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1. Introduction

² Modular neural networks can be used for the solution of learning problems which involve
data generated by several alternately activated sources.

² A well trained module models a particular source. A well trained modular neural network
is characterized by a one-to-one association of sources to well trained modules (such that
each module models a exactly one source).

² Training of a modular neural network can be decomposed in two components:

– Module Competition for Data Allocation.

– Training of the modules on the allocated data.

Of these two components, competitive data allocation is the critical one.

² Competitive data allocation is based on the di¤erence between source and module output.

² Each module tends to collect data which correspond to a particular source behavior. Since
each module is periodically retrained on its data set, the particular behavior is reinforced
and more data of the same type are collected.

² It can be proved that under reasonable separability conditions, this process is self rein-
forcing, so that in the long run each module implements a constraint which characterizes a
particular source. Hence a one-to-one correspondence of sources and modules is attained.

² The above framework can be applied to both static and dynamic data.
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2. A General Framework for Unsupervised Competitive Learning

The type of problem we consider can be illustrated by the following …gure.

Source 1

Source 2

Source K

Switch 

Mod.1 Lrn Law

Mod.2 Lrn Law

Mod.MLrn Law

The sources are described by models the form of which will be given separately for dynamic and
static problems in the sequel.The learning system consists of a number of modules. Each module
is equipped with a learning law. The relaying system can transform the data in a general way.
However in this presentation we will restrict ourselves to relaying systems which at a speci…c
instant of time simply select a source. In such a case we can talk of a ”switching system”. Hence
data are presented serially to the learning system forming a time series Yt, t = 1; 2:::; taking
values in RN .

A module represents a family of models is parameterized by a parameter vector µ taking
values in £m ½ Rp (for m = 1; 2; :::;M where M is the number of modules). It must be
emphasized that the models need all be of the same form. At time t the m-th module has
parameter vector µmt . An error function is also de…ned (for m = 1; 2; :::;M) by

Emt = Q(Yt; Yt¡1:::; Yt¡L; ; µ
m
t );

this is a measure of the extent at which Yt satis…es the constraint implemented by module m.
At time t the allocation of data (i.e. which module or modules will use Yt to adapt its

parameters) is the result of competition among modules on the basis of the errors Emt (for
m = 1; 2; :::M). A reasonable way of doing this is by allocating Yt to the module with minimum
Emt . The adaptation of module parameters is carried out by the learning law of the corresponding
module. It is desirable that after the presentation of a su¢ciently large number of data each
module tends to specialize in one source; in other words the parameter vector µmt tends to a
value µ

m
such that Q(Yt; Yt¡1:::; Yt¡L; ; µ

m
) wins the competition whenever data from the m-th

source appear. Hence Q(Yt; Yt¡1:::; Yt¡L; ; µ
m
) can be viewed as an approximate model for the

m-th source.
The above formulation for unsupervised learning can be applied to either static or dynamic

problems (i.e. problems involving time series or dynamic systems).
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Dynamic Patterns

In this case the sources generate time series described by

Yt = Fk(Yt¡1; Yt¡2; :::; Yt¡L)

where Yt 2 RN and Fk(:) (for k = 1; 2; :::; K ) are the source models. In general, Y kt may
also depend on an input Ut, but we omit such a dependence for simplicity of presentation. The
switching system generates a time series Zt (t = 1; 2; :::) taking values in a …nite set f1; 2; :::; Kg.
Hence the output of the switching system is

Yt = FZt(Yt¡1; Yt¡2; :::; Yt¡L):

The task is to identify the di¤erent time series (or dynamic systems). In this case, the m-th
module is de…ned by

Y mt = fm(Yt¡1; Yt¡2; :::; Yt¡L; µ
m
t )

For simplicity, assume that the number of modules is equal to the number of sources, i.e. that
K =M . The error function is

Emt = jYt ¡ Y mt j:
The models compete and the resulting winner adapts its parameter vector according to its
learning law. Recall that µmt is the estimate of the m-th parameter vector at time t. The goal
is to adjust the µ’s so that in the long run a correspondence

m(k) : f1; 2; :::; Kg ! f1; 2; :::;Mg

is achieved such that fm(k)(y1; y2; :::; yL; µ
m(k)
t ) is close to Fk(y1; y2; :::; yL). If m(k) is also one-

to-one, then we have obtained a well trained network.

4



Static Patterns

Assume that the k-th source represents data within a domain Dk ½ RN with a given prob-
ability distribution Pk. A possible source model could be a function (k = 1; 2; :::; K)

vk =

(
1 for Yt 2 Dk

0 for Yt =2 Dk:

Suppose now that the switching system activates a random generator rkt that at time t produces
a datum Yt from the k-th source. This means that Yt belongs to Dk and is generated according
to probability distribution Pk. As in the dynamic case, the switching system generates also a
time series Zt, t = 1; 2; ::: taking values in f1; 2; :::; Kg. Then the output of the switching system
at time t is given by

Yt = r
Zt
t where Yt 2 [Kk=1Dk: (1)

A module is related to a set cDm
t = fy : Qmt (y; µmt ) < dg;where d is a threshold, Qmt (:; :) is a

nonnegative function and cDk
t ½ RN : In this case the module implements a function

bvkt =
(
1 for Yt 2 cDk

t

0 for Yt =2 cDk
t :

we have the error function is given by

Emt = Q
m
t (Yt; µ

m
t ):

It has been assumed here (for simplicity) that K = M , i.e. the number of modules is equal
to the number of sources. The models compete and the resulting winner adapts its parameter
vector according to its learning law. The goal of the learning process is that for a su¢ciently
large number of data them-th module approximates the k-th source model in the sense that the
data Yt, for which the m-th module wins the competition, belong to cDm

t which is approximately
equal to Dk . For example, if in the long run a correspondence

m(k) : f1; 2; :::; Kg ! f1; 2; :::;Mg
is achieved such that

¹
³
Dk ¡ cDm(k)

t

´
= 0;

where ¹(:) is a measure and m(k) is one-to-one, then it follows that

bvkt ! vt

in some appropriate convergence sense and we have obtained a well trained network.
As an example, consider a simple competitive neural network learning scheme in which data

are generated according to equation (1) and

Emt = jjWm
t ¡ Ytjj;

here Wm
t are the weights of the m-th neuron at time t and they play the role of the parameters

µmt . In this scheme the neuron (i.e. module) with the smallest value of Emt wins and its weights
are updated; the cluster corresponding to the m-th module is represented by

cDm
t = fy : jjWm

t ¡ yjj < dg:
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3. Module Competition

The competition is based on the errors Emt , m = 1; 2; ::: . In general two schemes of compe-
tition can be distinguished: serial and parallel.

Serial scheme

a. Serial scheme with …xed number of modules. In this scheme the number of modules,
M , is …xed. The error of the 1st module , E1t is compared with a threshold d ; if Emt < d, the
incoming datum is added to this module’s data set. Otherwise the error of the 2nd module is
compared with d; if it is less than d module 2 wins. Otherwise the error is compared with the
3rd module and so on. The process continues until a module exhibits an error less than d. In
case all Emt are greater than d, the last module is taken to be the winner.
b. Serial scheme with open number of modules. This scheme is the same as the previous
one except that a new module is added whenever the condition Emt < d is not satis…ed for any
of the existing modules.

In both cases, predictors are added in a cascaded fashion (resulting in piecewise partition of
the source space) as is illustrated in the …gure.

È1 È2 È3

Parallel scheme

In this case we distinguish two types of competition as well: the parallel scheme with …xed
number of modules and the parallel scheme with open number of modules.
a. Parallel scheme with …xed number of modules. In this scheme the error is computed
for all modules ; the winner is the module with minimum error.
b. Parallel scheme with open number of modules. In this scheme the error is computed
for all modules as well; the winner is the module with minimum error provided this is below a
threshold . Otherwise a new module is added.

In both of the above schemes, predictors are added in a tree-like fashion (resulting in recursive
partition of the source space) as is illustrated in the …gure.

È

È1 È2

È11 È12

È121 È122

È21 È22
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Hybrid Schemes

The …rst of the above schemes is based only on serial comparisons, while the second is based
only on parallel comparisons. Hybrid schemes can be devised which use both serial and parallel
comparisons. The following …gure illustrates the mode of operation of hybrid schemes.

È1 È2 È3

È12È11

È121 È122

È31 È32 È33

È1 È2 È3

4. CONVERGENCE
Two Sources, Two Modules

In this section we will present convergence theorems concerning the serial and parallel
schemes with two sources and modules. We will need the following variables.

² N ij
t : is the number of data generated by the i-th source and allocated to the j-th predictor

up to time t. (i; j=1,2).

² Xt: is the specialization variable, which is de…ned di¤erently for the serial and parallel
case.

– Parallel Case: Xt = [N11
t ¡N 21

t ]+ [N
22
t ¡N 12

t ]. When Xt is large and positive, either
module no.1 specializes in source no.1, or module no.2 specializes in source no.2, or
both. When Xt is large and negative, either module no.1 specializes in source no.2,
or module no.2 specializes in source no.1, or both.

– Serial Case: Xt = N 11
t ¡N11

t . When Xt is large and positive, module no.1 specializes
in source no.1. When Xt is large and negative, module no.1 specializes in source no.2.

² Data Allocation probablities.

an
:
= Pr (Module no:1 accepts Yt jZt = 1; Xt¡1 = n) ;

bn
:
= Pr (Module no:1 accepts Yt jZt = 2; Xt¡1 = n) :

Note that even if the de…nition has the same form, an, bn are actually di¤erent in the serial
and parallel case, since Xt is de…ned di¤erently in each case.

The following two assumptions are used both in the parallel and serial case; note however
that in each case they refer to di¤erent variables.
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A1 For all n, an > 0; and lim
n!+1

an = 1; lim
n!¡1

an = 0:

A2 For all n, bn > 0, and lim
n!+1

bn = 0; lim
n!¡1

bn = 1:

Then it can be shown that Xt is Markovian and the following theorems hold (both for the
parallel and serial case).

Theorem 1 If A1 and A2 hold, then

For m = :::;¡1; 0; 1; ::: Pr (Xt = m i.o.) = 0; (2)

Pr
µ
lim
t!1

jXtj = +1
¶
= 1; (3)

Pr
µ
lim
t!1

Xt = +1
¶
+ Pr

µ
lim
t!1

Xt = ¡1
¶
= 1: (4)

Theorem 2 If A1 and A2 hold, then

1. If Pr( lim
t!1

Xt = +1) > 0 then

Pr

Ã
lim
t!1

N21
t

N11
t

= 0
¯̄
¯̄ lim
t!1

Xt = +1
!
= 1; (5)

Pr

Ã
lim
t!1

N12
t

N22
t

= 0
¯̄
¯̄ lim
t!1

Xt = +1
!
= 1: (6)

2. If Pr( lim
t!1

Xt = ¡1) > 0 then

Pr

Ã
lim
t!1

N 11
t

N 21
t

= 0
¯̄
¯̄ lim
t!1

Xt = ¡1
!
= 1; (7)

Pr

Ã
lim
t!1

N 22
t

N 12
t

= 0
¯̄
¯̄ lim
t!1

Xt = ¡1
!
= 1: (8)

Theorem 2 states that with probability one both predictors will specialize, one to each source
and in the “strong” ratio sense.

K sources, M modules

It can be shown (by an informal argument) that in this case specialization also takes place.
Consider …rst the case of serial data allocation. Take a time series y1, y2, ... , yt, ... generated

by K sources and start with two randomly initialized modules. In the initial phase of data
allocation module no.1 may collect (perhaps in a random manner) a data set where one source
is more heavily represented than the rest. This will result in a slight specialization in this source
and, consequently, module no.1 will have a tendency to accept more data from the preferred
source. It follows that module no.2 will collect more data from the remaining sources.

An error threshold is used to determine if and when a new module should be added. After
a while, module no.1 will be very well specialized in some source. Since module no.2 receives
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a mixed data set it is unable to specialize; i.e. is still characterized by a large prediction error.
In this case, after a while an additional module (module no.3) will be introduced and modules
no.2 and 3 will receive all the data rejected by module no.1. Sooner or later module no.2 will
also specialize in one source and module no.3 will receive incoming data from the remaining
sources. Proceeding in this manner, modules will keep being added until to every active source
will correspond one well specialized module. In short, serial data allocation can lead to succesful
source identi…cation.

Consider next the case of parallel data allocation. A time series y1, y2, ... , yt, ... generated by
K sources is initially partitioned by using two randomly initialized modules. Now, if a data group
is characterized by a preponderance of data from a particular source or group of sources, the
respective module specializes in this source or group of sources, resulting in improved prediction
accuracy for this type of data. The source groups can be re…ned by the gradual introduction of
more modules in a top down manner. If after a large number of data have been collected and
the average prediction error is above d, it may be assumed that in fact the data set corresponds
to more than one sources; hence the algorithm attempts to split the data set into two subsets,
by replacing the corresponding module by two identical copies of it. Initially both new modules
may be expected to show a preference for data generated by the particular source group, but no
particular specialization for any source belonging to this group. However, if most new incoming
data have been generated by sources belonging to this group, it may be expected that a further
partition of such data will be e¤ected. In short, parallel data allocation can lead to succesful
source identi…cation.
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5. Time Series Examples

We apply the above algorithms to the problem of allocating data from a time series generated
by three chaotic sources. In particular, the sources are described by

1. Logistic: Yt = F1(Yt¡1), where F1(y) = 4 ¢ y ¢ (1¡ y).

2. Tent Map: Yt = F2(Yt¡1), where F2(y) = 2y when y 2 [0; 1=2], F2(y) = 1 ¡ 2y when
y 2 (1=2; 1].

3. Double Logistic: Yt = F3(Yt¡1), where F3(y) = F1(F1(y)).

The prediction modules used are sigmoid 1-5-1 neural networks. A sequence of experiments
is conducted, where a time series Y1, Y2, ... , Y10000 is produced by periodic activation of the
three sources (with a source activation period of 200 time steps). The time series is mixed with
additive white noise, distributed uniformly in the range [¡A=2; A=2]. Several data allocation
eperiments are conducted for every noise level A.

Figure 1 presents a graph of data allocation for an experiment conducted at noise level
A = 0:04. We plot allocation of ten-step data blocks to three modules (module no.4 corresponds
to rejected data). Hence the x-axis corresponds to time and the y-axis corresponds to activated
source (solid line) or module which receives the current data block (dashed and dotted line). It
can be seen that the serial algorithm achieves faster data allocation, but the parallel algorithm
is more accurate.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 61 121 181 241 301 361

TRUE

parallel

serial

Figure 1

Figure 2 presents a graph of the classi…cation accuracy, as measured by the variable c (cor-
responding to the x-axis and de…ned as number of correctly allocated data divided by total
number of data) plotted against noise level A (corresponding to the x-axis). It can be seen that
parallel data allocation is extremely robust to noise.
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6. Discussion

The critical part in this process is the module competition for data allocation: if each module
accepts data from a single source and rejects all other data, then a number of training algorithms
are available to produce well specialized modules; if, on the other hand, a module receives a
mixed set of data (i.e. data from several sources) then, no matter how e¢cient the learning
algorithm is, specialization is unlikely to take place.

In our analysis two separability assumptions are crucial; namely, when a module accepts an
additional datum from a particular source then: (A1) the probability of accepting more data
from the same source increases and (A2) the probability of accepting data from other sources
decreases. Under assumptions A1, A2, as the number of observed data goes to in…nity, the
fraction of misallocated data goes to zero with probability one. In this sense, asymptotically
and with probability one, every source is associated with a distinct module and every module
is associated with a distinct source.

We believe that the above conditions can be related to speci…c learning algorithms, network
architectures and time series sources using the information theoretic concepts of source complex-
ity and network capacity. A connection with PAC learnability is also possible. However, it must
be noted that the analysis presented here is quite general and applies to a large variety of combi-
nations of learning algorithms, network architectures and time series sources. Also, the analysis
appplies equally well to static and time series data. Assumptions A1 and A2 are not speci…c to
a particular competition scheme, hence the convergence analysis may be expected to hold for a
large class of unsupervised learning algorithms which involve modular neural networks, such as
mixtures of experts, regime decomposition, combined estimators, committee machines, predic-
tive modular neural networks etc. In addition to modular neural networks, the analysis applies
to situations where a single network of su¢ciently complex neurons is employed, provided that
each neuron specializes in a particular type of data; such cases include the well known k-means
algorithm, Learning Vector Quantization (LVQ), Self Organizing Feature Maps (SOFM), Adap-
tive Resonance Theory (ART) systems etc. Our approach can be applied in case no alternative
convergence analysis is available; if a case-speci…c convergence analysis is available, our approach
still provides an attractive alternative. By appropriate modi…cation of assumptions A and B,
the analysis also applies to soft data sharing algorithms.

On a more applied level, we have presented two algorithms (parallel and serial) which imple-
ment the above idea and applied them to a problem of time series modelling. Both algorithms
perform quite accurately; the parallel algorithm is more noise robust, while the serial one con-
verges faster.
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