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Abstract

In this paper we study two fuzzy hyperoperations, denoted by Y (which
can be seen as a generalization of V) and A (which can be seen as a gener-
alization of A). Y is obtained from afamily of crisp Vv, hyperoperations and
A is obtained from a family of crisp A, hyperoperations. The hyperstructure
(X, Y,A) resembles a hyperlattice and the hyperstructure (X, Vv, A) resem-
bles adual hyperlattice.

AMS Classification: 06B99, 06D30, 08A72, 03E72, 20N 20.

1 Introduction

Starting with a generalized deMorgan lattice (X, <,V,A,”) we construct two L-
fuzzy hyperoperations: Y and A; Y is a fuzzified version of the join vV and A is a
fuzzified version of the meet A. The fuzzy hyperalgebra (X, Y, A) can be understood
as a fuzzy hyperlattice and (XX, A, V) can be seen as a fuzzy dual hyperlattice. The
work presented here is related to previous work in fuzzy hyperalgebras: Zahedi
and Hasankhani have studied fuzzy polygroups in [3, 9, 10] and fuzzy hyperrings in
[2]; Corsini and Tofan have studied fuzzy hypergroups in [1]; Kehagias has studied
L-fuzzy join spaces in [4].

2 Prdiminaries

Here we present notation and standard results which we will use in the sequel.
DeMorgan Lattices. In this paper we use a lattice which is defined as follows.

!Let us also note that in the rest of the paper some easy proofs are omitted because of space
limitations.



Definition 2.1 A generalized deMorgan lattice is a structure (X, <, V, A,”), where
(X, <,V, A) is a complete distributive lattice with minimum element 0 and max-
imum element 1; the symbol ’ denotes a unary operation (“negation’); and the
following properties are satisfied.

1. Porallz € X, Y C X wehave x A (Vyeyy) = Vyey (T AY), 2V (Ayeyy) =
Nyey (z V y). (Complete distributivity).

2. Forall z € X we have: (2/)" = z. (Negation is involutory).
3. Forall z,y € X we have: x < y = 3y’ < a’. (Negation is order reversing).

4. Forall Y C X we have (Vyeyy) = Nyevy's  (Ayevy) = Vyery' (Com-
plete deMorgan laws).

Intervals. We will be especially interested in (closed) intervals of the lattice (X, <).
Recall the following facts regarding intervals.

1. The collection of all closed lattice intervals of X is denoted by I(X), i.e. the set
of all sets [a,b] = {z : a < z < b}. I(X) includes X = [0, 1] and @, which can be
written as [a, b] for any a, b such that a £ b.

2. U, N will denote the usual set-theoretic union and intersection. In addition, we
will use U to denote the following set operation: A U B = Ne:cca,ccC. Let
[a1, as], [b1, ba] be two closed intervals of (X, <); then we have: [ay, as] N [by, bo] =
[ay V by, ag A by, [ar, az) U [by, by] = [a1 A by, as V bs]. Also (I(X),U,N,C))isa
generalized deMorgan lattice (here " means set complement).

3. For every [aq, as], [b1,bs], € I(X), we write [a, as] < [by, be] iff a1 < b; and
ay < be. Then <isan order on I(X) and (I(X), <) is a lattice.

4.Since (X, <,V, A) is a distributive lattice, the following properties hold (for all
a,b,z,y € X suchthatx <y, a <b):

aVilz,yl=laVzaVyl alfz,yl=laNzanyl;

[a,b] V [x,y] =[aVz,bVy]; [a,b] Az, y] =[aAz,bAyl. (1)

Sets. The following definitions and notation will be used in the sequel.

1. A fuzzy set is a function M: X — 0, 1], where [0,1] is an interval of real
numbers; a L-fuzzy set is a function M:X — X.

2. The collection of all crisp subsets of X is denoted by P(X) (power set of X);
the collection of all L-fuzzy sets (i.e. functions M : X — X) by F(X). Hence
F(X) is a collection of functions which includes, as special case, the (0/1 valued)
characteristic functions of crisp sets.

3. Givenaset A € P(X), we denote its inf by AA and its sup by VA.
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4. Given a L-fuzzy set M: X — X, the p-cut of M is denoted by M, and defined
by M, = {x : M(x) > p}. For some basic properties of p-cuts see [7]. Two
particularly important facts are [7, pp.34-35]: (a) a fuzzy set is uniquely determined
by its p-cuts; (b) a family of sets {N,} ., which has certain properties (“p-cut
properties”) can be used to define a fuzzy set M in a manner such that for every
p € X we have M, = N,,.

A crisp hyperoperation is a mapping o : X x X — P(X); a L-fuzzy hyperoper-
ation is a mapping o : X x X— F(X).

Definition 2.2 Leto : X x X — F(X) be a L-fuzzy hyperoperation .

1. Foralla € X, B € F(X) we define the L-fuzzy set a o B by (a o B)(z) =
Viex (B(b) A (a0 b)())

2. Forall A, B € F(X) we define the L-fuzzy set A o B by (A o B)(x) =
Vaexoex (Ala) A B(b) A l(a o b)(x)])

The above definition also covers some special cases. For instance, if o is a crisp
hyperoperation (i.e. a o b is a crisp set for every a, b) and B is a crisp set, then Defi-
nition 2.2 reduces to the classical hyperoperation definition ao B = Uycpa o b (pro-
vided that we understand B(x) to denote the characteristic function of the set B and
(a o b) (x) to denote the characteristic function of set a o b). Similarly if o is a crisp
operation (i.e. a o b is an element) and B is a crisp set, then Definition 2.2 reduces
to a o B = Upep {a o b} which isthe same as {z : 3b € B suchthatxz = a o b} .

3 Thev,and A, Crisp Hyperoperations

Definition 3.1 For all p € X we define the hyperoperation v, : X x X — P(X)
as follows: foralla,b € X: aV,b= [(aVb)Ap, (aVb)VY]

Proposition 3.2 Forall a,b, c,p € X we have: aV,[b, c| = [(a V b)Ap, (aVe)Vp'].

Proof. By definition, aV, [b, ¢] = Up<.<.aV,2 = Up<z<c[(a V 2)Ap, (aVz)VD'].
Take any u € a V, [b,c]. Then there exists some z such that: b < z < ¢ and
(aV2)Ap<u<(aVz)Vvp.Hence(aVbAp<(aVz)Ap<u<(aVz)Vp <
(aVe)Vvp,ie uel(aVb)Ap, (aVe)Vp'].SoaV,[b,c] Cl(aVb)Ap, (aVe)Vy'].
On the other hand, take any u € [(a V b) Ap, (aVe) V'] and define z = (uVb)Ac =
(unc)Vb (by distributivity). Clearly b < z < ¢. Also zVaVp' = (uAc)VbVaVp' =
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(uVbVaVvp A (evbVaVvy'). Sinceu < uVbVaVvp andu < cVaVvp' = cVbvaVvy',
it follows that u < zvaVp'. Also (zVa)Ap=((uAc)VbVa)Ap=(uNcAp)V
((bva)Ap). SinceuAcAp <wand (bVa)Ap < u,itfollowsthat (z V a)Ap < u.
Hence we have shown (z Va) Ap <u <zVaVvp andsou € aV,z C aV,[b,c|.
le. [(aVb)Ap,(aVe)Vp|CaV,[bc. =

Definition 3.3 Forall a,b,p € X wewrite a <P b (and b >P a) iffa A p < b A p.
Proposition 3.4 For all a,b, ¢,p € X the following hold.

Al acaV,a.

A2 aV,b=bV,a.

A3 (aV,b)V,c=aV,(bV,c).
Adac(aVyb)Na,a€ (and)V,a.
ASb<Pa<acaVy,b.

Proof. Al and A2 are obvious. For A3 we have:

(a Vp b) Vp ¢ = Usejaviyap,avpyvprl (@ V €) Ap, (V) V']
=[(((aVvd)Ap)Ve)Ap,(((aVDd)Vp')Ve)Vp
=[(avVbVe)Ap,(aVbVe)Vp

where we have used Proposition 3.2. Similarly we can show aV, (b V, ¢) = [(aVbV
¢)Ap, (aVbVe)Vp']. For Adwe have (a V,b) Aa=[(aVb)Ap, (aVb) VD |Aa=
(VD) ANaNAp, (aVb)VDp) Aal =[aApal > a; we have used (1). Also:
(@nb)Vya=[((aNb)Va)ANp, (aANb)VaVpl=[aAp aVpl> a ForAS,
b<Pa=bAp<aAp<a=(bAp)V (aAp) < a= (bVa)Ap< a=
a€[(bVa)Ap, (bVa)Vyp]= aV,bOnthe other hand, assume a € a V, b.
Then (bVa)Ap<a<(bVa)Vp = (bVa)Ap<aAp=(bAp)V(aAp) <
aANp=bAp< aAp m
The next proposition shows that {a V,, b}pE + has the “p-cut properties”.

Proposition 3.5 The following properties hold for all a,b € X.
BlaVvib={aVb},aVeb=][0,1].

B2 FPorallp,ge X:p<g=aV,bCaV,b.



B3 Forall p,g e X: aVpy,b=(aV,b)N(aVyd);,forall PC X:aVypb=
mpep(a/\/pb).

B4 Forallp,q € X: aVyn, b= (aV,b)U(aV,b).
Proof. B1 is obvious. For B2 assume p < ¢. Then also ¢’ < p’ hence (a V b) A
p<f(avbAgand (aVd)Vqg <(avVb Ap.So[(aVb)Ag (aVb)V{]C

[(aVb) Ap,(aVb)Ap']and we are done. Next, we will prove the (more general)
second part of B3. We have

Npep (@ Vy b) = Npep[(a VD) Ap, (aVb) A Pl
= [Vper ((aV b) Ap), Apep ((aV b) Ap')]
=[(a V) A (Vperp) , (aV b) A (Apepp')]
=[(aVb)A(VP),(aVb)A(VP)]=aVypb.

Finally, with respect to B4 we have

aVbO)APAG,(aVd)V(pAg)
(@vb)Ap)A(l@vb)Ag),((avb)vp)V((aVb) V)

YAD, (aVb) VY U[aVb)Ag, (aVb)V{]
J(aVyb).

Proposition 3.6 Forall a,b, ¢, p € X the following properties hold.
1.aV,(bAc)=(aV,b) AN(aV,c).
2. aN(bVyc)=(aNb)V,(aNc).
Proof. Omitted for the sake of brevity. m

Proposition 3.7 Forall a,b,c,p € X wehave: a <b=aV,c 2bV,c.

Proof. Indeed, if a < bthen (a V e)Ap < (bV c)Apand (aVe)Vp' < (bVe)Vyp
andso[(aVe)Ap,(avVe)Vp ]2 [(bVe)Ap,(bVe) VY] =

The family of crisp hyperoperations A,has properties analogous to the ones of
V,; hence proofs of the following propositions are omitted.

Definition 3.8 For all p € X we define the hyperoperation A, : X x X — P(X)
as follows. Forall a,b € X: a A, b=[(a Ab) Ap,(a Ab) VP



Proposition 3.9 Foralla, b, c,p € X we have: an,[b, c] = [(a Ab)Ap, (a A c)Vp'].
Definition 3.10 Forall a,b,p € X wewritea <, b(andb >, a) iffaVvp <bVyp'.
Proposition 3.11 For all a,b, ¢, p € X the following hold.

Clacan,a.

C2an,b=0bA,a.

C3 (anyb) Npc=aNn,(bNyc).

Chac(an,b)Va,ae (aVd)A,a.

COb<,asacan,bd.
Proposition 3.12 The following properties hold for all a,b € X.

Dl anib={aAb},aNeb=][0,1].

D2 Forallp,ge X:p<qg=an;bZlaA,b.

D3 Forallp,g € X: aNpg,b=(aN,b)N(angb);forall PC X:aAypb=
mpep(a//\pb).

D4 Forallp,g € X: aMprgb=(aN,b)U(aA,b)

Proposition 3.13 For all a, b, ¢, p € X the following properties hold.

1. aV(bA,c)=(aVb)A,(aVec).

2. aN, (bVe)=(aNn,b)V(aNn,c).
Proposition 3.14 Forall a,b,c,p € X wehave: a <b=aA,c <bA,c.
Proposition 3.15 For all a, b, ¢, p, ¢ € X the following properties hold.

1. aVy, (bAgc) C (aVpnrgb) Apvg (@ Vpng c) (When p < g, the C becomes =).

2. a Ny, (bVyc) C(aNpnrgb) Vpvg (a Apag ) (When p < ¢, the C becomes =).
8. (@ Vpvg b) Apag (@ Vpvg €) = (@ Apag 0) Vpvg (@ Apng ©).
4. (a Aprg b) Vpvg (@ Apag €) = (@ Apvg b) Vipag (@ Apvg ©).
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(@aVy,b)V,e

. C
5 a/vp\/qbvp\/qc_ { a\/q(b\/pC)

} g a \/p/\q b \/p/\q C.

(@aNgb) Ny

6. a/\p\/qb/\l’\/ch{ a N\g (b/\pc)

} g a /\p/\q b /\p/\q C.

Proof. Omitted for the sake of brevity. m
The next proposition shows that V,, and A, have a “deMorgan” property.

Definition 3.16 For every A € P(X), we define A" = {2/} _,.

Proposition 3.17 For every p,a,b € X we have: (i) (aV,b) = da A, U, (ii)
(aN,b) =a' Vv, V.

Proof. We only prove (i) ((ii) is proved similarly). We have

(aV,b) ={2': (avb)Ap<x<aVbVyp}
={2: ((avVb)Ap) >2' > (aVbVp)}
={z:d ANV Ap<2<(dAV)VD}=d AV

4 TheY and A L-fuzzy Hyperoperations

We now construct the L-fuzzy hyperoperations Y and A using the v, and A, fami-
lies as their p-cuts. This is possible because of Propositions 3.5 and 3.12.

Definition 4.1 For all a,b € X we define the L-fuzzy sets a Y b and a A b as
follows: for every x € X set (a Y b)(z) =V{q:z € aV,b} and (a A b)(z) =
V{q:z €an,b}.

Proposition 4.2 For all a,b,p € X we have (a Y b), =a V, b, (a A b), =a A, b.
Proof. Follows from the construction of a Y b, a A b [7, pp.34-35]. m

Proposition 4.3 Forall a,p € X, forall A, B € F(X) we have

1. aV,B, C (aYE) , A, V, B, C (EYE) :
p

p

2. aM, B, C (aké) LAy Ay B, C <21A§> :
p

p
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Proof. We only prove the first part of 1 (the remaining items are proved simi-
larly). Choose any = € a V, B,; then there exists b € B, such that z € a Vv, b.
Now z € aV, b = (aYD), implies that (a Y b) (z) > p. Also, B(b) > p.
Then (a Y B) ()= V, (B(u) Al(a Y u) (x)]) > B(b) A [(a Y b)(z)] > p, hence
z€(aY B), =

Proposition 4.4 For all a € X the following hold.

1. (1Y a)(1)

L, (1 Xa)(a)=1.

1.

2. (0Ya)(a)=1,(0Aa)(0)
3. (arb)(anb)=1,(aYb)(aVbd) =1

Proof. For 1we have: (1 Ya)(1)=V{g:1€1V,a}.1€l1Via=1€{q:
1 e€1Vya}l = (1Ya)(l) > 1. The remaining part of 1, as well as 2 are proved
similarly. Regarding 3, we note that (¢ A b) (a A D)= V{g:aNbEan,b} > 1
(sinceaAbeanyb). (aYDb)(aVb)=1Iisprovedsimilarly. m

We are now ready to establish some basic properties of Y and A.

Proposition 4.5 For all a, b, ¢,p € X the following hold.

El (aYa)(a)=1,(ara)(a)=1.

E2 aYb=bYa,arb=0>b A a.
E31aV,bV,cC(aY (bYc)),N((aYb)Yc),
E3.2 anybA,cC((arbd) Ac),N(ai(bAc)),

(

E4.1 ((a A D) Y a)(a)

1, ((aYb) La)(a)=1.
E42 ((a Ab)Va)(a)=1
)

) (
) ,((aVvd) Xa)(a)=1.
E43 ((aY b)ANa)(a)=1,(
b

1

(@Ab)Ya)(a)=1.
ESb<Pa< (aYb)(a) >p;b<,a< (aLb)(b)>p.
Proof. For E1 note that @ € [a,a] = a Vi a=(aY a), and so (a Y a) (a) >
1. Similarly we can show (a A a) (a) = 1. E2 is obvious. To prove E3.1, we
apply Proposition 4.3.1 using B = a Y b; in this manner we show that a Vv,
bVpyc=aV, (bVyc)=aV, (bYc), C (aY (bYc)), similarly a Vv, bV, c
C ((a Y b) Y ¢), and we are done. For E3.2 we apply Proposition 4.3.2 using B =
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a A b. For E4.1 we have ((a A D) Y a) (a)= Vzex ([(a X b) ()] A[(z Y a) (a)]).
Now (a A b)(aAb) = 1and ((a Ab) Y a)(a) = 1. Hence ((a A b) Y a)(a)=1.
Similarly ((a A b) Y a) (a) = 1. For E4.2 note that aAb € aA1b = (a A D) (aAb) =
1. Alsoa = a V (a Ab). Hence ((a A D)V a) (a)= Vyavu=a (@ A D) (u)= 1. Sim-
ilarly we can prove ((aVb) A a)(a) = 1. E4.3 is proved in exactly analogous
manner. Finally, we prove the first part of E5 (the second is proved similarly) as
follows. First: b <P a == bAp<aAp=acaVy,b=pec{qg:acaV,b}
Hence (a Y b) (a) = V{q¢ : a € a Vv, b} > p. Conversely, (a Y b)(a) > p =
a€ (aYb), =aV,b Hence (aVb)Ap<a = (aVbAp<aAp=
(anp)V(bADP)<a Ap=bAp<a Ap=b<Pa. =

Proposition 4.6 Forall a,b,c € X: (aYc=bYcanda Ac=bAc)=a=0D.

Proof. aYc=bYc=(WpeX:(aYc),=(0bYc))=>(VpeX:aV,c=
bVyc) =>aVic=bVic=aVce=bVcalsoahc=bAc=aAc=bAc; and
(ave=bVe,aNc=0bAc)= a=>bbydistributivity. m

Definition 4.7 We say M:X — Xisa L-fuzzy interval of (X, <)iff Vp € X :
M,, is a closed interval of (X, <).

Definition 4.8 We denote the collection of L-fuzzy intervals of X by T(X).
Proposition 4.9 Forall a,b € X ,a Y band a A b are L-fuzzy intervals.

In Section 2 we have introduced the =< order on crisp intervals. WWe now extend
this order to I(X), the collection of all L-fuzzy intervals of X.

Definition 4.10 For all A, B € I(X), we write A <X B iff ¥V p € X we have
A, % B,.

Proposition 4.11 < is an order on I(X) and (I(X), <) is a lattice.

Proof. This follows from the fact that a fuzzy set is specified by its p-cuts. m
The Yy, A hyperoperations are isotone in the sense of the following proposition.

Proposition 4.12 For all a,b € X suchthata < bwe havea Y ¢ X bY cand
akc3bAc

Proof. a < b= aVe < bVe. Hence forany pwe have (a vV e)Ap < (bVe)Ap
and (aVe) Vp < (bVe)Vp whichimply aV,c 2 bV,c = (aYc), =
(b Y ¢),, .Since the above is true for every p, it follows that a Y ¢ 5 b Y c. Similarly
we showthata A ¢ Sb A c. m

Y, A and’ are related as seen by the next “deMorgan-like” proposition.
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Definition 4.13 For every Ae F(X) define Al by its p-cuts, 1.e. Al is the (unique)

fuzzy set which for every p € X satisfies (Z’)p = (A4,) = {2'}sen,-

Proposition 4.14 Forevery a,b € X we have: (i) (a Y b)' = a’' A ¥, (ii) (a A b) =
a Yu.
/
Proof. Choose any p € X. Then ((a ¥ b)’)p = ((aY b)p) = (aV,b) =

a’ Nyt = (a’ A V'), Since forall p € X the fuzzy sets (a Y b) and a’ A V' have the
same cuts, we have (a Y b)' =a’ A 0. m

5 TheCrisp Hyperalgebra (X, V,, A) and theL-fuzzy
Hyperalgebra (X, Y, A)

Let us now point out that the crisp hyperalgebra (X, V,, A) and the L-fuzzy hyper-
algebra (X, Y, A) are very similar to a hyperlattice. Recall that, given a hyperop-
eration vy, the hyperalgebra (X, 7, A) is called a hyperlattice [6] if it satisfies (for
every a, b, ¢ € X) the properties listed in Table 1.

aca/a,a=ala
aJb=bya,aNb=bANa
(avb)ve=av (v
(anb)Nc=aAN(bAc)
a€c(ayb) Na
ac(andb)vva
b<asacaVb

Table 1

Now consider Table 2. The first column lists some properties (satisfied for ev-
ery a,b,c,p € X) of the crisp hyperalgebra (X, v,, A) (the Vv, properties are the
ones described in Proposition 3.4 and the A properties are standard). The second
column lists the corresponding properties of the L-fuzzy hyperalgebra (X, Y, A)
(the Y properties are the ones described in Proposition 4.5 and the A properties are
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standard).

ac€aVya,a=ala (aYa)(a)=1l,a=aAla
aVpob=bVya,aNb=bANa|aYb=bYaaNb=bAa
(aVyb)Vpc=aV,(bV,c) |aV,bV,cC(aY (bYc), N((aYd)Yc),

(anb)Nc=aN (bAc) (anb)Nc=aAN (bAc)

a€c(aVyb) Na ((ayb)ANa)(a)=1

ac(anb)Vy,a ((anb)Ya)la)=1

b<PasacaVyb b<Pa< (aYb)(a) >p
Table 2

The correspondence between the properties of (X, 57, A) and (X, V,,, A) is obvi-
ous. (X, V,,A) is “almost” a hyperlattice, except in that <? in the last row of Table
2 is a preorder rather than an order. Similarly, (X, Y, A) has the L-fuzzy versions of
the (X, <7, A\) properties and can be considered as an L-fuzzy relative of (X, V,, A).
Note however that: Y has a weak form of associativity (similar to H, associativity,
see [8]) and the ordering property induced by Y concerns the preorder <? rather
than the order <.

A table similar to Table 2 can be constructed for the properties of the crisp
hyperalgebra (X, A,, V) and the L-fuzzy hyperalgebra (X, Vv, A). Similar remarks
can be made regarding the similarities and differences of (X, A,, V) and (X, A, V)
to a crisp dual hyperlattice (X, A, V).
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