# L-fuzzy Meet and Join Hyperoperations 

Ath. Kehagias

December 13, 2002


#### Abstract

In this paper we study two fuzzy hyperoperations, denoted by $\curlyvee$ (which can be seen as a generalization of $\vee$ ) and $\curlywedge$ (which can be seen as a generalization of $\wedge)$. $\curlyvee$ is obtained from a family of crisp $\vee_{p}$ hyperoperations and $\lambda$ is obtained from a family of crisp $\wedge_{p}$ hyperoperations. The hyperstructure $(X, \curlyvee, \wedge)$ resembles a hyperlattice and the hyperstructure $(X, \vee, \curlywedge)$ resembles a dual hyperlattice.


AMS Classification: 06B99, 06D30, 08A72, 03E72, 20N20.

## 1 Introduction

Starting with a generalized deMorgan lattice $\left(X, \leq, \vee, \wedge,^{\prime}\right)$ we construct two $L$ fuzzy hyperoperations: $\curlyvee$ and $\curlywedge ; \curlyvee$ is a fuzzified version of the join $\vee$ and $\curlywedge$ is a fuzzified version of the meet $\wedge$. The fuzzy hyperalgebra $(X, \curlyvee, \wedge)$ can be understood as a fuzzy hyperlattice and $(X, \curlywedge, \vee)$ can be seen as a fuzzy dual hyperlattice. The work presented here is related to previous work in fuzzy hyperalgebras: Zahedi and Hasankhani have studied fuzzy polygroups in [3, 9, 10] and fuzzy hyperrings in [2]; Corsini and Tofan have studied fuzzy hypergroups in [1]; Kehagias has studied L-fuzzy join spaces in [4].

## 2 Preliminaries

Here we present notation and standard results which we will use in the sequel ${ }^{1}$.
DeMorgan Lattices. In this paper we use a lattice which is defined as follows.

[^0]Definition 2.1 $A$ generalized deMorgan lattice is a structure ( $X, \leq, \vee, \wedge,{ }^{\prime}$ ), where $(X, \leq, \vee, \wedge)$ is a complete distributive lattice with minimum element 0 and maximum element 1 ; the symbol ' denotes a unary operation ("negation"); and the following properties are satisfied.

1. For all $x \in X, Y \subseteq X$ we have $x \wedge\left(\vee_{y \in Y} y\right)=\vee_{y \in Y}(x \wedge y), x \vee\left(\wedge_{y \in Y} y\right)=$ $\wedge_{y \in Y}(x \vee y)$. (Complete distributivity).
2. For all $x \in X$ we have: $\left(x^{\prime}\right)^{\prime}=x$. (Negation is involutory).
3. For all $x, y \in X$ we have: $x \leq y \Rightarrow y^{\prime} \leq x^{\prime}$. (Negation is order reversing).
4. For all $Y \subseteq X$ we have $\left(\vee_{y \in Y} y\right)^{\prime}=\wedge_{y \in Y} y^{\prime}, \quad\left(\wedge_{y \in Y} y\right)^{\prime}=\vee_{y \in Y} y^{\prime}$ (Complete deMorgan laws).

Intervals. We will be especially interested in (closed) intervals of the lattice $(X, \leq)$. Recall the following facts regarding intervals.

1. The collection of all closed lattice intervals of $X$ is denoted by $\mathbf{I}(X)$, i.e. the set of all sets $[a, b]=\{x: a \leq x \leq b\}$. $\mathbf{I}(X)$ includes $X=[0,1]$ and $\emptyset$, which can be written as $[a, b]$ for any $a, b$ such that $a \not \leq b$.
2. $\cup, \cap$ will denote the usual set-theoretic union and intersection. In addition, we will use $\dot{U}$ to denote the following set operation: $A \dot{\cup} B \doteq \cap_{C: C \subseteq A, C \subseteq B} C$. Let $\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]$ be two closed intervals of $(X, \leq)$; then we have: $\left[a_{1}, a_{2}\right] \cap\left[b_{1}, b_{2}\right]=$ $\left[a_{1} \vee b_{1}, a_{2} \wedge b_{2}\right],\left[a_{1}, a_{2}\right] \cup\left[b_{1}, b_{2}\right]=\left[a_{1} \wedge b_{1}, a_{2} \vee b_{2}\right]$. Also $\left(I(X), \cup, \cap, \subseteq,{ }^{\prime}\right)$ is a generalized deMorgan lattice (here ' means set complement).
3. For every $\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right], \in \mathbf{I}(X)$, we write $\left[a_{1}, a_{2}\right] \preceq\left[b_{1}, b_{2}\right]$ iff $a_{1} \leq b_{1}$ and $a_{2} \leq b_{2}$. Then $\preceq$ is an order on $\mathbf{I}(X)$ and $(\mathbf{I}(X), \preceq)$ is a lattice.
4.Since $(X, \leq, \vee, \wedge)$ is a distributive lattice, the following properties hold (for all $a, b, x, y \in X$ such that $x \leq y, a \leq b)$ :

$$
\begin{array}{ll}
a \vee[x, y]=[a \vee x, a \vee y] ; & a \wedge[x, y]=[a \wedge x, a \wedge y] ;  \tag{1}\\
{[a, b] \vee[x, y]=[a \vee x, b \vee y] ;} & {[a, b] \wedge[x, y]=[a \wedge x, b \wedge y] .}
\end{array}
$$

Sets. The following definitions and notation will be used in the sequel.

1. A fuzzy set is a function $\widetilde{M}: X \rightarrow[0,1]$, where $[0,1]$ is an interval of real numbers; a $L$-fuzzy set is a function $\widetilde{M}: X \rightarrow X$.
2. The collection of all crisp subsets of $X$ is denoted by $\mathbf{P}(X)$ (power set of $X$ ); the collection of all $L$-fuzzy sets (i.e. functions $\widetilde{M}: X \rightarrow X)$ by $\mathbf{F}(X)$. Hence $\mathbf{F}(X)$ is a collection of functions which includes, as special case, the ( $0 / 1$ valued) characteristic functions of crisp sets.
3. Given a set $A \in \mathbf{P}(X)$, we denote its inf by $\wedge A$ and its sup by $\vee A$.
4. Given a $L$-fuzzy set $\widetilde{M}: X \rightarrow X$, the $p$-cut of $\widetilde{M}$ is denoted by $M_{p}$ and defined by $M_{p} \doteq\{x: \widetilde{M}(x) \geq p\}$. For some basic properties of $p$-cuts see [7]. Two particularly important facts are [7, pp.34-35]: (a) a fuzzy set is uniquely determined by its $p$-cuts; (b) a family of sets $\left\{N_{p}\right\}_{p \in X}$ which has certain properties (" $p$-cut properties") can be used to define a fuzzy set $\widetilde{M}$ in a manner such that for every $p \in X$ we have $M_{p}=N_{p}$.

A crisp hyperoperation is a mapping $\circ: X \times X \rightarrow \mathbf{P}(X)$; a L-fuzzy hyperoperation is a mapping $\circ: X \times X \rightarrow \mathbf{F}(X)$.

Definition 2.2 Let $\circ: X \times X \rightarrow \mathbf{F}(X)$ be a L-fuzzy hyperoperation .

1. For all $a \in X, \widetilde{B} \in \mathbf{F}(X)$ we define the $L$-fuzzy set $a \circ \widetilde{B}$ by $(a \circ \widetilde{B})(x) \doteq$ $\vee_{b \in X}(\widetilde{B}(b) \wedge(a \circ b)(x))$
2. For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we define the $L$-fuzzy set $\widetilde{A} \circ \widetilde{B}$ by $(\widetilde{A} \circ \widetilde{B})(x) \doteq$ $\vee_{a \in X, b \in X}(\widetilde{A}(a) \wedge \widetilde{B}(b) \wedge[(a \circ b)(x)])$.

The above definition also covers some special cases. For instance, if $\circ$ is a crisp hyperoperation (i.e. $a \circ b$ is a crisp set for every $a, b$ ) and $B$ is a crisp set, then Definition 2.2 reduces to the classical hyperoperation definition $a \circ B=\cup_{b \in B} a \circ b$ (provided that we understand $\widetilde{B}(x)$ to denote the characteristic function of the set $B$ and $(a \circ b)(x)$ to denote the characteristic function of set $a \circ b$ ). Similarly if $\circ$ is a crisp operation (i.e. $a \circ b$ is an element) and $B$ is a crisp set, then Definition 2.2 reduces to $a \circ B=\cup_{b \in B}\{a \circ b\}$ which is the same as $\{x: \exists b \in B$ such that $x=a \circ b\}$.

## 3 The $\vee_{p}$ and $\wedge_{p}$ Crisp Hyperoperations

Definition 3.1 For all $p \in X$ we define the hyperoperation $\vee_{p}: X \times X \rightarrow \mathbf{P}(X)$ as follows: for all $a, b \in X: a \vee_{p} b \doteq\left[(a \vee b) \wedge p,(a \vee b) \vee p^{\prime}\right]$.

Proposition 3.2 For all $a, b, c, p \in X$ we have: $a \vee_{p}[b, c]=\left[(a \vee b) \wedge p,(a \vee c) \vee p^{\prime}\right]$.
Proof. By definition, $a \vee_{p}[b, c]=\cup_{b \leq z \leq c} a \vee_{p} z=\cup_{b \leq z \leq c}\left[(a \vee z) \wedge p,(a \vee z) \vee p^{\prime}\right]$. Take any $u \in a \vee_{p}[b, c]$. Then there exists some $z$ such that: $b \leq z \leq c$ and $(a \vee z) \wedge p \leq u \leq(a \vee z) \vee p^{\prime}$. Hence $(a \vee b) \wedge p \leq(a \vee z) \wedge p \leq u \leq(a \vee z) \vee p^{\prime} \leq$ $(a \vee c) \vee p^{\prime}$, i.e. $u \in\left[(a \vee b) \wedge p,(a \vee c) \vee p^{\prime}\right]$. So $a \vee_{p}[b, c] \subseteq\left[(a \vee b) \wedge p,(a \vee c) \vee p^{\prime}\right]$. On the other hand, take any $u \in\left[(a \vee b) \wedge p,(a \vee c) \vee p^{\prime}\right]$ and define $z=(u \vee b) \wedge c=$ $(u \wedge c) \vee b$ (by distributivity). Clearly $b \leq z \leq c$. Also $z \vee a \vee p^{\prime}=(u \wedge c) \vee b \vee a \vee p^{\prime}=$
$\left(u \vee b \vee a \vee p^{\prime}\right) \wedge\left(c \vee b \vee a \vee p^{\prime}\right)$. Since $u \leq u \vee b \vee a \vee p^{\prime}$ and $u \leq c \vee a \vee p^{\prime}=c \vee b \vee a \vee p^{\prime}$, it follows that $u \leq z \vee a \vee p^{\prime}$. Also $(z \vee a) \wedge p=((u \wedge c) \vee b \vee a) \wedge p=(u \wedge c \wedge p) \vee$ $((b \vee a) \wedge p)$. Since $u \wedge c \wedge p \leq u$ and $(b \vee a) \wedge p \leq u$, it follows that $(z \vee a) \wedge p \leq u$. Hence we have shown $(z \vee a) \wedge p \leq u \leq z \vee a \vee p^{\prime}$ and so $u \in a \vee_{p} z \subseteq a \vee_{p}[b, c]$. I.e. $\left[(a \vee b) \wedge p,(a \vee c) \vee p^{\prime}\right] \subseteq a \vee_{p}[b, c]$.

Definition 3.3 For all $a, b, p \in X$ we write $a \leq^{p} b\left(a n d b \geq^{p} a\right)$ iff $a \wedge p \leq b \wedge p$.
Proposition 3.4 For all $a, b, c, p \in X$ the following hold.
A1 $a \in a \vee_{p} a$.
A2 $a \vee_{p} b=b \vee_{p} a$.
A3 $\left(a \vee_{p} b\right) \vee_{p} c=a \vee_{p}\left(b \vee_{p} c\right)$.
A4 $a \in\left(a \vee_{p} b\right) \wedge a, a \in(a \wedge b) \vee_{p} a$.
A5 $b \leq^{p} a \Leftrightarrow a \in a \vee_{p} b$.
Proof. A1 and A2 are obvious. For A3 we have:

$$
\begin{aligned}
\left(a \vee_{p} b\right) \vee_{p} c & =\cup_{x \in\left[(a \vee b) \wedge p,(a \vee b) \vee \vee^{\prime}\right]}\left[(x \vee c) \wedge p,(x \vee c) \vee p^{\prime}\right] \\
& =\left[(((a \vee b) \wedge p) \vee c) \wedge p,\left(\left((a \vee b) \vee p^{\prime}\right) \vee c\right) \vee p^{\prime}\right] \\
& =\left[(a \vee b \vee c) \wedge p,(a \vee b \vee c) \vee p^{\prime}\right]
\end{aligned}
$$

where we have used Proposition 3.2. Similarly we can show $a \vee_{p}\left(b \vee_{p} c\right)=[(a \vee b \vee$ $\left.c) \wedge p,(a \vee b \vee c) \vee p^{\prime}\right]$. For A4 we have $\left(a \vee_{p} b\right) \wedge a=\left[(a \vee b) \wedge p,(a \vee b) \vee p^{\prime}\right] \wedge a=$ $\left[(a \vee b) \wedge a \wedge p,\left((a \vee b) \vee p^{\prime}\right) \wedge a\right]=[a \wedge p, a] \ni a$; we have used (1). Also: $(a \wedge b) \vee_{p} a=\left[((a \wedge b) \vee a) \wedge p,(a \wedge b) \vee a \vee p^{\prime}\right]=\left[a \wedge p, a \vee p^{\prime}\right] \ni a$. For A5, $b \leq^{p} a \Rightarrow b \wedge p \leq a \wedge p \leq a \Rightarrow(b \wedge p) \vee(a \wedge p) \leq a \Rightarrow(b \vee a) \wedge p \leq a \Rightarrow$ $a \in\left[(b \vee a) \wedge p,(b \vee a) \vee p^{\prime}\right]=a \vee_{p} b$. On the other hand, assume $a \in a \vee_{p} b$. Then $(b \vee a) \wedge p \leq a \leq(b \vee a) \vee p^{\prime} \Rightarrow(b \vee a) \wedge p \leq a \wedge p \Rightarrow(b \wedge p) \vee(a \wedge p) \leq$ $a \wedge p \Rightarrow b \wedge p \leq a \wedge p$.

The next proposition shows that $\left\{a \vee_{p} b\right\}_{p \in X}$ has the " $p$-cut properties".
Proposition 3.5 The following properties hold for all $a, b \in X$.
B1 $a \vee_{1} b=\{a \vee b\}, a \vee_{0} b=[0,1]$.
B2 For all $p, q \in X: p \leq q \Rightarrow a \vee_{q} b \subseteq a \vee_{p} b$.

B3 For all $p, q \in X: a \vee_{p \vee q} b=\left(a \vee_{p} b\right) \cap\left(a \vee_{q} b\right)$; for all $P \subseteq X: a \vee_{\vee P} b=$ $\cap_{p \in P}\left(a \vee_{p} b\right)$.

B4 For all $p, q \in X$ : $a \vee_{p \wedge q} b=\left(a \vee_{p} b\right) \dot{\cup}\left(a \vee_{q} b\right)$.
Proof. B1 is obvious. For $\mathbf{B 2}$ assume $p \leq q$. Then also $q^{\prime} \leq p^{\prime}$ hence $(a \vee b) \wedge$ $p \leq(a \vee b) \wedge q$ and $(a \vee b) \vee q^{\prime} \leq(a \vee b) \wedge p^{\prime}$. So $\left[(a \vee b) \wedge q,(a \vee b) \vee q^{\prime}\right] \subseteq$ $\left[(a \vee b) \wedge p,(a \vee b) \wedge p^{\prime}\right]$ and we are done. Next, we will prove the (more general) second part of B3. We have

$$
\begin{aligned}
\cap_{p \in P}\left(a \vee_{p} b\right) & =\cap_{p \in P}\left[(a \vee b) \wedge p,(a \vee b) \wedge p^{\prime}\right] \\
& =\left[\vee_{p \in P}((a \vee b) \wedge p), \wedge_{p \in P}\left((a \vee b) \wedge p^{\prime}\right)\right] \\
& =\left[(a \vee b) \wedge\left(\vee_{p \in P} p\right),(a \vee b) \wedge\left(\wedge_{p \in P} p^{\prime}\right)\right] \\
& =\left[(a \vee b) \wedge(\vee P),(a \vee b) \wedge(\vee P)^{\prime}\right]=a \vee_{\vee P} b .
\end{aligned}
$$

Finally, with respect to B4 we have

$$
\begin{aligned}
a \vee_{p \wedge q} b & =\left[(a \vee b) \wedge(p \wedge q),(a \vee b) \vee(p \wedge q)^{\prime}\right] \\
& =\left[((a \vee b) \wedge p) \wedge((a \vee b) \wedge q),\left((a \vee b) \vee p^{\prime}\right) \vee\left((a \vee b) \vee q^{\prime}\right)\right] \\
& \left.=\left[(a \vee b) \wedge p,(a \vee b) \vee p^{\prime}\right] \dot{\cup}[a \vee b) \wedge q,(a \vee b) \vee q^{\prime}\right] \\
& =\left(a \vee_{p} b\right) \dot{\cup}\left(a \vee_{q} b\right) .
\end{aligned}
$$

Proposition 3.6 For all $a, b, c, p \in X$ the following properties hold.

1. $a \vee_{p}(b \wedge c)=\left(a \vee_{p} b\right) \wedge\left(a \vee_{p} c\right)$.
2. $a \wedge\left(b \vee_{p} c\right)=(a \wedge b) \vee_{p}(a \wedge c)$.

Proof. Omitted for the sake of brevity.
Proposition 3.7 For all $a, b, c, p \in X$ we have: $a \leq b \Rightarrow a \vee_{p} c \preceq b \vee_{p} c$.
Proof. Indeed, if $a \leq b$ then $(a \vee c) \wedge p \leq(b \vee c) \wedge p$ and $(a \vee c) \vee p^{\prime} \leq(b \vee c) \vee p^{\prime}$ and so $\left[(a \vee c) \wedge p,(a \vee c) \vee p^{\prime}\right] \preceq\left[(b \vee c) \wedge p,(b \vee c) \vee p^{\prime}\right]$.

The family of crisp hyperoperations $\wedge_{p}$ has properties analogous to the ones of $\vee_{p}$; hence proofs of the following propositions are omitted.

Definition 3.8 For all $p \in X$ we define the hyperoperation $\wedge_{p}: X \times X \rightarrow \mathbf{P}(X)$ as follows. For all $a, b \in X: a \wedge_{p} b \doteq\left[(a \wedge b) \wedge p,(a \wedge b) \vee p^{\prime}\right]$

Proposition 3.9 For all $a, b, c, p \in X$ we have: $a \wedge_{p}[b, c]=\left[(a \wedge b) \wedge p,(a \wedge c) \vee p^{\prime}\right]$.
Definition 3.10 For all $a, b, p \in X$ we write $a \leq_{p} b\left(a n d b \geq_{p} a\right)$ iff $a \vee p^{\prime} \leq b \vee p^{\prime}$.
Proposition 3.11 For all $a, b, c, p \in X$ the following hold.
C1 $a \in a \wedge_{p} a$.
C2 $a \wedge_{p} b=b \wedge_{p} a$.
C3 $\left(a \wedge_{p} b\right) \wedge_{p} c=a \wedge_{p}\left(b \wedge_{p} c\right)$.
C4 $a \in\left(a \wedge_{p} b\right) \vee a, a \in(a \vee b) \wedge_{p} a$.
$\boldsymbol{C 5} b \leq_{p} a \Leftrightarrow a \in a \wedge_{p} b$.
Proposition 3.12 The following properties hold for all $a, b \in X$.
D1 $a \wedge_{1} b=\{a \wedge b\}, a \wedge_{0} b=[0,1]$.
D2 For all $p, q \in X: p \leq q \Rightarrow a \wedge_{q} b \subseteq a \wedge_{p} b$.
D3 For all $p, q \in X: a \wedge_{p \vee q} b=\left(a \wedge_{p} b\right) \cap\left(a \wedge_{q} b\right)$; for all $P \subseteq X: a \wedge_{\vee P} b=$ $\cap_{p \in P}\left(a \wedge_{p} b\right)$.

D4 For all $p, q \in X: a \wedge_{p \wedge q} b=\left(a \wedge_{p} b\right) \dot{\cup}\left(a \wedge_{q} b\right)$
Proposition 3.13 For all $a, b, c, p \in X$ the following properties hold.

1. $a \vee\left(b \wedge_{p} c\right)=(a \vee b) \wedge_{p}(a \vee c)$.
2. $a \wedge_{p}(b \vee c)=\left(a \wedge_{p} b\right) \vee\left(a \wedge_{p} c\right)$.

Proposition 3.14 For all $a, b, c, p \in X$ we have: $a \leq b \Rightarrow a \wedge_{p} c \preceq b \wedge_{p} c$.
Proposition 3.15 For all $a, b, c, p, q \in X$ the following properties hold.

1. $a \vee_{p}\left(b \wedge_{q} c\right) \subseteq\left(a \vee_{p \wedge q} b\right) \wedge_{p \vee q}\left(a \vee_{p \wedge q} c\right)$ (when $p \leq q$, the $\subseteq$ becomes $=$ ).
2. $a \wedge_{p}\left(b \vee_{q} c\right) \subseteq\left(a \wedge_{p \wedge q} b\right) \vee_{p \vee q}\left(a \wedge_{p \wedge q} c\right)$ (when $p \leq q$, the $\subseteq$ becomes $=$ ).
3. $\left(a \vee_{p \vee q} b\right) \wedge_{p \wedge q}\left(a \vee_{p \vee q} c\right)=\left(a \wedge_{p \wedge q} b\right) \vee_{p \vee q}\left(a \wedge_{p \wedge q} c\right)$.
4. $\left(a \wedge_{p \wedge q} b\right) \vee_{p \vee q}\left(a \wedge_{p \wedge q} c\right)=\left(a \wedge_{p \vee q} b\right) \vee_{p \wedge q}\left(a \wedge_{p \vee q} c\right)$.
5. $a \vee_{p \vee q} b \vee_{p \vee q} c \subseteq\left\{\begin{array}{c}\left(a \vee_{q} b\right) \vee_{p} c \\ a \vee_{q}\left(b \vee_{p} c\right)\end{array}\right\} \subseteq a \vee_{p \wedge q} b \vee_{p \wedge q} c$.
6. $a \wedge_{p \vee q} b \wedge_{p \vee q} c \subseteq\left\{\begin{array}{l}\left(a \wedge_{q} b\right) \wedge_{p} c \\ a \wedge_{q}\left(b \wedge_{p} c\right)\end{array}\right\} \subseteq a \wedge_{p \wedge q} b \wedge_{p \wedge q} c$.

Proof. Omitted for the sake of brevity.
The next proposition shows that $\vee_{p}$ and $\wedge_{p}$ have a "deMorgan" property.
Definition 3.16 For every $A \in \mathbf{P}(X)$, we define $A^{\prime} \doteq\left\{x^{\prime}\right\}_{x \in A}$.
Proposition 3.17 For every $p, a, b \in X$ we have: (i) $\left(a \vee_{p} b\right)^{\prime}=a^{\prime} \wedge_{p} b^{\prime}$, (ii) $\left(a \wedge_{p} b\right)^{\prime}=a^{\prime} \vee_{p} b^{\prime}$.

Proof. We only prove (i) ((ii) is proved similarly). We have

$$
\begin{aligned}
\left(a \vee_{p} b\right)^{\prime} & =\left\{x^{\prime}:(a \vee b) \wedge p \leq x \leq a \vee b \vee p^{\prime}\right\} \\
& =\left\{x^{\prime}:((a \vee b) \wedge p)^{\prime} \geq x^{\prime} \geq\left(a \vee b \vee p^{\prime}\right)^{\prime}\right\} \\
& =\left\{z: a^{\prime} \wedge b^{\prime} \wedge p \leq z \leq\left(a^{\prime} \wedge b^{\prime}\right) \vee p^{\prime}\right\}=a^{\prime} \wedge_{p} b^{\prime} .
\end{aligned}
$$

## 4 The $\curlyvee$ and $\curlywedge$ L-fuzzy Hyperoperations

We now construct the L-fuzzy hyperoperations $\curlyvee$ and $\curlywedge$ using the $\vee_{p}$ and $\wedge_{p}$ families as their $p$-cuts. This is possible because of Propositions 3.5 and 3.12.

Definition 4.1 For all $a, b \in X$ we define the L-fuzzy sets $a \curlyvee b$ and $a \curlywedge b$ as follows: for every $x \in X$ set $(a \curlyvee b)(x) \doteq \vee\left\{q: x \in a \vee_{q} b\right\}$ and $(a \curlywedge b)(x) \doteq$ $\vee\left\{q: x \in a \wedge_{q} b\right\}$.

Proposition 4.2 For all $a, b, p \in X$ we have $(a \curlyvee b)_{p}=a \vee_{p} b,(a \curlywedge b)_{p}=a \wedge_{p} b$.
Proof. Follows from the construction of $a \curlyvee b, a \curlywedge b$ [7, pp.34-35].
Proposition 4.3 For all $a, p \in X$, for all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we have

1. $a \vee_{p} B_{p} \subseteq(a \curlyvee \widetilde{B})_{p}, A_{p} \vee_{p} B_{p} \subseteq(\widetilde{A} \curlyvee \widetilde{B})_{p}$.
2. $a \wedge_{p} B_{p} \subseteq(a \curlywedge \widetilde{B})_{p}, A_{p} \wedge_{p} B_{p} \subseteq(\widetilde{A} \curlywedge \widetilde{B})_{p}$.

Proof. We only prove the first part of 1 (the remaining items are proved similarly). Choose any $x \in a \vee_{p} B_{p}$; then there exists $b \in B_{p}$ such that $x \in a \vee_{p} b$. Now $x \in a \vee_{p} b=(a \curlyvee b)_{p}$ implies that $(a \curlyvee b)(x) \geq p$. Also, $B(b) \geq p$. Then $(a \curlyvee B)(x)=\vee_{u}(B(u) \wedge[(a \curlyvee u)(x)]) \geq B(b) \wedge[(a \curlyvee b)(x)] \geq p$, hence $x \in(a \curlyvee B)_{p}$.

Proposition 4.4 For all $a \in X$ the following hold.

1. $(1 \curlyvee a)(1)=1,(1 \curlywedge a)(a)=1$.
2. $(0 \curlyvee a)(a)=1,(0 \curlywedge a)(0)=1$.
3. $(a \curlywedge b)(a \wedge b)=1,(a \curlyvee b)(a \vee b)=1$.

Proof. For 1 we have: $(1 \curlyvee a)(1) \doteq \vee\left\{q: 1 \in 1 \vee_{q} a\right\} .1 \in 1 \vee_{1} a \Rightarrow 1 \in\{q$ : $\left.1 \in 1 \vee_{q} a\right\} \Rightarrow(1 \curlyvee a)(1) \geq 1$. The remaining part of 1 , as well as 2 are proved similarly. Regarding 3, we note that $(a \curlywedge b)(a \wedge b)=\vee\left\{q: a \wedge b \in a \wedge_{q} b\right\} \geq 1$ (since $\left.a \wedge b \in a \wedge_{1} b\right)$. $(a \curlyvee b)(a \vee b)=1$ is proved similarly.

We are now ready to establish some basic properties of $\curlyvee$ and $\curlywedge$.
Proposition 4.5 For all $a, b, c, p \in X$ the following hold.
E1 $(a \curlyvee a)(a)=1,(a \curlywedge a)(a)=1$.
E2 $a \curlyvee b=b \curlyvee a, a \curlywedge b=b \curlywedge a$.
E3.1 $a \vee_{p} b \vee_{p} c \subseteq(a \curlyvee(b \curlyvee c))_{p} \cap((a \curlyvee b) \curlyvee c)_{p}$.
E3.2 $a \wedge_{p} b \wedge_{p} c \subseteq((a \curlywedge b) \curlywedge c)_{p} \cap(a \curlywedge(b \curlywedge c))_{p}$.
E4.1 $((a \curlywedge b) \curlyvee a)(a)=1,((a \curlyvee b) \curlywedge a)(a)=1$.
E4.2 $((a \curlywedge b) \vee a)(a)=1,((a \vee b) \curlywedge a)(a)=1$.
E4.3 $((a \curlyvee b) \wedge a)(a)=1,((a \wedge b) \curlyvee a)(a)=1$.
$\boldsymbol{E 5} b \leq^{p} a \Leftrightarrow(a \curlyvee b)(a) \geq p ; b \leq_{p} a \Leftrightarrow(a \curlywedge b)(b) \geq p$.
Proof. For E1 note that $a \in[a, a]=a \vee_{1} a=(a \curlyvee a)_{1}$ and so $(a \curlyvee a)(a) \geq$ 1. Similarly we can show $(a \curlywedge a)(a)=1$. E2 is obvious. To prove E3.1, we apply Proposition 4.3.1 using $\widetilde{B}=a \curlyvee b$; in this manner we show that $a \vee_{p}$ $b \vee_{p} c=a \vee_{p}\left(b \vee_{p} c\right)=a \vee_{p}(b \curlyvee c)_{p} \subseteq(a \curlyvee(b \curlyvee c))_{p}$; similarly $a \vee_{p} b \vee_{p} c$ $\subseteq((a \curlyvee b) \curlyvee c)_{p}$ and we are done. For E3.2 we apply Proposition 4.3.2 using $\widetilde{B}=$
$a \curlywedge b$. For E4.1 we have $((a \curlywedge b) \curlyvee a)(a)=\vee_{x \in X}([(a \curlywedge b)(x)] \wedge[(x \curlyvee a)(a)])$. Now $(a \curlywedge b)(a \wedge b)=1$ and $((a \wedge b) \curlyvee a)(a)=1$. Hence $((a \curlywedge b) \curlyvee a)(a)=1$. Similarly $((a \wedge b) \curlyvee a)(a)=1$. For E4.2 note that $a \wedge b \in a \wedge_{1} b \Rightarrow(a \curlywedge b)(a \wedge b)=$ 1. Also $a=a \vee(a \wedge b)$. Hence $((a \curlywedge b) \vee a)(a)=\vee_{u: a \vee u=a}(a \curlywedge b)(u)=1$. Similarly we can prove $((a \vee b) \curlywedge a)(a)=1$. E4.3 is proved in exactly analogous manner. Finally, we prove the first part of E5 (the second is proved similarly) as follows. First: $b \leq^{p} a \Rightarrow b \wedge p \leq a \wedge p \Rightarrow a \in a \vee_{p} b \Rightarrow p \in\left\{q: a \in a \vee_{q} b\right\}$. Hence $(a \curlyvee b)(a)=\vee\left\{q: a \in a \vee_{q} b\right\} \geq p$. Conversely, $(a \curlyvee b)(a) \geq p \Rightarrow$ $a \in(a \curlyvee b)_{p}=a \vee_{p} b$. Hence $(a \vee b) \wedge p \leq a \Rightarrow(a \vee b) \wedge p \leq a \wedge p \Rightarrow$ $(a \wedge p) \vee(b \wedge p) \leq a \wedge p \Rightarrow b \wedge p \leq a \wedge p \Rightarrow b \leq^{p} a$.

Proposition 4.6 For all $a, b, c \in X:(a \curlyvee c=b \curlyvee c$ and $a \curlywedge c=b \curlywedge c) \Rightarrow a=b$.
Proof. $a \curlyvee c=b \curlyvee c \Rightarrow\left(\forall p \in X:(a \curlyvee c)_{p}=(b \curlyvee c)_{p}\right) \Rightarrow\left(\forall p \in X: a \vee_{p} c=\right.$ $\left.b \vee_{p} c\right) \Rightarrow a \vee_{1} c=b \vee_{1} c \Rightarrow a \vee c=b \vee c$; also $a \curlywedge c=b \curlywedge c \Rightarrow a \wedge c=b \wedge c$; and $(a \vee c=b \vee c, a \wedge c=b \wedge c) \Rightarrow a=b$ by distributivity.

Definition 4.7 We say $\widetilde{M}: X \rightarrow X$ is a $L$-fuzzy interval of $(X, \leq)$ iff $\forall p \in X$ : $M_{p}$ is a closed interval of $(X, \leq)$.

Definition 4.8 We denote the collection of L-fuzzy intervals of $X$ by $\widetilde{\mathbf{I}}(X)$.
Proposition 4.9 For all $a, b \in X, a \curlyvee b$ and $a \curlywedge b$ are L-fuzzy intervals.
In Section 2 we have introduced the $\preceq$ order on crisp intervals. We now extend this order to $\widetilde{\mathbf{I}}(X)$, the collection of all L-fuzzy intervals of $X$.

Definition 4.10 For all $\widetilde{A}, \widetilde{B} \in \widetilde{\mathbf{I}}(X)$, we write $\widetilde{A} \precsim \widetilde{B}$ iff $\forall p \in X$ we have $A_{p} \preceq B_{p}$.

Proposition $4.11 \preceq$ is an order on $\widetilde{\mathbf{I}}(X)$ and $(\widetilde{\mathbf{I}}(X), \precsim)$ is a lattice.
Proof. This follows from the fact that a fuzzy set is specified by its $p$-cuts.
The $\curlyvee, \curlywedge$ hyperoperations are isotone in the sense of the following proposition.
Proposition 4.12 For all $a, b \in X$ such that $a \leq b$ we have $a \curlyvee c \precsim b \curlyvee c$ and $a \curlywedge c \precsim b \curlywedge c$.

Proof. $a \leq b \Rightarrow a \vee c \leq b \vee c$. Hence for any $p$ we have $(a \vee c) \wedge p \leq(b \vee c) \wedge p$ and $(a \vee c) \vee p^{\prime} \leq(b \vee c) \vee p^{\prime}$ which imply $a \vee_{p} c \preceq b \vee_{p} c \Rightarrow(a \curlyvee c)_{p} \preceq$ $(b \curlyvee c)_{p}$. Since the above is true for every $p$, it follows that $a \curlyvee c \precsim b \curlyvee c$. Similarly we show that $a \curlywedge c \precsim b \curlywedge c$.
$\curlyvee$, $\curlywedge$ and ' are related as seen by the next "deMorgan-like" proposition.

Definition 4.13 For every $\widetilde{A} \in \mathbf{F}(X)$ define $\widetilde{A^{\prime}}$ by its $p$-cuts, i.e. $\widetilde{A}^{\prime}$ is the (unique) fuzzy set which for every $p \in X$ satisfies $\left(\widetilde{A}^{\prime}\right)_{p}=\left(A_{p}\right)^{\prime}=\left\{x^{\prime}\right\}_{x \in A_{p}}$.

Proposition 4.14 For every $a, b \in X$ we have: $(i)(a \curlyvee b)^{\prime}=a^{\prime} \curlywedge b^{\prime}$, (ii) $(a \curlywedge b)^{\prime}=$ $a^{\prime} \curlyvee b^{\prime}$.

Proof. Choose any $p \in X$. Then $\left((a \curlyvee b)^{\prime}\right)_{p}=\left((a \curlyvee b)_{p}\right)^{\prime}=\left(a \vee_{p} b\right)^{\prime}=$ $a^{\prime} \wedge_{p} b^{\prime}=\left(a^{\prime} \curlywedge b^{\prime}\right)_{p}$. Since for all $p \in X$ the fuzzy sets $(a \curlyvee b)^{\prime}$ and $a^{\prime} \curlywedge b^{\prime}$ have the same cuts, we have $(a \curlyvee b)^{\prime}=a^{\prime} \curlywedge b^{\prime}$.

## 5 The Crisp Hyperalgebra $\left(X, \vee_{p}, \wedge\right)$ and the L-fuzzy Hyperalgebra $(X, \curlyvee, \wedge)$

Let us now point out that the crisp hyperalgebra $\left(X, \vee_{p}, \wedge\right)$ and the L-fuzzy hyperalgebra $(X, \curlyvee, \wedge)$ are very similar to a hyperlattice. Recall that, given a hyperoperation $\nabla$, the hyperalgebra $(X, \nabla, \wedge)$ is called a hyperlattice [6] if it satisfies (for every $a, b, c \in X$ ) the properties listed in Table 1.

| $a \in a \nabla a, a=a \wedge a$ |
| :--- |
| $a \nabla b=b \nabla a, a \wedge b=b \wedge a$ |
| $(a \nabla b) \nabla c=a \nabla(b \nabla c)$ |
| $(a \wedge b) \wedge c=a \wedge(b \wedge c)$ |
| $a \in(a \nabla b) \wedge a$ |
| $a \in(a \wedge b) \nabla a$ |
| $b \leq a \Leftrightarrow a \in a \vee b$ |

Table 1
Now consider Table 2. The first column lists some properties (satisfied for every $a, b, c, p \in X$ ) of the crisp hyperalgebra $\left(X, \vee_{p}, \wedge\right)$ (the $\vee_{p}$ properties are the ones described in Proposition 3.4 and the $\wedge$ properties are standard). The second column lists the corresponding properties of the L-fuzzy hyperalgebra ( $X, \curlyvee, \wedge$ ) (the $\curlyvee$ properties are the ones described in Proposition 4.5 and the $\wedge$ properties are
standard).

| $a \in a \vee_{p} a, a=a \wedge a$ | $(a \curlyvee a)(a)=1, a=a \wedge a$ |
| :--- | :--- |
| $a \vee_{p} b=b \vee_{p} a, a \wedge b=b \wedge a$ | $a \curlyvee b=b \curlyvee a, a \wedge b=b \wedge a$ |
| $\left(a \vee_{p} b\right) \vee_{p} c=a \vee_{p}\left(b \vee_{p} c\right)$ | $a \vee_{p} b \vee_{p} c \subseteq(a \curlyvee(b \curlyvee c))_{p} \cap((a \curlyvee b) \curlyvee c)_{p}$ |
| $(a \wedge b) \wedge c=a \wedge(b \wedge c)$ | $(a \wedge b) \wedge c=a \wedge(b \wedge c)$ |
| $a \in\left(a \vee_{p} b\right) \wedge a$ | $((a \curlyvee b) \wedge a)(a)=1$ |
| $a \in(a \wedge b) \vee_{p} a$ | $((a \wedge b) \curlyvee a)(a)=1$ |
| $b \leq^{p} a \Leftrightarrow a \in a \vee_{p} b$ | $b \leq^{p} a \Leftrightarrow(a \curlyvee b)(a) \geq p$ |

## Table 2

The correspondence between the properties of $(X, \nabla, \wedge)$ and $\left(X, \vee_{p}, \wedge\right)$ is obvious. $\left(X, \vee_{p}, \wedge\right)$ is "almost" a hyperlattice, except in that $\leq^{p}$ in the last row of Table 2 is a preorder rather than an order. Similarly, $(X, \curlyvee, \wedge)$ has the L-fuzzy versions of the $(X, \nabla, \wedge)$ properties and can be considered as an L-fuzzy relative of $\left(X, \vee_{p}, \wedge\right)$. Note however that: $\curlyvee$ has a weak form of associativity (similar to $H_{v}$ associativity, see [8]) and the ordering property induced by $\curlyvee$ concerns the preorder $\leq^{p}$ rather than the order $\leq$.

A table similar to Table 2 can be constructed for the properties of the crisp hyperalgebra $\left(X, \wedge_{p}, \vee\right)$ and the L-fuzzy hyperalgebra $(X, \vee, \curlywedge)$. Similar remarks can be made regarding the similarities and differences of $\left(X, \wedge_{p}, \vee\right)$ and $(X, \curlywedge, \vee)$ to a crisp dual hyperlattice $(X, \triangle, \vee)$.

## References

[1] P. Corsini and I. Tofan. "On fuzzy hypergroups". PU.M.A. vol.8, pp.29-37, 1997.
[2] A. Hasankhani and M.M. Zahedi. "F-Hyperrings". Ital. Journal of Pure and Applied Math., vol. 4, pp.103-118, 1998.
[3] A. Hasankhani and M.M. Zahedi. "On $F$-polygroups and fuzzy sub- $F$ polygroups". J. Fuzzy Math., vol. 6, pp. 97-110, 1998.
[4] Ath. Kehagias. "An example of L-fuzzy join space". Rend. Circ. Mat. Palermo, vol. 51, pp.503-526, 2002.
[5] Ath. Kehagias. "The lattice of fuzzy intervals and sufficient conditions for its distributivity". arXiv:cs.OH/0206025, at http://xxx.lanl.gov/find/cs.
[6] M. Konstantinidou and J. Mittas. "An introduction to the theory of hyperlattices". Math. Balkanica, vol.7, pp.187-193, 1977.
[7] H.T. Nguyen and E.A. Walker. A First Course on Fuzzy Logic, CRC Press, Boca Raton, 1997.
[8] S. Spartalis, A. Dramalides and T. Vougiouklis. "On $H_{V}$-group rings". Algebras Groups Geom., vol.15, pp.47-54, 1998.
[9] M.M. Zahedi and A. Hasankhani. "F-Polygroups". J. Fuzzy Math., vol. 4, pp.533-548. 1996.
[10] M.M. Zahedi and A. Hasankhani. " $F$-Polygroups (II)". Inf. Sciences, vol.89, pp.225-243, 1996.


[^0]:    ${ }^{1}$ Let us also note that in the rest of the paper some easy proofs are omitted because of space limitations.

