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Abstract

Consider a switching time series, produced by several randomly activated
sources. The separation of incoming data into distinct classes may be ef-
fected using predictive modular neural networks, where each module is
trained on data from a particular source. We present a mathematical
analysis regarding the convergence of a quite general class of competi-
tive, winner-take-all schemes which allocate data into classes, one class
corresponding to each active source.

1 Introduction

Consider a time series generated by several randomly activated sources. Time
series segmentation involves ¯nding the active source at every time step. This
has been examined in [3] (using local experts [2]) and in [1], where the follow-
ing method is used. The observed time series is used as input to a bank of
neural network neural predictive modules; at every time step the new obser-
vation yt is allocated to the neural predictive module which yields minimum
prediction error; then each module is retrained on the data so far allocated to
it. In this manner each neural neural predictive module may be associated with
a particular source, exhibiting minimum prediction error when this source is
activated; hence, at every time step the active source is identi¯ed by the neural
predictive module which has minimum error. In order to train each module,
labeled data from each source must be available. If training must take place
concurrently with segmentation, using the unlabeled measurements of the time
series, then accurate segmentation requires on-line, unsupervised data alloca-
tion to the neural predictive modules. In this paper we examine the properties
of a general class of competitive data allocation schemes which utilize predictive
modular neural networks.1

2 Parallel Data Allocation

The source time series Z(t); t = 1; 2; :::, takes values in a ¯nite source set
£ = f1; 2; :::;Kg; the observation time series Y (t); t = 1; 2; :::, takes values in <
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(the set of real numbers). Y (t) is generated by a function Y (t) = FZ(t)(Y (t ¡
1); Y (t¡2); :::; Y (t¡L)); where F1(:); F2(:), ... , FK(:) are functions from <L to
<. Hence, Y (t) is determined by past observations and the current source. The

time series segmentation consists in producing bZ(t); an estimate of Z(t), for
times t = 1; 2; ::: , which is equivalent to ¯nding the source which is active for
t = 1; 2; ::: . Using K neural predictive modules of the form bYk(t)= bFk(Y (t ¡
1); Y (t¡ 2); :::; Y (t¡L)) we can compute the prediction bYk(t) (for k = 1; :::; K

) and set bZ(t) = arg min
k=1;2;:::;K

¯̄
¯Y (t) ¡ bYk(t)

¯̄
¯; i.e. Y (t) is allocated to the neural

network of minimum prediction error. The problem can be decomposed into
two subproblems: data allocation and predictor training; here we will deal with
the former since, with accurately allocated data, the neural predictive module
training subproblem can be solved using a variety of training algorithms. The
following classi¯cation / training algorithm (a variation of which appears in
[1]) is used.

At t = 0 K predictors are randomly initialized
For t = 1,2,...

Observe Y (t).

For k = 1; 2; :::; K compute bYk(t) and jY (t) ¡ bYk(t)j.
Assign Y (t) to predictor nr. bZ(t)

(where bZ(t) = arg min
k=1;2;:::;K

¯̄
¯Y (t) ¡ bYk(t)

¯̄
¯).

Retrain each predictive module on all data assigned to it.
Next t

Data allocation is performed in a competitive, winner-take-all manner, to
the predictor of minimum error. The question discussed in this paper is whether
(a) each neural predictive module will specialize in one source, accepting all or
most data generated by this source and rejecting data from other sources, or
(b) a neural predictive module will obtain data from more than one sources.

3 Convergence

Two sources. If two sources are active, the source process Z(t) takes values
in f1; 2g; at time t we have Pr (Z(t) = i) = ¼i, i = 1; 2: Obviously ¼1 + ¼2 = 1;
it is also assumed that: for i = 1; 2 we have 0 < ¼i < 1: The observation Y (t)
is given by Y (t) = FZ(t)(Y (t ¡ 1); Y (t ¡ 2) , ... , Y (t ¡ L)): For two neural

predictive modules (i = 1; 2) we have bYi(t) = bFi(Y (t¡1); Y (t¡2), ... ,Y (t¡L)).
The allocation process W (t) takes values in f1; 2g; W (t) = i means that Y (t) is
allocated to the i-th neural predictor. If, at time t , yt is generated by source i
and allocated to neural predictor j, then Z(t) = i and W (t) = j. The processes
Mij(t) (t = 1; 2; ::: , i; j = 1; 2) are de¯ned by

Mij(t) =

½
1 if Z(t) = i;W (t) = j
0 else;



and the processes Nij(t) (where t = 1; 2; ::: and i; j = 1; 2) are de¯ned by

Nij(t) =
Pt

s=1 Mij(s). Hence Nij(t) indicates the total number of source i
samples assigned to neural predictive module j, up to time t. The variable
X(t); denotes the total specialization of the system:

X(t) = [N11(t) ¡ N21(t)] + [N22(t) ¡ N12(t)] :

The data assignment probabilities (for neural predictive module 1) depend
on X(t). In case X(t) is large and positive, at least one of [N11(t) ¡ N21(t)]
and /or [N22(t)¡ N12(t)] must be large and positive, which means that ei-
ther neural predictive module nr.1 has received a large surplus of source nr.1-
generated data, or neural predictive module nr.2 has received a large surplus
of source nr.2-generated data, or both. Similar remarks hold in case X(t) is
large and negative. Hence, it is reasonable to assume that the data assignment
probabilities (for neural predictive module 1) depend on X(t):

f(n) = Pr (W (t) = 1 jZ(t) = 1;X(t ¡ 1) = n) ;
g(n) = Pr (W (t) = 1 jZ(t) = 2; X(t ¡ 1) = n) :

In other words, f(n) is the probability that neural predictive module 1
accepts a datum from source 1, given that so far it has accepted n more data
from source 1 than from source 2, while g(n) is the probability that neural
predictive module 1 accepts a datum from source 2, given that so far it has
accepted n more data from source 1 than from source 2. Regarding these
probabilities, the following assumptions are made.

A1 For n = :::;¡1; 0; 1; ::: f(n) > 0; lim
n!¡1

f(n) = 0; lim
n!+1

f(n) = 1;

A2 For n = :::;¡1; 0; 1; ::: g(n) > 0; lim
n!¡1

g(n) = 1; lim
n!+1

g(n) = 0:

By assumption A1, if neural predictive module 1 has accumulated many
more data from source 1 than from source 2, then it will be very likely to accept
an additional datum generated from this source and will be very unlikely to
accept an additional datum from source 2. This is reasonable: if the neural
predictive module has been trained on data mostly originating from source nr.
1, rather than from nr. 2, than it will exhibit improved performance on source
nr.1 data and deteriorated performance on source 2 data. Similar remarks
can be made regarding assumption A2. It must be stressed that A1 and A2
refer to the combination of time series, network architecture, training law and
data allocation algorithm. It is not necessary to take into account particular
characteristics of any of the above components; it is only required that A1 and
A2 hold true, which may be the case for various combinations of time series,
network architecture, training law and data allocation algorithm.

The data allocation procedure described above, implies that X(t) is Markov-
ian. The transition probabilities (for m;n = 0;§1; §2; :::) can be obtained
from the data allocation method and are pn;m = 0 if jn ¡ mj 6= 1, pn;n¡1 =
¼2 ¢ g(n) + ¼1 ¢ (1 ¡ f(n)), pn;n+1 = ¼1 ¢ f(n) + ¼2 ¢ (1 ¡ g(n)). Hence, con-
vergence can be studied using methods from the theory of Markov chains. We
have established two convergence theorems; in this paper we omit the proofs
because of space limitations. The ¯rst theorem ensures convergence of X(t).



Theorem 1 If conditions A1, A2 hold, then

(i) Pr
³

lim
t!1

jX(t)j = +1
´

= 1;

(ii) Pr
³

lim
t!1

X(t) = +1
´

+ Pr
³

lim
t!1

X(t) = ¡1
´

= 1:

From (i) it is seen that total specialization goes to in¯nity; from (ii) it is seen
that at least one neural predictive module will (in the long run) accumulate
either a lot more source nr.1 samples than source nr.2 samples (X(t) ! +1)
or a lot more source 2 samples than source 1 samples (X(t) ! ¡1) . The total
probability that one of these two events will take place is one, i.e. one neural
predictive module will certainly specialize in one of the two sources.

Theorem 2 If conditions A1, A2 hold, then

Pr

µ
lim

t!1
N21(t)

N11(t)
= 0

¯̄
¯ lim
t!1

X(t) = +1
¶

= 1;

Pr

µ
lim

t!1
N12(t)

N22(t)
= 0

¯̄
¯ lim
t!1

X(t) = +1
¶

= 1;

Pr

µ
lim

t!1
N11(t)

N21(t)
= 0

¯̄
¯ lim
t!1

X(t) = ¡1
¶

= 1;

Pr

µ
lim

t!1
N22(t)

N12(t)
= 0

¯̄
¯ lim
t!1

X(t) = ¡1
¶

= 1:

Theorem 2 states that, with probability one, both neural predictive modules
will specialize, one in each source and in a \strong" sense . For instance, if

X(t) ! +1, then the proportions N21(t)
N11(t)

(nr. of source 2 samples divided by

nr. of source 1 samples assigned to neural predictive module 1) and N12(t)
N22(t) (nr.

of. source 1 samples divided by nr. of source 2 samples assigned to neural
predictive module 2) both go to zero ; this means that \most" of the samples
on which neural predictive module 1 was trained come from source 1 and, also,
that \most" of the time a sample of source 1 is assigned (classi¯ed) to the
neural predictive module which is specialized in this source; similar remarks
hold for neural predictive module 2. Hence we can identify source i with neural
predictive module i, for i = 1; 2. A completely symmetric situation holds when
X(t) ! ¡1. By Theorem 1, X(t) goes either to +1 or to ¡1, so specializa-
tion of both neural predictive modules (one in each source) is guaranteed.

Only a very brief sketch will be of the proofs of the above theorems is
given. Regarding Theorem 1, it is proved that the Markovian process X(t) is
transient; i.e. that w.p.1 (with probability one) X(t) will spend only a ¯nite
amount of time in any particular state. Then it follows that jX(t)j must go
to in¯nity w.p.1, which is (i); (ii) follows easily. Regarding Theorem 2, we
exploit the fact that, if X(t) goes to 1, then transitions to lower states are
highly improbable. Such transitions are \counted" by the process N21(t). This
process is dependent, but it can be compared to an auxiliary process N21(t),
which has a larger probability of transitions to lower states and is independent;



in fact it is a sequence of Bernoulli trials, and its properties are easily obtained.
By appropriate construction of N21(t) it can be proved that N21(t)=t goes to
zero with probability one; then relating N21(t) and N21(t) it can be shown that
also N21(t)=t goes to zero with probability one. A similar argument, depending
on an uxiliary process N11(t) is used to show that N11(t)=t goes to ¼1. Then
the ¯rst conclusion of the theorem follows easily. The remaining conclusions
are proved similarly.

Many Sources. The case of more than two sources is treated here by an infor-
mal argument; a more formal presentation in terms of convergence theorems will
be reported in the future. Consider the case of K sources (K > 2) and a data
allocation scheme starting with two neural predictors, and adding more predic-
tors \as needed" (for instance whenever the prediction error exceeds a certain
threshold). Consider two sources: source 1 and composite source [2; 3; :::;K].
By Theorems 1 and 2, in the long run one neural predictive module will mostly
receive data from one source. In the long run the second neural predictive
module will mostly receive data from the other source. Hence the data are
separated into two sets: those generated by source 1 and those generated by all
other sources. Reapplying the data allocation scheme on the composite data
set, we will obtain two new neural predictive modules, with one specializing
in source 2 data and the other specializing in sources 3, 4, ... , K. After suf-
¯cient time has elapsed, neural predictive module 2 will specialize in source
2, while neural predictive module 3 will mostly receive data from sources 3,4,
..., K. The same argument can be repeated for sources 3, 4, ..., K, adding
neural predictive modules as needed, resulting in one neural predictive module
specializing in each source.

4 Experiments

Exp. Group A. Four sources have been used: (a) for Z(t) = 1, a logistic time
series of the form y(t) = f1(y(t¡1)), where f1(x) = 4x(1¡x); (b) for Z(t) = 2,
a tent-map time series of the form y(t) = f2(y(t ¡ 1)), where f2(x) = 2x if
x 2 [0; 0:5) and f2(x) = 2(1¡x) if x 2 [0:5; 1]; (c) for Z(t) = 3, a double logistic
time series of the form y(t) = f3(y(t¡1)) = f1(f1(y(t¡1))) and (d) for Z(t) = 4,
a double tent-map time series of the form y(t) = f4(y(t¡ 1)) = f2(f2y(t¡ 1))).
The four sources are activated consecutively, each for 100 time steps, giving
an overall period of 400 time steps. Ten such periods are used, resulting in
a 4000-steps time series. The task is to discover the four sources and the
switching schedule by which they are activated. At every step yt is mixed with
additive white noise uniformly distributed in the interval [¡A=2; A=2]. The
neural predictive modules used are 1-5-1 sigmoid neural networks. In every
experiment performed, all four sources are eventually identi¯ed. This takes
place at some time Tc, which is di®erent for every experiment. After time Tc,
a classi¯cation ¯gure of merit is computed. It is denoted by c = T2=T1, where
T1 is the total number of time steps after Tc, and T2 is the number of correctly
classi¯ed time steps after Tc. Table 1 shows the results of the experiments.



Exp. Group B. Here we consider a time series obtained from three sources
of the Mackey-Glass type. The time series evolves in continuous time and

satis¯es the di®erential equation : dy
dt = ¡0:1y(t)+ 0:2y(t¡td)

1+y(t¡td)10 : For each source

a di®erent value of the delay parameter td was used, namely td= 17, 23 and
30. The time series is sampled in discrete time, at a sampling rate ¿ = 6, with
the three sources being activated alternately, for 100 time steps each. The ¯nal
result is a time series with a switching period of 300 and a total length of 4000
time steps. The time series is observed at various levels of additive observation
noise; results expressed in terms of the parameters c and Tc appear in Table 1.
Segmentation is again quite accurate for fairly high noise levels.

Table 1: Segmentation Results for Experiment Groups A and B

Exp. Group A
A 0.00 0.05 0.10 0.15 0.20

Tc 500 1800 1800 800 2200

c 0.982 0.969 0.947 0.529 0.529

Exp. Group B
A 0.00 0.05 0.10 0.15 0.20

Tc 1700 1100 1300 3500 1200

c 0.978 0.977 0.853 0.935 0.664

5 Conclusion

In this paper we have presented two theorems (regarding the convergence of
competitive data allocation) which state that, if the general conditions A1 and
A2 are satis¯ed, data allocation will result in succesful predictor specializa-
tion. The competitive data allocation method may also be called \parallel", in
contradistinction to a \serial" method, where a threshold is ¯xed and the ¯rst
predictive module with prediction error below the threshold receives the new
incoming datum (at every time step the predictive modules are considered in
a speci¯ed order).We have performed a convergence analysis of the serial data
allocation case, which yields results similar to the parallel case; this analysis
is presented elsewhere. Hence we now have general conditions which ensure
convergence of the data allocation scheme for both the serial and parallel case.
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