)(1)
.
= ∨{q : 1 ∈ 1 ∨q a}. 1 ∈ 1 ∨1 a ⇒ 1 ∈ {q :

1 ∈ 1 ∨q a} ⇒ (1 g a) (1) ≥ 1. The remaining part of 1, as well as 2 are proved
similarly. Regarding 3, we note that (a f b) (a ∧ b)= ∨{q : a ∧ b ∈ a ∧q b} ≥ 1
(since a ∧ b ∈ a ∧1 b). (a g b) (a ∨ b) = 1 is proved similarly.

We are now ready to establish some basic properties of g and f.

Proposition 4.5 For all a, b, c, p ∈ X the following hold.

E1 (a g a) (a) = 1, (a f a) (a) = 1.

E2 a g b = b g a, a f b = b f a.

E3.1 a ∨p b ∨p c ⊆ (a g (b g c))p ∩ ((a g b) g c)p.

E3.2 a ∧p b ∧p c ⊆ ((a f b) f c)p ∩ (a f (b f c))p.

E4.1 ((a f b) g a) (a) = 1, ((a g b) f a) (a) = 1.

E4.2 ((a f b) ∨ a) (a) = 1, ((a ∨ b) f a) (a) = 1.

E4.3 ((a g b) ∧ a) (a) = 1, ((a ∧ b) g a) (a) = 1.

E5 b ≤p a ⇔ (a g b) (a) ≥ p; b ≤p a ⇔ (a f b) (b) ≥ p.

Proof. For E1 note that a ∈ [a, a] = a ∨1 a = (a g a)1 and so (a g a) (a) ≥
1. Similarly we can show (a f a) (a) = 1. E2 is obvious. To prove E3.1, we
apply Proposition 4.3.1 using B̃ = a g b; in this manner we show that a ∨p

b ∨p c = a ∨p (b ∨p c) = a ∨p (b g c)p ⊆ (a g (b g c))p; similarly a ∨p b ∨p c

⊆ ((a g b) g c)p and we are done. For E3.2 we apply Proposition 4.3.2 using B̃ =
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a f b. For E4.1 we have ((a f b) g a) (a)= ∨x∈X ([(a f b) (x)] ∧ [(x g a) (a)]).
Now (a f b) (a ∧ b) = 1 and ((a ∧ b) g a) (a) = 1. Hence ((a f b) g a) (a)=1.
Similarly ((a ∧ b) g a) (a) = 1. For E4.2 note that a∧b ∈ a∧1b ⇒ (a f b) (a∧b) =
1. Also a = a ∨ (a ∧ b). Hence ((a f b) ∨ a) (a)= ∨u:a∨u=a (a f b) (u)= 1. Sim-
ilarly we can prove ((a ∨ b) f a) (a) = 1. E4.3 is proved in exactly analogous
manner. Finally, we prove the first part of E5 (the second is proved similarly) as
follows. First: b ≤p a ⇒ b ∧ p ≤ a ∧ p ⇒ a ∈ a ∨p b ⇒ p ∈ {q : a ∈ a ∨q b}.
Hence (a g b) (a) = ∨{q : a ∈ a ∨q b} ≥ p. Conversely, (a g b) (a) ≥ p ⇒
a ∈ (a g b)p = a ∨p b. Hence (a ∨ b) ∧ p ≤ a ⇒ (a ∨ b) ∧ p ≤ a ∧ p ⇒
(a ∧ p) ∨ (b ∧ p) ≤ a ∧ p ⇒ b ∧ p ≤ a ∧ p ⇒ b ≤p a.

Proposition 4.6 For all a, b, c ∈ X: (a g c = b g c and a f c = b f c) ⇒ a = b.

Proof. a g c = b g c ⇒ (∀p ∈ X : (a g c)p = (b g c)p) ⇒ (∀p ∈ X : a ∨p c=
b ∨p c) ⇒ a ∨1 c= b ∨1 c ⇒ a ∨ c= b ∨ c; also a f c = b f c ⇒ a ∧ c= b ∧ c; and
(a ∨ c = b ∨ c, a ∧ c = b ∧ c) ⇒ a = b by distributivity.

Definition 4.7 We say M̃ : X → X is a L-fuzzy interval of (X,≤) iff ∀p ∈ X :
Mp is a closed interval of (X,≤).

Definition 4.8 We denote the collection of L-fuzzy intervals of X by Ĩ(X).

Proposition 4.9 For all a, b ∈ X , a g b and a f b are L-fuzzy intervals.

In Section 2 we have introduced the � order on crisp intervals. We now extend
this order to Ĩ(X), the collection of all L-fuzzy intervals of X .

Definition 4.10 For all Ã, B̃ ∈ Ĩ(X), we write Ã - B̃ iff ∀ p ∈ X we have
Ap � Bp.

Proposition 4.11 � is an order on Ĩ(X) and (̃I(X), -) is a lattice.

Proof. This follows from the fact that a fuzzy set is specified by its p-cuts.
The g, f hyperoperations are isotone in the sense of the following proposition.

Proposition 4.12 For all a, b ∈ X such that a ≤ b we have a g c - b g c and
a f c - b f c.

Proof. a ≤ b ⇒ a∨c ≤ b∨c. Hence for any p we have (a ∨ c)∧p ≤ (b ∨ c)∧p

and (a ∨ c) ∨ p′ ≤ (b ∨ c) ∨ p′ which imply a ∨p c � b ∨p c ⇒ (a g c)p �
(b g c)p .Since the above is true for every p, it follows that a g c - b g c. Similarly
we show that a f c - b f c.

g, f and ′ are related as seen by the next “deMorgan-like” proposition.
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Definition 4.13 For every Ã ∈ F(X) define Ã′ by its p-cuts, i.e. Ã′ is the (unique)

fuzzy set which for every p ∈ X satisfies
(
Ã′

)
p

= (Ap)
′ = {x′}x∈Ap

.

Proposition 4.14 For every a, b ∈ X we have: (i) (a g b)′ = a′ f b′, (ii) (a f b)′ =
a′ g b′.

Proof. Choose any p ∈ X . Then
(
(a g b)′

)
p

=
(
(a g b)p

)′

= (a ∨p b)′ =

a′ ∧p b′ = (a′ f b′)p. Since for all p ∈ X the fuzzy sets (a g b)′ and a′ f b′ have the
same cuts, we have (a g b)′ = a′ f b′.

5 The Crisp Hyperalgebra (X,∨p,∧) and the L-fuzzy
Hyperalgebra (X, g,∧)

Let us now point out that the crisp hyperalgebra (X,∨p,∧) and the L-fuzzy hyper-
algebra (X, g,∧) are very similar to a hyperlattice. Recall that, given a hyperop-
eration 5, the hyperalgebra (X,5,∧) is called a hyperlattice [6] if it satisfies (for
every a, b, c ∈ X) the properties listed in Table 1.

a ∈ a 5 a, a = a ∧ a

a 5 b = b 5 a, a ∧ b = b ∧ a

(a 5 b) 5 c = a 5 (b 5 c)
(a ∧ b) ∧ c = a ∧ (b ∧ c)
a ∈ (a 5 b) ∧ a

a ∈ (a ∧ b) 5 a

b ≤ a ⇔ a ∈ a ∨ b

Table 1

Now consider Table 2. The first column lists some properties (satisfied for ev-
ery a, b, c, p ∈ X) of the crisp hyperalgebra (X,∨p,∧) (the ∨p properties are the
ones described in Proposition 3.4 and the ∧ properties are standard). The second
column lists the corresponding properties of the L-fuzzy hyperalgebra (X, g,∧)
(the g properties are the ones described in Proposition 4.5 and the ∧ properties are
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standard).

a ∈ a ∨p a, a = a ∧ a (a g a) (a) = 1, a = a ∧ a

a ∨p b = b ∨p a, a ∧ b = b ∧ a a g b = b g a, a ∧ b = b ∧ a

(a ∨p b) ∨p c = a ∨p (b ∨p c) a ∨p b ∨p c ⊆ (a g (b g c))p ∩ ((a g b) g c)p

(a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∧ b) ∧ c = a ∧ (b ∧ c)
a ∈ (a ∨p b) ∧ a ((a g b) ∧ a) (a) = 1
a ∈ (a ∧ b) ∨p a ((a ∧ b) g a) (a) = 1
b ≤p a ⇔ a ∈ a ∨p b b ≤p a ⇔ (a g b) (a) ≥ p

Table 2

The correspondence between the properties of (X,5,∧) and (X,∨p,∧) is obvi-
ous. (X,∨p,∧) is “almost” a hyperlattice, except in that ≤p in the last row of Table
2 is a preorder rather than an order. Similarly, (X, g,∧) has the L-fuzzy versions of
the (X,5,∧) properties and can be considered as an L-fuzzy relative of (X,∨p,∧).
Note however that: g has a weak form of associativity (similar to Hv associativity,
see [8]) and the ordering property induced by g concerns the preorder ≤p rather
than the order ≤.

A table similar to Table 2 can be constructed for the properties of the crisp
hyperalgebra (X,∧p,∨) and the L-fuzzy hyperalgebra (X,∨, f). Similar remarks
can be made regarding the similarities and differences of (X,∧p,∨) and (X, f,∨)
to a crisp dual hyperlattice (X,4,∨).

References

[1] P. Corsini and I. Tofan. “On fuzzy hypergroups”. PU.M.A. vol.8, pp.29-37,
1997.

[2] A. Hasankhani and M.M. Zahedi. “F -Hyperrings”. Ital. Journal of Pure and
Applied Math., vol. 4, pp.103-118, 1998.

[3] A. Hasankhani and M.M. Zahedi. “On F -polygroups and fuzzy sub-F -
polygroups”. J. Fuzzy Math., vol. 6, pp. 97–110, 1998.

[4] Ath. Kehagias. “An example of L-fuzzy join space”. Rend. Circ. Mat. Palermo,
vol. 51, pp.503-526, 2002.

[5] Ath. Kehagias. “The lattice of fuzzy intervals and sufficient conditions for its
distributivity”. arXiv:cs.OH/0206025, at http://xxx.lanl.gov/find/cs.

11



[6] M. Konstantinidou and J. Mittas. “An introduction to the theory of hyperlat-
tices”. Math. Balkanica, vol.7, pp.187-193, 1977.

[7] H.T. Nguyen and E.A. Walker. A First Course on Fuzzy Logic, CRC Press, Boca
Raton, 1997.

[8] S. Spartalis, A. Dramalides and T. Vougiouklis. “On HV -group rings”. Algebras
Groups Geom., vol.15, pp.47–54, 1998.

[9] M.M. Zahedi and A. Hasankhani. “F -Polygroups”. J. Fuzzy Math., vol. 4,
pp.533–548. 1996.

[10] M.M. Zahedi and A. Hasankhani. “F -Polygroups (II)”. Inf. Sciences, vol.89,
pp.225-243, 1996.

12


