
The Local Backward-Forward Algorithm

A. Kehagias
Division of Applied Mathematics

Brown University
Providence, RI 02912

E-Mail Address: st401843@brownvm.bitnet

Abstract

We introduce Stochastic Recurrent Networks which are collections of interconnected finite state units.
Each unit goes into a new state at every discrete time step following a probability law that is conditional
on the state of neighboring units at the previous time step. A network of this type can be trained to
learn a stochastic process, where “training” means maximizing the probability Likelihood function of
the model. A new training (i.e. Likelihood maximization) algorithm is introduced, the Local Backward-
Forward Algorithm. The new algorithm is based on the fast Backward-Forward Algorithm of Hidden
Markov Models training and improves speed of learning (as compared to Back Propagation) substantially.
Essentially, the local Backward-Forward Algorithm is a version of Baum’s algorithm which estimates local
transition probabilities rather than the global transition probability matrix.

0 Notation

Given a finite set A, we denote the number of elements in A by |A|. E.g., for A = {a1, ..., aN}, |A| = N . The
alphabet A of a stochastic process {Zt}∞t=1 is the set of all possible values that Zt can take for any t. E.g.
we could have a binary stochastic process {Zt}∞t=1 where Zt equals either 0 or 1 for every t. In that case the
alphabet is A = {0, 1}. Or, we could have a vector-binary process {Zt}∞t=1, where Zt = [Zt

1...Z
t
N] and Zt

n is
either 0 or 1 for every t, n = 1, ..., N . In that case the alphabet is AN .= {[a1...aN] : an ∈ A,n = 1, ..., N}.
We use capital letters X, Y, Z etc. for stochastic processes and small letters x, y, z for the values of the
processes (characters of the alphabet). For instance we write Prob(Xt = x) for the probability that Xt

equals the character x ∈ A; we write Prob(Xt+1 = x1, ..., Xt+τ = xτ) for the probability that Xt+1...Xt+τ

equals x1...xτ ∈ Aτ . Say x = [x1...xm], y = [y1...yn]; then the concatenation of x, y is xy = [x1...xmy1...yn].
We will often consider probabilities that depend on the value of a certain parameter, say P. Then we write,
for instance, Prob(Xt+1 = x1, ..., Xt+τ = xτ ;P). Consider a set S = {1, ..., N} and vector x = [x1...xN].
We sometimes write xS in place of x. Similarly, for a set R = {r1, ..., rM} ⊂ S we write xR in place of
[xr1 ...xrM

]. Obviously, if xs ∈ A for s ∈ S, then xS ∈ A|S|. Finally, Bin(m,n), where m is an integer, means
the n-th digit of integer m written in binary notation.

1 Introduction

We develop a network that combines probabilistic and dynamic behavior. In our framework, deterministic
and/or static behavior appear as special cases.

We will give a precise definition of SRN in the next section; informally, the subject of our inquiry is
collections of interconnected finite state units that change states synchronously, according to a probabilistic
mechanism. For any particular unit, the probabilistic change of state depends on the previous state of this
unit and its parents. We only deal with finite state units; the theory for units with continuous valued states
is exactly analogous but mathematically more involved and will be developed elsewhere. Here we define
precisely the SRN model, define the learning task for stochastic processes as a Likelihood Maximization
problem and, finally, derive the Local Backward Forward Algorithm, a very efficient training algorithm

1

that is based on the Baum Backward Forward algorithm [BE67] used in Hidden Markov Modelling and
Speech Recognition [Rab88]. We also present a training example using the 8-3-8 encoder problem.

2 The SRN Model

Consider a network of interconnected units. For simplicity of presentation assume each unit is binary, that
is, it can be either on or off. When the unit is off its state is 0; when the unit is on its state is 1. Following
standard connectionist practice, the units are separated in three layers: input, hidden and output. The state
of the network can be fully described by three vectors of 0’s and 1’s: one vector for each layer, one vector
component for each unit. At a given time t− 1 every unit of the network is in some state. At time t a new
epoch starts, during which the units update their state as follows.

1. First the input units turn on or off with a probability that is independent of the other network units
and completely determined by the external environment.

2. Then each of the hidden units receives as input the states of its “parents” (which can be input or
hidden units, including that same unit, but NOT output units). Depending on the configuration of its
parents, there is a certain probability that each hidden unit will turn on or off.

3. Finally, each of the output units receives as input the states of its parents (which can be input or
hidden units, but NOT output units) and turns on or off with a configuration-dependent probability.

Let us now formulate this mechanism in a mathematically precise manner. Call Ut the Mi-long vector
of input units states at time t, Xt the Mh-long vector of hidden units states at time t, Yt the Mo-long
vector of output units states at time t. The components of these vectors all come from the same finite set
A = {0, 1, ...,K − 1}. The sequences Ut, t = 1, ..., Xt, t = 1, ... and Yt, t = 1, ... are the input, hidden and
output stochastic processes, respectively.

The SRN will be specified in terms of a directed graph G and a set of local conditional probabilities
P. Thus, a stochastic recurrent network is a pair (G,P); given (G,P), pU and an initial condition X0, we
can compute the probability functions pX(x1, ..., xm), pY (y1, ..., ym) for all m, x1, ..., xm, y1, ..., ym (to
be defined presently).

The directed graph G is itself a pair G = (S,N), where S = {s1, ..., sL} is the collection of units (or
nodes, to use the graph theoretic term). The unit set S is partitioned into three mutually exclusive sets:
S = Si ∪ Sh ∪ So, where Si is the set of input units, Sh is the set of hidden units, So is the set of output
units. We have |Si| = Mi, |Sh| = Mh, |So| = Mo.

If s reads the state of r before changing state then there is a directed edge from unit r to unit s (r, s ∈ S).
In such a case we say that r is a parent of s. A unit s ∈ S can have none, one or many parents and even
be a parent of itself. The set of s’s parents is indicated by N(s) and the class of all parent sets is denoted
by N .= {N(s), s ∈ S}.

(S,N) is a complete description of the topology of the net. We assume the SRN topology satisfies the
following restriction. The parent set of every unit can be partitioned as follows:

∀s ∈ Si N(s) = ∅,

∀s ∈ Sh N(s) = Ni(s) ∪Nh(s) where Ni(s) ⊂ Si and Nh(s) ⊂ Sh,

∀s ∈ So N(s) = Ni(s) ∪Nh(s) where Ni(s) ⊂ Si and Nh(s) ⊂ Sh.

The probabilistic state update mechanism is described by P, which is the set of local conditional
probabilities. As already described, the state update takes place synchronously and locally for every unit:

Prob(Xt = x0|Xt−1 = x1, Xt−2 = x2, ..., U t = u0, U t−1 = u1, ...) =∏
s∈Sh

Prob(Xt
s = x0

s|X−1
Nh(s) = x−1

Nh(s), U
t
Ni(s)

= u0
Ni(s)

),

P rob(Y t = y0|..., Xt+1 = x1, Xt = x0, Xt−1 = x−1, ..., U t+1 = u1, U t = u0, U t−1 = u−1, ...) =

∏
s∈So

Prob(Y t
s = y0

s |Xt
Nh(s) = x0

Nh(s), U
t
Ni(s)

= u0
Ni(s)

).

We define the local conditional probabilities for all s ∈ Sh ∪ Si, a ∈ A, b ∈ A|Nh(s)|, c ∈ A|Ni(s)|

ps(a|b, c)
.= Prob(Xt

s = a|Xt−1
Nh(s) = b, U t

Ni(s)
= c)

we can compute the probability Prob(Xt|Xt−1, U t) in terms of the local conditionals:

Prob(Xt = x0|Xt−1 = x1, Xt−2 = x2, ..., U t = u0, U t−1 = u1, ...) =
∏

s∈Sh

p(x0
s|x1

Nh(s), u
0
Ni(s)

).

Similarly we can compute

Prob(Y t = y0|.., Xt+1 = x1, Xt = x0, Xt−1 = x−1, .., U t+1 = u1, U t = u0, U t−1 = u−1, ..) =∏
s∈So

p(y0
s |x0

Nh(s), u
0
Ni(s)

).

The set P is the set of all the local conditionals:

P .= {ps(a|b, c), s ∈ Sh ∪ So, a ∈ A, b ∈ A|Nh(s)|, c ∈ A|No(s)|}.

Now suppose ((S,N),P), pU , Prob(X0) are known. We will first compute pX(x1...xm). We have

pX(x1...xm) .= Prob(X1...Xm = x1...xm) =∑
x0∈AMh ,u1,...,um∈AMi

Prob(X0...Xm = x0...xm, U1...Um = u1...um) =

∑
x0∈AMh ,u1,...,um∈AMi

(
m∏

t=1

∏
s∈Sh

ps(xt
s|xt−1

Nh(s), u
t
Ni(s)

)

)
pU (u1...um)Prob(X0 = x0).

Similarly we can compute pY (y1...ym):

pY (y1...ym) .= Prob(Y 1...Y m = y1...ym) =∑
x0,x1,...,xm∈AMh ,u1,...,um∈AMi

Prob(Y 1..Y m = y1..ym, X0..Xm = x0..xm, U1..Um = u1..um) =

∑
x0,x1,...,xm,u1,...,um

(
m∏

t=1

∏
s∈Sh∪So

ps(xt
s|xt−1

Nh(s), u
t
Ni(s)

)

)
pU (u1...um)Prob(X0 = x0).

This completes the computation of pX(y1...ym) and pY (y1...ym). This computation can be done for any m,
y1,, ym, hence we have shown that (S,N) and pU and Prob(X0) are sufficient to determine pX , pY .

3 The Local Backward Forward Algorithm

Recall the Maximum Likelihood Learning problem. We are given an initial condition x0, input sample
u1, u2, ..., uT and output sample y1, y2, ..., yT . We are also given a fixed network topology G = (S,N). Now
we want to select a set of local conditionals P such that the Likelihood function L(P) is maximized; where
L(P) is defined to be:

L(P) .= Prob(Y 1 = y1, ..., Y T = yT |X0 = x0, U1 = u1, ..., UT = uT ; (G,P)).

We will now develop the local BF algorithm and show that it solves the ML learning problem. First define
some useful quantities:

ΨP(x1, ..., xT) = Prob(Y 1 = y1,, Y T = yT , X1 = x1, ..., XT = xT |X0 = x0, U1 = u1, ..., UT = uT ; (G,P)),

Φ(P,Q) =
∑

x1,...,xT∈AMh

ΨP(x1, ..., xT) log ΨQ(x1, ..., xT).

Now we will prove the following theorem:

Theorem 1 (Baum’s Theorem) Suppose Φ(P,Q) ≥ Φ(P,P). Then L(P) ≥ L(Q).

Proof: In [BE67]. •
Now choose P0 arbitrarily, then maximize Φ(P0,P) with respect to P; call the maximizer P1. Obviously

Φ(P0,P1) ≥ Φ(P0,P0), hence also L(P1) ≥ L(P0). Now maximize Φ(P1,P) with respect to P; call maximizer
P2. Obviously Φ(P1,P2) ≥ Φ(P1,P1), hence also L(P2) ≥ L(P1) ≥ L(P0). Proceeding in this manner we
get a sequence P0,P1, ... such that

L(P0) ≤ L(P1) ≤ L(P2) ≤

This is an iterative, greedy algorithm: at every iteration the value of the Likelihood is increased. It has
been proven that this procedure guarantees convergence to a local maximum. Convergence to the global
maximum is not guaranteed. In all these respects the algorithm is similar to a steepest ascent procedure.
However there is one important difference: we can explicitly compute the maximizer at every step (as we
will show presently) and hence are not confined to a small step.

We want to minimize the function Φ(P,Q) with respect to Q, where P = {ps, s ∈ Sh ∪So}, Q = {qs, s ∈
Sh∪So} are two sets of local conditionals. So we want to minimize Φ(P,Q) with respect to qs(a|b, c), s ∈ S,
a ∈ A, b ∈ A|Nh(s)|, c ∈ A|Ni(s)|. These are positive real variables in the range [0, 1]; however they are not
independent. They must satisfy:∑

a∈A

qs(a|b, c) = 1 ∀s ∈ S, b ∈ A|Nh(s)|, c ∈ A|No(s)|. (1)

We incorporate these constraints to the Likelihood function by using Lagrange multipliers µs(b, c), s ∈ S, b ∈
A|Nh(s)|c ∈ A|Ni(s)|:

Φ∗(P,Q) = Φ(P,Q) +
∑

s

∑
b

µs(b, c)
∑

a

qs(a|b, c).

Maximization of Φ(P,Q) under the constraints (1) is equivalent to maximization of Φ∗(P,Q) without con-
straints. To maximize Φ∗ we apply the usual condition that the partial derivatives with respect to the q’s
equal zero.

∂Φ∗

∂qs(a | b, c)
= µs(a | b, c)+∑

t

∑
x PP(Y 1..Y T = y1..yT , X1..XT = x1..xT | U1..UT = u1..uT , X0 = x0)1a,bc(xt

s, x
t−1
Nh(s), u

t
Ni(s)

)

qs(a | b, c)
. (2)

Here the function 1a,bc(x, z, u) equals 1 when x = a, z = b and u = c; it is zero otherwise. Setting (2) equal
to 0 we obtain that

qs(a | b, c) =

∑
t:ut

Ni(s)=c Prob(Y 1..Y T = y1..yT , Xt
s = a,Xt−1

Nh(s) = b | U1..UT = u1..uT , X0 = x0)∑
t:ut

Ni(s)=c Prob(Y 1..Y T = y1..yT , Xt−1
Nh(s) = b | U1..UT = u1..uT , X0 = x0)

This suggests the following reestimation iteration (for m=1,2,...):

pm+1
s (a | bc) =

∑
t:ut

Ni(s)=c Prob(Y 1..Y T = y1.yT , Xt
s = a,Xt−1Nh(s) = b | U1..UT = u1.uT , X0 = x0;Pm)∑

t:ut
Ni(s)=c Prob(Y 1..Y T = y1..yT , Xt−1Nh(s) = b | U1..UT = u1..uT , X0 = x0;Pm)

(3)
We can compute the terms in the fraction entirely in terms of the p’s. To do so, assume U1 = u1, ..., UT = uT ,
Y 1 = y1, ..., Y T = yT , X0 = x0 are fixed and define some auxiliary quantities. The transition matrix is
defined for all z, x ∈ A|Sh|, for t = 1, 2, ..., T :

Pm
zx(t) .= Prob(Xt = x | Xt−1 = z, U t = ut;Pm).

This can be computed in terms of the pm’s:

Pm
zx(t) =

∏
s∈Sh

pm
s (xs | zNh(s), u

t
Ni(s)

). (4)

The emission matrix is defined for all x ∈ A|Sh|, y ∈ A|So|, for t = 1, 2, ..., T :

Qm
xy(t) .= Prob(Y t = y | Xt = x,U t = ut;Pm).

This can also be computed in terms of the pm’s:

Qm
x,y(t) =

∏
s∈So

ps(ys | xNh(s), u
t
Ni(s)

). (5)

Next we define the forward and backward probabilities for all x ∈ A|Sh|, t = 1, ..., T

αm
t (x) .= Prob(Y 1...Y t = y1...yt, Xt = x|U1..UT = u1..uT , X0 = x0;Pm),

βm
t (x) .= Prob(Y t+1 = yt+1...Y T = yT |Xt = x, U1..UT = u1..uT , X0 = x0;Pm).

The α’s are called forward probabilities and the β’s backward probabilities. The forward probabilities obey
the forward evolution equation for all x ∈ A|Sh|, t = 0, ..., T − 1:

αm
t+1(x) =

∑
z∈AMh

αm
t (z)Pm

zx(t)Qm
xyt+1 (6)

with initial condition αm
0 (x0) = 1, αm

1 (x) = 0 for all x 6= x0. The backward probabilities satisfy the backward
evolution equation: for all x ∈ A|Sh|, t = 1, ..., T − 1:

βm
t (x) =

∑
z

Pm
xz(t)Q

m
zyt+1(t + 1)βm

t+1(z) (7)

with final condition βT
m(x) = 1, ∀x ∈ AMh . Using the forward and backward probabilities we can write the

following relationship:

Prob(Y 1..Y T = y1..yT , Xt
s = a,Xt−1

Nh(s) = b|U1..UT = u1..uT , X0 = x0,Pm) =∑
t:ut

Ni(s)=c

∑
xt,xt+1:xt+1s=a,xt

Nh(s)=b

αm
t (xt)Pm

xtxt+1(t + 1)Qm
xt+1yt+1(t + 1)βm

t+1(x
t+1).

Now we can rewrite the fraction in (3) as

pm+1
s (a | b, c) =

∑
t:ut

Ni(s)=c

∑
xt,xt+1:xt+1

s =a,xt
Nh(s)=b αm

t (xt)Pm
xtxt+1(t + 1)Qm

xt+1yt+1(t + 1)βm
t+1(x

t+1)∑
t:ut

Ni(s)=c

∑
xt,xt+1:xt

Nh(s)=b αm
t (xt)Pm

xtxt+1(t + 1)Qm
xt+1yt+1(t + 1)βm

t+1(xt+1)
(8)

This completes the local BF algorithm. It consists of (4), (5), (6), (7), (8).
The local BF algorithm is essentially a version of the BF algorithm that estimates local conditional

probabilities, rather than the global transition matrix which is estimated by the Baum BF algorithm [BE67].

4 An Example: 8-3-8 Encoder

In this section we will use the local BF algorithm to solve the 8-3-8 encoder problem and so illustrate the
most important features of the algorithm and also to introduce some practical tricks that improve efficiency.

This is a “static” problem. discussed in [A+85] and elsewhere. We have a set of input/output pairs
(u1, y1), ..., (u8, y8) and we want to build a network that takes un in and produces yn as output for n = 1, ..., 8.
The input/output pairs are the following 8-long binary vectors: u1 = y1 = 10000000, u2 = y2 = 01000000,
..., u8 = y8 = 00000001. The network has three hidden units. Hence the name “8-3-8 encoder”. We use
the following network topology: 8 binary input units (call them i1, i2, ..., i8), 3 binary hidden units (call
them h1, h2, h3) fully connected to each other and all the input units and 8 binary output units (call them

o1, o2, ..., o8) fully connected to the hidden units. We change somewhat the local BF algorithm: we will not
estimate the local conditionals of the output units, rather we fix them as follows (n = 1, ..., 8):

pon(1|x1x2x3) =
{

1 iff x1 + 2x2 + 4x3 = n− 1
0 else

So we are looking for a set of local conditionals of the hidden units: {phn(x|u1u2...u8), n = 1, 2, 3, ...,
x, u1, ..., u8 ∈ {0, 1}}.

We want to teach a static input/output relationship to a recurrent network. We use the following
input/output sample sequence: take an input sample u1, ..., u200 and an output sample y1, ..., y200. We take
ut = yt = 000 for t = 1, ..., 25, ut = yt = 001 for t = 26, ..., 50 etc.

There is at least one solution:

phn(x|u1...u8) =
{

1 iff Bin(m− 1, n) = 1, for some m=1,2,...,8
0 else.

This is not the only solution (the problem is underdetermined) but is, in an obvious sense, the best. The
question is whether the local BF will pick up this solution and how fast We initialize the hidden units for
completely random output: phn(x|u1...u8) = .5, n = 1, 2, ..., 8, ∀x, u1, ..., u8 ∈ {0, 1}. After 5 iterations of
the BF algorithm (seven minutes on a Sun/4) we arrive to the following solution:

phn(x|u1...u8) =
{

1− ε iff Bin(m− 1, n) = 1, for some m=1,2,...,8
ε else,

where ε is less than .001 for all x, u1, ..., u8. So this is an almost perfect solution. Of all the sets of conditional
probabilities that solve the learning task, the local BF algorithm picks up the best solution very quickly.

5 Conclusions

We have developed a new SRN model and a Maximum Likelihood training algorithm to go with it. The
model can reproduce both static and dynamic behavior. The training algorithm is essentially a local version
of the Baum BF algorithm (that is, the local BF estimates local conditional probabilities, whereas the Baum
BF algorithm estimates the global conditional state transition matrix).
Remark: This is a very shortened version of a Brown Un. technical report [Keh91]; in particular the author
regrets that he is not able to include here a more complete reference list.

References

[A+85] D.H. Ackley et al. A learning algorithm for Boltzmann machines. Cognitive Science, 9, 1985.

[BE67] L.E. Baum and J.A. Eagon. An inequality with applications to statistical estimation for proba-
bilistic functions of Markov Processes. Ann. of Math. Stat., pages 36–363, 1967.

[Keh91] A. Kehagias. Stochastic Recurrent Network Training and the local Backward Forward Algorithm.
Technical report, Division of Applied Mathematics, Brown Un., Providence, Rhode Island, January
1991.

[Rab88] L.R. Rabiner. A tutorial on HMM and selected applications in speech recognition. IEEE Proc.,
1988.

