L-fuzzy Meet and Join Hyperoperations ## Ath. Kehagias December 13, 2002 #### **Abstract** In this paper we study two fuzzy hyperoperations, denoted by Υ (which can be seen as a generalization of \vee) and \curlywedge (which can be seen as a generalization of \wedge). Υ is obtained from a family of crisp \vee_p hyperoperations and \curlywedge is obtained from a family of crisp \wedge_p hyperoperations. The hyperstructure (X,Υ,\wedge) resembles a *hyperlattice* and the hyperstructure (X,\vee,\curlywedge) resembles a *dual hyperlattice*. **AMS Classification:** 06B99, 06D30, 08A72, 03E72, 20N20. # 1 Introduction Starting with a generalized deMorgan lattice $(X, \leq, \vee, \wedge,')$ we construct two *L*-fuzzy hyperoperations: \vee and \wedge ; \vee is a fuzzified version of the join \vee and \wedge is a fuzzified version of the meet \wedge . The fuzzy hyperalgebra (X, \vee, \wedge) can be understood as a fuzzy hyperlattice and (X, \wedge, \vee) can be seen as a fuzzy dual hyperlattice. The work presented here is related to previous work in fuzzy hyperalgebras: Zahedi and Hasankhani have studied fuzzy polygroups in [3, 9, 10] and fuzzy hyperrings in [2]; Corsini and Tofan have studied fuzzy hypergroups in [1]; Kehagias has studied *L*-fuzzy join spaces in [4]. ## 2 Preliminaries Here we present notation and standard results which we will use in the sequel¹. **DeMorgan Lattices**. In this paper we use a lattice which is defined as follows. ¹Let us also note that in the rest of the paper some easy proofs are omitted because of space limitations. **Definition 2.1** A generalized deMorgan lattice is a structure $(X, \leq, \vee, \wedge,')$, where (X, \leq, \vee, \wedge) is a complete distributive lattice with minimum element 0 and maximum element 1; the symbol ' denotes a unary operation ("negation"); and the following properties are satisfied. - 1. For all $x \in X$, $Y \subseteq X$ we have $x \land (\lor_{y \in Y} y) = \lor_{y \in Y} (x \land y)$, $x \lor (\land_{y \in Y} y) = \land_{y \in Y} (x \lor y)$. (Complete distributivity). - 2. For all $x \in X$ we have: (x')' = x. (Negation is involutory). - 3. For all $x, y \in X$ we have: $x \le y \Rightarrow y' \le x'$. (Negation is order reversing). - 4. For all $Y \subseteq X$ we have $(\vee_{y \in Y} y)' = \wedge_{y \in Y} y'$, $(\wedge_{y \in Y} y)' = \vee_{y \in Y} y'$ (Complete deMorgan laws). **Intervals**. We will be especially interested in (closed) intervals of the lattice (X, \leq) . Recall the following facts regarding intervals. - **1.** The collection of all closed *lattice intervals* of X is denoted by $\mathbf{I}(X)$, i.e. the set of all sets $[a,b]=\{x:a\leq x\leq b\}$. $\mathbf{I}(X)$ includes X=[0,1] and \emptyset , which can be written as [a,b] for any a,b such that $a\nleq b$. - **2.** \cup , \cap will denote the usual set-theoretic union and intersection. In addition, we will use \cup to denote the following set operation: $A \cup B \doteq \cap_{C:C \subseteq A,C \subseteq B} C$. Let $[a_1,a_2], [b_1,b_2]$ be two closed intervals of (X,\leq) ; then we have: $[a_1,a_2] \cap [b_1,b_2] = [a_1 \vee b_1,a_2 \wedge b_2], [a_1,a_2] \cup [b_1,b_2] = [a_1 \wedge b_1,a_2 \vee b_2]$. Also $(I(X),\cup,\cap,\subseteq,')$ is a generalized deMorgan lattice (here ' means set complement). - **3**. For every $[a_1, a_2]$, $[b_1, b_2]$, $\in \mathbf{I}(X)$, we write $[a_1, a_2] \leq [b_1, b_2]$ iff $a_1 \leq b_1$ and $a_2 \leq b_2$. Then \leq is an order on $\mathbf{I}(X)$ and $(\mathbf{I}(X), \leq)$ is a lattice. - **4.**Since (X, \leq, \vee, \wedge) is a distributive lattice, the following properties hold (for all $a, b, x, y \in X$ such that $x \leq y, a \leq b$): $$a \vee [x,y] = [a \vee x, a \vee y]; \qquad a \wedge [x,y] = [a \wedge x, a \wedge y]; [a,b] \vee [x,y] = [a \vee x, b \vee y]; \quad [a,b] \wedge [x,y] = [a \wedge x, b \wedge y].$$ (1) **Sets**. The following definitions and notation will be used in the sequel. - **1**. A fuzzy set is a function $\widetilde{M}: X \to [0,1]$, where [0,1] is an interval of real numbers; a L-fuzzy set is a function $\widetilde{M}: X \to X$. - **2**. The collection of all crisp subsets of X is denoted by $\mathbf{P}(X)$ (power set of X); the collection of all L-fuzzy sets (i.e. functions $\widetilde{M}:X\to X$) by $\mathbf{F}(X)$. Hence $\mathbf{F}(X)$ is a collection of functions which includes, as special case, the (0/1 valued) characteristic functions of crisp sets. - **3**. Given a set $A \in \mathbf{P}(X)$, we denote its inf by $\wedge A$ and its sup by $\vee A$. **4.** Given a L-fuzzy set $\widetilde{M}: X \to X$, the p-cut of \widetilde{M} is denoted by M_p and defined by $M_p \doteq \{x: \widetilde{M}(x) \geq p\}$. For some basic properties of p-cuts see [7]. Two particularly important facts are [7, pp.34-35]: (a) a fuzzy set is uniquely determined by its p-cuts; (b) a family of sets $\{N_p\}_{p\in X}$ which has certain properties ("p-cut properties") can be used to define a fuzzy set \widetilde{M} in a manner such that for every $p \in X$ we have $M_p = N_p$. A crisp hyperoperation is a mapping $\circ: X \times X \to \mathbf{P}(X)$; a L-fuzzy hyperoperation is a mapping $\circ: X \times X \to \mathbf{F}(X)$. **Definition 2.2** Let $\circ: X \times X \to \mathbf{F}(X)$ be a L-fuzzy hyperoperation. - 1. For all $a \in X$, $\widetilde{B} \in \mathbf{F}(X)$ we define the L-fuzzy set $a \circ \widetilde{B}$ by $(a \circ \widetilde{B})(x) \doteq \bigvee_{b \in X} \left(\widetilde{B}(b) \wedge (a \circ b)(x) \right)$ - 2. For all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we define the L-fuzzy set $\widetilde{A} \circ \widetilde{B}$ by $(\widetilde{A} \circ \widetilde{B})(x) \doteq \bigvee_{a \in X, b \in X} \left(\widetilde{A}(a) \wedge \widetilde{B}(b) \wedge [(a \circ b)(x)] \right)$. The above definition also covers some special cases. For instance, if \circ is a crisp hyperoperation (i.e. $a \circ b$ is a crisp set for every a, b) and B is a crisp set, then Definition 2.2 reduces to the classical hyperoperation definition $a \circ B = \bigcup_{b \in B} a \circ b$ (provided that we understand $\widetilde{B}(x)$ to denote the characteristic function of the set B and $(a \circ b)(x)$ to denote the characteristic function of set $a \circ b$). Similarly if \circ is a crisp operation (i.e. $a \circ b$ is an element) and B is a crisp set, then Definition 2.2 reduces to $a \circ B = \bigcup_{b \in B} \{a \circ b\}$ which is the same as $\{x : \exists b \in B \text{ such that } x = a \circ b\}$. # **3** The \vee_p and \wedge_p Crisp Hyperoperations **Definition 3.1** For all $p \in X$ we define the hyperoperation $\vee_p : X \times X \to \mathbf{P}(X)$ as follows: for all $a, b \in X$: $a \vee_p b \doteq [(a \vee b) \wedge p, (a \vee b) \vee p'].$ **Proposition 3.2** For all $a, b, c, p \in X$ we have: $a \vee_p [b, c] = [(a \vee b) \wedge p, (a \vee c) \vee p'].$ **Proof.** By definition, $a\vee_p[b,c]=\cup_{b\leq z\leq c}a\vee_pz=\cup_{b\leq z\leq c}[(a\vee z)\wedge p,(a\vee z)\vee p'].$ Take any $u\in a\vee_p[b,c].$ Then there exists some z such that: $b\leq z\leq c$ and $(a\vee z)\wedge p\leq u\leq (a\vee z)\vee p'.$ Hence $(a\vee b)\wedge p\leq (a\vee z)\wedge p\leq u\leq (a\vee z)\vee p'\leq (a\vee c)\vee p',$ i.e. $u\in [(a\vee b)\wedge p,(a\vee c)\vee p'].$ So $a\vee_p[b,c]\subseteq [(a\vee b)\wedge p,(a\vee c)\vee p'].$ On the other hand, take any $u\in [(a\vee b)\wedge p,(a\vee c)\vee p']$ and define $z=(u\vee b)\wedge c=(u\wedge c)\vee b$ (by distributivity). Clearly $b\leq z\leq c.$ Also $z\vee a\vee p'=(u\wedge c)\vee b\vee a\vee p'=(u\wedge c)\vee b\vee a\vee p'=(u\wedge c)\vee b\vee a\vee b$ $(u \vee b \vee a \vee p') \wedge (c \vee b \vee a \vee p'). \text{ Since } u \leq u \vee b \vee a \vee p' \text{ and } u \leq c \vee a \vee p' = c \vee b \vee a \vee p', \\ \text{it follows that } u \leq z \vee a \vee p'. \text{ Also } (z \vee a) \wedge p = ((u \wedge c) \vee b \vee a) \wedge p = (u \wedge c \wedge p) \vee \\ ((b \vee a) \wedge p). \text{ Since } u \wedge c \wedge p \leq u \text{ and } (b \vee a) \wedge p \leq u, \text{ it follows that } (z \vee a) \wedge p \leq u. \\ \text{Hence we have shown } (z \vee a) \wedge p \leq u \leq z \vee a \vee p' \text{ and so } u \in a \vee_p z \subseteq a \vee_p [b, c]. \\ \text{I.e. } [(a \vee b) \wedge p, (a \vee c) \vee p'] \subseteq a \vee_p [b, c]. \quad \blacksquare$ **Definition 3.3** For all $a, b, p \in X$ we write $a \leq^p b$ (and $b \geq^p a$) iff $a \land p \leq b \land p$. **Proposition 3.4** For all $a, b, c, p \in X$ the following hold. **A1** $a \in a \vee_p a$. **A2** $$a \vee_p b = b \vee_p a$$. **A3** $$(a \vee_p b) \vee_p c = a \vee_p (b \vee_p c)$$. **A4** $$a \in (a \vee_p b) \wedge a, a \in (a \wedge b) \vee_p a.$$ **A5** $$b <^p a \Leftrightarrow a \in a \vee_n b$$. #### **Proof.** A1 and A2 are obvious. For A3 we have: $$(a \vee_p b) \vee_p c = \bigcup_{x \in [(a \vee b) \wedge p, (a \vee b) \vee p']} [(x \vee c) \wedge p, (x \vee c) \vee p']$$ = $$[(((a \vee b) \wedge p) \vee c) \wedge p, (((a \vee b) \vee p') \vee c) \vee p']$$ = $$[(a \vee b \vee c) \wedge p, (a \vee b \vee c) \vee p']$$ where we have used Proposition 3.2. Similarly we can show $a \vee_p (b \vee_p c) = [(a \vee b \vee c) \wedge p, (a \vee b \vee c) \vee p']$. For **A4** we have $(a \vee_p b) \wedge a = [(a \vee b) \wedge p, (a \vee b) \vee p'] \wedge a = [(a \vee b) \wedge a \wedge p, ((a \vee b) \vee p') \wedge a] = [a \wedge p, a] \ni a$; we have used (1). Also: $(a \wedge b) \vee_p a = [((a \wedge b) \vee a) \wedge p, (a \wedge b) \vee a \vee p'] = [a \wedge p, a \vee p'] \ni a$. For **A5**, $b \leq^p a \Rightarrow b \wedge p \leq a \wedge p \leq a \Rightarrow (b \wedge p) \vee (a \wedge p) \leq a \Rightarrow (b \vee a) \wedge p \leq a \Rightarrow a \in [(b \vee a) \wedge p, (b \vee a) \vee p'] = a \vee_p b$. On the other hand, assume $a \in a \vee_p b$. Then $(b \vee a) \wedge p \leq a \leq (b \vee a) \vee p' \Rightarrow (b \vee a) \wedge p \leq a \wedge p \Rightarrow (b \wedge p) \vee (a \wedge p) \leq a \wedge p \Rightarrow b \wedge p \leq a \wedge p$. \blacksquare The next proposition shows that $\{a \vee_p b\}_{p \in X}$ has the "p-cut properties". **Proposition 3.5** The following properties hold for all $a, b \in X$. **B1** $$a \vee_1 b = \{a \vee b\}, a \vee_0 b = [0, 1].$$ **B2** For all $$p, q \in X$$: $p \le q \Rightarrow a \lor_q b \subseteq a \lor_p b$. **B3** For all $p, q \in X$: $a \vee_{p \vee q} b = (a \vee_p b) \cap (a \vee_q b)$; for all $P \subseteq X$: $a \vee_{\vee P} b = \bigcap_{p \in P} (a \vee_p b)$. **B4** For all $$p, q \in X$$: $a \vee_{p \wedge q} b = (a \vee_p b) \dot{\cup} (a \vee_q b)$. **Proof. B1** is obvious. For **B2** assume $p \le q$. Then also $q' \le p'$ hence $(a \lor b) \land p \le (a \lor b) \land q$ and $(a \lor b) \lor q' \le (a \lor b) \land p'$. So $[(a \lor b) \land q, (a \lor b) \lor q'] \subseteq [(a \lor b) \land p, (a \lor b) \land p']$ and we are done. Next, we will prove the (more general) second part of **B3**. We have $$\bigcap_{p \in P} (a \vee_p b) = \bigcap_{p \in P} [(a \vee b) \wedge p, (a \vee b) \wedge p'] = [\vee_{p \in P} ((a \vee b) \wedge p), \wedge_{p \in P} ((a \vee b) \wedge p')] = [(a \vee b) \wedge (\vee_{p \in P} p), (a \vee b) \wedge (\wedge_{p \in P} p')] = [(a \vee b) \wedge (\vee P), (a \vee b) \wedge (\vee P)'] = a \vee_{\vee P} b.$$ Finally, with respect to **B4** we have $$a \vee_{p \wedge q} b = [(a \vee b) \wedge (p \wedge q), (a \vee b) \vee (p \wedge q)']$$ $$= [((a \vee b) \wedge p) \wedge ((a \vee b) \wedge q), ((a \vee b) \vee p') \vee ((a \vee b) \vee q')]$$ $$= [(a \vee b) \wedge p, (a \vee b) \vee p'] \dot{\cup} [a \vee b) \wedge q, (a \vee b) \vee q']$$ $$= (a \vee_p b) \dot{\cup} (a \vee_q b).$$ **Proposition 3.6** For all $a, b, c, p \in X$ the following properties hold. 1. $$a \vee_p (b \wedge c) = (a \vee_p b) \wedge (a \vee_p c)$$. 2. $$a \wedge (b \vee_n c) = (a \wedge b) \vee_n (a \wedge c)$$. **Proof.** Omitted for the sake of brevity. **Proposition 3.7** For all $a, b, c, p \in X$ we have: $a \leq b \Rightarrow a \vee_p c \leq b \vee_p c$. **Proof.** Indeed, if $a \leq b$ then $(a \vee c) \wedge p \leq (b \vee c) \wedge p$ and $(a \vee c) \vee p' \leq (b \vee c) \vee p'$ and so $[(a \vee c) \wedge p, (a \vee c) \vee p'] \leq [(b \vee c) \wedge p, (b \vee c) \vee p']$. The family of crisp hyperoperations \wedge_p has properties analogous to the ones of \vee_p ; hence proofs of the following propositions are omitted. **Definition 3.8** For all $p \in X$ we define the hyperoperation $\wedge_p : X \times X \to \mathbf{P}(X)$ as follows. For all $a, b \in X$: $a \wedge_p b \doteq [(a \wedge b) \wedge p, (a \wedge b) \vee p']$ **Proposition 3.9** For all $a, b, c, p \in X$ we have: $a \wedge_p [b, c] = [(a \wedge b) \wedge p, (a \wedge c) \vee p'].$ **Definition 3.10** For all $a, b, p \in X$ we write $a \leq_p b$ (and $b \geq_p a$) iff $a \vee p' \leq b \vee p'$. **Proposition 3.11** For all $a, b, c, p \in X$ the following hold. - **C1** $a \in a \wedge_p a$. - C2 $a \wedge_p b = b \wedge_p a$. - **C3** $(a \wedge_p b) \wedge_p c = a \wedge_p (b \wedge_p c)$. - **C4** $a \in (a \wedge_p b) \vee a, a \in (a \vee b) \wedge_p a.$ - **C5** $b \leq_p a \Leftrightarrow a \in a \wedge_p b$. **Proposition 3.12** The following properties hold for all $a, b \in X$. - **D1** $a \wedge_1 b = \{a \wedge b\}, a \wedge_0 b = [0, 1].$ - **D2** For all $p, q \in X$: $p \le q \Rightarrow a \land_q b \subseteq a \land_p b$. - **D3** For all $p, q \in X$: $a \wedge_{p \vee q} b = (a \wedge_p b) \cap (a \wedge_q b)$; for all $P \subseteq X$: $a \wedge_{\vee P} b = \bigcap_{p \in P} (a \wedge_p b)$. - **D4** For all $p, q \in X$: $a \wedge_{p \wedge q} b = (a \wedge_p b) \dot{\cup} (a \wedge_q b)$ **Proposition 3.13** For all $a, b, c, p \in X$ the following properties hold. - 1. $a \lor (b \land_p c) = (a \lor b) \land_p (a \lor c)$. - 2. $a \wedge_p (b \vee c) = (a \wedge_p b) \vee (a \wedge_p c)$. **Proposition 3.14** For all $a, b, c, p \in X$ we have: $a \leq b \Rightarrow a \wedge_p c \leq b \wedge_p c$. **Proposition 3.15** For all $a, b, c, p, q \in X$ the following properties hold. - 1. $a \vee_p (b \wedge_q c) \subseteq (a \vee_{p \wedge q} b) \wedge_{p \vee q} (a \vee_{p \wedge q} c)$ (when $p \leq q$, the \subseteq becomes =). - 2. $a \wedge_p (b \vee_q c) \subseteq (a \wedge_{p \wedge q} b) \vee_{p \vee q} (a \wedge_{p \wedge q} c)$ (when $p \leq q$, the \subseteq becomes =). - 3. $(a \vee_{p \vee q} b) \wedge_{p \wedge q} (a \vee_{p \vee q} c) = (a \wedge_{p \wedge q} b) \vee_{p \vee q} (a \wedge_{p \wedge q} c)$. - 4. $(a \wedge_{p \wedge q} b) \vee_{p \vee q} (a \wedge_{p \wedge q} c) = (a \wedge_{p \vee q} b) \vee_{p \wedge q} (a \wedge_{p \vee q} c)$. 5. $$a \vee_{p \vee q} b \vee_{p \vee q} c \subseteq \left\{ \begin{array}{l} (a \vee_q b) \vee_p c \\ a \vee_q (b \vee_p c) \end{array} \right\} \subseteq a \vee_{p \wedge q} b \vee_{p \wedge q} c.$$ 6. $$a \wedge_{p \vee q} b \wedge_{p \vee q} c \subseteq \left\{ \begin{array}{l} (a \wedge_q b) \wedge_p c \\ a \wedge_q (b \wedge_p c) \end{array} \right\} \subseteq a \wedge_{p \wedge q} b \wedge_{p \wedge q} c.$$ **Proof.** Omitted for the sake of brevity. The next proposition shows that \vee_p and \wedge_p have a "deMorgan" property. **Definition 3.16** For every $A \in \mathbf{P}(X)$, we define $A' \doteq \{x'\}_{x \in A}$. **Proposition 3.17** For every $p, a, b \in X$ we have: (i) $(a \vee_p b)' = a' \wedge_p b'$, (ii) $(a \wedge_p b)' = a' \vee_p b'$. **Proof.** We only prove (i) ((ii) is proved similarly). We have $$(a \vee_{p} b)' = \{x' : (a \vee b) \wedge p \le x \le a \vee b \vee p'\}$$ = \{x' : ((a \neq b) \wedge p)' \ge x' \ge (a \neq b \neq p')'\} = \{z : a' \wedge b' \wedge p \le z \le (a' \wedge b') \neq p'\} = a' \wedge_{p} b'. # **4** The Y and ∠ L-fuzzy Hyperoperations We now construct the L-fuzzy hyperoperations Υ and Λ using the \vee_p and \wedge_p families as their p-cuts. This is possible because of Propositions 3.5 and 3.12. **Definition 4.1** For all $a, b \in X$ we define the L-fuzzy sets $a \lor b$ and $a \curlywedge b$ as follows: for every $x \in X$ set $(a \lor b)(x) \doteq \lor \{q : x \in a \lor_q b\}$ and $(a \curlywedge b)(x) \doteq \lor \{q : x \in a \land_q b\}$. **Proposition 4.2** For all $a, b, p \in X$ we have $(a \lor b)_p = a \lor_p b$, $(a \lor b)_p = a \land_p b$. **Proof.** Follows from the construction of $a \lor b$, $a \curlywedge b$ [7, pp.34-35]. **Proposition 4.3** For all $a, p \in X$, for all $\widetilde{A}, \widetilde{B} \in \mathbf{F}(X)$ we have 1. $$a \vee_p B_p \subseteq (a \vee \widetilde{B})_p$$, $A_p \vee_p B_p \subseteq (\widetilde{A} \vee \widetilde{B})_p$. 2. $$a \wedge_p B_p \subseteq (a \curlywedge \widetilde{B})_p$$, $A_p \wedge_p B_p \subseteq (\widetilde{A} \curlywedge \widetilde{B})_p$. **Proof.** We only prove the first part of 1 (the remaining items are proved similarly). Choose any $x \in a \vee_p B_p$; then there exists $b \in B_p$ such that $x \in a \vee_p b$. Now $x \in a \vee_p b = (a \vee b)_p$ implies that $(a \vee b)(x) \geq p$. Also, $B(b) \geq p$. Then $(a \vee B)(x) = \vee_u (B(u) \wedge [(a \vee u)(x)]) \geq B(b) \wedge [(a \vee b)(x)] \geq p$, hence $x \in (a \vee B)_p$. #### **Proposition 4.4** For all $a \in X$ the following hold. - 1. $(1 \lor a)(1) = 1$, $(1 \lor a)(a) = 1$. - 2. $(0 \lor a)(a) = 1$, $(0 \lor a)(0) = 1$. - 3. $(a \land b) (a \land b) = 1$, $(a \lor b) (a \lor b) = 1$. **Proof.** For 1 we have: $(1 geq a)(1) \doteq \bigvee \{q : 1 \in 1 \bigvee_q a\}$. $1 \in 1 \bigvee_1 a \Rightarrow 1 \in \{q : 1 \in 1 \bigvee_q a\} \Rightarrow (1 geq a)(1) \geq 1$. The remaining part of 1, as well as 2 are proved similarly. Regarding 3, we note that $(a geq b)(a geq b) = \bigvee \{q : a geq b \in a geq a\} \geq 1$ (since $a geq b \in a geq a$). (a geq b)(a geq b) = 1 is proved similarly. We are now ready to establish some basic properties of Υ and \bot . ### **Proposition 4.5** For all $a, b, c, p \in X$ the following hold. **E1** $$(a \lor a)(a) = 1$$, $(a \lor a)(a) = 1$. **E2** $$a ightharpoonup b = b ightharpoonup a$$, $a ightharpoonup b = b ightharpoonup a$. **E3.1** $$a \vee_p b \vee_p c \subseteq (a \vee (b \vee c))_p \cap ((a \vee b) \vee c)_p$$. **E3.2** $$a \wedge_p b \wedge_p c \subseteq ((a \curlywedge b) \curlywedge c)_p \cap (a \curlywedge (b \curlywedge c))_p$$. **E4.1** $$((a \land b) \lor a)(a) = 1$$, $((a \lor b) \land a)(a) = 1$. **E4.2** $$((a \land b) \lor a)(a) = 1$$, $((a \lor b) \land a)(a) = 1$. **E4.3** $$((a \lor b) \land a)(a) = 1$$, $((a \land b) \lor a)(a) = 1$. **E5** $$b \leq^p a \Leftrightarrow (a \vee b)(a) \geq p$$; $b \leq_p a \Leftrightarrow (a \wedge b)(b) \geq p$. **Proof.** For **E1** note that $a \in [a, a] = a \vee_1 a = (a \vee a)_1$ and so $(a \vee a)(a) \geq 1$. Similarly we can show $(a \wedge a)(a) = 1$. **E2** is obvious. To prove **E3.1**, we apply Proposition 4.3.1 using $\widetilde{B} = a \vee b$; in this manner we show that $a \vee_p b \vee_p c = a \vee_p (b \vee_p c) = a \vee_p (b \vee c)_p \subseteq (a \vee (b \vee c))_p$; similarly $a \vee_p b \vee_p c \subseteq ((a \vee b) \vee c)_p$ and we are done. For **E3.2** we apply Proposition 4.3.2 using $\widetilde{B} = a \vee_p (a \vee b) \vee_p c (a \vee b) \vee_p c \vee_p (a \vee b) \vee_p c \vee_p (a \vee b) b)$ $a \curlywedge b$. For **E4.1** we have $((a \curlywedge b) \curlyvee a)(a) = \bigvee_{x \in X} ([(a \curlywedge b)(x)] \land [(x \curlyvee a)(a)])$. Now $(a \curlywedge b)(a \land b) = 1$ and $((a \land b) \curlyvee a)(a) = 1$. Hence $((a \curlywedge b) \curlyvee a)(a) = 1$. Similarly $((a \land b) \curlyvee a)(a) = 1$. For **E4.2** note that $a \land b \in a \land_1 b \Rightarrow (a \curlywedge b)(a \land b) = 1$. Also $a = a \lor (a \land b)$. Hence $((a \curlywedge b) \lor a)(a) = \bigvee_{u:a \lor u = a} (a \curlywedge b)(u) = 1$. Similarly we can prove $((a \lor b) \curlywedge a)(a) = 1$. **E4.3** is proved in exactly analogous manner. Finally, we prove the first part of **E5** (the second is proved similarly) as follows. First: $b \leq^p a \Rightarrow b \land p \leq a \land p \Rightarrow a \in a \lor_p b \Rightarrow p \in \{q : a \in a \lor_q b\}$. Hence $(a \curlyvee b)(a) = \bigvee \{q : a \in a \lor_q b\} \geq p$. Conversely, $(a \curlyvee b)(a) \geq p \Rightarrow a \in (a \curlyvee b)_p = a \lor_p b$. Hence $(a \lor b) \land p \leq a \Rightarrow (a \lor b) \land p \leq a \land p \Rightarrow (a \land p) \lor (b \land p) \leq a \land p \Rightarrow b \land p \leq a \land p \Rightarrow b \leq^p a$. **Proposition 4.6** For all $a, b, c \in X$: $(a \lor c = b \lor c \text{ and } a \lor c = b \lor c) \Rightarrow a = b$. **Proof.** $a \lor c = b \lor c \Rightarrow (\forall p \in X : (a \lor c)_p = (b \lor c)_p) \Rightarrow (\forall p \in X : a \lor_p c = b \lor_p c) \Rightarrow a \lor_1 c = b \lor_1 c \Rightarrow a \lor c = b \lor c$; also $a \lor c = b \lor c \Rightarrow a \land c = b \land c$; and $(a \lor c = b \lor c, a \land c = b \land c) \Rightarrow a = b$ by distributivity. \blacksquare **Definition 4.7** We say $\widetilde{M}: X \to X$ is a L-fuzzy interval of (X, \leq) iff $\forall p \in X: M_p$ is a closed interval of (X, \leq) . **Definition 4.8** We denote the collection of L-fuzzy intervals of X by $\widetilde{\mathbf{I}}(X)$. **Proposition 4.9** For all $a, b \in X$, $a \lor b$ and $a \curlywedge b$ are L-fuzzy intervals. In Section 2 we have introduced the \leq order on crisp intervals. We now extend this order to $\widetilde{\mathbf{I}}(X)$, the collection of all L-fuzzy intervals of X. **Definition 4.10** For all \widetilde{A} , $\widetilde{B} \in \widetilde{\mathbf{I}}(X)$, we write $\widetilde{A} \lesssim \widetilde{B}$ iff $\forall p \in X$ we have $A_p \leq B_p$. **Proposition 4.11** \leq *is an order on* $\widetilde{\mathbf{I}}(X)$ *and* $(\widetilde{\mathbf{I}}(X), \lesssim)$ *is a lattice.* **Proof.** This follows from the fact that a fuzzy set is specified by its p-cuts. \blacksquare The \curlyvee , \curlywedge hyperoperations are isotone in the sense of the following proposition. **Proposition 4.12** For all $a, b \in X$ such that $a \leq b$ we have $a \curlyvee c \precsim b \curlyvee c$ and $a \curlywedge c \precsim b \curlywedge c$. **Proof.** $a \leq b \Rightarrow a \lor c \leq b \lor c$. Hence for any p we have $(a \lor c) \land p \leq (b \lor c) \land p$ and $(a \lor c) \lor p' \leq (b \lor c) \lor p'$ which imply $a \lor_p c \preceq b \lor_p c \Rightarrow (a \curlyvee c)_p \preceq (b \curlyvee c)_p$. Since the above is true for every p, it follows that $a \curlyvee c \precsim b \curlyvee c$. Similarly we show that $a \curlywedge c \precsim b \curlywedge c$. \blacksquare Υ , \bot and ' are related as seen by the next "deMorgan-like" proposition. **Definition 4.13** For every $\widetilde{A} \in \mathbf{F}(X)$ define \widetilde{A}' by its p-cuts, i.e. \widetilde{A}' is the (unique) fuzzy set which for every $p \in X$ satisfies $\left(\widetilde{A}'\right)_p = (A_p)' = \{x'\}_{x \in A_p}$. **Proposition 4.14** For every $a, b \in X$ we have: (i) $(a \lor b)' = a' \curlywedge b'$, (ii) $(a \curlywedge b)' = a' \lor b'$. **Proof.** Choose any $p \in X$. Then $((a \lor b)')_p = ((a \lor b)_p)' = (a \lor_p b)' = a' \land_p b' = (a' \curlywedge b')_p$. Since for all $p \in X$ the fuzzy sets $(a \lor b)'$ and $a' \curlywedge b'$ have the same cuts, we have $(a \lor b)' = a' \curlywedge b'$. # 5 The Crisp Hyperalgebra (X, \vee_p, \wedge) and the L-fuzzy Hyperalgebra (X, \curlyvee, \wedge) Let us now point out that the crisp hyperalgebra (X, \vee_p, \wedge) and the L-fuzzy hyperalgebra (X, \curlyvee, \wedge) are very similar to a *hyperlattice*. Recall that, given a hyperoperation \bigtriangledown , the hyperalgebra $(X, \bigtriangledown, \wedge)$ is called a hyperlattice [6] if it satisfies (for every $a, b, c \in X$) the properties listed in Table 1. | $a \in a \bigtriangledown a, a = a \land a$ | |-----------------------------------------------------------------------------------------| | $a \bigtriangledown b = b \bigtriangledown a, a \land b = b \land a$ | | $(a \bigtriangledown b) \bigtriangledown c = a \bigtriangledown (b \bigtriangledown c)$ | | $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ | | $a \in (a \bigtriangledown b) \land a$ | | $a \in (a \land b) \bigtriangledown a$ | | $b \le a \Leftrightarrow a \in a \vee b$ | Table 1 Now consider Table 2. The first column lists some properties (satisfied for every $a, b, c, p \in X$) of the crisp hyperalgebra (X, \vee_p, \wedge) (the \vee_p properties are the ones described in Proposition 3.4 and the \wedge properties are standard). The second column lists the corresponding properties of the L-fuzzy hyperalgebra (X, \vee, \wedge) (the \vee properties are the ones described in Proposition 4.5 and the \wedge properties are standard). | $a \in a \vee_p a, a = a \wedge a$ | $(a \curlyvee a)(a) = 1, a = a \land a$ | |----------------------------------------------------|----------------------------------------------------------------------------------| | $a \vee_p b = b \vee_p a, a \wedge b = b \wedge a$ | $a \curlyvee b = b \curlyvee a, a \land b = b \land a$ | | $(a \vee_p b) \vee_p c = a \vee_p (b \vee_p c)$ | $a \vee_p b \vee_p c \subseteq (a \vee (b \vee c))_p \cap ((a \vee b) \vee c)_p$ | | $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ | $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ | | $a \in (a \vee_p b) \wedge a$ | $((a \lor b) \land a) (a) = 1$ | | $a \in (a \land b) \lor_p a$ | $((a \land b) \lor a)(a) = 1$ | | $b \leq^p a \Leftrightarrow a \in a \vee_p b$ | $b \leq^p a \Leftrightarrow (a \vee b)(a) \geq p$ | Table 2 The correspondence between the properties of (X, ∇, \wedge) and (X, \vee_p, \wedge) is obvious. (X, \vee_p, \wedge) is "almost" a hyperlattice, except in that \leq^p in the last row of Table 2 is a *preorder* rather than an order. Similarly, (X, Υ, \wedge) has the L-fuzzy versions of the (X, ∇, \wedge) properties and can be considered as an L-fuzzy relative of (X, \vee_p, \wedge) . Note however that: Υ has a weak form of associativity (similar to H_v associativity, see [8]) and the ordering property induced by Υ concerns the preorder \leq^p rather than the order \leq . A table similar to Table 2 can be constructed for the properties of the crisp hyperalgebra (X, \wedge_p, \vee) and the L-fuzzy hyperalgebra (X, \vee, \curlywedge) . Similar remarks can be made regarding the similarities and differences of (X, \wedge_p, \vee) and (X, \curlywedge, \vee) to a crisp *dual* hyperlattice (X, \triangle, \vee) . # References - [1] P. Corsini and I. Tofan. "On fuzzy hypergroups". *PU.M.A.* vol.8, pp.29-37, 1997. - [2] A. Hasankhani and M.M. Zahedi. "F-Hyperrings". Ital. Journal of Pure and Applied Math., vol. 4, pp.103-118, 1998. - [3] A. Hasankhani and M.M. Zahedi. "On *F*-polygroups and fuzzy sub-*F*-polygroups". *J. Fuzzy Math.*, vol. 6, pp. 97–110, 1998. - [4] Ath. Kehagias. "An example of L-fuzzy join space". *Rend. Circ. Mat. Palermo*, vol. 51, pp.503-526, 2002. - [5] Ath. Kehagias. "The lattice of fuzzy intervals and sufficient conditions for its distributivity". *arXiv:cs.OH/0206025*, at http://xxx.lanl.gov/find/cs. - [6] M. Konstantinidou and J. Mittas. "An introduction to the theory of hyperlattices". *Math. Balkanica*, vol.7, pp.187-193, 1977. - [7] H.T. Nguyen and E.A. Walker. *A First Course on Fuzzy Logic*, CRC Press, Boca Raton, 1997. - [8] S. Spartalis, A. Dramalides and T. Vougiouklis. "On H_V -group rings". *Algebras Groups Geom.*, vol.15, pp.47–54, 1998. - [9] M.M. Zahedi and A. Hasankhani. "F-Polygroups". J. Fuzzy Math., vol. 4, pp.533–548. 1996. - [10] M.M. Zahedi and A. Hasankhani. "*F*-Polygroups (II)". *Inf. Sciences*, vol.89, pp.225-243, 1996.