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ABSTRACT

In this paper we examine a problem which arises in connection
with the application of the Lainiotis Partition Algorithm to
tasks of signal classification, prediction and parameter
estimation. We are particularly interested in tasks which
involve composite systems, comprising of a finite number of
switched sub-systems. The problem we consider arises in
situations of unsupervised, online classification and modeling
and can be characterized as a problem of data allocation, i.e.
how to partition observed data into separate training sets and
use the members of each set for training the model of a
particular sub-system. We propose an algorithm that effects
unsupervised, online data allocation and prove that under mild
separability conditions the algorithm converges to the “correct”
solution. The proposed algorithm is also tested by numerical
experiments.

Keywords: Partition Algorithms, Classification, Prediction,
Parameter Estimation, Multiple Models.

1. INTRODUCTION

The Lainiotis partition algorithm [4,10] is a powerful tool to be
used in classification, prediction and parameter estimation
problems involving switched systems, i.e. composite systems
which comprise of alternatively activated sub-systems (for
examples of such applications see [1,2,3,5,6,7,8]). Formally,
we have in mind the following situation:

o) X(t) = f(x(t-1), u(t=1) ; z(t) )
O] y(®) = x(t) + v(t)

where u(t) is the control input (taking values in R™), x(t) is the
state vector process, y(t) is the observation process and v(t) is a
white noise process (all taking values in R") and z(t) is the
switching process taking values in {1,2,...,K}. In particular,
egs.(1), (2) imply that the system comprises of K sub-systems
which are described by the following equations (for k = 1, 2,
wn K)

®) X(®) = f(x(t-1), u(t-1) ; k)
(4) w(n) =x(@® +v()

In other words, the “master” system of egs.(1), (2) consists of a
collection of sub-systems which evolve in parallel; at time t the
“master” system behaves in accordance to the equations of the
z(t)-th sub-system. Another interpretation is that at time t the
z(t)-th sub-system is switched on, to generate the next state of
the “master” system.

The Lainiotis Partition Algorithm is a powerful tool which can
be utilized to perform classification, prediction and parameter
estimation tasks involving systems of the form of egs.(1)-(4).
However, the application of the Partition Algorithm requires
that either the functions f( . , . , k) or adequate approximations
thereof are available. In case exact models are not available,
approximations f( . , .) can be obtained from labeled training
data. Obtaining such models from labeled data is a problem of
supervised learning.

In this paper we are interested in applying the Lainiotis
Partition Algorithm to unsupervised learning situations. In
other words neither approximate models f( ., .) nor labeled
data are initially available. In other words, the problem we are
interested in is as follows: a system is observed, in the sense
that pairs {u(1), y(1)}, {u(2), y(2)}, ... are available and it is
known that the data have been generated by a switched system
of the form of egs.(1)-(4). No other information (e.g. the
number K of sub-systems, the switching process z(t) etc.) is
available. The task is to find K and obtain accurate models f*(
ofork=1,2, ..., K

To solve the above problem we propose the algorithm of
Section 2.

2. THE DATA ALLOCATION ALGORITHM

We introduce an online algorithm which allocates data to a
number of models and iteratively trains each model on the data
allocated to it. Data allocation is performed on the basis of
predictive error. Specifically, the basic ideas involved in the
operation of the algorithm are as follows.

1. Ky models are randomly initialized.

2. Attimest =1, 2, ... observations of the true system (i.e.
{u(t), y(t) } pairs) are collected and used to obtain K;
estimates y®(t) (k = 1,2, , Ky); the respective
estimation errors e®(t) (k= 1,2, ... , Ky) are computed.

3. When a block of T, observations becomes available, it
is allocated to the data pool of the model which has
minimum estimation error for the respective period of
time. This is expressed in terms of the data allocation
variable z*(t), which takes the value k when the respective
data block is allocated to the k-th model.

4. If, as a result of the allocation, the data pool of a model
contains more than Ty data pairs, the oldest Ty, data
pairs are discarded.

5. Every Tyain time steps all models are retrained.



The algorithm can be described in pseudo-code as follows.

Data Allocation Algorithm

Input: a sequence of inputs and observations {u(1),y(1)},
{u(2),y(2)}, ... ; a sequence of randomly initialized models
fO(,5k), k=1,2 ... , Ky.

Parameters: K; (number of models / predictors) , Taoc (Size
of data block), Ty4in (retraining period), Tore (Size of data kept
in memory).

Output: At times Ny, N=1,2, ... a sequence of trained
models fV(.,.;k), k=12 ... , K.

Initialization:
Nalloc = 1;
Nirain = 1;

fO(,.;k) fork =1, 2, ... , Ky are randomly initialized; the data
pools of the k models (k = 1, 2, ... , Ky ) are filled with T
random data pairs.

Main:
Fort=1,2, ...
Read u(t), y(t).
Fork=1,2,...,K;
x®(t) = fO(x(t-1),u(t-1))
e(t) = y(t) - y“()
Next k
Ift = (Naoct1) Manoc Then
Nalloc < Nalloc +1
Fork=1,2,...,K;
EW = zs=t-TaIIoct|e(k)(S)|
Next k
k* = arg min E®
Add {u(t-Tanoc) Y(t-Tano)}, -, {u(t).y(®)}
to the data pool of model k*.
If the data pool of model k* has more than Ty, data
pairs {u(t), y(t)} delete the earliest Ty, data pairs.
End If
Ift = (Ntrain+1) Merain Then
Nirain < Nirain +1
Fork=1,2,...,K;
Retrain the k-th model to obtain f™(.,.;k)
Next k
End If
Next t

As will be seen in Section 4, when this algorithm is applied to
the identification of a switched system, consisting of K sub-
systems, it usually produces K highly accurate models f(.,.,)
of the sub-system functions f(.,.;k); the remaining K;-K models
are irrelevant. To be more precise, the algorithm produces a
mapping ¢:{1,2,...,.K} - {1,2,...,K} such that (for k = 1,2, ..,
K) the k-th sub-system is accurately represented by the @(k)-th
model. An explanation of the effectiveness of the algorithm is
presented in the next section.

3. CONVERGENCE

The algorithm presented above is based on a self-reinforcement
idea. Let us explain this idea informally for a problem
involving only two sub-systems and two models Suppose then
that initially the two models are randomly initialized; it may be

expected that the first model will be slightly better in
approximating one of the two sub-systems (say, sub-system 1).
As a result, it may be expected that the prediction error y®(t)
will be somewhat smaller than y®(t) for times t where the first
sub-system is activated. Hence, generally speaking, the first
model will have a tendency to collect more data blocks which
contain sub-system 1 data than the second model. At the next
retraining time, the data pool of model 1 will contain more sub-
system 1 data than sub-system 2 data; hence after retraining
model 1 will be even better at modeling the behavior of sub-
system 1. This will reinforce the tendency of model 1 to collect
more sub-system 1 data, hence the data pool of this model will
contain such data at an even higher proportion. It turns out that,
under suitable conditions, this process is reinforced to the
extent that, asymptotically, the data pool of model 1 will
contain exclusively sub-system 1 data. Correspondingly, the
data pool of model 2 will contain exclusively sub-system 2
data. Of course, it may turn out that model 1 is mapped to sub-
system 2, rather than to sub-system 1. However, it turns out
that, with probability 1, each model will be mapped to one sub-
system, in the sense that each data pool will contain data
belonging exclusively to one sub-system.

The above informal analysis can be stated and proved
rigorously, in the form a theorem. To state the theorem, we
need to define the following quantities:

Nijj(t) = Number of data pairs generated by sub-system i
and assigned to model j (i,j = 1,2) up to time t.

X() = N1z (t) = Nag(t) + Naa(t)-Nya(t).

X(t) signifies the surplus of assignments from either sub-
system to the first model, plus the surplus of assignments from
either sub-system to the second model. Hence, if X(t) goes to
either plus infinity or minus infinity, it follows that at least one
predictor has a surplus of assignments of data blocks generated
by a particular sub-system.

Now we can state the data allocation convergence theorem for
the case of two sub-systems and two models. The proof of the
theorem appears in [9]. Conditions Al, A2, which are
mentioned in the theorem are separability conditions and can
also be found in [9].

Theorem. If conditions A1, A2 hold, then
() Prob(lim,_.. X(t) = +e0 )+Prob(lim, ., X(t) = ~0) = 1.

(i) Prob(lim_ . Na()/Nys(t) = 0 | lim_o, X(t) = +00) =1,
Prob(1im;_.e Nyo(®/Nao(t) = 0 | 1imy_e X(t) = +e0) = 1,
Prob(1im; ... Nyy(®/Ny(t) = 0 | lim,_e, X(t) = o) = 1,
Prob(1im;_.e. Nao(®/Nio(t) = 0 | limy_.eo X(t) = ~e0) = 1.

The above theorem refers to the case of two sub-systems and
two models. We have not been able to prove a corresponding
theorem for the case of K sub-systems and K; models, but
certain ehuristic arguments (presented in [???]) indicate that in
this case too convergence to correct data allocation will take
place.



The above theoretical and heuristic analysis is in agreement
with the experimental results which we present in the next
section.

4. EXPERIMENTS

We have performed several numerical experiments to test the
performance of our data allocation algorithm. In this section we
present the results of two groups of experiments, based on data
generated by a switched system, composed of three linear
subsystems.

The System

The composite, switched system consists of the combination of
three linear, periodically activated, systems. More precisely, the
composite system is described by the following equations.

() X() = Az(t)) Bx(t -1) + B(z(t)w(t -1)
(6) y(®) = x(t) + V(D).

Here z(t) is a periodic function: z(t) = 1 for timest=1,2,..., 50,
151, 152, ..., 200, ... ; z(t) = 2 for times t = 51,52,..., 100,
201, 202, ..., 250, ... ; z(t) = 3 for times t = 101, 102,..., 150,
251, 252, ..., 300, ... . In other words, the composite system
consists of three linear systems, which have the form (k=1, 2,
3).

(@) X(® = AIK(t -1) + B(k) W(t -1)
®) W) = x(®) + v().

The system of egs.(5), (6) satisfies x(t)0 R® and u(t)0 R? ; the
sub-systems of eqgs.(7), (8) satisfy x(t)d R® and u(t)0 R? (i.e.
u(®) = [uy(t) ux®]". Input uy(t) is taken to be a sinusoid and
Uy(t) a constant input.

We assume full but noisy state observation. More precisely,
v(t) is a noise term, with a structure to be discussed in later
sections. The raw data used in all experiments are 2400 time
steps-long observation sequences: y(1), y(2), ... , y(2400). Two
experiment groups have been performed, which differ with
respect to the characteristics of the observation noise. All
algorithmic parameters are the same for both experiment
groups; namely we have used K;=5 (5 models), T = 10,
Tirain = 30, Tstore=300.

Experiment Group A: Additive Noise

In the first group of experiments we use additive observation
noise. In other words, the sequence v(t) is white noise, with
zero mean and variance equal to o.

In Figs. 1 -- 9 we present various aspects of the data allocation
performance. In particular, in Fig.1 we present classification
accuracy (c), in Fig.6 prediction error (e) and in Fig.9
parameter estimation error (q). The details regarding the
computation of c, e and g will be discussed presently.

In all Figs. 1, 6 and 9 the horizontal axis denotes signal-to-
noise ration (S/N) which is computed by the following formula

SIN = V[ =2 (y(t))?]/a?2400.

The value of VE.-,2*% (y(t))® has been computed by averaging
a large number of y(t) sequences and has been found to be very

close to 150. The value of V22400 for o =1 is 15. Hence, for
unit variance white noise, we have S/N = 10. We have repeated
the experiment at the following levels of noise, expressed by
the signal to noise ratio: S/N = o (noise free), 200, 100, 50, 20,
10,5, 3, 2.

Classification Accuracy: This is denoted by c(t),
in other words is a function of time. It is computed over a
sliding window of length equal to 50 time steps. More
specifically, if the data allocation variable is denoted by
Z*(t), then at time t classification accuracy is given by

c(t) = [Z=0®1(z(t - 1) = @z*(t - 1)))]/50,

where 1(...) is the indicator function and ¢(.) is the
previously referred to mapping between sub-systems and
models. In short, c(t) counts the proportion of instances,
over the last 50 time steps, where the system activation
variable equals the transformed data allocation variable.

In Fig.1 we present final classification accuracy results. In
other words, we plot ¢(2400) vs. S/N ratio. It is worth
noting that final classification accuracy is 1 for quite high
noise levels (for S/N ratio up to 10). Even when S/N ratio
reaches the value 3, classification accuracy stays at 0.8;
slow degradation sets in afterwards.
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Final classification accuracy plotted against S/N

ratio.

It is also instructive to observe the evolution in time of c(t), and
of the data allocation variable z*(t). Profiles of these functions
are presented for two representative experiments: (a) at S/N =
oo (noise-free case) in Figs. 2 and 3 and (b) at S/N=5 in Figs.4
and 5.
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Evolution of classification accuracy in time. This
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Fig.3
Evolution of z*(t) in time. This figure corresponds
to S/N = co.
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Evolution of classification accuracy in time. This
figure corresponds to S/N ratio 5.
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Evolution of z*(t) in time. This figure corresponds
to S/N ratio 5.

It can be seen that in the initial stages of the training
process, classification accuracy is low (Figs. 2, 4) and a
relatively high number of misclassifications take place
(Figs. 3, 5). However, after a certain point in time
(approximately: t = 1000 for the noise-free case and t =
1400 for the noisy case) an appropriate 1-to-1
correspondence .) is established between the sub-systems
and some models; for instance in Fig.3 we have @(1)=3,
®2)=4, @(3)=5. From that point on classification is highly
accurate; this is also reflected in the classification accuracy
diagrams.

Prediction Error: This is denoted by e(t), in
other words is a function of time, computed over a sliding
window of length equal to 50 time steps. More specifically,
if the optimal prediction is denoted by y*(t), then at time t
prediction error is given by

e(t) = V[Zeo®ly(t - 1) - y*(t - DIF]/50.

In Fig.6 we present final prediction error results. In other
words, we plot e(2400) vs. S/N ratio. We see a steady
increase of prediction error in relation to S/N ratio. One
important point to keep in mind that the relatively large
size of the prediction error is not due to an weakness of our
data allocation method, but to the intrinsically low
information content of the noise-contaminated data. In fact,
given the nearly perfect classification results we have
presented above, it becomes obvious that the prediction
error obtained here is close to the theoretically optimum
(minimum total square error).
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Final prediction error plotted against S/N ratio.

It is also instructive to observe the evolution in time of e(t).
Profiles of this function are presented for two representative
experiments: (a) at S/N = oo (noise-free case) in Fig. 7 and (b)
at S/N= 5 in Fig.8. It can be seen that for the noise free case
prediction error reduces to practically zero after t= 1300 or
thereabout.

3.00

2.50

2.00 -

1.50 1

e(t)

1.00 +
0.50 +

0.00 . : } }
500 1000 1500 2000 2500

-0.50

Time

Fig.7
Evolution of prediction error in time. This figure
corresponds to S/N = co.
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Fig.8
Evolution of prediction error in time. This figure
corresponds to S/N =5.

Parameter Estimation Relative Error: Finally,
we present the relative error in parameter estimation, as
computed at the final step of the data allocation process.
This is denoted by g and is computed as follows.

0 = Zier 1022 ARO-AF@K)] | AR+
Z i1 =172 | Bij(K)-Bi*(@(k)| /] Bi;(K)

In other words q is computed by averaging relative error over
all sub-systems and corresponding models (the appropriate
correspondence is denoted by @Kk) -- recall that @K) is the
function which maps the k-th sub-system to the @(Kk)-th
model.), and over all components of the transition and input
matrices.

In Fig.9 we plot q against S/N ratio. Once again we see that
parameter estimation deteriorates rather rapidly as S/N ratio
decreases — this is a weakness of the training data. However,
note that with relatively clean data we obtain a practically
perfect estimate of the parameters.
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Parameter Estimation error plotted against S/N.

Experiment Group B: Multiplicative Noise

Experiment group B follows closely experiment group A. All
algorithmic parameters are kept at the same values. The only
difference is that we now use multiplicative observation noise.
In other words, the sequence v(t) = oliv(t)X(t), where w(t) is
white noise, of zero mean and unit variance. The parameter a
determines the “strength” of the noise and is related to the S/N
ratio by the following formula

SIN =10/ a.
We have chosen a so that the experiment is repated at noise
levels S/N= o (noise free), 200, 100, 65, 50, 35, 20, 12.5, 10,
8, 6.5.

The results presented below are in complete correspondence to
the ones of the previous section (additive noise experiments).

In Figs. 10 -- 18 we present various aspects of the data
allocation performance. In particular, in Fig. 10 we present



classification accuracy (c), in Fig.15 prediction error (e) and in
Fig.18 parameter estimation error (g). In all these figures, the
horizontal axis denotes signal-to-noise ration (S/N)

Classification Accuracy: In Fig.10 we present
final classification accuracy results. In other words, we plot
c(2400) vs. S/N ratio. It is worth noting that final
classification accuracy is 1 for very high noise levels (for
S/N ratio up to 10). Even when S/N ratio reaches the value
6.5, classification accuracy stays at 0.85.
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Final classification accuracy plotted against S/N

ratio.

In Figs. 11 and 12 we present the temporal evolution of
classification accuracy c(t) and data allocation z*(t) for a noise
free experiment. The same quantities are presented in Figs.13
and 14 for an experiment with S/N = 10.
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Evolution of classification accuracy in time. This
figure corresponds to S/N ratio oo.
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Fig.12
Evolution of z*(t) in time. This figure corresponds
to S/N ratio .
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Evolution of classification accuracy in time. This
figure corresponds to S/N = 10.
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Evolution of z*(t) in time. This figure corresponds
to S/N = 10.



Prediction Error: In Fig.15 we present final
prediction error results. In other words, we plot e(2400) vs.
S/N ratio.
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Final prediction error plotted against S/N ratio.

It is also instructive to observe the evolution in time of e(t).

Profiles of this function are presented for two representative

experiments: (a) at S/N = o (noise-free case) in Fig. 16 and (b)
at S/N=10 in Fig.17.
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Evolution of prediction error in time. This figure
corresponds to S/N = co.
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Evolution of prediction error in time. This figure
corresponds to S/N = 10.

Parameter Estimation Relative Error: Finally, in Fig.18 we
present the relative error in parameter estimation, as computed
at the final step of the data allocation process.

S 2.00

L

S 1.50 -

©

£ 1.00 1

(%]

L

5 0.50 A

@

£ 0.00 : ;

g 0.00 0.50 1.00 1.50
Noise Level
Fig.18

Parameter Estimation error plotted against noise

level.
5. CONCLUSION

We have presented an algorithm which can be used to develop
models of the sub-systems comprising a switched system. Our
algorithm operates online and is appropriate for unsupervised
problems, where no initial models or labeled training data are
available. The algorithm provides accurate allocation of
observation data to several training data pools, one data pool
corresponding to each sub-system. Hence the allocated data can
be utilized to train one model per sub-system and provide well-
trained models to be used as components of a Lainiotis
partition algorithm. The algorithm we propose is highly robust
to observation noise (as evidenced by numerical experiments)
and there is strong theoretical evidence to justify its very good
performance.
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