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Abstract

A switching dynamical system is a composite system
comprising of a number of sub-systems, where, at every
time step, there is a certain probability that a partic-
ular sub-system will be switched on. Identi…cation of
the composite system involves: (a) specifying the num-
ber of active sub-systems, (b) separating the observed
data into groups, one group corresponding to each sub-
system, (c) training a model for each subsystem and
(d) combiming the subsystems to form a model of the
switching system. We use the term data allocation to
describe steps (a) and (b); in case accurate data alloca-
tion is available (for instance using prior information,
labeled data etc.), then e¢cient methods are available
for performing steps (c) and (d). set In this paper,
however, we discuss the case where data allocation is
not available and steps (a) and (b) must be performed
concurrently with (c) and (d). This is, essentially, a
problem of unsupervised learning. We present here con-
ditions su¢cient to ensure the convergence of a quite
general class of data allocation schemes and relate these
conditions to PAC learnability. The theoretical con-
clusions are supported by numerical experiments on a
problem of on-line switching system identi…cation.

1 Introduction

Consider a dynamical system of the form

y(t) = fz(t)(y(t¡1); ::;y(t¡M); u(t); ::; u(t¡N )); (1)

where y(t) is the observation, u(t) is the input and
z(t) is the switching variable of the dynamical system.
“Switching” means that, at every time step t, z(t) takes
a value in the …nite set f1; 2; :::; Kg and for each such
value we a sub-system of the form

y(t) = fk (y(t ¡ 1); ::; y(t ¡ M ); u(t); ::; u(t ¡ N )); (2)

(where k takes the values 1; 2; :::; K) is activated. Each
of the K systems of the form of eq.(2) is a NARMAX
system [1]; state space systems can be transformed in
the NARMAX [1] form of eq.(2). The switching system
of eq.(1) is more general than either NARMAX or state
space systems. In what follows we will sometimes use

the term “source” as equivalent to “sub-system” and
we will say that “y(t) is generated by the k-th source”,
meaning that at time t the switching variable z(t) takes
the value k .

In order to model the system of eq.(1), it is natural to
utilize a collection of models of the form

byk (t) = bfk (y(t ¡ 1); ::; y(t ¡ cM);u(t); ::; u(t ¡ bN )); (3)

where k = 1; 2; :::; K:, and the functions bfk (¢) are black-
box models (e.g. neural networks, fuzzy systems and so
on). Assuming that for each k a model bfk (¢) which ap-
proximates fk (¢) well (in an appropriate sense) is avail-
able, e¢cient methods [2, 3, 4, 5] exist for combining
the K models of eq.(3), so as to form a composite model
which accurately models the input-output behavior of
the true system of eq.(1). Furthermore, it is well known
that many classes of black-box models are universal
approximators [7, 8], hence it is not di¢cult to obtain
good models of the form of eq.(3), provided that train-
ing data are available which correspond to each of the
K subsystems.

However, in an online, adaptive system identi…cation
context, an incoming stream y(1); y(2); :::; y(t); ::: of
unlabeled data will be available, and it is not immedi-
ately obvious how to allocate these between the avail-
able models. In other words, the source which gener-
ated y(t) is not known a priori. For any given data al-
location scheme, it is likely that, in the initial stages of
training, data generated by the k-th source may be allo-
cated to several models; conversely, each model may re-
ceive data generated by several distinct sources. What
is required for succesful identi…cation is specialization:
eventually every model should consistently accept data
corresponding to a particular source and reject all other
data; if this occurs then we say that the data alloca-
tion scheme converges. This implies that the number
of active sources is discovered, as well.

In this paper su¢cient conditions are given for the con-
vergence of a general class of data allocation schemes.
It is proved that, under quite general and reasonable
conditions, a data allocation scheme will converge in
the sense previously discussed: exactly one model will
specialize to each active source.

p. 1



2 Example: Data Allocation by a Predictive
Performance Criterion

Consider the following recursive online algorithm as an
example of a scheme for data allocation and training of
K models. The algorithm is serial ; that is, an incoming
datum is tested against the …rst model, if it is not con-
sidered appropriate for the …rst model is test against
the second model and so on.

———————————————————

Serial Data Allocation Scheme

1. Initialization: Set K equal to 1. Set a threshold
": Initialize randomly a model bf (0)

1 (¢).

2. For t = 1; 2; ::: do the following

(a) For k = 1; 2; :::; K compute esti-
mates byk (t) of y(t), using the models

byk(t) = bf (t¡1)
k (y(t ¡ 1); y(t ¡ 2); :::; y(t ¡

cM ); u(t); u(t ¡ 1); :::; u(t ¡ bN )).

(b) Observe y(t).

(c) For k = 1; 2; :::;K : if jy(t) ¡ byk (t)j � ",
set bz(t) = k and break out of the loop. If
jy(t) ¡ byk(t)j > " for k = 1; 2; :::; K , then
set bz(t) = K + 1 and increase K to K + 1.

(d) Allocate y(t) to model nr.bz(t).

(e) For k = 1; 2; :::; K: retrain the k-th model,
using all data so far allocated to it, to obtain
a new model bf (t)

k (¢)..

3. Next t.

———————————————————

Prima facia, this scheme has a good chance of succes-
ful specialization. If a model has, at some stage of the
algorithm, collected enough data generated by the k-
th source, assuming e¢cient training, it will be a good
model of the k-th source behavior. In a later occurence
of z(t) = k, the same model will be likely to produce
a further good estimate byk(t) and hence accept y(t) in
its training data pool. On the other hand, if z(t) = m
(with m 6= k), then (assuming the K sources have su¢-
ciently distinct input/output behavior) the same model
will be likely to produce a poor estimate byk(t) and
hence pass y(t) for examination by the remaining mod-
els. As t goes to in…nity, the model collects predom-
inantly data generated by the k-th source and, if the
training scheme is e¢cient, bf (t)

k (¢) becomes a progres-
sively better model of fk (¢).

We have considered the particular data allocation
scheme, which depends on a predictive accuracy cri-
terion, merely for purposes of illustration. In fact, us-
ing the same argument as above, we can expect suc-
cesful specialization for any data allocation scheme
that has the following property: whenever a model ac-
cepts a datum generated by the k-th source, then the
probability of the same model accepting further k-th
source generated data increases, while the probabil-
ity of the same model accepting m-th source gener-
ated data (with m 6= k) decreases. In the next section
we present the same argument in a more mathemat-
ical form, and provide su¢cient conditions to ensure
succesful specialization of the data allocation scheme.

3 Convergence Analysis

We present the convergence theorems we have ob-
tained, but omit the proofs, for reasons of brevity. The
interested reader may …nd the proofs in [6].

3.1. Two Sources. We start the convergence analysis
by considering the simplest possible switching dynami-
cal system; this is described by eq.(1) with K = 2. I.e.
z(t) takes values in the set f1; 2g. Suppose that z(t)
is an i.i.d. sequence, with Pr (z(t) = i) = ¼i , i = 1;2:
Obviously ¼1 + ¼2 = 1; it is also assumed that

B1 for i = 1;2 we have 0 < ¼i < 1:

The estimate bz(t) also takes values in f1; 2g; bz(t) = i
means that y(t) has been allocated to the i-th model.
Consider also the variables Mij(t) (where t = 1; 2; :::
and i;j = 1; 2) de…ned by

Mij (t) =

½
1 if z(t) = i; bz(t) = j
0 else;

and the variables Nij(t) (where t = 1;2; ::: and i; j =
1; 2) de…ned by

N11(t) =
Pt

s=1 M11(s); N12(t) =
Pt

s=1 M12(s);

N21(t) =
Pt

s=1 M21(s); N22(t) =
Pt

s=1 M22(s):

In other words Nij(t) indicates the total number of
type i samples assigned to model j, up to time t. Now
consider the variable X(t) de…ned by

X(t) = N11(t) ¡ N21(t):

X(t) is the specialization variable. If X(t) is large and
positive, then model nr.1 has received a large surplus of
data generated by source nr.1. Similarly, in case X(t)
is large and negative, model nr.2 has received a large
surplus of data generated by source nr.2. In short,
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a large value of jX(t)j indicates that model nr.1 has
specialized on one of the two sources. Now, de…ne data
allocation probabilities

f (n) = Pr (bz(t) = 1 jz(t) = 1; X(t ¡ 1) = n) ;

g(n) = Pr (bz(t) = 1 jz(t) = 2; X(t ¡ 1) = n) :

By the preceding argument, it is reasonable to make the
following assumptions, regarding these probabilities

A1 For n = 1; 2; ::: , f (n) > 0 and lim
n!¡1

f (n) = 0;

lim
n!+1

f (n) = 1;

A2 For a n = 1; 2; :::, g(n) > 0 and lim
n!¡1

g(n) = 1;

lim
n!+1

g(n) = 0:

A1 says that, when local model nr.1 has already spe-
cialized on source nr.1, then it will very likely accept
an additional source 1 generated datum and will very
unlikely reject an additional source 2 generated datum.
Similar remarks can be made regarding A2.

By the description of the data assignment procedure it
follows that X(t) is a Markovian process. The transi-
tion probabilities (for m; n 2Z) are obtained from the
data allocation method and are

pn;m = 0 if jn ¡ mj > 1;

pn;n¡1 = ¼2 ¢ g(n);

pn;n+1 = ¼1 ¢ f (n);

pn;n = ¼1 ¢ (1 ¡ f (n)) + ¼2 ¢ (1 ¡ g(n)) :

The following two theorems describe the convergence
behavior of a data allocation scheme that satis…es con-
ditions A1, A2, B1. The …rst theorem describes the
behavior of X(t).

Theorem 1 If conditions B1, A1, A2 hold, then

(i) 8m = 0; §1; §2; ::: Pr (X(t) = m i.o.) = 0;

(ii) Pr
³

lim
t!1

jX(t)j = +1
´

= 1;

(iii) Pr
³

lim
t!1

X(t) = +1 or lim
t!1

X(t) = ¡1
´

= 1.

In this theorem, the most important conclusion is (iii):
if conditions B1, A1 and A2 hold, then at least one
of the two models will (in the long run) accumulate
either a lot more source 1 generated data than source 2
generated data (X(t) ! +1) or the other way round
(X(t) ! ¡1) . If X(t) ! +1, then at least one of the
two models will specialize (either model nr.1 in source 1

or model nr.2 in source 2). Conversely, if X(t) ! ¡1,
then then at least one of the two models will specialize.
The total probability that one of these two events will
take place is one, i.e. at least one model will certainly
specialize in one of the two sources.

In fact, however, Theorem 1 is used as stepping stone
to prove that both local models will specialize, each in a
di¤erent source, and in a stronger sense. This is stated
in the next theorem.

Theorem 2 If conditions B1, A1, A2 hold, then

1. If Pr( lim
t!1

Xt = +1) > 0 then

Pr

µ
lim

t!1
N 21

t

N 11
t

= 0
¯̄
¯ lim
t!1

Xt = +1
¶

= 1;

Pr

µ
lim

t!1
N 12

t

N 22
t

= 0
¯̄
¯ lim
t!1

Xt = +1
¶

= 1:

2. If Pr( lim
t!1

Xt = ¡1) > 0 then

Pr

µ
lim

t!1
N 11

t

N 21
t

= 0
¯̄
¯ lim
t!1 Xt = ¡1

¶
= 1;

Pr

µ
lim

t!1
N 22

t

N 12
t

= 0
¯̄
¯ lim
t!1

Xt = ¡1
¶

= 1:

Theorem 2 states that, with probability one, both pre-
dictors will specialize, one in each source and in a
“strong” sense . For instance, if X(t) ! +1, then the
proportion N21(t)

N11(t)
(nr. of source 2 samples divided by

nr. of source 1 samples assigned to predictor 1) goes
to zero ; this means that “most” of the samples on
which predictor 1 was trained come from source 1 and,
also, that “most” of the time a sample of source 1 is
assigned (classi…ed) to the predictor which is special-
ized in this source. Hence we can identify source 1 with
predictor 1. Furthermore the proportion N12 (t)

N22 (t) (nr. of.
source 1 samples divided by nr. of source 2 samples
assigned to predictor 2) also goes to zero ; this means
that “most” of the samples on which predictor two was
trained come from source 2 and, also, that “most” of
the time a sample of source 2 is assigned (classi…ed) to
the predictor which is specialized in this source. Hence
we can identify source 2 with predictor two. A com-
pletely symmetric situation holds when X(t) ! ¡1.
By Theorem 1, X(t) goes either to +1 or to ¡1, so
specialization of both predictors (one in each source) is
guaranteed.

3.2. Many Sources. Now consider the switching
dynamical system of eq.(1) with K > 2. I.e. we have K
sub-systems (“sources”) and z(t) takes values in the set
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f1; 2; :::; Kg. Consider now a new variable ez(t) taking
values in f1; 2g according to the following rule

ez(t) =

½
1 i¤ z(t) = 1;
2 i¤ z(t) > 1:

This new variable corresponds to two sources: the …rst
source is the actual source nr.1 and the second is a com-
posite source comprising of all the remaining sources.
If conditions B1, A1, A2 hold with respect to the
new variable ez(t) then, by Theorems 1 and 2, in the
long run one model will specialize in the simple source
and the other model will specialize in the composite
source. Now consider a new data set, comprising of
the data allocated to the composite source. Also con-
sider a new source set comprising of the simple source
nr.2 and a new composite source consisiting of simple
sources f3; 4; :::; Kg. The data allocation algorithm can
be applied on the new data set; if conditions B1, A1,
A2 hold with respect to the new source set (for this
to be true it may be required to lower the threshold ")
then one new model will specialize on simple source nr.2
and another model will specialize on composite source
f3; 4; :::; Kg: Continuing in this manner, K models can
be obtained, each approximating one simple source.

4 A Connection to PAC Learnability

In case we limit ourselves to data allocation schemes
which utilize a predictive accuracy criterion, we can
restate the convergence conditions A1 and A2 in a
form which relates to PAC learnability[9]. Denote the
prediction error of model nr.1 by e1(t), i.e.

e1(t) = jy(t) ¡ by1(t)j :

Now de…ne probabilities

F (n;") = Pr (e1(t) < " jz(t) = 1; X(t ¡ 1) = n ) ;

G(n;") = Pr (e1(t) > " jz(t) = 2; X(t ¡ 1) = n ) :

Consider the task ( assigned to model nr.1) of recogniz-
ing source 1 data. This task is e¤ected succesfully (for
z(t) = 1) exactly when e1(t) < ". The probability that
this task is completed with success at time t (given that
the threshold used is " and that model 1 has already
accepted n more source 1 data than source 2 data) is
exactly F (n; "). Now, suppose that this task is PAC
learnable. This is equivalent to:

for all ± > 0; " > 0 exists some n0 such that

for all n > n0 we have F (n; ") > 1 ¡ ± ; (4)

But F (n; ") is exactly equal to f (n) (for the particular
" used) and eq.(4) is exactly equivalent to condition
A1. In short, if the task of source 1 data recognition
is PAC learnable, then condition A1 is satis…ed.

Similarly, consider the task ( assigned to model nr.1) of
rejecting source 2 data. This task is e¤ected succesfully
(for z(t) = 2) exactly when e1(t) > ". The probabil-
ity that this task is completed with success at time t
(given that the threshold used is " and that model 1
has already accepted n more source 1 data than source
2 data) is exactly G(n; "). Now, suppose that this task
is PAC learnable. This is equivalent to:

for all ± > 0; " > 0 exists some n0 such that

for all n > n0 we have G(n; ") > 1 ¡ ±; (5)

which can be rewritten as

for all ± > 0; " > 0 exists some n0 such that

for all n > n0 we have 1 ¡ G(n;") < ±; (6)

But 1 ¡ G(n; ")= g(n) (for the particular threshold "
used) and eq.(6) is exactly equivalent to condition A2.
In short, if the task of source 2 data rejection is PAC
learnable, then condition A2 is satis…ed. In conclusion,
if the acceptance and rejection tasks are PAC learnable,
then conditions A1, A2 will hold and the data alloca-
tion process will be succesful.

5 Experiments

In this section a simple data allocation algorithm is ap-
plied to several problems of switching dynamical sys-
tems identi…cation. Two sets of experiments are pre-
sented. Data allocation is performed by the algorithm
presented in Section 3.

A. In experiment group A, two chaotic dynamical sub-
systems are used, as follows:

1. for z(t) = 1, a logistic time series of the form
y(t) = f1(y(t ¡ 1)), where f1(x) = 4x(1 ¡ x);

2. for z(t) = 2, a tent-map time series of the form
y(t) = f2(y(t ¡ 1)), where f2(x) = 2x if x 2
[0; 0:5) and f2(x) = 2(1 ¡ x) if x 2 [0:5; 1];

The two sub-systems are activated alternately, each for
200 time steps, resulting in a period (for the z(t) pro-
cess) of 400 time steps. Ten such periods are used,
resulting in a 4000-steps time series. The task is to
discover the two sub-systems and the activation sched-
ule, as well as to develop one neural network model
for each system. The data allocation algorithm is used
with K = 2, i.e. with two neural networks; 1-4-1 neural
networks are used (i.e. one input, four hidden neurons
and one output). The switching dynamical system is
observed at various levels of noise, i.e. at every step
y(t) is mixed with additive white noise, distributed
uniformly in the interval [¡A=2; A=2]. To evaluate
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the quality of system identi…cation the …gures c and
d are used. For the computation of c, classi…cations
from t = 3001 until t =4000 are taken into account,
i.e. when both sub-systems have been learned by the
models; we have c = T0=1000, where T0 is the num-
ber of correctly classi…ed time steps after t = 3001.
The prediction error (an index of how good are the
developed models) is computed according to the for-

mula d =

vuut
P

4000

t=3001

¯̄
¯y(t)¡bybz(t)

(t)

¯̄
¯
2

P4000

t=3001
jy(t)j2

. The experiment is

repeated six times for every noise level and the c and
d …gures found for every experiment are averaged and
presented in Figure 1.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0.00 0.02 0.04 0.10 0.14 0.20

class.corr.

pred.err.

Figure 1: Result of Experiment Group A. Classi…cation
…gure of merit c and prediction error d. Solid
line corrsponds to c; dotted line corresponds to
d. The horizontal axis indicates noise level A.

It is seen that for noise levels up to A = 0:10, data al-
location is successful; after that point it gradually de-
teriorates. Note that performance deterioration takes
place at high noise levels, where two e¤ects take place:
(a) input / output behavior is not easily distiguinsh-
able for the two sub-systems and (b) prediction is quite
poor. Hence, two factors enter which may lead to a vi-
olation of conditions A1 and A2. In this sense the
importance of these conditions for convergence is cor-
roborated. A representative pro…le of z(t) (for time
steps t = 1; 2; :::; 1000) is presented in Figure 2 and one
for prediction error e(t) = y(t)¡bybZ(t)

(t) (for time steps

t = 1001; 1002; :::; 1200) in Figure 3; both of these cor-
respond to the noise free case. In Figure 2 note that
for t = 1; 2; :::; 200 both predictors accept data from
source 1; then for t = 201; 202; :::; 400 predictor 1 spe-
cializes in source 2 and for t = 401; 402; :::; 600 predic-
tor 2 specializes in source 1; after this time specializa-
tion is retained and no data are misallocated. This is
a perfectly acceptable situation and corresponds to the
case X(t) ! 1.

B. Experiment group B is presented in Figure 4. The
setup is the same but now three sources are used; the
third source is a double logistic time series.

0

1

2

3

0 100 200 300 400 500 600 700 800 900

Source

Predictor

Figure 2: Classi…cation time series for a logistic/ tent-
map time series identi…cation task. Solid line is
source process Z(t) and dotted line is predictor
process bZ (t):

-0.10

-0.05

0.00

0.05

0.10

1000 1025 1050 1075 1100 1125 1150 1175

Error

Figure 3: Prediction error time series for a logistic/ tent-
map time series identi…cation task.

6 Conclusions and Future Research

In this paper we have presented su¢cient conditions
for the convergence of a class of unsupervised, on-line,
multiple model schemes for switching dynamical sys-
tem identi…cation and connected these conditions to
PAC learnability. One model is trained for every ac-
tive sub-system; allocation of training data to models is
unsupervised, i.e. labeled data are not available. Ob-
served data may be allocated to models according to
their predictive performance, or more general data al-
location criteria may be used.

Our analysis focuses on the data allocation problem,
assuming that, given correctly allocated data, model
training is not particularly hard. Hence, the main ques-
tion discussed here is whether correct data allocation
will be achieved. The answer, is given by Theorems 1
and 2: data allocation is succesful, provided that con-
ditions B1, A1 and A2 are satis…ed. These conditions
are quite general and do not depend on particular prop-
erties of the systems, models or training algorithms
used. Our analysis indicates that, for a problem which
involves sub-systems with fairly distinct behavior and
accurate models of these subsystems, a data allocation
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Figure 4: Result of Experiment Group B. Classi…cation
…gure of merit c and prediction error d. Solid
line corrsponds to c; dotted line corresponds to
d. The horizontal axis indicates noise level A.

scheme will converge and specialization will take place.
Conditions A1 and A2 can also be expressed in terms
of PAC learnability for the case of predictive accuracy
data allocation criterion. These conclusions are cor-
roborated from numerical experiments which we con-
ducted using a simple predictive multi-model system
identi…cation scheme.

The analysis presented here is limited to serial data
allocation schemes; it is worthwhile investigating the
behavior of parallel data allocation schemes (where all
models compete simultaneously for obtaining an ob-
served datum). Also, conditions A1 and A2 may be
related to more speci…c convergence criteria by the in-
troduction of capacity / complexity concepts[10].
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