
Abstract

A novel neural network, namely sigma Fuzzy Lattice
Neural network with MAPping or 1-FLNMAP for short, is
presented and applied to classification of text (documents)
from the Brown Corpus benchmark collection of
documents. The 1-FLNMAP is presented here as an
enhanced extension of the fuzzy-ARTMAP neural network
in the framework of fuzzy lattices. An individual 1-
FLNMAP’s classification accuracy is improved by training
an ensemble of 1-FLNMAP modules on different
permutations of the training data. Several different vector
representations of a document are employed. The results,
in a series of experiments, compare favorably with the
results by other classification algorithms including K-
Nearest Neighbor and Naïve Bayes Classifiers.

1   Introduction

In line with the ongoing proliferation- and the increasing
interconnectivity of computers there emerges the need for
automated classification of text. For instance, the problem
of text classification appears is such applications as
information retrieval (IR) [10], data mining [8], and Web
searching [6]. A number of algorithms for text
classification has been reported in the literature [10, 11].

For text classification purposes a document is, typically,
represented by a high dimensionality vector of the words
which appear in it [3, 16, 9]. This work employs, in
addition, vectors of senses or, equivalently, vectors of
meanings of words in order to test whether senses give
better text classification results than words. Nevertheless,
the emphasis of this work is on text /document
classification using a novel neural network, namely sigma
Fuzzy Lattice Neural network with MAPping or 1-
FLNMAP for short. Comparative results by other
classification algorithms such as K- Nearest Neighbor
(KNN) and Naïve Bayes Classifiers (NBC) are also

presented as well as the effect of alternative vector
representations of a document.

Section 2 reviews the 1-FLN neural network for clustering
in the framework of fuzzy lattices. Section 3 describes both
the 1-FLNMAP neural network for classification and the
“1-FLNMAP with Voting” neural model. Section 4
describes the benchmark collection of documents used in
this work and it discusses alternative vector representations
of a document. Section 5 presents comparative
experimental results and, finally, section 6 provides the
concluding remarks.

2   The 1-FLN Neural Network for Clustering

Apart from the N-dimensional Euclidean space “learning”,
by a neural network, can also be effected in other domains
as it has been demonstrated by the 1- Fuzzy Lattice Neural
network or for short 1-FLN, [7]. The 1-FLN is applicable
in the framework of fuzzy lattices, where a fuzzy lattice is a
conventional (mathematical) lattice O such that the
ordering relation has been extended to all elements in O in
a fuzzy degree of truth sense. In particular, it has been
shown in [7] that the inclusion relation in a conventional
lattice O can be extended to all elements of the Cartesian
product LL using an axiomatically defined inclusion
measure function σ: O×O→[0,1]. “Learning” is achieved
in 1-FLN by computing intervals of lattice elements, and
an interval is regarded as a cluster. Note that in the N-
dimensional Euclidean space a lattice interval is a
hyperbox, or box for short. The 1-FLN neural network
architecture is shown in Fig.1.

 “Learning” in the 1-FLN neural network is effected by a
clustering algorithm similar to fuzzy-ART’s algorithm as
explained in [7]. In particular, it is shown in [7] that the 1-
FLN is an enhanced extension of fuzzy-ART in the
framework of fuzzy lattices such that: 1) the 1-FLN can
deal with inputs both trivial and non-trivial intervals,
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whereas fuzzy-ART deals solely with trivial intervals
(points) inputs, 2) the learning behavior of 1-FLN can be
fine tuned by selecting properly the underlying positive
valuation function v(x), whereas fuzzy-ART employs
implicitly always the same positive valuation function
v(x)=x, and 3) the 1-FLN is applicable in a (mathematical)
lattice domain including fuzzy-ART’s domain, that is the
unit N-dimensional unit hypercube. Note that the degree of
inclusion of a vector (in an upper layer neuron) in an input
datum, as well as the degree of inclusion of an input datum
in a vector of an upper layer neuron, are calculated using
an inclusion measure function 1 which is defined based on
a real function v(x), namely positive valuation function, as
detailed in [7].

Category Layer  F2

Competition : winner takes all.

Input Layer  F1

Buffering & Matching.

Fig. 1: The two layer σ-FLN architecture. A Category
Layer neuron employs a lattice inclusion measure
1 as its activation function in order to specify the
fuzzy degree of inclusion of input  i to weight box

k, k=1,…,L. The Input Layer buffers an input. A
“reset” node is characterized by the system’s
YLJLODQFH SDUDPHWHU �!� DQG LW is used for resetting
the activity of a node in the Category Layer.

3   Neural Models for Classification

3.1   The 1-FLNMAP Neural Network for Classification
The 1-FLNMAP neural network for classification emerges
by the synergetic combination of two 1-FLN modules,
namely module 1-FLNa and module 1-FLNb,
interconnected via a MAP field. Module 1-FLNa is trained
using the data for training, whereas module 1-FLNb is
trained using the corresponding category labels of the

training data. The MAP field maps a box/cluster from
module 1-FLNa to a category/box in module 1-FLNb

(Fig.2). The interconnection of the modules shown in Fig.2
is similar to the interconnection between the corresponding
modules in fuzzy-ARTMAP neural network [2]. Recall that
at the end of the previous section there have been
enumerated the reasons for regarding the 1-FLN as an
enhanced extension of fuzzy-ART; likewise it can be
argued that the 1-FLNMAP neural network can be
regarded as an enhanced extension of fuzzy-ARTMAP in
the framework of fuzzy lattices.

The 1-FLNMAP is set to compute “uniform” boxes in the
training data, that is all the data which give rise to a
particular box/cluster belong to the same category.
Moreover note that as the training data enter the system,
the 1-FLNMAP computes the largest “uniform” boxes in
the training data. It is known that the boxes /clusters
calculated by 1-FLNMAP, and ultimately the classification
decisions made by 1-FLNMAP, depend on the order of
data presentation [7]. It has been confirmed experimentally
that the classification performance of 1-FLNMAP can be
stabilized and improved using an ensemble of 1-FLNMAP
modules as explained in the following.

Fig. 2: The 1-FLNMAP neural network is a synergy of
two 1-FLN modules, namely 1-FLNa and 1-FLNb,
which are interconnected via the MAP field. P
denotes a training datum whereas c(P) denotes its
corresponding category.

3.2   “1-FLNMAP with Voting”: An Ensemble of
1-FLNMAP’s for Classification

The inspiration for the “1-FLNMAP with Voting” neural
model derives from statistical learning theories [1, 15].
The idea is to train an ensemble of 1-FLNMAP’s using
different permutations of the training data. In conclusion, a
testing datum is classified to the category which receives
the majority vote from the individual 1-FLNMAP voters.
An “1-FLNMAP with Voting” neural model is
characterized by two parameters: 1) the vigilance
parameter !a of module 1-FLNa, and 2) the number nV of
1-FLNMAP voters in the ensemble.
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4   The Brown Corpus and Document Representations

In the experiments, the Brown Corpus benchmark
collection of documents has been used which is distributed
along with the Wordnet lexical database as described in the
following.

4.1   The Brown Corpus Semantic Concordance
Wordnet is an on-line lexical database which was
developed under the direction of G.A. Miller [12]. Wordnet
is similar to an electronic thesaurus and is organized
around the distinction between words and senses. It
contains a large number of nouns, verbs, adjectives and
adverbs of the English language, reaching a total of nearly
130,000 words as well as a total of nearly 100,000 senses.
The Brown Corpus collection of documents is distributed
along with Wordnet and it includes 500 documents which
are classified into fifteen categories: 1) Press: Reportage, 2)
Press: Editorial, 3) Press: Reviews, 4) Religion, 5) Skills
and Hobbies, 6) Popular Lore, 7) Belles Lettres, Biography,
Memoirs, 8) Miscellaneous, 9) Learned, 10) General
Fiction, 11) Mystery and Detective Fiction, 12) Science
Fiction, 13) Adventure and Western Fiction, 14) Romance
and Love Story, and 15) Humor; for an extended
description see in [5]. The Brown Corpus collection is a
semantic concordance, that is a combination of documents
and a thesaurus; the documents are combined in manner
such that every substantive word in each document is
linked to its appropriate sense in the thesaurus. The Brown
Corpus semantic concordance makes use of 352 out of the
500 Brown Corpus documents. Linguists involved in the
Wordnet project manually performed semantic tagging, i.e.
annotation of the 352 texts with WordNet senses. In
conclusion a number of alternative representations of a
document have been possible as described below.

4.2   Document Representations
Each document from the Brown Corpus semantic
concordance is represented by a vector of either words or
senses. The vocabulary in a classification problem,
involving a set of documents, is defined to be the set of Nw

words w1,…,wNw (or, the set of Ns sense s1,…,sNs) which
appear in at least one document. A few different document
representations are presented in the following for “words”.
The same representations are used for “senses” as well.

A document d may be represented by a frequency vector
d=[d1,…,dn,…,dNw] where dn is the number of times the n-
th word wn appears in document d. Moreover, a document
d may be represented by a Boolean vector
d=[d1,…,dn,…,dNw] where dn is either 1 or 0 when,
respectively, the n-th word wn appears or does-not appear

in document d. A relative frequency representation
d=[d1,…,dn,…,dNw] defines vector component dn as

d
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Finally, the normalized frequency representation
d=[d1,…,dn,…,dNw] defines vector component dn as
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5   Experimental Results

Experimental results of text classification using the “1-
FLNMAP with Voting” neural model are presented
comparatively with results obtained by other classification
algorithms including the K- Nearest Neighbor (KNN) and
the Naïve Bayes Classifier (NBC). The operation of KNN
and NBC is described briefly in the following. On the one
hand for the KNN, a “testing datum” is classified to the
category which receives the majority vote among K “voter”
in the training data which are the nearest to the testing
datum in question in an L1-distance sense. For further
details the reader may refer to [4]. The KNN has been
employed here with both a relative frequency and a
Boolean representation. On the other hand, the NBC
assigns a “testing datum” to the category which maximizes
the conditional probability of occurrence of the document
in question given a category. A detailed description of the
NBC algorithm appears in [13]. The NBC has been
employed here with the frequency representation of a
document.

Several classification problems have been dealt with as
explained in the following. In particular either all the 15
categories of the Brown Corpus with 352 documents, or
only 3 categories (i.e. categories 1, 2 and 10) of the Brown
Corpus with 100 documents have been considered. For
each one of the latter two problems either 1) the “nouns”,
verbs”, “adjectives” and “adverbs”, or 2) only the “nouns”
and verbs” have been considered in a document. For all
previous 2×2=4 combinations of problems, vectors of either
words or senses have been produced from the documents
and the corresponding vector lengths are shown in Table 1.
Moreover, for all combinations of 1) parts of speech, and 2)
no. of categories, a large number of experiments was
carried out involving either words or senses such that three
different classification algorithms have been employed.
Each time, an algorithm has been applied, for several
values of its parameter vector, on ten different random
partitions of f data set such that 2/3 of the data were used
for training and the remaining 1/3 for testing. The overall
results are summarized in Table 2.



By looking at Table 2 it follows that “senses” performed
better than “words” in 36 out of 40 senses. Only in 3 cases
the performance of senses was 5 percentage points or
higher than the performance of words. Therefore it is
concluded that, in the context of this work, the use of
senses only marginally improves the classification
accuracy. Among the three classification algorithms the
“1-FLNMAP with Voting” performed best whereas NBC
performed worst. The KNN has given fairly good
classification results especially for the Boolean
representation. For the “1-FLNMAP with Voting” the
senses have always given better results than words;
moreover the normalized frequency representation has
implied better results than the Boolean representation, as
expected, since the former representation includes all
information in the latter representation.

The “1-FLNMAP with Voting” neural model outperforms
all other text classification algorithms used in this work. Its
good performance is attributed to both the effectiveness of
inclusion measure 1 DQG WKH PRGHO¶V FDSDFLW\ IRU

generalization which is based on the calculation of the
largest “uniform” boxes in the training data. The
performance of “1-FLNMAP with Voting” remains quite
stable for a fairly wide range of values of the vigilance
parameter (!a) DQG LW GURSV VKDUSO\ DV !a approaches 1 as

shown in Fig.3 and Fig.5 for the 15- and the 3- categories
problem, respectively.

Fig.4 shows that the number of boxes/clusters computed by
“1-FLNMAP with Voting” increases exponentially as !a

approaches 1; in particular for !a=1 different training data
give rise to different (trivial) boxes/clusters. Fig.6
illustrates the stability effects in classification accuracy of
using an ensemble of 1-FLNMAP voters which are trained
on different random permutations of the training data; note
that an individual 1-FLNMAP’s classification accuracy in
the ensemble may fluctuate in a wide range as shown in
Fig.6. Fig.6 also demonstrates that for selected values of
the vigilance parameter (!a) an ensemble of 1-FLNMAP
voters can perform better than the individual 1-FLNMAP
voters in the ensemble. The latter improvement is
attributed to the noise-cancellation effects of the random
permutations of the training data used to train the 1-
FLNMAP’s in the ensemble. Note that Fig.3 through Fig.6
refer to experiments where all parts of speech have been
employed. Finally note that both the the vigilance
parameter (!a) and the number (nV) of voters can be
estimated from the training data using several random
partitions (of the training data) into a subset for training
and another subset for validation.

Table 1 The lengths of feature vectors used in the experiments for various combinations
of parts of speech and no. of categories. The code-words “n”, “v”, “adj” and
“adv” stand, respectively, for “noun”, “verb”, “adjective” and “adverb”.

Parts of speech no. of categories Length of feature vectors
words senses

n, v, adj, adv 3 10,890   9,348
15 25,683  22,101

n, v 3   8,448   7,068
15 18,806  15,728

Table 2   The average % classification accuracy in 10 experiments for various combinations of 1) parts of speech and no.
of categories as specified in the corresponding row, and 2) a classification algorithm (and a document
representation) as specified in the corresponding column. The code words “n”, “v”, “adj” and “adv” stand,
respectively, for “noun”, “verb”, “adjective” and “adverb”.

Parts of
speech

no. of
categories

KNN
(Boolean)

KNN
(Rel. Freq.)

Naïve Bayes
(Frequency)

1-FLNMAP
with Voting
(Boolean)

1-FLNMAP
with Voting

(Norml. Freq.)
words senses words senses words senses words senses words senses

n, v, adj, adv 3 80.00 76.00 76.00 80.00 53.12 56.87 79.68 81.25 80.00 82.18
15 45.00 46.00 42.00 46.00 39.60 38.21 43.83 46.60 44.91 48.39

n, v 3 80.31 75.63 75.94 80.31 55.31 61.24 80.62 81.25 80.62 82.50
15 45.71 47.50 41.16 46.16 41.00 38.57 41.60 47.23 44.01 47.85



Figure 3 Average classification accuracy of words and
senses versus the vigilance parameter (!a) for
10 random training/testing data sets and 15
categories of the Brown Corpus documents.
Senses have resulted in a marginally better
classification accuracy.

Figure 5 Average classification accuracy of words and
senses versus the vigilance parameter (!a) for
10 random training/testing data sets and 3
categories of the Brown Corpus documents.
Senses have resulted in a marginally better
classification accuracy.

Figure 4 Average minimum and maximum number of
(hyper)boxes /clusters computed by “1-
FLNMAP with Voting” versus the vigilance
parameter (!a) for 10 random training/testing
data sets and 15 categories of the Brown
Corpus documents. The number of boxes
increases exponentially as !a approaches 1; for
!a=1 the number of (hyper)boxes computed is
equal to the number of training data.

Figure 6 Classification accuracy of individual 1-
FLNMAP’s and “1-FLNMAP with Voting”
with an increasing number nV of voters versus
the number nV of voters for !a=0.89. The “1-
FLNMAP with Voting” has resulted in both
stability and improvement in classification
performance.
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6   Discussion and Conclusion

The “1-FLNMAP with Voting” neural model has been
introduced and applied in this work for classification of
documents from the Brown Corpus benchmark collection
of documents. In a series of classification experiments
involving several alternative document representations the
“1-FLNMAP with Voting” outperformed conventional
classification algorithms including K- Nearest Neighbor
(KNN) and Naïve Bayes Classifiers (NBC). The same
experiments have also shown that the use of “senses”, as
features for representing a document, only marginally
improves the classification accuracy over the use of
“words”.

The 1-FLNMAP neural network could be regarded as
an enhanced KNN classifier, as it will be elaborated
elsewhere, which computes “uniform boxes” in the training
data set. Perhaps this is the reason why 1-FLNMAP
exhibits better generalization than KNN. Moreover, due to
its applicability in (mathematical) lattices the 1-FLNMAP
has the potential to represent a document using features
other than vectors as well, e.g. graphs as detailed in [14].
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