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Abstract

Caratheodory has formulated an important theorem regarding the
behavior of convex sets in Euclidean spaces [1]. In this paper we
discuss a generalization of convexity which is applicable to lattices.
This generalization involves a join hyperoperation; we show that
associativity of this hyperoperation is equivalent to several attrac-
tive properties. In particular, we show that, when associativity
holds, the join hyperoperation on a finite number of points can be
interpreted as the convex hull of these points, and conversely.
AMS classification number: 06B99.

1 Introduction

One of C. Caratheodory’s important theorems concerns the properties of
convex sets in Euclidean spaces [1]. In this paper we present some results
connected to a concept of convexity in lattices, as seen from the algebraic
hyperstructures [4] point of view.

The idea of convexity originates in the context of Euclidean spaces
Rn: a set A ⊆ Rn is called convex iff for all points a, b ∈ A it is true
that the straight line segment ab ⊆ A. A derivative concept is that of
betweenness ; we say that c is between a and b iff c ∈ ab. The concept
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of convexity can be generalized by generalization of either “straight line
segment” of “betweenness”. For example, in metric spaces one can define
straight line segments in terms of the underlying metric function [3] (metric
betweenness); in partially ordered spaces, one can define betweenness in
terms of the underlying order relationship [3] (order betweenness). In some
cases the two points of view can be combined (for instance, in the case of
metric lattices [3]).

In this paper we define convexity in terms of an order-based between-
ness relation; in particular, given a lattice (L,≤) we say that x is between
a, b iff a ∧ b ≤ x ≤ a ∨ b. This can also be expressed in the language of
algebraic hyperstructures. In this paper we study the hyperoperation a · b,
which assigns to elements a, b the lattice interval [a ∧ b, a ∨ b], i.e. the
lattice elements which are between a and b. In [6] we have studied this hy-
peroperation and have shown that: if (L,≤) is a distributive lattice, then
(L,≤, ·) is a join space (in the sense of Prenowitz [7, 8]).

2 The Join Hyperoperation

Definition 1 Given a lattice (L,≤), the join of a, b ∈ L is denoted by
a · b (or, in the interest of brevity, simply by ab) and defined as follows

a · b .
= [a ∧ b, a ∨ b].

Theorem 2 For all a, b ∈ L we have: (i) a · a = a, (ii) a · b = b · a, (iii)
{a, b} ⊆ a · b, (iv) a · L = L.

Proof. Omitted in the interest of brevity.
Remark. If for all a, b, c ∈ L we have a · (b · c) = (a · b) · c (i.e. if the

join hyperoperation is associative) then (L, ·) is a hypergroup [4]. Section
4 is devoted to deriving necessary and sufficient conditions for the join to
be associative.

3 Convexity

Definition 3 The set A ⊆ L is called sl-convex iff for all a, b ∈ A we have
a · b ⊆ L.
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Definition 4 The set A ⊆ L is called weakly convex (or w-convex) iff
for all a, b ∈ A such that a ≤ b, we have [a, b] ⊆ L.

Definition 5 Given a1, a2, ..., aN ∈ L, we denote the sl-convex hull of
a1, a2, ..., aN by slCH(a1, a2, ..., aN) and define it by slCH(a1, a2, ..., aN)
.
= ∩A∈QA, where Q

.
= {A : a1, a2, ..., aN ∈ A and A is sl-convex}.

Remark. Our definition of “sl-convex sets” coincides with Birkhoff’s
definition of “convex sublattices” [2]. The next lemma states that every
sl-convex set is w-convex; it is easy to see that the converse does not hold.
The remaining lemmas describe some useful and easily provable properties
of sl-convex sets.

Lemma 6 If A ⊆ L is sl-convex then it is w-convex.

Proof. Omitted in the interest of brevity.

Lemma 7 For all a1, a2, ..., aN ∈ L we have: (i) a1, a2, ..., aN ∈slCH(a1,
a2, ..., aN) and (ii) slCH(a1, a2, ..., aN) is sl-convex.

Proof. Omitted in the interest of brevity.

Lemma 8 For all a, b ∈ L , the set [a ∧ b, a ∨ b] is sl-convex.

Proof. Omitted in the interest of brevity.

Lemma 9 For all A ⊆ L we have: A is sl-convex ⇔ A · A = A.

Proof. Omitted in the interest of brevity.

4 Associativity and Equivalent Properties

We now investigate conditions necessary and sufficient for the join hyper-
operation to be associative.

Lemma 10 If p · [a, b] = [c, d], then c = p ∧ a, d = p ∨ b.

Proof. Omitted in the interest of brevity.
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Lemma 11 The join hyperoperation is associative iff the following prop-
erty holds: (∀p, q, r ∈ L such that p ≤ q there exist x, y ∈ L such that
r · [p, q] = [x, y]).

Proof. (i) Suppose that for all p, q, r ∈ L such that p ≤ q there exist
x, y ∈ L such that r · [p, q] = [x, y]. Then, for all a, b, c ∈ L there will exist
u, w ∈ L such that we will have (a · b) · c = [a ∧ b, a ∨ b] · c = [u, w] and
then, by Lemma 10, (a · b) · c = [a ∧ b ∧ c, a ∨ b ∨ c]. Similarly we get that
a · (b · c) = [a ∧ b ∧ c, a ∨ b ∨ c]. Hence (a · b) · c = a · (b · c), i.e. the join
hyperoperation is associative.

(ii) Now suppose that for all a, b, c ∈ L we have (a ·b) ·c = a ·(b ·c). Take
any p, q, r ∈ L such that p ≤ q. There are several possibilities regarding
the placement of r relative to p, q; these are summarized in the following
table.

(2) (6) (1) Impos. (5) (4) Impos. Impos. (3)
p ≤ r p ≤ r p ≤ r p||r p||r p||r r ≤ p r ≤ p r ≤ p
q ≤ r q||r r ≤ q q ≤ r q||r r ≤ q q ≤ r q||r r ≤ q

It can be seen that all combinations are exhausted in the above table.
It can also be seen that certain combinations are impossible, namely the
ones in the fourth, seventh and eighth column (for instance, regarding the
fourth column, q ≤ r and p ≤ q implies that p ≤ r, which is contrary to
p||r). The remaining six columns cover all viable placements of p, q and r;
the numbering of these cases has been chosen so that they can be examined
in an appropriate sequence (as will now become obvious) to establish that
in every case r · [p, q] is an interval.
Case 1: p ≤ r ≤ q. In this case, it is easy to establish that r · [p, q] = [p, q];
hence r · [p, q] is an interval.
Case 2: p ≤ q ≤ r. Take any x ∈ [p, r], then x ∈ r · p ⊆ r · (p · q). So
[p, r] ⊆ r · [p, q]. On the other hand, z ∈ r · [p, q] ⇒ ∃y ∈ p · q , s.t. z ∈ r ·y.
Hence r ∧ p ≤ r ∧ y ≤ z ≤ r ∨ y ≤ r ∨ q which implies p ≤ z ≤ r and so
z ∈ [p, r]. So we finally have r · [p, q] = [p, r]; hence r · [p, q] is an interval.
Case 3: r ≤ p ≤ q. This case is treated similarly to Case 2 and it is easily
proved that r · [p, q] = [r, q]; hence r · [p, q] is an interval.
Case 4: r||p; r, p ≤ q. In this case, by associativity, we have r · [p, q] =
r · (p · q) = (r · p) · q = [r ∧ p, r ∨ p]q. But r, p ≤ q which implies r ∨ p ≤ q;
also r ∧ p ≤ p ≤ q. Seting a = r ∧ p, b = r ∨ p, c = q, we have r · [p, q] =
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[a, b] · c. Since a ≤ b ≤ c, from Case 2 we know that [a, b] · c = c · [a, b] is
an interval; hence r · [p, q] is an interval.
Case 5: r||p; r||q. By associativity, we have r · [p, q] = r · (p · q) = (r · q) · p
= [r ∧ q, r ∨ q] · p. We also have p ≤ q ≤ r ∨ q. Set a = p, b = r ∧ q and
c = r ∨ q; consider the following subcases.

a. p ≤ r ∧ q. This is impossible, since then p ≤ r ∧ q ≤ r, but we
assumed r||p.

b. r ∧ q ≤ p. Then b ≤ a ≤ c and we conclude, using Case 1, that
[r ∧ q, r ∨ q] · p is an interval.

c. p||r ∧ q. Then a||b and a ≤ c and we conclude, using Case 4, that
[r ∧ q, r ∨ q] · p is an interval.

In every one of the above subcases we conclude that r · [p, q] = [r ∧
q, r ∨ q] · p is an interval.
Case 6: r||q; p ≤ r, q. In this case we prove, similarly to Case 4, that
r · [p, q] is an interval.

Hence, by examining all possible relative placements of r relative to
p, q, we see that associativity of join implies that r · [p, q] is an interval.

Lemma 12 The join hyperoperation is associative iff the following prop-
erty holds: (∀A ⊆ L, ∀p ∈ L we have: A is sl-convex⇒ p · A is sl-convex ).

Proof. (i) Assume that for all p ∈ L and all sl-convex A ⊆ L the set
p ·A is also sl-convex. Take any a, b, c ∈ L. Then a · (b · c) = a · [b∧ c, b∨ c]
which is sl-convex by the assumption (since, by Lemma 8, [b ∧ c, b ∨ c] is
sl-convex). Now, by Lemma 6, a · [b ∧ c, b ∨ c] is also w-convex; it is easy
to see that a ∧ b ∧ c, a ∨ b ∨ c ∈ a · (b · c) and so, by w-convexity we have
[a∧ b∧ c, a∨ b∨ c] ⊆ a · (b · c); furthermore, it is easy to check that a · (b · c)
has minimum element a ∧ b ∧ c and maximum element a ∨ b ∨ c, hence
a · (b · c) ⊆ [a∧ b∧ c, a∨ b∨ c]. So a · (b · c)= [a∧ b∧ c, a∨ b∨ c]. By exactly
the same argument we obtain (a · b) · c = [a∧ b∧ c, a∨ b∨ c] and so a · (b · c)
= (a · b) · c.

(ii) On the other hand, assume that the join hyperoperation is associa-
tive. Take any p ∈ L and any sl-convex A ⊆ L; also take any x, y ∈ p · A;
then there exist q, r ∈ A such that x ∈ p ·q, y ∈ p ·r. So x ·y ⊆ (p ·q) ·(p ·r)
= p · q · r ⊆ p · A (by sl-convexity). Hence p · A is sl-convex.
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Lemma 13 If the join hyperoperation is associative, then for all a, b, c ∈ L
the set (a · b) · c is sl-convex.

Proof. Since the join hyperoperation is associative, by Lemma 11 we
have (a · b) · c = [a∧ b∧ c, a∨ b∨ c], which is an interval and hence sl-convex
by Lemma 8.

We are now ready to present our main theorem.

Theorem 14 In a lattice (L,≤) the following conditions are equivalent.

(i) The join hyperoperation is associative.

(ii) For all p, q, r ∈ L such that p ≤ q, there exist x, y ∈ L such that
r · [p, q] = [x, y].

(iii) ∀p ∈ L and A ⊆ L, A sl-convex, the set r · A is sl-convex.

(iv) (L, ·) is a hypergroup.

(v) For every N we have (...(a1 ·a2) · ... ·aN−1) ·aN =slCH(a1, a2, ..., aN).

Proof. (i) ⇔(ii) by Lemma 11 and (i)⇔(iii) by Lemma 12; (i) ⇔(iv)
by the properties of the join and by the definition of a hypergroup [4].
Hence (i)⇔(ii)⇔(iii)⇔(iv) and it remains to show that (i)⇔(v).

It is easy to show (v)⇒(i). Take any a, b, c ∈ L ; then by (v) we have:
(a · b) · c= slCH(a, b, c) = slCH(b, c, a) = (b · c) · a = a · (b · c).

So it remains to show (i)⇒(v). First, if (i) holds then (...(a1 · a2) · ... ·
aN−1) · aN can be written as a1 · a2 · ... · aN and (using induction and the
fact (i)⇒(ii)) it can be shown that for any N we have a1 · a2 · ... · aN =
[a1∧a2∧...∧aN , a1∨a2∨...∨aN ]; the latter interval is sl-convex and contains
a1, a2, ..., aN , so slCH(a1, a2, ..., aN) ⊆ [a1∧a2∧...∧aN , a1∨a2∨...∨aN ]. On
the other hand, a1∧a2∧...∧aN , a1∨a2∨...∨aN ∈ slCH(a1, a2, ..., aN), which
is sl-convex, so it follows that [a1∧a2∧...∧aN , a1∨a2∨...∨aN ] ⊆slCH(a1, a2,
..., aN). Hence [a1∧a2∧ ...∧aN , a1∨a2∨ ...∨aN ] = slCH(a1, a2, ..., aN) and
we have shown that (i)⇒(v); the proof of the theorem is complete.
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5 The Join Hyperoperation is Isotone

The order relation ≤ (on elements of L), produces a new order - on the
set I(L), defined to be the set of intervals of elements of L. The new order
is compatible with the join operation; in this sense the join hyperoperation
is isotone with respect to ≤.

Definition 15 We define the - relation on pairs (A, B) where A, B ∈
℘(L), as follows

A - B ⇔
{
∀a1 ∈ A ∃b1 ∈ B : a1 ≤ b1

∀b2 ∈ B ∃a2 ∈ A : a2 ≤ b2.

Lemma 16 (i) - is a pre-order on ℘(L); (ii) - is an order on I(L).

Proof. The proof can be found in [6].

Lemma 17 (I(L), -) is a lattice; in particular, for any A = [a1, a2] and
B = [ b1, b2], we have

inf(A, B) = [a1 ∧ b1, a2 ∧ b2], sup(A, B) = [a1 ∨ b1, a2 ∨ b2]

Proof. The proof can be found in [6].
We are now ready to state and prove the compatibility of join with the

- order.

Definition 18 (L,≤, ·) is called a strictly ordered hypergroup iff:

(i) (L,≤) is a lattice,

(ii) (L, ·) is a hypergroup,

(iii) for all x, y ∈ L we have that x · y is an interval,

(iv) for all a, x, y ∈ L such that x ≤ y we have a · x - a · y.

The above definition follows [9]. We now have that (L,≤, ·) is a strictly
ordered hypergroup.

Theorem 19 For all a, b, x, y ∈ L we have: (i) x ≤ y ⇒ a · x - a · y, (ii)
a ≤ b and x ≤ y ⇒ a · x - b · y.

Proof. The proof can be found in [6].

Conclusion 20 (L,≤, ·) is a strictly ordered hypergroup.
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6 The Case of Distributive Lattice

In case L is distributive, then the join hyperoperation has additional prop-
erties, as we have shown in [6]. In particular, in [6] we have shown that
distributivity implies associativity; hence all the properties (i)-(v) of Theo-
rem 14 hold true in a distributive lattice. On the other hand, distributivity
does not imply associativity; this can be seen by a counterexample. Con-
sider the lattice N5, depicted in Figure 1.

dtbphF157.375pt163.625pt0ptFigure

Figure 1

Associativity of the join hyperoperation holds in N5, as can be checked
by exhaustive computation. However, clearly N5 is not distributive (in
fact it is not even modular).

For completeness, we list two theorems proved in [6], which concern the
distribution: (a) of ∨,∧ on join; (b) of join on ∨,∧.

Theorem 21 If L is distributive, then for all a, b, c ∈ L we have: (a · b)∨
c = (a ∨ c) · (b ∨ c) and (a · b) ∧ c = (a ∧ c) · (b ∧ c).

Proof. The proof can be found in [6].

Theorem 22 If L is distributive, then for all a, b, c ∈ L we have: a · (b ∨
c) = a · b ∨ a · c and a · (b ∧ c) = a · b ∧ a · c.

Proof. The proof can be found in [6].
Remark. Following [7, 8] we can use the join hyperoperation to de-

fine an associated extension hyperoperation as follows: the extension of a
through b is denoted by a/b and defined by: a/b

.
= {x : a ∈ b · x}. In [6]

we have shown that in a distributive lattice, the join and extension hyper-
operations satisfy the extension property: ( for all a, b, c, d ∈ L we have:
a/b ∩ c/d 6= ∅ ⇒ a · d ∩ b · c 6= ∅) Hence, in a distributive lattice L, (L, ·)
is a join space, in the sense of [7, 8].
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7 Discussion

Several authors have studied the ternary “betweennes” relation B(a, x, b)
(x is between a and b) in various contexts. For example, one can define
betweenness in

(A) vector spaces: B(a, x, b) iff x = λa + (1− λ)b, (where 0 ≤ λ ≤ 1);

(B) metric spaces: B(a, x, b) iff d(a, x)+ d(x, b) = d(a, b) (where d(., .) is
the distance function);

(C) lattices: B(a, x, b) iff a ∧ b ≤ x ≤ a ∨ b;

(D) lattices (an alternative defintion): B(a, x, b) iff (a∧x)∨ (x∧ b) = x =
(a ∨ x) ∧ (x ∨ b).

In all of the above cases a join hyperoperation can be defined by a◦b
.
=

{x : B(a, x, b) is true } (such operations appear, for instance, in [4, 5, 6, 7,
8]) and convexity can be defined as follows: A is convex iff for all a, b ∈ A
we have a ◦ b ⊆ A. It is a natural question whether results analogous to
our Theorem 14 hold true. In certain cases analogs of Theorem 14 hold
true “automatically”, in the sense that some underlying property of the
space ensures the validity of conditions (i)-(v). For example, in Euclidean
spaces the vector join of (A) is associative and it is also true that the join
of a point with a convex set is a convex set; in distributive lattices, the
lattice join of (C) is associative and the join of a lattice element with a
lattice interval is a lattice interval.

An interesting research direction, then, is to obtain analogs of Theorem
14 for various types of join hyperoperations (and the respective types of
convexity). If a theorem analogous to Theorem 14 holds for a particular
join hyperoperation, then we conclude that associativity is equivalent to an
interpretation of the join a1 ◦ a2 ◦ ... ◦ aN as the convex hull of a1, a2, ..., aN

(using the appropriate definition of convex hull).
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