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Abstract
We introduce a recurrent network architecture to solve a parameter estimation problem;  namely we
want to estimate the rotor resisatnce of an AC induction motor. A precise estimate of this parameter
is very useful for accurate and economical control of the AC induction motor.  We propose the
Incremental CRedit Assignment  (ICRA) method for testing online several alternative hypotheses
regarding the value of the rotor resistance. These hypotheses are evaluated by a modular recurrent
neural network which consists of a number of predictive modules (each tuned to a specific value of
rotor resistance) and a decision module. We prove mathematically  that  maximum credit  converges
to the "best" parameter value; numerical experiments corroborate our theoretical analysis.

1. Introduction
The  operation of the AC induction  motor is described (in discrete time) by the following nonlinear state
equation .
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Here iqs(t), ids(t) are stator currents, iqr(t), idr(t) are rotor currents, w(t) is angular velocity, Vqr(t), Vdr(t),
Vqs(t), Vds(t) are input voltages and TL(t) is input torque. Rs, Rr are stator and rotor inductance, Ls, Lr, Lo
are stator, rotor and mutual inductances; J is inertia momentum, P is number of pole pairs of the motor. All
of these parameters can be measured directly, with the exception of  Rr, which, however, is necessary for
the determination of the motor time constant and for efficient angular velocity control. In addition, Rr may
vary in time with increasing temperature of the rotor core.
 In this paper we present an Incremental CRedit Assignment (ICRA) method to solve the problem of
Rr estimation. The ICRA method evaluates several possible Rr values and assigns to each one credit
according to the predictive power of a corresponding motor model.  We present a recurrent, hierarchical,
modular neural network implementation of this approach,  with a prediction level at the bottom (consisting
of a bank of motor models) and a decision level at the top. The decision level is implemented by a recurrent
Gaussian neural network which combines the outputs of the motor models.  We prove that the credit
function converges (with probability one) to the "correct" values, namely, to one for the model with
maximum predictive power and to zero for the remaining models.

The idea of combining local models into a large modular network has recently become very
popular. It has been used for prediction as well as for classification of both static and dynamic (time series)
patterns. A classic exposition of this method appears in [6,7] where the term local experts is used in place of
our prediction models.  Our point of view is similar to that of the above papers, insofar we also use local
models (predictors) and credit functions. However, ICRA uses structured models, rather than black-box
type neural predictors and, in contrast to other approaches, is a recursive scheme for online credit
assignment. This is very appropriate for the rotor resistance problem. We present the ICRA method in [1]
and a similar, Bayesian-inspired, approach in [2,3]. Similar methods appear in [4,5].

2. Estimation by Classification: Incremental Credit Assignment



We solve the parameter estimation problem by translating it to a time series classification problem. This is
rather straightforward. We assume that the (observable) stator current sequence iqs(1), ids(1), iqs(2),
ids(2), ...,iqs(t), ids(t) originates from a motor with rotor resistance taking one of a finite number of values
Rr(1), Rr(2), ... , Rr(K). This results in K distinct motor models, or stator current classes; the task then is to
classify the observed current to one of the K classes, say the k-th one,  and hence estimate rotor
resistance as Rr(k).

Hence, in the rest of this section we present the ICRA method as a time series classification
scheme. To develop ICRA,  start by defining a decreasing function of error e:

(1) g e e e( ) /= − 2 22σ ,

which can be implemented by a Radial Basis Function (RBF) neuron.. Now we take ek(t) to be the prediction
error of the k-th model at time t, defined by

(2) [ ]e t i t i t i t i tk
qs qs

k
ds ds

k( ) ( ) ( ) ( ) ( )= − −   ,

i t i tqs ds( ), ( )  being the true, observed stator currents and i tqs
k ( ) , i tds

k ( )  being the simulated currents

computed by k-th model. We suppose that the errors ek(t) are randomly distributed and follow a Gaussian
probability distribution. Now we take time varying quantities  qk(t), k=1,2, .., K, which are credit functions: a
high value of qk(t) implies k-th model has good predictive performance. These quantities evolve in time
according to
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From eq.(3)  we see that the credit fuctions are updated in an incremental manner, similar to a steepest
descent procedure, i.e. models with smaller prediction error (hence larger g(ek(t)) ) are updated with a
higher credit. It can also be checked (see [3] ) that for all times t we have Óqk(t)=1. At time  t the stator
current  is classified as originating from model k*(t), where  k*(t) corresponds to the k-th model with
maximum credit function qk(t). Obviously, the value of k*(t) may change with time, as more observations
become available. This concludes the description of the ICRA method, which is described by eqs.(1)-(3).
These equations can be implemnted by a simple neural network, illustrated in Fig.1.

Fig.1: Diagram of ICRA Network



The justification of using  the ICRA method for resistance estimation is supplied by the following theorem:

Theorem: Define ak=E[g(ek(t))], k=1, ... , K. Suppose am is the unique maximum among a1, a2, ... , aK.  If qm(0) >
0, then, as t → ∞,  qm(t) → 1 and qk(t) → 0 for k≠ m.

The proof of this theorem is given in [3]; a few comments are in order.  Note that g(ek(t)) is a random
variable, since it is a function of the error ek(t).  Assuming ek(t) to be stationary, ak=E[g(ek(t))] , i.e. the
mean value of g(ek(t)), is time independent.  Since g(e) is a decreasing function of  |e|, a large value of ak
implies good predictive performance. In this sense, ak can be viewed as a prediction quality index and it is
natural to consider as optimal the m-th model that has maximum am.  What the theorem tells us then, is that
the qm(t) associated with m-th model of highest predictive power converges to one, while all other qk(t)'s
converge to zero. Therefore the credit functions qk(t) can be used for succesful  classification and hence
rotor resistance estimation.

In summary, the ICRA method is based on equations (1)-(3) which can be implemented by a
recurrent, hierarchical, modular network. The bottom, prediction level of the hierarchy consists of a bank of
predictive motor models, each one implementing a motor model, for a specific value Rr(k). The top,
decision level of the hierarchy consists of a module that implements (3); this module can be built from
radial basis function (RBF) neurons, adders and multipliers, and implemented on a chip.

3. Experiments
In order to evaluate experimentally the performance of the ICRA method, we simulate the AC

induction motor, mixing the observation of  stator current with additive noise at various noise levels. Each
simulation is run for 2500 time steps, each step corresponding to 0.001 seconds of real time; input is a three
phase AC voltage of  220 Volts RMS value and torque TL=5 N.m. The actual motor has the following
parameters: Rs=11.58 Ohm, Ls=0.071 Henry, Lr=0.072 Henry, Lo=0.069 Henry, J=0.089 kg.m2,  B=0
Nt.sec/m, P=2; finally we do not take Rr constant, but let it occasionally switch between two values,
namely  6.91 and 7.85 Ohms. We use a bank of ten prediction modules (K=10), tuned to Rr values of 1, 2, .. ,
10 Ohms. When the actual Rr value is 6.91, the best estimate available is 7 Ohms; when the actual Rr value
is 7.85, the best estimate available is 8 Ohms. In Fig.2 we present a characteristic credit profile for the case
of  noise free observation and in Fig.3 for the case with 10% observation noise.

We evaluate the classification results using the following three indices. First, the number of time
steps in which the best Rr estimate is selected  is divided by the total number of time steps; this index is
called c1 and its best possible value is 1 (perfect classification). Second, we compute the root mean square
error between the actual Rr value and the Rr estimate at every time step; this index is called c2 and, while
ideally its best value would be zero, this is not feasible since the real Rr values are not available in our
predictive module bank. Third, we compute the root mean square error between the actual Rr value and the
best available Rr estimate at every time step; this index is called c3;  its best value is zero.  These results are
presented in Table 1.

c1
Class.%
Correct

c2
Rr %
error

c3
Rel. Rr
%  error

Noise
Level
(% of
signal)

0.985 0.020 0.011 00%
0.983 0.020 0.011 01%
0.981 0.021 0.012 03%
0.963 0.022 0.012 05%
0.957 0.022 0.013 10%
0.879 0.030 0.017 20%
0.889 0.030 0.017 33%

Table 1: Resistance Estimation Results



Fig.2:Graph of Credit functions, noise free case. Dashed line is credit of Rr(8)=8, Dash-dotted line is
credit of Rr(7)=7.

0 . 0 0

0 . 2 0

0 . 4 0

0 . 6 0

0 . 8 0

1 . 0 0

0.
01

0.
14

0.
27

0.
40

0.
53

0.
66

0.
79

0.
92

1.
05

1.
18

1.
30

1.
43

1.
56

1.
69

1.
82

1.
95

2.
08

2.
21

2.
34

2.
47

T i m e  ( s e c o n d s )

C
re

di
t

Fig.3:Graph of Credit functions, noise free case. Dashed line is credit of Rr(8)=8, Dash-dotted line is
credit of Rr(7)=7.
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We  see that performance is very accurate even in the presence of high noise in the observation of current.
This, in addition to the online character of the ICRA method and its eacy neural implementation, using
RBF neurons, adders and multipliers, make it an attractive method for online estimation of ther AC motor
rotor resistance.
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